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Paper is devoted to the effective stationary heat conductivity for the fibre com-
posite materials. We are aimed on getting on analytical expression for effective
thermal conductivity coefficient. Asymptotic homogenization approach, based
on the multiple scale perturbation method, is used. This allows to reduce the
original boundary value problem in multiply connected domain to the sequence
of boundary value problems in simply connected domains. These problems
include: the local problem for the periodically repeated cell and homogenized
problem with effective coefficient. It is shown that for densely packed and high
contrast fibre composites, the cell problem can be solved analytically. For this
aim, lubrication approach (asymptotics of thin layer) has been employed. We
also generalise obtained solution to the case of medium-sized inclusions in the
framework of the Padé approximants.

1 INTRODUCTION

Periodically inhomogeneous composite materials, consisting of several components with different physical properties, are
widely used in aircraft, rocket and shipbuilding, mechanical engineering, industrial and civil engineering and other areas
of modern industry. The choice of various materials for the phases of composite and for inclusions forms allows obtaining
materials with useful properties like high strength and rigidity, low thermal conductivity and so forth.
One of the most common approximations in the theory of composite materials is the homogenization theory [1]. Its

essence is to replace the original inhomogeneous medium with a homogeneous one, in a certain sense equivalent to the
original one. The properties of this homogeneousmediumare called effective characteristics. Let us explainwhatwemean
by effective properties in our case. A homogeneous medium with effective properties gives the same response to ‘slow’
perturbations as the original inhomogeneous medium (‘slow’ mean perturbations which characteristic period is much
larger than the size of periodically repeating cells of a composite).
Variousmathematical techniques are used to determine the effective characteristics.We single out the Rayleighmethod

[2–5], the Natanzon–Filshtinsky method [5–9], and the method of functional equations [5, 8]. The first two methods lead
to an infinite system of linear algebraic equations, which is then reduced to a finite number of equations and solved
numerically. The analysis of the reduced system makes it possible also to obtain approximate analytical dependences [2].
Such solutions are sufficiently accurate for finite values of the physical characteristics of inclusions or for dilute composites
[3] or composite with moderate concentration [2]. The claims of some authors who present the reduction of the original
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problem to an infinite system of linear algebraic equations as an ‘exact’ solution or a ‘closed-form solution’ are groundless
(see a detailed analysis of this problem in Refs. [4, 5]).
For dilute composites, there are many other approaches, for example, Mori–Tanaka approximation, approach based on

Eshelby tensor, double-inclusion method and so forth. All of them lead to the same results, although authors often claim
a significant expansion of the scope of their solutions applicability (see Andrianov and Mityushev [4]).
The method of functional equations allows to get a formally exact solution in which the Rayleigh and Natanzon–

Filshtinsky coefficients are written out by formulas in the form of series [5, 8].
As a rule, the size of a repeated cell of a composite is significantly smaller than the size of the entire structure, which

allows us to consider their ratio as a small parameter and use the asymptotic homogenization method (AHM) for PDEs
with rapidly oscillating or periodically discontinuous coefficients [10–20]. This method can be briefly described as fol-
lows. First, periodically repeating boundary value problem (‘cell problem’) is isolated and its solution is sought under the
boundary conditions of periodic continuation. Local coordinates are introduced (‘fast variables’) [21] and next the multi-
ple scale perturbationmethod is applied [22]. Next, the averaging over local (fast) variables is performed. The efficiency of
the homogenization method depends on possibility to solve cell problem. An exact analytical solution of the cell problem
is available only in the simplest cases, for example, for layered composites [10, 11]. Often finite element method (FEM) or
another numerical method is used for this purpose [12–19]. Numerical methods are of particular interest since they allow
to determine the representative volume element (RVE) [16], to estimate boundary layers for composites of finite sizes, and
to investigate the redistribution of temperature flows at the initial time instant [18, 19] and so forth. At the same time, the
analytical expressions of the effective properties of composites is of fundamental interest. For obtaining the mentioned
characteristics, the analytical solutions of the cell problem are highly required. First, for densely packed, high contrast
composites, the accuracy of numerical methods decreases, and the computer time costs increase significantly. Second,
analytical solutions can be used as benchmark for numerical algorithms. Third, the analytical solutions are convenient
for preliminary engineering estimations and for optimal design.
An approximate analytical solving of the cell problem requires the use of additional small parameters [20, 21]. For two-

phase media in which variations in the phase properties are small, weak-contrast expansions where developed [20, 23].
This approach is applicable at all volume fractions of inclusions. A drawback of weak-contrast expansions approach is
that it is valid only when the two phase properties are nearly the same. Strong-contrast expansions based on powers of
rational functions of the phase conductivities [24] yield a possibility for a slight extension of the area of applicability of the
latter approach. On the other hand, though the methods that use a small volume fraction of inclusions (dilute composite
materials) are well developed [25], but their limitation is obvious. It should be emphasized that the lattice approximation
(replacing an inhomogeneous continuous medium with a discrete one) for the analytical homogenization of periodic
composites has been proposed in Movchan et al. [3].
This paper stands as a continuation of the series of works devoted to the application of AHM to the fibre-reinforced

