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Abstract

Encryption based on Walks in Algebraic GRAphs
(EWAGRA) is used for protectionof authors' rights,
access to electronic books or documents located at
a certain knowledge base (Information Quality As-
surance Support Systems of a university, digital li-
brary supporting distance education, various digital
archives and etc). The method allows generating
nonlinear stream ciphers, which have some similarity
with a one-time pad: di�erent keys produce distinct
ciphertexts from the same plaintext. In contrast to
the case of a one-time pad, the length of the key is
�exible and the encryption map is a nonlinear poly-
nomial map, which order is growing with the growth
of the dimension n of the plaintext space. The en-
cryption has good resistance to attacks of the ad-
versary when he has no access to plaintext space or
has a rather small number of intercepted plaintext-
ciphertext pairs. It is known that encryption and
decryption maps are cubical maps. So, interception
of n3 + O(n) plaintext-ciphertext pairs allows con-
ducting a plain linearization attack for �nding the
inverse map. We consider the idea of modi�cation
of this encryption algorithm after sending each mes-
sage without use key exchange protocols. So the new
algorithm is resistant to plain linearization attacks.

Keywords: stream ciphers, key exchange proto-

cols, audenti�cation, graph based, encryption, multi-
variate maps

1 Introduction

Extremal graph-based methods of encryption are al-
ready used to protect Information Systems. The gen-
eral idea is to treat vertices of algebraic graphs as
messages and walks of a certain length as encryption
tools. The quality of such private key encryption is
good for graphs de�ned over �nite �elds, which sizes
are close to the bound of Even Cycle Theorem for-
mulated by Erd®s (see [1, 2, 3]). As it was recently
found new construction of algebraic graphs obtained
simply by the change of �nite �eld Fq for a �nite
commutative ring K can also be used for e�ective en-
cryption. For practical implementation cases of �fast�
rings (modular arithmetic, Boolean rings, etc.) can
be useful for the development of fast graph-based en-
cryption algorithms working on plaintext space Kn

with the use of key space Ms, where M is a mul-
tiplicatively closed subset of nonzero elements from
K and s is restricted from above by linear function
l(n). As in the case of one-time pad di�erent pass-
words produce distinct ciphertexts. In contrast to
the case of a one-time pad the length of a password
2 ≤ s ≤ l(n) is �exible and the multivariate encryp-
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tion map is nonlinear.
It allows in practice to use a stream cipher, which

has good resistance to attacks of the adversary with-
out access to plaintext space.
Let us discuss the resistance to plaintext-ciphertext

attacks for the graph-based algorithm, when an en-
cryption map corresponds to the chosen path.
A member of the family of k-regular algebraic

graphs Gn, n ≥ 2, where k, k > 2 is constant, of
increasing order and girth gives us a �nite approxi-
mation of in�nite k-regular tree.
The idea of security for the walk based algo-

rithm based on the fact that �nding a pass between
two given vertices at the distance d of in�nite k-
regular tree (or k-regular graph of girth > d) require
f(k, d) = k(k − 1)d−1 steps of the natural branching
process. If the girth of the graph is unbounded and
distance d can be unknown the problem is getting
harder. The complexity f(k, d) is growing when d
is increasing. Obviously, the pass between two ver-
tices can be found by the Dijkstra algorithm with the
complexity v ln(v), where v is the order of the graph.
In the case of our family the order of a graph rep-
resentative is growing exponentially, so the Dijkstra
algorithm is not applicable.
For some classes of the graphs these encryption

algorithms have also some resistance to plaintext-
ciphertext attacks when the number of known
plaintext-ciphertext pairs is restricted.
The last feature allows using walks on special al-

gebraic graphs for the establishment of key exchange
protocols, authentication algorithms (electronic sig-
natures) and development of hash functions.
It turns out that some classes of such graph-based

encryption maps form a family of stable multivariate
encryption maps of large order, i.e. maps generating
a large group of transformations of bounded poly-
nomial degree. In such a case the degrees of multi-
variate encryption and decryption bijective maps are
restricted by a constant. It means that their resis-
tance to plaintext-ciphertext attack is bounded by
the option of linearization cryptanalysis. We need
a polynomial number of plaintext-ciphertext pairs to
conduct a successful cryptanalytic attack in polyno-
mial time P (n). Notice that if the degree of P (n) is
�su�ciently large� such attacks are not feasible.

