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Abstract
In recent years, quantum-resistant cryptography has been steadily developing, which is due, in particular, to
the post-quantum cryptosystems competition of the National Institute of Standards and Technology (NIST),
which has been ongoing since 2017. One of the participants in the first round of the competition is the AJPS
cryptosystem. In this work, we propose the modification of the AJPS cryptosystem for bit-by-bit encryption by
changing the numbers class used in the cryptosystem as a module. This modification increases the variability of
the cryptosystem parameters.

Keywords: the AJPS cryptosystem, Mersenne numbers, generalized Mersenne numbers, Hamming weight, post-
quantum (quantum-resistant) cryptographic primitives

1. Introduction

In recent years, a significant amount of research
into technologies for creating scalable quantum
computers has been conducted. In view of this,
post-quantum cryptography has also begun to
progress rapidly [1]. Its aim is to develop the cryp-
tographic primitives that would be resistant to
attacks using both quantum and classical comput-
ers.

In 2017, the National Institute of Standards and
Technology (NIST) has launched the currently on-
going competition for quantum-resistant public-
key cryptographic primitives [2]. According to
the competition plan, it is going to be finished
in 2024. As a result, USA will accept new post-
quantum public-key cryptography standards, which
will specify one or more additional digital signature,
public key encryption, and key encapsulation algo-
rithms to augment FIPS 186-4, Digital Signature
Standard (DSS), as well as special publications
SP 800-56A and SP 800-56B [2]. One of the par-
ticipants of the first round of the competition is
the Mersenne-756839 key encapsulation mechanism,
which is based on the AJPS cryptosystem [3].

The AJPS cryptosystem was created by a group
of famous cryptologists consisting of D. Aggarwal,
A. Joux, A. Prakash and M. Santha. AJPS uses
arithmetic modulo Mersenne number, which can
be efficiently implemented using algorithms for
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fast computation of cumbersome modular oper-
ations, such as reduction, multiplication, modu-
lar multiplicative inverse calculation, bitwise ad-
dition and multiplication modulo Mersenne num-
ber [4, 5]. AJPS has two versions – bit-by-bit
encryption scheme (AJPS-1) and scheme for en-
crypting a message block (AJPS-2).

This paper describes the results of the modifi-
cation of the AJPS-1 cryptosystem by changing
the class of numbers used in the cryptosystem as a
module.

2. Description of the AJPS-1 cryptosystem

The AJPS-1 cryptosystem [3] allows encrypting
one bit of a message, that is, the plaintext is the
value 𝑏 ∈ {0, 1}.

Let public parameters of cryptosystem be:
• Mersenne number 𝑀𝑛 = 2𝑛 − 1, where 𝑛 ∈ N;
• the security parameter 𝜆;
• fixed integer ℎ, such that:

1) 𝐶ℎ
𝑛 ≥ 2𝜆;

2) 4ℎ2 < 𝑛 ≤ 16ℎ2.
To simplify notation, we equate numbers modulo

Mersenne number with binary strings from the set
{0, 1}𝑛 ∖ {1𝑛}. Also, we define the set of numbers
which have Hamming weight ℎ modulo Mersenne
number 𝑀𝑛 as:

𝐻𝑀𝑛,ℎ = {𝑥 ∈ {0, 1}𝑛 : 𝐻𝑎𝑚(𝑥) = ℎ},
where 𝐻𝑎𝑚(𝑥) is the Hamming weight of 𝑥 (total
amount of 1’s in the binary representation of 𝑥).
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Given the introduced simplification of the notation,
the set 𝐻𝑀𝑛,ℎ can also be represented as the set of
residues modulo the Mersenne number 𝑀𝑛, which
have Hamming weight ℎ.

Key Generation. Let 𝐹 and 𝐺 be 𝑛-bit random
integers, chosen independently and uniformly from
all 𝑛-bit numbers of Hamming weight ℎ:

𝐹,𝐺 ∈𝑅 𝐻𝑀𝑛,ℎ.

The integer 𝐹 is a secret parameter of the cryp-
tosystem and 𝐺 is a private (secret) key. Public
key 𝐻 is calculated as

𝐻 = 𝐹 ·𝐺−1 mod 𝑀𝑛.