composites of various structures (square [26–28], hexagonal [27, 28, 30–32]) and various type of inclusions (circular [26,
27, 30–32], square [29], rhombic [27] and curvilinear rhombic [27]). A distinctive feature of these works relates on the
analytical solving of the cell problems. In particular, the following problems have been studied for the hexagonal lattice
of circular inclusions. The dynamics of a composite membrane was considered in Andrianov et al. [31]. The problem of
non-stationary heat transfer for large inclusions was solved in Andrianov et al. [32]. Stationary heat transfer in the cases
of inclusions of large and close to limit possible sizes and high conductivity was studied in Kalamkarov et al. [30]. In this
paper, we show that the transformation of the solution using Padé approximations fundamentally expands the scope of its
application. Namely, wemay compute the effective thermal conductivity coefficient for any sizes of absolutely conducting
inclusions. In the limiting case, the leading term of the asymptotics is obtained, and it coincides with the well-known
result [28].
Methods for introducing a small parameter characterizing the inhomogeneity of composite are based on the follow-

ing steps. After introducing a small parameter, AHM [33] is used. The introduction of slow and fast variables gives the
possibility to solve the original problem for a multiply connected domain in two steps. In the zero approximation, one
obtains the boundary value problem for the periodically repeated cell in a simply connected domain. The homogenized
equation is obtained after substituting the solution of the local problem into the equation of the first approximation and
next averaging over fast variables. The found coefficients describe the effective properties of the homogeneous medium.
For the analytical solution of the cell problem, a small parameter is used, which represents the ratio of the distance

between inclusions to the cell size. Further, the lubrication approach [34, 35] (thin layer asymptotics [36, 37]) is employed.
The use of Padé approximants yields a solution that is also applicable to medium size inclusions.
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F IGURE 1 Composite under consideration

This paper is organized in the following way. In Section 2, we describe the main features of the physical problem under
consideration. In Section 3, we state themainmathematicalmodel. In Section 4, the approach formedium sized inclusions
is described. In Section 5, two-sided estimates for the asymptotics of the effective parameter are presented and discussed.
Last, in Section 6, the conclusions derived from this work are summarized.

2 STATEMENT OF THE PROBLEM

The problemof stationary thermal conductivity for a composite with periodically arranged circular inclusions constituting
a hexagonal lattice is considered (Figure 1) assuming an ideal contact between the matrix and the inclusions.
The heat conductivity problem is described by the following PDEs:

𝜆+

(
𝜕2𝑢+

𝜕𝑥2
+

𝜕2𝑢+

𝜕𝑦2

)
= 𝐹(𝑥, 𝑦) in Ω+

𝑖
, (1)

𝜆−

(
𝜕2𝑢−

𝜕𝑥2
+

𝜕2𝑢−

𝜕𝑦2

)
= 𝐹(𝑥, 𝑦) in Ω−

𝑖
, (2)

𝑢+ = 𝑢−, 𝜆+ 𝜕𝑢+

𝜕𝐧
= 𝜆− 𝜕𝑢−

𝜕𝐧
at 𝜕Ω

𝑖
. (3)

In Equations (1)–(9), the following notation is adopted: 𝑥 = 𝑋∕𝑙; 𝑦 = 𝑌∕𝑙; 𝐹(𝑥, 𝑦) = 𝑙2𝑓(𝑥, 𝑦); 𝑢+, 𝑢− are the temper-
ature distribution functions in the matrix and inclusions; 𝜆+

𝑖
, 𝜆−

𝑖
are the thermal conductivities of the phases of the

composite, 𝜆−

𝜆+
= 𝜆; 𝑓(𝑥, 𝑦) is the density of external heat sources; 𝐧 stands for the outer normal to the inclusion contour.