In this paper, we are not going to develop EWA-
GRA theory for rather wide classes of algebraic
graphs (like linguistic graphs or graphs related to
time dependent dynamical systems). First steps in
graph based encryption were connected with applica-
tions of the family of algebraic graphs of large girth
D(n, q), which had been used for the development of
known class of important LDPC codes, and their gen-
eralizations D(n,K) (see [4, 5, 6]). We concentrate
on further research on generation of encryption maps
related to walks on these graphs and graphs A(n,K)
(special homomorphic images ofD(n,K)) in a special
case of Boolean ring K = B(m). We hope that im-
plementations of such algorithms can be used for the
protection of public Information and Management
Systems such as e-parliament, University Quality As-
surance Support Systems, GIS, various e-governing
special systems. The mentioned above term �level of
security� is de�ned only by modulo of possible crypt-
analysis. We simply assume that the growth of degree
and order of multivariate map may lead to a better
level of security.

2 Towards Applied K-theory of

Algebraic Graphs, Case of

Boolean Rings

Notice, that mentioned above families of graphs
D(n,K) and A(n,K) are de�ned over general com-
mutative ring K. Studies of the case of �nite �elds
were conducted on the theoretical level and via com-
puter simulation. They brought many constructive
results of Extremal Graph Theory some practically
used algorithm. The case of arithmetical rings, es-
pecially rings Z27 , Z28 , Z216 , Z232 and Z264 , was par-
tially investigated via computer implementations. Of
course, the change of �nite �elds for computer arith-
metic makes corresponding algorithms faster. Obvi-
ously, there are many other interesting �fast� rings.
Among them, we have Boolean rings K = B(m),
which consist of all subsets of {1, 2, . . . ,m} with ad-
dition operation A + B = A ∪ B − A ∩ B (symmet-
ric di�erence of subsets A and B) and multiplication
A × B = A ∩ B. We select the multiplicative subset
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M = Mi = {A|i ∈ A} as the alphabet for strings
from key space. This subset is an analog of a subset
F∗
q of Fq.
In our paper, we present the �rst results of the

implementation of cryptographical algorithms based
on algebraic graphs de�ned over Boolean rings. We
compare the evaluation of algorithms in the cases of
B(m) and F2m .
In the next section the reader can �nd graph-

theoretical de�nitions, which we use in the descrip-
tion of algorithms, and some known results of Ex-
tremal Graph theory useful for the evaluation of en-
cryption properties.
Section 4 contains the description of the families of

algebraic graphs D(n,K) and A(n,K) de�ned over
general commutative ring K.
In Section 5 special transformation groups related

to graphs A(n,K) and D(n,K) are introduced. We
formulate results on their stability (all transforma-
tions from the group are cubical). The symmetric
stream cipher which uses mentioned above transfor-
mations is described and some theoretical properties
of such encryption are formulated. We introduce the
key exchange protocol based on the complexity of the
discrete logarithm problem for a cyclic subgroup of
our group of stable transformation. Additionally, we
consider the method of symmetric multivariate en-
cryption in a multiuser mode, which can be used for
di�erent problems of access control.
The weak side of symmetric algorithms (in numer-

ical and multivariate mode) is an option to conduct
cubical linearization cryptographical attacks because
the inverse map is also cubical. We demonstrate that
the use of classical Di�e-Hellman protocol based on
cyclic subgroup Z∗

p, where p is prime, can protect
users against such attacks. Notice that described in
this section algorithms may be used in the case of
other stable subgroups of the Cremona group. We
further discuss the �rst implementation of such algo-
rithms in the case of Boolean rings B(m) consisting
of 2m ring elements.
In the appendix, we present the results of com-

puter simulation: time evaluation of the basic private
key algorithm, time evaluation for the generation of
core cubical maps, which can be used for multivari-
ate symmetric encryption and key exchange proto-

cols. We compute the densities of generated cubical
maps. Conclusions are given in section 7.