Encryption. The encryption algorithm (for en-
crypting 𝑏 ∈ {0, 1}) chooses two random inde-
pendent integers 𝐴 and 𝐵 uniformly from the set
𝐻𝑀𝑛,ℎ. Integers 𝐴 and 𝐵 are secret ephemeral pa-
rameters of the cryptosystem. A bit 𝑏 is encrypted
as:

𝐶 = (−1)𝑏(𝐴 ·𝐻 +𝐵) mod 𝑀𝑛.

Decryption. The decryption algorithm computes

𝑑 = 𝐻𝑎𝑚(𝐶 ·𝐺 mod 𝑀𝑛).

Then it returns the value of 𝑏, depending on the
value of 𝑑:

𝑏 =

⎧⎪⎨⎪⎩
0, if 𝑑 ≤ 2ℎ2;

1, if 𝑑 ≥ 𝑛− 2ℎ2;

⊥ (error), else.

The correctness of the decryption follows from
Lemma 1.

Lemma 1. [3] For integers 𝐴,𝐵 ∈ {0, 1}𝑛 and a
module 𝑀𝑛 the following properties hold:

1) 𝐻𝑎𝑚(𝐴+𝐵 mod 𝑀𝑛) ≤ 𝐻𝑎𝑚(𝐴)+𝐻𝑎𝑚(𝐵);
2) 𝐻𝑎𝑚(𝐴 ·𝐵 mod 𝑀𝑛) ≤ 𝐻𝑎𝑚(𝐴) ·𝐻𝑎𝑚(𝐵);
3) If 𝐴 ̸= 0𝑛, then

𝐻𝑎𝑚(−𝐴 mod 𝑀𝑛) = 𝑛−𝐻𝑎𝑚(𝐴).

To see the correctness of the decryption algorithm,
note that:

𝐶 ·𝐺 mod 𝑀𝑛 = (−1)𝑏 · (𝐴 · 𝐹 +𝐵 ·𝐺) mod 𝑀𝑛,

which by Lemma 1 has Hamming weight at
most 2ℎ2 if 𝑏 = 0, and at least 𝑛− 2ℎ2 if 𝑏 = 1.

Security of the AJPS-1 cryptosystem rests upon
the conjectured intractability of the Mersenne Low
Hamming Ratio Search Problem (MLHRSP) [3].

Definition 1. (MLHRSP) Given a Mersenne
number 𝑀𝑛, an 𝑛-bit integer 𝐻 and an integer ℎ,
find two 𝑛-bit integers 𝐹 and 𝐺, each of Hamming

weight equal to ℎ, such that:

𝐻 = 𝐹 ·𝐺−1 mod 𝑀𝑛.

It is considered that MLHRSP is hard to
solve. This problem is resistant to many known
attacks, namely Meet-in-the-middle attacks, Guess
and Win, Lattice-based attacks, etc. [6, 7, 8, 9]
MLHRSP is based on the following claim.

Claim 1. [3] Let 𝐹 and 𝐺 be such integers, that
they both have low Hamming weight ℎ. Then,
when we consider 𝐻 as 𝐹 · 𝐺 mod 𝑀𝑛, 𝐻 looks
pseudorandom, i.e., it will be hard to distinguish
𝐻 from a random integer modulo 𝑀𝑛.

AJPS creators suggested using the following val-
ues for 𝑛 and ℎ (Table 1) [3]. Such parameters
satisfy all the necessary requirements of the key
generation algorithm, and in this case, it is consid-
ered that the value of ℎ is low enough, compared
to 𝑛, so that Claim 1 is fulfilled.

Table 1. Suggested values of 𝑛 and ℎ for AJPS-1

𝑛 ℎ 𝜆

1279 17 120

2203 23 174

3217 28 221

4253 32 260

9689 49 432

3. Modification of AJPS-1

As we said earlier, the arithmetic modulo
Mersenne number has many advantages for using
in cryptography due to the existence of efficient
algorithms for calculating cumbersome modulo op-
erations. Such algorithms are often generalized
to the case of larger number classes, in particular
generalized Mersenne numbers [4, 5, 10].