Consider one of the terms in the expansion of the density of external heat sources in form of the Fourier series

𝐹(𝑥, 𝑦) = 𝐶 sin
𝑙𝑥

𝐿1
sin

𝑙𝑦

𝐿2
. (4)

We assume that the function 𝐹(𝑥, 𝑦) changes slowly in the sense that 𝑙∕𝐿𝑖 << 1. In the latter case, it is possible to
describe the behaviour of the composite in framework of effective medium theory [1, 33]. We introduce a small param-
eter 𝜀 = max{𝑙∕𝐿𝑖} << 1 and apply AHM. In accordance with AHM, based on the multiple scale asymptotic expansions
[1, 33], the solution of the problem in the multiply connected domain (1)–(3) is represented as series in powers of the
dimensionless small parameter 𝜀, that is, we have

𝑢± = 𝑢0 (𝑥 , 𝑦) + 𝜀 𝑢±
1 (𝑥 , 𝑦 , 𝜉 , 𝜂) + 𝜀2 𝑢±

2 (𝑥 , 𝑦 , 𝜉 , 𝜂) + ⋯ (5)

where 𝜉 , 𝜂 stand for ‘fast’ variables, 𝜉 =
𝑥

𝜀
, 𝜂 =

𝑦

𝜀
.
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F IGURE 2 Periodically repeated composite cell: Ω+
𝑖
(Ω−

𝑖
) is the matrix (inclusion) region (𝑎 = 𝐴∕𝑙)

Thus, the solution is divided into slowly changing and rapidly oscillating parts. Recall that the T-periodic function
𝑓(𝜀, 𝜃) is called 𝜀−1 oscillating, if [38] (Appendix 1, pp. 73, 74 in this paper)

0 < 𝐶1 ≤
𝑇

∫
0

|𝑓(𝜀, 𝜃)|2𝑑𝜃 ≤ 𝐶2 < ∞, | 𝛼

∫
0

𝑓(𝜀, 𝜃)𝑑𝜃| ≤ 𝐶𝜀, 0 ≤ 𝛼 ≤ 𝑇, (6)

where 𝐶, 𝐶1, 𝐶2 are the positive constants.
We use the following normalization:

∬
𝜕Ω+

𝑢+
𝑖 (𝑥 , 𝑦 , 𝜉 , 𝜂)𝑑𝜉𝑑𝜂 + 𝜆∬

𝜕Ω−

𝑢−
𝑖 (𝑥 , 𝑦 , 𝜉 , 𝜂)𝑑𝜉𝑑𝜂 = 0, 𝑖 = 1, 2, 3, … (7)

Functions 𝑢±
𝑖
satisfy the periodicity conditions

𝑢±
𝑖 (𝑥 , 𝑦 , 𝜉 + 𝑘 , 𝜂 + 𝑗) = 𝑢±

𝑖 (𝑥 , 𝑦 , 𝜉 , 𝜂) , 𝑖 = 1, 2, 3, … , (8)

where 𝑘, 𝑗 are integer non-negative numbers.
Taking into account Ansatz (5), after an expansion in powers of a small parameter 𝜀with regard to Equations (1)–(3), the

solution of the original problem is divided into two stages. At the first stage, the solution of the local problem is determined,
that is, the problem for the periodically repeating cell of the composite (Figure 2):

𝜕2𝑢±
1

𝜕𝜉2
+

𝜕2𝑢±
1

𝜕𝜂2
= 0 in Ω±

𝑖
, (9)

𝑢+
1 = 𝑢−

1 ,
𝜕𝑢+

1

𝜕�̄�
− 𝜆

𝜕𝑢−
1

𝜕�̄�
= (𝜆 − 1)

𝜕𝑢0

𝜕𝐧
at 𝜕Ω

𝑖
, (10)

𝑢+
1 = 0 at 𝜕Ω∗

𝑖
, (11)

where 𝜕

𝜕�̄�
, 𝜕

𝜕𝐧
are the derivatives along the external normal to an inclusion contour regarding fast and slow variables,

respectively, and they read

𝜕

𝜕�̄�
= cos 𝛼

𝜕

𝜕𝜉
+ cos 𝛽

𝜕

𝜕𝜂
,

𝜕

𝜕𝐧
= cos 𝛼

𝜕

𝜕𝑥
+ cos 𝛽

𝜕

𝜕𝑦
. (12)
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The second stage is to find the main (‘slow’) part of the solution 𝑢0 (𝑥 , 𝑦) from the following homogenized PDE:

�̄�

(
𝜕2𝑢0

𝜕𝑥2
+

𝜕2𝑢0

𝜕𝑦2

)
+

1|||Ω∗
𝑖
|||
⎡⎢⎢⎢⎣∬Ω +

𝑖

(
𝜕2𝑢+

1

𝜕𝑥𝜕𝜉
+

𝜕2𝑢+
1

𝜕𝑦𝜕𝜂

)
𝑑𝜉𝜕𝜂 + 𝜆 ∬

Ω −
𝑖

(
𝜕2𝑢−

1

𝜕𝑥𝜕𝜉
+

𝜕2𝑢−
1

𝜕𝑦𝜕𝜂

)
𝑑𝜉𝜕𝜂

⎤⎥⎥⎥⎦ = 𝐹, (13)

where Ω∗
𝑖

= Ω+
𝑖

⋃
Ω−

𝑖
, and �̄� =

|Ω+
𝑖
|+𝜆 |Ω−

𝑖
||Ω∗

𝑖
| stands for the Voigt-averaged parameter.