3 Some De�nitions from Graph

Theory

The missing de�nitions of graph-theoretical concepts
in case of simple graphs which appears in this paper
can be found in [7, 1].
All graphs we consider are simple graphs, i.e. undi-

rected, without loops and multiple edges. Let V (Γ)
and E(Γ) denote the set of vertices and the set of
edges of Γ respectively. |V (Γ) and E(Γ)| is called
the order of Γ, and |E(Γ)| is called the size of G. A
path in Γ is called simple path if all its vertices are
distinct. We shall identify Γ with the corresponding
anti-re�exive binary relation on V (Γ), i.e. E(Γ) is a
subset of V (Γ)×V (Γ). A graph Γ is bipartite if none
of its two vertices belonging to the same set are in
the relationship (i.e. if its vertices can be partitioned
into two sets in such a way that no edge joins two
vertices in the same set). The length of a path is a
number of its edges. The girth of a graph Γ, denoted
by g = g(Γ) is the length of the shortest cycle in Γ.
We refer to the family of regular simple graphs Γi

of degree ki and order vi as a family of graphs of
increasing girth if

g(Γi) ≥ g(Γi−1)

Recall, that family of regular graphs Γi of degree ki
and increasing order vi is a family of graphs of large
girth if

g(Γi) ≥ c logki
(vi),

for some independent constant c, c > 0 (see [8, 7, 1]).
These families play an important role in Extremal
Graph Theory, Theory of LDPC codes (see [9]) and
Cryptography (see [2, 3] and further references). The
family of graphs of large girth of bounded degree are
hard to construct. This fact is a serious motivation
for studies of in�nite families of graphs of increasing
girth, which are generalizations of families of graphs
of large girth.
Just three explicit constructions of families of

graphs of large girth for ki = k, i = 1, 2, . . . (k is
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independent but unbounded constant) for the gen-
eral case of arbitrary large k with unbounded girth
are known: the family of Cayley-Ramanujan graphs
introduced by G. Margulis (see [10] and [11]), where
girth was computed and spectral gap was evaluated),
which appeared approximately forty years after the
publication of Erd®s probabilistic construction (see
[12, 1] and further references), the family of algebraic
graphs D(n, q) with connected components CD(n, q)
de�ned over the arbitrary �nite �eld Fq (see [6] or
[4], [5], where these graphs are used for the construc-
tion of LDPC codes), and regular versions of polarity
graphs for D(n, q) or CD(n, q).

Below we de�ne the family of graphs A(n, q) of
increasing girth. This family of algebraic graphs is
not edge-transitive, so the problem of evaluation of
girth for its members is di�cult.

4 The Algebraic Graphs

A(N,K) and D(N,K)

Below we consider the family of graphs A(n,K)
(D(n,K), respectively) where n > 5 is a positive in-
teger andK is a commutative ring. In case ofK = Fq

we denote A(n, q) (D(n, q), respectively).

Let P and L be two copies of Cartesian power KN,
where K is the commutative ring and N is the set
of positive integer numbers. Elements of P will be
called points and those of L lines. To distinguish
points from lines we use parentheses and brackets.
If x ∈ V , then (x) ∈ P and [x] ∈ L. It will also be
advantageous to adopt the notation for coordinates of
points and lines for the case of a general commutative
ring K:

(p) = (p0,1, . . . , pi,i, pi,i+1, . . .),

[l] = [l1,0, . . . , li,i, li,i+1, . . .]

(
(p) = (p0,1, p1,1, p1,2, p2,1, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .),

[l] = [l1,0, l1,1, l1,2, l2,1, . . . , li,i, l
′
i,i, li,i+1, li+1,i, . . .]

)
.

The elements of P and L can be thought as in-
�nite ordered tuples of elements from K, such that
only a �nite number of components are di�erent from
zero. We now de�ne an incidence structure (P,L, I)
as follows. We say the point (p) is incident with the
line [l], and we write (p)I[l], if the following relations
between their coordinates hold:

l1,1 − p1,1 = l1,0p0,1 li,i − pi,i = l1,0pi−1,i

l1,2 − p1,2 = l1,1p0,1 l′i,i − p′i,i = li,i−1p0,1

l2,1 − p2,1 = l1,0p1,1 li,i+1 − pi,i+1 = li,ip0,1

li+1,i − pi+1,i = l1,0p
′
i,i

(1)