Let us consider generalized Mersenne numbers
such that:

𝐺𝑀𝑛,𝑚 = 2𝑛 − 2𝑚 − 1,

where 𝑛,𝑚 ∈ N, 𝑛 > 𝑚. To create a modification
of the AJPS-1 cryptosystem with this class of
numbers as a module, first and foremost, it is
necessary to determine the Hamming weight
relations, similar to those in Lemma 1. Such
relations for generalized Mersenne numbers are
described in Theorems 1 and 2.
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Theorem 1. [11] Let us have integers 𝐴 and 𝐵
such that 𝐴 ≤ 𝐺𝑀𝑛,𝑚 and 𝐵 ≤ 𝐺𝑀𝑛,𝑚. Then the
following properties are fulfilled:
1) 𝐻𝑎𝑚(𝐴+𝐵 mod 𝐺𝑀𝑛,𝑚) ≤

≤ 𝐻𝑎𝑚(𝐴) +𝐻𝑎𝑚(𝐵);

2) 𝐻𝑎𝑚(𝐴 ·𝐵 mod 𝐺𝑀𝑛,𝑚) ≤
≤ 𝐻𝑎𝑚(𝐴) ·𝐻𝑎𝑚(𝐵)+

+(𝑚− 1) ·min{𝐻𝑎𝑚(𝐴), 𝐻𝑎𝑚(𝐵)}.
Theorem 2. [12] Let 𝐴 is an 𝑛-bit inte-

ger such that 𝐴 ̸= 0 and 𝐴 ≤ 𝐺𝑀𝑛,𝑚. De-
note 𝐴 = 𝑎𝑛−1 𝑎𝑛−2 . . . 𝑎1 𝑎0, where 𝑎𝑖 ∈ {0, 1},
𝑖 = 0, 𝑛− 1.
1) If 𝑎𝑚 = 0, then:

𝐻𝑎𝑚(−𝐴 mod 𝐺𝑀𝑛,𝑚) = 𝑛− 1−𝐻𝑎𝑚(𝐴).

2) If 𝑎𝑚 = 1, let us represent 𝐴 in the form
𝐴 = ℎ1 || ℎ2 || ℎ3, where:

• ℎ3 = 𝑎𝑚−1 𝑎𝑚−2 . . . 𝑎0, so ℎ3 includes 𝑚
lower bits of 𝐴;

• ℎ2 = 𝑎𝑘−1 𝑎𝑘−2 . . . 𝑎𝑚, where

𝑘 = min
𝑖
{𝑎𝑖 = 0 | 𝑎𝑗 = 1,𝑚 ≤ 𝑗 < 𝑖},

so ℎ2 includes bits from 𝑎𝑚 to the first
zero after 𝑎𝑚;

• ℎ1 = 𝑎𝑛−1𝑎𝑛−2 . . . 𝑎𝑘.
Then we have:

𝐻𝑎𝑚(−𝐴 mod 𝐺𝑀𝑛,𝑚) =

= 𝑛− 𝑘 −𝐻𝑎𝑚(ℎ1) +𝐻𝑎𝑚(ℎ2)+

+𝑚−𝐻𝑎𝑚(ℎ3).

Using Theorems 1 and 2, we create a modifica-
tion of the AJPS-1 cryptosystem using arithmetic
modulo the generalized Mersenne number 𝐺𝑀𝑛,𝑚.

Let public parameters be:
• generalized Mersenne number

𝐺𝑀𝑛,𝑚 = 2𝑛 − 2𝑚 − 1,

where 𝑛,𝑚 ∈ N, 𝑛 > 𝑚;
• the security parameter 𝜆;
• fixed integer ℎ, such that:

1) 𝐶ℎ
𝑛 ≥ 2𝜆;

2) 4ℎ2 < 𝑛 ≤ 16ℎ2;
3) 𝑚 < 𝑛−1

2ℎ − ℎ.
For convenience, we define the set of numbers

which have Hamming weight ℎ modulo generalized
Mersenne number 𝐺𝑀𝑛,𝑚 as:

𝐻𝐺𝑛,𝑚,ℎ = {𝑥 < 𝐺𝑀𝑛,𝑚 : 𝐻𝑎𝑚(𝑥) = ℎ}.