After substitution functions 𝑢+
1 to Equation (13), 𝑢−

1 , the homogenized equation can be rewritten in the following way:

𝑞𝑥
𝜕2𝑢0

𝜕𝑥2
+ 𝑞𝑦

𝜕2𝑢0

𝜕𝑦2
= 𝐹 in Ω∗, (14)

where Ω∗ is a simply connected domain (in this case, a plane).
Effective characteristics 𝑞𝑥, 𝑞𝑦 follow

𝑞𝑥 = �̄� +
1|||Ω∗
𝑖
|||
⎛⎜⎜⎜⎝∬Ω +

𝑖

𝜕𝑢+
1 (1)

𝜕𝜉
𝑑𝜉𝜕𝜂 + 𝜆 ∬

Ω −
𝑖

𝜕𝑢−
1 (1)

𝜕𝜉
𝑑𝜉𝜕𝜂

⎞⎟⎟⎟⎠, (15)

𝑞𝑦 = �̄� +
1|||Ω∗
𝑖
|||
⎛⎜⎜⎜⎝∬Ω +

𝑖

𝜕𝑢+
1 (2)

𝜕𝜂
𝑑𝜉𝜕𝜂 + 𝜆 ∬

Ω −
𝑖

𝜕𝑢−
1 (2)

𝜕𝜂
𝑑𝜉𝜕𝜂

⎞⎟⎟⎟⎠, (16)

where 𝑢±
1 (𝑖)

(𝑖 = 1 , 2) are solutions of the local problem (9)–(11). We have

𝑢±
1 = 𝑢±

1 (1)
(𝜉 , 𝜂)

𝜕𝑢0

𝜕𝑥
+ 𝑢±

1 (2)
(𝜉 , 𝜂)

𝜕𝑢0

𝜕𝑦
. (17)

Observe that the effective conductivity tensor of the regular hexagonal lattice is isotropic [8], and hence 𝑞𝑥 = 𝑞𝑦 = 𝑞.
The main difficulty of the approach concerns on finding a solution to the cell problem. To solve the problem, the so-

called lubrication approach [34, 35] is employed. It should be noticed that from a mathematical point of view, the latter
approach can be treated as thin layer asymptotics [36, 37].

3 SOLVING A CELL PROBLEM BY THIN LAYER ASYMPTOTICS

We deal with densely packed high contrast composite (𝑎 → 1, 𝜆 → ∞). The essence of thin layer asymptotics (lubrication
approach) is to replace the boundary value problem defined in the original region by a counterpart problem in the region
with a simpler geometry [34–37]. In the next step, the solution of simplified problem is extended to the original region.
Let us determine the effective parameter of composite 𝑞𝑦 in the direction of the axis 𝑦 (or 𝜂 with regard to ‘fast’

coordinates). The following steps are employed while achieving a solution.

1. First, we replace the outer hexagonal contour of the cell with a circle of radius b (Figure 3).
In polar coordinates (𝑟 =

√
𝜉2 + 𝜂2, 𝜃 = arctan(𝜂∕𝜉)), the cell problem is described by the following equations:

𝜕2𝑢+
1

𝜕𝑟2
+

1

𝑟
⋅

𝜕𝑢+
1

𝜕𝑟
+

1

𝑟2
⋅

𝜕2𝑢+
1

𝜕𝜃2
= 0 in Ω+

𝑖
, (18)

𝜕2𝑢−
1

𝜕𝑟2
+

1

𝑟
⋅

𝜕𝑢−
1

𝜕𝑟
+

1

𝑟2
⋅

𝜕2𝑢−
1

𝜕𝜃2
= 0 in Ω−

𝑖
, (19)

𝑢+
1 = 𝑢−

1 at 𝑟 = 𝑎,
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F IGURE 3 Lubrication approach model for a hexagonal lattice

𝜕𝑢+
1

𝜕𝑟
− 𝜆

𝜕𝑢−
1

𝜕𝑟
= (𝜆 − 1)

(
𝜕𝑢0

𝜕𝑥
cos 𝜃 +

𝜕𝑢0

𝜕𝑦
sin 𝜃

)
at 𝑟 = 𝑎, (20)

𝑢+
1 = 0 at 𝑟 = 𝑏. (21)

Solution to the boundary value problem (16)–(21) has the following form:

𝑢−
1 = 𝐴1𝑟 cos 𝜃 + 𝐴2𝑟 sin 𝜃, (22)

𝑢+
1 =

(
𝐵1𝑟 +

𝐶1

𝑟

)
cos 𝜃 +

(
𝐵2𝑟 +

𝐶2

𝑟

)
sin 𝜃, (23)

where 𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖 (𝑖 = 1 , 2) are the functions of slow variables determined by the conditions (20) and (21). They can
be written as follows:

𝐴1 = −
(𝜆 − 1)

(
𝑏2 − 𝑎2

)
(𝑏2 + 𝑎2) + 𝜆 (𝑏2 − 𝑎2)

𝜕𝑢0

𝜕𝑥
, 𝐵1 =

(𝜆 − 1) 𝑎2

(𝑏2 + 𝑎2) + 𝜆 (𝑏2 − 𝑎2)

𝜕𝑢0

𝜕𝑥
, (24)

𝐶1 = −
(𝜆 − 1) 𝑎2𝑏2

(𝑏2 + 𝑎2) + 𝜆 (𝑏2 − 𝑎2)

𝜕𝑢0

𝜕𝑥
, 𝐴2 = 𝐴1 , 𝐵2 = 𝐵1 , 𝐶2 = 𝐶1

(
𝜕𝑢0

𝜕𝑥
→

𝜕𝑢0

𝜕𝑦

)
. (25)

2. We suppose that the outer contour of cell b is described by the formulas

𝑏 =

⎧⎪⎨⎪⎩
𝑏(𝜉) =

√
1 + 𝜉2 for 0 ≤ 𝜉 ≤ 1√

3

𝑏(𝜉) = 2

√
𝜉2 −
√

3 𝜉 + 1 for 1√
3
≤ 𝜉 ≤ 2√

3

(26)

Figure 4 shows the fourth part of the cell.
3. For obtaining the effective parameter 𝑞𝑦 , integration in expression (13) is performed over the original region of the

hexagonal cell, taking into account relation (26), that is, 𝐴2 , 𝐵2 , 𝐶2 are treated as functions of 𝜉.

After carrying out the transformations, we pass to the limit 𝜆 → ∞. As a result, we find the asymptotic expression for the
effective parameter 𝑞

(∞)
𝑦 for large inclusion sizes, which reads

𝑞
(∞)
𝑦 =

2
√

3 𝑎2√
1 − 𝑎2

arctan

√
3

3
√

1 − 𝑎2
+ 1 +

√
3 𝑎2

3

(
𝜋

4
−

3

2
arcsin

√
3

3𝑎

)

+
4
√

3 𝑎2

3
√

1 − 𝑎2

[
arctan

((√
3 𝑎 −

√
3𝑎2 − 1

)√1 − 𝑎

1 + 𝑎

)
(27)
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ANDRIANOV et al. 7 of 13

F IGURE 4 Approximation of the outer contour of a cell

−
1

4
arctan

2
(√

3 𝑎 − 1 −
√

3𝑎2 − 1
)√

1 − 𝑎2(
1 +
√

3
)(

1 −
√

3 𝑎
)

𝑎 +
√

3𝑎2 − 1
(

𝑎 − 2 +
√

3 𝑎
)

+ 2

−
1

8
arctan

2
√

1 − 𝑎2

𝑎

]
−

𝑎2

4
ln

(
2 + 3𝑎2 + 2

√
3 (3𝑎2 − 1)

)
(4 − 3 𝑎2)

.

In the limiting case 𝑎 → 1 relation (27), taking into account the leading term of the asymptotics and the first correction
to it of order (1 − 𝑎2)

0
, yields the following formula:

𝑞
(∞)
𝑦 𝑠𝑦𝑚𝑝𝑡 =

√
3 𝜋√

1 − 𝑎2
+ 1 +

√
3 𝜋

12
−

√
3

2
arcsin

√
3

3
−

1

4
ln
(

5 + 2
√

6
)

−
√

3
(√

3 +
√

2
)

. (28)

Keller in Ref. [39] considered the problem of densely packed high contrast square lattice of circular inclusions. He
assumed that the effective conductivity of this medium mainly depends upon the fluxes between ‘neighbours’ (closely
spaced inclusions) and he obtained the asymptotic formula of effective conductivity. Essentially, he used the same ideas
as the lubrication approach [34, 35] (thin layer asymptotics [36, 37]). Berlyand and Novikov generalized this approach for
the case of densely packed high contrast hexagonal lattice of circular inclusions [40] (formula 3.10 in their paper). In the
notation adopted in our paper, this formula is written as follows:

𝑞𝑠𝑦𝑚𝑝𝑡 =

√
3𝜋√

1 − 𝑎2
. (29)

4 SOLUTION FORMEDIUM SIZE INCLUSIONS

The asymptotic expression for the effective parameter (27) was obtained for large inclusion sizes and can be used for
𝑎 ≥ 1√

3
≈ 0.5774. In this regard, it is of interest to generalize the proposed approach to the case ofmedium-sized inclusions,

that is, for 𝑎 ≤ 1√
3
(Figure 5).