For each positive integer n ≥ 2 we obtain an in-
cidence structure (Pn, Ln, In) as follows. First, Pn

and Ln are obtained from P and L, respectively, by
simply projecting each vector into its n initial coordi-
nates with respect to the above order. The incidence
In is then de�ned by imposing the �rst n−1 incidence
equations and ignoring all others. The incidence
graph corresponding to the structure (Pn, Ln, In) is
denoted by A(n,K) (D(n,K), respectively).
For each positive integer n ≥ 2 we consider the

standard graph homomorphism ϕn of (Pn, Ln, In)
onto (Pn−1, Ln−1, In−1) de�ned as simple projection
of each vector from Pn and Ln onto its n − 1 initial
coordinates with respect to the above order.
In the case of K = Fq we write D(n, q) and A(n, q)

instead of D(n,K) and A(n,K)
We de�ne the colour function π for the graph as

a projection of tuples (p) ∈ Pn and [l] ∈ Ln onto the
�rst coordinate (p) or [l], respectively. So the set of
colours is Fq. We assume that Nα(v) is the operator
of taking the neighbour of v of colour π(v)+α in our
graph.

5 On Transformation Groups

Related to Algebraic Graphs

and Their Direct Crypto-

graphical Applications

Cryptograpical basics and results on complexity the
reader can �nd in [13] and [6].
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Let Gn = Gn(K) be the group of transformations
of variety P∪L (Fn

q∪Fn
q ) with generatorsNα (α ∈ K).

Let M be a multiplicative subset in the ring K i.e.
closed under multiplication subset without 0 element.

Theorem 1.

� limn→∞ |Gn| = ∞,

� g ∈ Gn is a cubical map.

� Let M be a multiplicative subset of K and for
each i element αi + αi+1 belongs to M and
α1 + αn ∈ M . Then the order of gn =
Nα1

Nα2
. . . Nαs

, gn ̸= e, is going to ∞ with the
growth of parameter n.

We say g is cubical map if it has a form
g = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)), where yi =
fi(x1, . . . , xn) are polynomials of n variables writ-
ten as the sums of monomials of kind xn1

i1
xn2
i2
xn3
i3
,

for i1, i2, i3 ∈ 1, 2, . . . , n; n1, n2, n3 ∈ {0, 1, 2, 3},
n1 + n2 + n3 ≤ 3 with the coe�cients from K = Fq.
As we mention before the polynomial equations yi =
fi(x1, x2, . . . , xn) have the degree 3.

The security of some of the algorithms presented
below is based on the complexity of the discrete log-
arithm problem for the group Gn = Gn(K).

5.1 On Some Cryptographical Algo-

rithms

The plaintext space of the algorithm is the a�ne va-
riety Kn, where K is the chosen commutative ring.
Graph theoretical encryption corresponds to walk on
the bipartite graph with partition sets which are iso-
morphic to Kn. We conjugate chosen graph-based
encryption map, which is a composition of several el-
ementary cubical polynomial automorphisms of a free
module Kn with special invertible a�ne transforma-
tion of Kn. Finally, we compute symbolically the
corresponding cubic public map g of Kn onto Kn.
We evaluate time for the generation of g, and the
number of monomial expression in the list of corre-
sponding public rules. Let M(K) ⊂ K \ {0}, which
is closed under multiplication.

A1: Private-key symmetric algorithm

We assume that two users Alice and Bob, share a
common password consisting the sequence of col-
ors α1, α2, . . . , αs, where αi + αi+1 ∈ M(K), i =
1, . . . , s − 1 and two a�ne transformations τ1, τ2
form a�ne group AGL(n,K) . Then, they en-
crypt the plaintext p to ciphertext c as follows: c =
τ1Nα1

Nα2
. . . Nαs

τ2(p). Decryption process is as fol-
lows: p = τ−1

2 N−αs
N−αs−1

. . . N−α1
τ−1
1 (c).

If s < g(A(n,q))
2 (s < g(D(n,q))

2 ), then di�erent keys
produce distinct ciphertext.

It is clear that users may choose key exchange pro-
tocol and change or modify maps τ1, τ2 and string
α1, α2, . . . , αs. This measure gives protection against
possible linearization attacks. In the next section,
we consider the option of serious modi�cation of the
encryption map without key exchange protocols.