Key Generation. Let 𝐹 and 𝐺 be random inte-
gers, chosen independently and uniformly from the
set 𝐻𝐺𝑛,𝑚,ℎ, and let the 𝑚-th bit of 𝐺 equals 0.
The integer 𝐹 is a secret parameter of the cryp-

tosystem and 𝐺 is a private (secret) key. Public
key 𝐻 is calculated as

𝐻 = 𝐹 ·𝐺−1 mod 𝐺𝑀𝑛,𝑚.

Encryption. For encryption, we choose two
random independent integers 𝐴,𝐵 from the set
𝐻𝐺𝑛,𝑚,ℎ. Integers 𝐴 and 𝐵 are secret ephemeral
parameters of the cryptosystem. Then we check
such requirements:

1) 𝐻𝑎𝑚(𝐴+𝐵 mod 𝐺𝑀𝑛,𝑚) ≥
≥ |𝐻𝑎𝑚(𝐴)−𝐻𝑎𝑚(𝐵)|;

2) 𝐻𝑎𝑚(𝐴 ·𝐵 mod 𝐺𝑀𝑛,𝑚) ≥
≥ |𝐻𝑎𝑚(𝐴)−𝐻𝑎𝑚(𝐵)|.

If at least one of the requirements is not fulfilled,
then we need to choose another values of 𝐴 and 𝐵.

The probability that randomly selected num-
bers 𝐴 and 𝐵 from the set 𝐻𝐺𝑛,𝑚,ℎ fulfil both
requirements is 0.988 (experimentally estab-
lished for 1000000 randomly selected numbers
𝐴,𝐵 ∈ 𝐻𝐺𝑛,𝑚,ℎ for values 𝑛 and ℎ from Table 1).
Therefore, these requirements do not significantly
limit the choice of parameters 𝐴 and 𝐵.

Then, a bit 𝑏 is encrypted as:

𝐶 = 𝐴 ·𝐻 + (−1)𝑏 ·𝐵 mod 𝐺𝑀𝑛,𝑚.

Note that changing of encryption formula
compared to classic AJPS-1 is due to the fact
that the secret parameters 𝐴,𝐵 and 𝐹 should
not be used during decryption, but only the
secret key 𝐺 and the ciphertext 𝐶 should be
used. Since the Hamming weight of the additive
inverse modulo generalized Mersenne number
depends on the 𝑚-th bit of this number, it is
necessary to ensure that we will compute the ad-
ditive inverse to the secret key 𝐺 during decryption.

Decryption. The decryption algorithm computes

𝑑 = 𝐻𝑎𝑚(𝐶 ·𝐺 mod 𝐺𝑀𝑛,𝑚).

Then it returns the value of 𝑏, depending on the
value of 𝑑:

𝑏 =

⎧⎪⎨⎪⎩
0, if 𝑑 ≤ 2ℎ2 + ℎ(2𝑚− 2);

1, if 𝑑 ≥ 𝑛− 2ℎ2 − 1;

⊥ (error), else.

Let us show that the algorithm is correct. To do
this, consider two cases depending on the value of
the bit 𝑏.

1) If 𝑏 = 0, then ciphertext is as follows:

𝐶 = 𝐴 ·𝐻 +𝐵 mod 𝐺𝑀𝑛,𝑚.
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Then, when decrypting, we have:

𝑑 = 𝐻𝑎𝑚(𝐶 ·𝐺 mod 𝐺𝑀𝑛,𝑚) =

= 𝐻𝑎𝑚(𝐴 · 𝐹 +𝐵 ·𝐺 mod 𝐺𝑀𝑛,𝑚).

Using the item 1 of Theorem 1, we have:

𝑑 ≤ 𝐻𝑎𝑚(𝐴 · 𝐹 mod 𝐺𝑀𝑛,𝑚)+

+𝐻𝑎𝑚(𝐵 ·𝐺 mod 𝐺𝑀𝑛,𝑚).

After that, using twice the item 2 of Theorem 1,
we have:

𝑑 ≤ 𝐻𝑎𝑚(𝐴) ·𝐻𝑎𝑚(𝐹 )+

+(𝑚− 1) ·min{𝐻𝑎𝑚(𝐴), 𝐻𝑎𝑚(𝐹 )}+
+𝐻𝑎𝑚(𝐵) ·𝐻𝑎𝑚(𝐺)+

+(𝑚− 1) ·min{𝐻𝑎𝑚(𝐵), 𝐻𝑎𝑚(𝐺)}.
Using the fact that 𝐴,𝐵, 𝐹,𝐺 ∈ 𝐻𝐺𝑛,𝑚,ℎ, we
have:

𝑑 ≤ 2ℎ2 + ℎ(2𝑚− 2).