The use of the Equations (9)–(11), taking into account conditions (26) and after the averaging procedure, yields to the
following formula:

𝑞𝑚𝑒𝑑. incl. = 1 +

√
3 𝑎2√

1 − 𝑎2
arctan

√
3

3
√

1 − 𝑎2
+

√
3 𝑎2

3

[
2√

1 − 𝑎2

(
2 arctan

√
1 − 𝑎

1 + 𝑎
+ arctan

𝑎√
1 − 𝑎2

)
−

𝜋

2

]
. (30)

Effective parameter 𝑞𝑚𝑒𝑑. incl. corresponds to the composite with 𝜆 → ∞ and inclusions of medium size (𝑎 ≤ 1√
3
).
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8 of 13 ANDRIANOV et al.

F IGURE 5 Periodically repeated cell of a composite with an inclusion of medium size

5 TWO-SIDED ESTIMATES OF THE ASYMPTOTICS OF THE EFFECTIVE THERMAL
CONDUCTIVITY PARAMETER

Solution (30) for medium-sized inclusions is not applicable in the case of their large sizes and has wrong asymptotics (29)
at 𝜆 → ∞, 𝑎 → 1. For overcoming this drawback, we transform relation (30) with a help of the Padé approximants (PA)
[41].
We rewrite relation (30) as follows:

𝑞𝑚𝑒𝑑. incl. = 1 +
2
√

3 𝑎2√
1 − 𝑎2

(
arctan

√
3

3
√

1 − 𝑎2
+

2

3
arctan

√
1 − 𝑎

1 + 𝑎

)

−

√
3 𝜋𝑎2

6
+

√
3 𝑎2√

1 − 𝑎2

(
2

3
arctan

𝑎√
1 − 𝑎2

− arctan

√
3

3
√

1 − 𝑎2

)
(31)

and construct a sequence of PA 𝑞∗
[ 2 ∕ 2 ]

, 𝑞∗
[ 2 ∕ 4 ]

, … for expression

𝑞∗ =

√
3 𝑎2√

1 − 𝑎2

(
2

3
arctan

𝑎√
1 − 𝑎2

− arctan

√
3

3
√

1 − 𝑎2

)
. (32)

Then, we get

𝑞∗
[ 2 ∕ 2 ]

= −
1

2

𝜋3𝑎2√
3(𝜋 + 4) 𝜋𝑎 −

1

4

(
2
√

3 𝜋2 + 9𝜋 − 64
√

3
)

𝑎2
,

𝑞∗
[ 2 ∕ 4 ]

= −

√
3

2
𝜋5𝑎2∕

(
3 (𝜋 + 4𝑎) 𝜋3 −

3

4

(
2 𝜋2 + 3

√
3 𝜋 − 64

)
𝜋2𝑎2− 2

(
2 𝜋2 + 9

√
3 𝜋 − 96

)
𝜋𝑎3

−
1

32

(
12𝜋4 + 9

√
3 𝜋3 + 94 𝜋2 + 3456

√
3 𝜋 − 24576

)
𝑎4

)
,

𝑞∗
[ 2 ∕ 6 ]

= −
3

2
𝜋7𝑎2∕

(
3
√

3 (𝜋 + 4𝑎) 𝜋5 −
3

4

(
2
√

3 𝜋2 + 9 𝜋 − 64
√

3
)

𝜋4𝑎2 − 2
(

2
√

3 𝜋2 + 27 𝜋 − 96
√

3
)

𝜋3𝑎3

−
1

32

(
12
√

3 𝜋4 + 27 𝜋3 + 94
√

3 𝜋2 +10368 𝜋 − 24576
√

3
)

𝜋2𝑎4 −
1

20

(
32
√

3 𝜋4 + 315 𝜋3 + 1215
√

3 𝜋2

+34560 𝜋 − 61440
√

3
)

𝜋𝑎5 −
1

960
(180
√

3 𝜋6 + 1603
√

3 𝜋4

+ 153495 𝜋3 − 589440
√

3 𝜋2 + 8294400 𝜋 − 11796480
√

3
)

𝑎6
)

,
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ANDRIANOV et al. 9 of 13

𝑞∗
[ 2 ∕8 ]

= −
3
√

3

2
𝜋9𝑎2∕

(
9 (𝜋 + 4𝑎) 𝜋7 −

9

4

(
2 𝜋2 + 3

√
3 𝜋 − 64

)
𝜋6𝑎2 − 6

(
2𝜋2 + 9

√
3 𝜋 − 96

)
𝜋5𝑎3

−
1

32

(
36 𝜋4 + 27

√
3 𝜋3 + 282 𝜋2 −10368

√
3 𝜋 − 73728

)
𝜋4𝑎4 −

1

20
(96 𝜋4 + 315

√
3 𝜋3 − 3645 𝜋2

+ 34560
√

3 𝜋 − 184320
)