A2: Private-key algorithm for multiusers net-

work

We assume that αi + αi+1 ∈ M(K) for i = 1, 2, . . ..
Alice takes τ1, τ2 = τ1

−1, sequence α1, α2, . . . , αs

and forms the map fB = τ1Nα1
Nα2

. . . Nαs
τ2 in

a symbolic way (She can use Maple, SageMath or
Mathematica). Here B stands for the pair b =
(α1, α2, . . . , αs), τ1. She gets the encryption map as
a cubical public rule: x1 → f1(x1, x2, . . . , xn), x2 →
f2(x1, x2, . . . , xn), . . . , xn → fn(x1, x2, . . . , xn),
where fi are multivariable polynomials from
K[x1, x2, . . . , xn]. For simplicity, we assume that s
is even.

Let Sk = (Bk, Jk), k = 1, 2, . . . , N be the pairs of
users (B and J stand for Brad and Jennifer). Alice
provides each pair with the �seed� triple Ck, fBk

, Dk,
where Ck and Dk are linear or a�ne transformations
of the plainspace Kn of large order (like maps conju-
gated with Singer cycles of order qn−1 in the case of
K = Fq, see [14] or [15]) and also gives them fBk

−1.
So they can use encryption map CkfBk

Dk and de-
crypt with Dk

−1f−1
Bk

Ck
−1

The pair Sk can take �closest possible� primes p1,
p2, p3 (or pseudoprimes) numbers to p1 = |Ck|,
p2 = |Dk| and |fBk

|. They use Di�e-Hellman key ex-
change protocol for Zpi

∗ and develop collision triple
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hi ∈ Zpi

∗, i = 1, 2, 3. During the session they use en-

cryption and decryption cubical maps Ck
h1fBk

h2Dh3

k

and Dk
−h3fBk

−h2D−h1

k .

Notice that Sk is known to trusted third party (Al-
ice), but triple h1, h2, h3 is individual private pass-
word for Brad and Jennifer. There is no need to com-
pute a new encryption map symbolically, users just
apply Dh3

k , fh2

Bk
and Ck

h1 consecutively to plaintext
space vector. If the next session of the key exchange
Brad and Jennifer can get new triple h′

j ∈ Zpj

∗,
j = 1, 2, 3 and use numbers h”j = h′

jhj mod pj for
the modi�cation of the multivariate encryption map.
This approach leads to dependence of the algorithm
from the prehistory of communications.

The use of key exchange protocols as tools of pro-
tection against linearization attacks is the standard
one. In the next section, we consider the similar algo-
rithm of modi�cation of encryption rule without key
exchange.

A3: Symbolic Di�e-Hellman algorithm

Suppose Alice and Bob want to agree on a key KAB .

1. The �rst step Alice computes f =
τ1Nα1

Nα2
. . . Nαs

τ−1
1 (αi + αi+1 ∈ M(K), i =

1, . . . , s − 1, α1 + αs ∈ M(K)) of large order with
usage of graph A(n,K) or D(n,K) and she sends f
to Bob. The next step is for Alice to pick a secret
integer nA that she does not reveal to anyone, while
at the same time Bob picks an integer nB that he
keeps secret.

2. Bob and Alice use their secret integers (nA and
nB , respectively) to compute A = fnA and B = fnB ,
respectively. They use composition of multivariable
map f with itself. They exchange these computed
values.

3. Finally, Alice and Bob again use their secret in-
tegers to compute KAB ≡ BnA ≡ (fnB )

nA = fnAnB ,
and KAB ≡ AnB ≡ (fnA)

nB = fnAnB , respectively.

In the previous algorithm, Alice and Bob may use
the symbolic Di�e Hellman protocol instead of the
classical one. They also can use key exchange proto-
cols for cyclic groups generated by matrices Ck and
Dk of large order.

6 Connected Components of

D(N,K) and Modernized En-

cryption Without Key Ex-

change

For studies of connected components of graphs
D(n,K), where K is a �nite commutative ring, it
will be convenient for us to de�ne

p−1,0 = l0,−1 = p1,0 = l0,1 = 0,

p0,0 = l0,0 = −1,

p′0,0 = l′0,0 = 1,

p0,1 = p2,

l1,0 = l1,

l′1,1 = l1,1,

p′1,1 = p1,1,

and to rewrite (1) in the form:

lii − pii = l1pi−1,i

l′ii − p′ii = li,i−1p1

li,i+1 − pi,i+1 = liip1

li+1,i − pi+1,i = l1p
′
ii

(2)