2) If 𝑏 = 1, ciphertext is:

𝐶 = 𝐴 ·𝐻 −𝐵 mod 𝐺𝑀𝑛,𝑚.

Then, using Theorem 1, we have:

𝑑 = 𝐻𝑎𝑚(𝐴 · 𝐹 −𝐵 ·𝐺 mod 𝐺𝑀𝑛,𝑚) =

= 𝐻𝑎𝑚(𝐴 · 𝐹 +𝐵 · (−𝐺) mod 𝐺𝑀𝑛,𝑚).

Using requirements from the encryption algo-
rithm, we have:

𝑑 ≥
⃒⃒
|𝐻𝑎𝑚(𝐴)−𝐻𝑎𝑚(𝐹 )|−

−|𝐻𝑎𝑚(𝐵)−𝐻𝑎𝑚(−𝐺 mod 𝐺𝑀𝑛,𝑚)|
⃒⃒
=

=
⃒⃒
|ℎ− ℎ| − |ℎ−𝐻𝑎𝑚(−𝐺 mod 𝐺𝑀𝑛,𝑚)|

⃒⃒
=

= |ℎ−𝐻𝑎𝑚(−𝐺 mod 𝐺𝑀𝑛,𝑚)|.
Since 𝐻𝑎𝑚(𝐺) = ℎ and, by the requirement
of the cryptosystem, ℎ is a small number com-
pared to 𝑛, then the Hamming weight of ad-
ditive inverse of 𝐺 modulo 𝐺𝑀𝑛,𝑚 is greater
than ℎ. Then we have:

𝑑 ≥ 𝐻𝑎𝑚(−𝐺 mod 𝐺𝑀𝑛,𝑚)− ℎ.

Using Theorem 2, we get the desired result.

Note that such a modification of AJPS-1 is possi-
ble even without the restriction on the 𝑚-th bit of
the secret key 𝐺. In this case, the decryption algo-
rithm should be modified in accordance with both
items of Theorem 2. However, then it is necessary
to ensure that the condition

2ℎ2 + ℎ(2𝑚− 2) < 𝐻𝑎𝑚(−𝐺 mod 𝐺𝑀𝑛,𝑚)− ℎ

is also fulfilled for the case when the 𝑚-th bit of 𝐺
is 1. For the case when the 𝑚-th bit of 𝐺 is 0, this
condition is satisfied by the requirement

𝑚 ≤ 𝑛− 1

2ℎ
− ℎ,

however, it is not sufficient for the case when the
𝑚-th bit of 𝐺 is 1.

The advantage of this modification is a significant
increase in the number class which can be used as
a module in the cryptosystem. In addition, the
other advantage of the modification is an increase
in the interval length of the decryption parameter
𝑑, in particular, the number of unique values that
the parameter 𝑑 takes.

The justification for this are the experimental
results, which are described in Figures 1 and 2, and
also in Tables 2 and 3.

Fig. 1. Distribution of the decryption parameter 𝑑
in AJPS-1 and in the modification of AJPS-1 using
generalized Mersenne numbers as a module (when
encryption of bit 𝑏 = 0) for parameters 𝑛 = 9689
and ℎ = 49

Fig. 2. Distribution of the decryption parameter 𝑑
in AJPS-1 and in the modification of AJPS-1 using
generalized Mersenne numbers as a module (when
encryption of bit 𝑏 = 1) for parameters 𝑛 = 9689
and ℎ = 49

Note. Distributions of the decryption parameter
𝑑 for other values of 𝑛 and ℎ which are given in
Table 1, can be found in [13].
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Table 2. The interval length of the decryption
parameter 𝑑 in AJPS-1 and in the modification
of AJPS-1 using generalized Mersenne number
𝐺𝑀𝑛,𝑚 as a module