𝜋3𝑎5 −
1

320
(180 𝜋6 + 1603 𝜋4 + 51165

√
3 𝜋3 − 589440 𝜋2

+ 2764800
√

3 𝜋 − 11796480
√

3
)

𝜋2𝑎6 −
1

2800

(
7680 𝜋6 + 14490

√
3 𝜋5 + 360255 𝜋4 + 3534300 𝜋3

− 35817600 𝜋2 + 116121600
√

3 𝜋 − 412876800
)

𝜋𝑎7

−
1

35840
(12600 𝜋8 − 8505

√
3 𝜋7 + 125863𝜋6 + 3109554

√
3 𝜋5

− 58215948 𝜋4 + 310464000
√

3 𝜋3 − 2750791680 𝜋2 + 6936330240
√

3 𝜋 − 21139292160
)

𝑎8
)

, (33)

𝑞∗
[ 2 ∕10 ]

= −
9

2
𝜋11𝑎2∕

(
9
√

3 (𝜋 + 4𝑎) 𝜋9 −
9

4

(
2
√

3 𝜋2 + 9 𝜋 − 64
√

3
)

𝜋8𝑎2

− 6
(

2
√

3𝜋2 + 27 𝜋 − 96
√

3
)

𝜋7𝑎3 −
1

32

(
36
√

3 𝜋4 + 81 𝜋3 + 282
√

3 𝜋2

+ 31104𝜋 − 73728) 𝜋6𝑎4 −
1

20
(96
√

3 𝜋4 + 945 𝜋3 − 3645
√

3 𝜋2 +103680 𝜋 − 184320
√

3
)

𝜋5𝑎5

−
1

320

(
180
√

3 𝜋6 + 1603
√

3 𝜋4 +153495 𝜋3 − 589440
√

3 𝜋2 + 8294400 𝜋 − 11796480
√

3
)

𝜋4𝑎6

−
1

2800

(
7680
√

3 𝜋6 + 43470 𝜋5 − 360255
√

3 𝜋4 + 10602900 𝜋3

− 35817600
√

3 𝜋2 + 348364800 𝜋 − 412876800
√

3
)

𝜋3𝑎7

−
1

35840

(
12600

√
3 𝜋8 − 25515 𝜋7 + 125863

√
3 𝜋6 + 9328662 𝜋5

− 58215948
√

3 𝜋4 + 931392000 𝜋3 − 2740039680
√

3 𝜋2 +2079006720 𝜋 − 21139292160
√

3
)

𝜋2𝑎8

−
1

26880

(
49152

√
3 𝜋8 + 82134 𝜋7 − 2489953

√
3 𝜋6 + 74331432 𝜋5

− 367895220
√

3 𝜋4 + 4380687360 𝜋3 − 11421204480
√

3 𝜋2 +71345111040 𝜋 − 63417876480
√

3
)

𝜋𝑎9

−
1

2150400

(
529200

√
3 𝜋10 − 1990170 𝜋9 + 6730776

√
3 𝜋8 + 316328085 𝜋7 − 2909134880

√
3 𝜋6

+ 50865513300 𝜋5 − 210050507520
√

3 𝜋4 + 2063016345600 𝜋3 − 4802582937600
√

3 𝜋2

+ 25684239974400 𝜋 − 20293720473600
√

3
)

𝑎10
)

.

A further increase in the order of PA is inexpedient, because starting from 𝑞∗
[ 2 ∕ 12 ]

, the PA sequence diverges. Formula
for the effective parameter

𝑞𝑃𝑎𝑑𝑒 = 1 +
2
√

3 𝑎2√
1 − 𝑎2

(
arctan

√
3

3
√

1 − 𝑎2
+

2

3
arctan

√
1 − 𝑎

1 + 𝑎

)
−

√
3 𝜋𝑎2

6
+ 𝑞∗

[ 2 ∕ 10 ]
(34)
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10 of 13 ANDRIANOV et al.

F IGURE 6 The effective parameter described by the PA sequence

gives accurate results to any size 0 ≤ 𝑎 < 1 for absolutely conducting inclusions. At 𝑎 → 1 one obtains the following
leading term of the asymptotics (29):

𝑞𝑃𝑎𝑑𝑒 =

√
3𝜋√

1 − 𝑎2
− 5 +

2
√

3

3
−

𝜋
√

3

6
−

9𝜋11

2

[
567
√

3

256
𝜋10

−

(
216513

2048
−

512
√

3

7

)
𝜋9

5
−

(
1020681 −

22137707
√

3

40

)
𝜋8

4480
−

(
266514867

16
−

26330161
√

3

3

)
𝜋7

8960

−

(
1877769 −

191470627
√

3

168

)
𝜋6

160
−

(
77374953

16
− 2284453

√
3

)
𝜋5

64

−

(
287388 −

16903659
√

3

80

)
𝜋4 − 3

(
513324 − 190784

√
3
)