for i = 0, 1, 2, . . .
Notice that for i = 0, the four conditions (2) are

satis�ed by every point and line, and, for i = 1, the
�rst two equations coincide and give l1,1−p1,1 = l1p1.
For each positive integer k ≥ 2 we obtain an in-

cidence structure (Pk, Lk, Ik) as follows. First, Pk

and Lk are obtained from P and L, respectively, by
simply projecting each vector onto its k initial coor-
dinates. Then the incidence Ik is de�ned by imposing
the �rst k−1 incidence relations and ignoring all oth-
ers. For �xed q, the incidence graph corresponding to
the structure (Pk, Lk, Ik) is denoted by D(k,K). In
case K = Fq we assume that D(k, q) = D(k,Fq). It
is convenient to de�ne D(1, q) to be equal to D(2, q).
The properties of the graphs D(k, q) that we are con-
cerned with are described in the following Proposi-
tion.
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Proposition 1. Let q be a prime power, and k ≥ 2.
Then

(i) D(k, q) is a q-regular bipartite graph of order
2qk;

(ii) for odd k, g(D(k, q)) ≥ k + 5;

(iii) for odd k and q ≡ 1 (mod k+5
2 ), g(D(k, q)) =

k + 5.

Let k ≥ 6, t = [(k + 2)/4], and let

u = (ui, u11, · · · , utt, u
′
tt, ut,t+1, ut+1,t, · · · )

be a vertex of D(k,K). (It does not matter whether
u is a point or a line). For every r, 2 ≤ r ≤ t, let

ar = ar(u) =
∑

i=0,m

(uiiu
′
r−i,r−i − ui,i+1ur−i,r−i−1),

and a = a(u) = (a2, a3, · · · , at). (Here we de�ne
p0,−1 = l0,−1 = p1,0 = l0,1 = 0, p00 = l00 = −1,
p0,1 = p1, l1,0 = l1, l

′
11 = l11, p

′
1,1 = p1,1).

Proposition 2. . Let u and v be vertices from the
same component of D(k,K). Then a(u) = a(v).
Moreover, for any t − 1 ring elements xi ∈ K,
2 ≤ it ≥ [(k+2)/4], there exists a vertex v of D(k,K)
for which

a(v) = (x2, . . . , xt) = (x).

Let us consider the following equivalence relation
τ : uτv i� a(u) = a(v) on the set P ∪L of vertices of
D(k, q) (D(q)).

Let CD(n, q) be the connected component of
D(k, q) which contains (0, 0, . . .). Let τ ′ be an equiv-
alence relation on V (D(k,K)) (D(K)) such that the
equivalences classes are the totality of connected com-
ponents of this graph. According to previous propo-
sitions, uτv implies uτ ′v. If char GF (q) is an odd
number, the converse of the last proposition is true.

Proposition 3. Let q be an odd number. Vertices u
and v of D(q) (D(k, q)) belong to the same connected
component i� a(u) = a(v), i.e., τ = τ ′.

A4: Modi�ed private-key algorithm for multi-

user network

Let us consider an option of changing the encryption
map of algorithm A2 in the case of graph D(n,K).
Recall that Alice provides Brad and Jennifer with
the �seed� triple C, fB , D, where C and D are lin-
ear or a�ne transformations of the plaintext space
Kn of large order and gives them also fBk

−1. So
they can use encryption map CfBD and decrypt with
D−1f−1

B C−1

Like in the case of modi�cation with key exchange
protocol Brad and Jennifer have to take the �closest
possible� primes p1, p2, p3 (or pseudoprimes) num-
bers to p1 = |C|, p2 = |D| and |fB |. Recall that
fB = B−1Nα1

Nα2
. . . Nαs

B, where B is a�ne trans-
formation of Kn.

We assume that string αi, i = 1, 2, . . . , s satis�es
condition of Theorem 1. So the order of fB is large.

Additionally, Alice chose functions
hi(z1, z2, . . . , zt−1), t = [n + 1/4], which map
Kt into Z∗

pi
and creates hi(x1, x2, . . . , xn) =

hi(a2(Bx), a3(Bx), . . . , at(Bx)) = βi.

Let a be any positive number and CfB
a(D(x)) =

y , C(B−1(Na(B(D(x)))) = y. So B(c−1(y) =
Na(B(D(x)). The function Na corresponds to
transition via pass in the graph D(n,K). It
means that vectors B(c−1(y)) and B(D(x)) are from
the same connected component. ai(B(D(x))) =
ai(B(C−1)(y)) for each i : 2 ≤ i ≤ t.