Interval length
𝑛 ℎ Number class of values 𝑑

𝑏 = 0 𝑏 = 1

1279 17
Mersenne 105 112

Generalized 173 256
Mersenne

2203 23
Mersenne 147 141

Generalized 233 295
Mersenne

3217 28
Mersenne 171 170

Generalized 279 367
Mersenne

4253 32
Mersenne 201 204

Generalized 331 415
Mersenne

9689 49
Mersenne 294 319

Generalized 512 668
Mersenne

Table 3. The count of unique values of the decryp-
tion parameter 𝑑 in AJPS-1 and in the modifica-
tion of AJPS-1 using generalized Mersenne number
𝐺𝑀𝑛,𝑚 as a module

Count of
𝑛 ℎ Number class unique values 𝑑

𝑏 = 0 𝑏 = 1

1279 17
Mersenne 103 104

Generalized 150 224
Mersenne

2203 23
Mersenne 139 139

Generalized 208 280
Mersenne

3217 28
Mersenne 166 162

Generalized 256 325
Mersenne

4253 32
Mersenne 192 190

Generalized 299 386
Mersenne

9689 49
Mersenne 285 284

Generalized 457 553
Mersenne

To obtain these results a series of 1,000,000 ap-
plications of encryption and decryption algorithms
of the AJPS-1 cryptosystem and its modification

with fixed key values were performed. The pub-
lic and secret keys are obtained as a result of key
generation algorithms of the AJPS-1 cryptosystem
and its modification. When applying key genera-
tion, encryption and decryption algorithms of the
modification of the AJPS-1 cryptosystem using
arithmetic modulo generalized Mersenne number,
the parameter 𝑚 = 25 was used for the generalized
Mersenne number 𝐺𝑀𝑛,𝑚.

The interval length is calculated as the subtrac-
tion result between the maximum and minimum
values of 𝑑 among the obtained results. The count
of unique values is the number of unique values of
𝑑 among the obtained 1,000,000 values.

Thus, the number of different values of 𝑑 in
the modification increased by a factor of two, on
average, compared to the AJPS-1 cryptosystem.

Therefore, such modification allows us to
increase the resistance of the AJPS-1 cryptosystem
to known-plaintext attacks, which are aimed at
determining the secret key. Also, the constructed
modification of AJPS-1 has a greater variability of
parameters, in particular, it allows using different
number classes as a module, which increases
the flexibility of the practical application of this
cryptosystem.

The security of this modification of the AJPS-1
cryptosystem relies on the assumption that
it is hard to solve the Generalized Mersenne
Low Hamming Ratio Search Problem (GMLHRSP).

Definition 2. (GMLHRSP) Given a generalized
Mersenne number 𝐺𝑀𝑛,𝑚, an 𝑛-bit integer 𝐻 and
an integer ℎ, find two integers 𝐹 and 𝐺, such that
𝐹,𝐺 ∈ 𝐻𝐺𝑛,𝑚,ℎ and

𝐻 = 𝐹 ·𝐺−1 mod 𝐺𝑀𝑛,𝑚.

4. Conclusion

This paper analyses the quantum-resistant
public-key cryptosystem AJPS, which is one of the
participants in the NIST post-quantum cryptogra-
phy competition. The AJPS cryptosystem relies
on the arithmetic modulo Mersenne numbers.

In this work, we considered the bit-by-bit en-
cryption scheme of the AJPS cryptosystem, which
is called AJPS-1, and we constructed a modifi-
cation of AJPS-1 by changing the number class
used in the cryptosystem as a module. Instead
of Mersenne numbers 𝑀𝑛 = 2𝑛 − 1, our modifi-
cation uses generalized Mersenne numbers of the
form 𝐺𝑀𝑛,𝑚 = 2𝑛 − 2𝑚 − 1. To create such a
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modification, we had to obtain the relations for the
Hamming weight of the sum and product of the
two numbers modulo generalized Mersenne num-
ber and relations for Hamming weight of additive
inverse modulo generalized Mersenne number.

As a result of the statistical analysis of the modi-
fication of AJPS-1, we found that the advantage of
these modifications is not only a significant increase
in the class of modules used, but also an increase
in the interval length and the number of unique
values of the decryption parameter 𝑑.

Thus, the constructed modification of the
AJPS-1 cryptosystem allows us to increase the resis-
tance to known-plaintext attacks, which are aimed
at determining the secret key.
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