𝜋3

− 3072
(

864 − 919
√

3
)

𝜋2 − 147456
(

81 − 16
√

3
)

𝜋+ 9437184
√

3

]− 1

+ 𝑂
(√

1 − 𝑎
)

,

(35)

or

𝑞𝑃𝑎𝑑𝑒 =

√
3𝜋√

1 − 𝑎2
− 6.9345. (36)

For comparison, the result obtained in Gluzman et al. [9] has the form

𝑞 =
5.18766√
0.9069 − 𝑐

− 6.2371 =

√
3𝜋√

1 − 𝑎2
− 6.2371, (37)

where 𝑐 =
𝜋𝑎2

2
√

3
is the volume fraction of inclusions.

Figure 6a,b presents the solutions described by PA 𝑞∗
[ 2 ∕ 2 ]

, 𝑞∗
[ 2 ∕ 4 ]

, … , 𝑞∗
[ 2 ∕ 10 ]

. On the other hand, in Figure 7a,b graphs
of the effective parameter for absolutely conducting inclusions are shown in comparisonwith the formula (7.5.44) obtained
in reference [9].
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ANDRIANOV et al. 11 of 13

F IGURE 7 Effective parameter for absolutely conducting inclusions

Thus, solutions based on thin layer asymptotics (27) and PA (33), (34) give the upper and lower bounds for the asymp-
totics of the effective parameter in the case of absolutely conducting inclusions. It should be mentioned that the distance
between upper and lower bounds is small for any values of the size of the inclusions.

6 CONCLUDING REMARKS

Our results are based on analytical homogenization theory. First, we have used a small parameter characterizing the
inhomogeneity of themediumand themultiple scale asymptoticmethod. The original problemhas been separated to local
(on a periodically repeated cell) and global (for an equation with effective characteristics in a simply connected domain)
problem. Next, we have employed a small parameter characterizing a high volume fraction of inclusions andwe have used
thin layer asymptotics (lubrication approach). Application of the PA yielded the effective heat conductivity parameter for
large, close to the limit possible size inclusions. Upper and low bounds for solution were obtained. An important feature
of the proposed solution is the fact that it correctly describes the asymptotics of the effective conductivity at 𝜆 → ∞ , 𝜆 = 0

and 𝑎 → 1.
The exact formula for any regular array (4.2.28) in the series form, the polynomial approximation equations (7.2.6) and

the corresponding transformed formula (7.5.44) are obtained in reference [9]. Formula (4.2.28) is exact, but written in
the form of a series slowly convergent in the critical regime. Therefore, one needs asymptotic analysis in order to extract
the singularity. Renormalization approach is applied in Gluzman et al. [9] directly to (4.2.28) to resolve this task. We have
employed an alternate approach to the same problem of the critical percolation regime based on the Pade approximations.
Comparison of relation (34) with formula (7.5.44) reported in Gluzman et al. [9] showed excellent accuracy of the obtained
by us results.
In the era of artificial intelligence and big data, it is imperative to emphasize the importance of analytical solutions.

As noted in Choy [42] ‘In spite of huge progress in computational techniques and technology, we are still barely able to
simulate, let alone accurately compute, experimentally measurable quantities for systems of nomore than a few thousand
atoms at the microscopic level. Hence one can say that some form of effective medium theory is indispensable for our
understanding in the end. Nor is it really fruitful to do otherwise’.
Some scientists assert that the area of applicability of the asymptotic solutions is very restricted. But asymptotic meth-

ods give (as remarked by Laplace) the better results in proportion to its being more necessary ([43], p.1). They allow to
obtain results for extreme values of the parameters, that is, just in those situations where numerical methods have funda-
mental problems. Analytical solutions serve as a good benchmark for numerical solutions, allowing one to estimate the
applicability limits of the latter. And, finally, they can be easily combined with the numerical algorithms.
We considered the regular arrangement of inclusions. Since regular case possesses some extreme properties [25, 44–47],

the obtained effective parameters can serve as estimation of the effective parameters of random composites. In addition,

 15214001, 2022, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.202200216 by R

w
th A

achen H
ochschulbibliothe, W

iley O
nline L

ibrary on [09/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 of 13 ANDRIANOV et al.

it is possible to obtain analytical estimates of the effective properties for shaking geometry composites by employing the
security-spheres approach [25].
In addition, the found analytical expressions for the effective properties can be used in the optimal design of composites

[48]. For a future work, it is of interest to study the problems of bending of composite plates with hexagonal lattice of
circular inclusions and compare the results with known refined theories [49–51].
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