It is important for us that hj(D(x)) =
hj(C

−1(y)) = βj , j = 1, 2, 3

So Brad computes βj(x) as left-hand side of the
above equation.

He encrypts a plaintext x with CfB
β2D and sends

it to Jennifer. She can compute β2 as right-hand
side of the above equation and decrypt with the
D−1fBC

−1.

After the end of session Brad and Jennifer may
change C for C ′ = Cβ1 , D for D′ = Dβ3 and func-
tions hj(x1, x2, . . . , xn) for h

′
j(x1, x2, . . . , xn)

βj . Dur-
ing next session with the plaintext (x′

1, x
′
2, . . . , x

′
n)

encryption will be with C ′fB
β2β

′
2D′, where β′

2 =
h′
2(D

′(x′)).

Theoretical and cryptographic problems of cybersecurity________________________________________________________________________________________________________________________________________________

21



7 Conclusion

In this paper, we present cryptographical algorithms
based on families of graphs de�ned over boolean rings
K = B(m). In all cases, the basic maps are cubi-
cal multivariate bijective maps of the n-dimensional
a�ne space over K. The set of algorithms consists
of the family of fast stream ciphers implemented on
the numerical level, protocols of key exchange and
families of symbolic private key algorithms based on
�seed� cubical multivariate maps given in the sym-
bolic form (list of monomial summands given in a spe-
cial order). Some properties of these algorithms are
supported by mathematical statements, while some
others simply supported by computer simulations.
We present the important parameters of computer
simulations such as execution times of numerical en-
cryption algorithms, time required for the generation
of �seed� multivariate cubical map and their compari-
son with similar graph-based algorithms de�ned over
�nite �elds. The security of modernized stream ci-
phers (with eh option to iterate the �seed� map imple-
mented on the �numerical� or �symbolic� level) and
proposed key exchange protocols are based on the
complexity of the discrete logarithm problem (DLP)
for a cyclic subgroup of the Cremona group. No-
tice that our method produces a large group of cu-
bic maps, so all elements of cyclic subgroups are cu-
bical transformations. It means that the adversary
is not able to use the order function to reduce a
search for the DLP solution. The order of the chosen
cyclic group is growing with the growth of the plain-
text space dimension. If the dimension is �su�ciently
large� then the computation of order is not feasible
for an adversary. In the case of the Boolean ring and
other commutative rings of characteristic 2, the order
of the cyclic group generated by our nonlinear map
has to be a power of two. We have to mention that
future research of the speed of growth of order of our
base is important. On the other hand DLP for cyclic
subgroups generated by a multivariate map is known
as a di�cult problem . We use computer simulation
for the studies of our polynomial maps densities in
the case of Boolean rings B(m) and compare these
results with similar simulations in the case of �elds
Fm
2 . So the reader can judge the feasibility of our

Table 1: Public map generation time (ms),
D(n,B(32)), case I

length of the word
n 32 64 128 256
16 16 24 40 72
32 112 232 476 952
64 2104 4332 8960 18385
128 32229 66591 136928 284461

symbolic algorithms as tools for access control, digi-
tal signatures, generation of hash functions.

[Generation of Graph Based Multivariate Maps]

We use the term density for the number of mono-
mial expressions of multivariate function.

We use computer simulation to generate maps of
kind y = τ1Nα1

Nα2
. . . Nαs

τ2(x) related to graphs
A(n,K) and D(n,K). K is one of the commutative
rings: Boolean ring B(32), modular ring Z232 and
�nite �eld F232 .

We have implemented three cases of invertible
a�ne transformations:

1. τ1 and τ2 are identities,

2. τ1 and τ2 are of kind x1 → x1+a+2x2+a3x3+
. . . + an+1xn+ 1 (linear time of computing τ1
and τ2),

3. τ1 = A1x+b1 and τ2 = A2x+b2; matrices A1, A2

and vectors b1, b2 has mostly nonzero elements.

Tables 1�18 and �gures 1�6 presents the density
and the generation time of the maps.

Tables 19�20 presents the time of encryption with
symmetric algorithm and three di�erent commuta-
tive rings.
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