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Chapter 1

General Introduction

When it comes to product prices, two major topics have dominated the public

debate in recent years: One is pricing with the help of arti�cial intelligence (AI),

and the other is the price level, which has risen more than usual with the onset of

the COVID-19 pandemic. While at �rst glance these two issues are independent

of each other, they both contribute to a growing concern about higher prices.

Higher prices create a loss of consumer surplus and possibly total welfare, which

is the reason this topic has become ubiquitous in political discussions.

One sub�eld or application of AI is machine learning, which is the process of

using statistical models or algorithms to help computer systems learn without ex-

plicit instructions and improve on their own based on past experiences. Concerns

have been raised that by extensively collecting and analyzing a large amount of

data, these learning algorithms may cause potential harm to consumers and a

decline in social welfare. There is no doubt that an increasing amount of avail-

able data, combined with AI-related improvements and innovations, may a�ect

�rms' behavior in the market. For example, more information and better knowl-

edge of consumers, as well as the use of price-setting algorithms, can facilitate

the personalized pricing strategies of �rms. Additionally, since �rms are able to

better observe and predict their competitors' behavior and algorithms are able

to respond almost instantaneously to competitors' moves, collusive behavior may

be facilitated. These two phenomena � algorithmic price discrimination and tacit

collusion by price-setting algorithms � will be discussed in further detail in the

present work.

Collusion occurs �when �rms use strategies that embody a reward-punishment

scheme which rewards a �rm for abiding by the supra-competitive outcome and

punishes it for departing from it� (Harrington, 2018, p. 336). The potential use of

algorithms may facilitate such collusion by making it easier to detect and respond

to competitors' deviations. Thereby, algorithms are deliberately used by �rms as

an instrument to form a cartel or to stabilize an existing one, which would be

similar to explicit collusion. Moreover, a hub-and-spoke scenario might emerge
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when several �rms (the �spokes�) use the same algorithm provided by a third

party (the �hub�) that o�ers algorithmic pricing as a service. And �nally, there

is the possibility of algorithms learning to collude without being programmed to

do so. This is what we refer to as algorithmic tacit collusion. These scenarios

have been widely discussed among competition authorities, economic organiza-

tions, and professional experts in recent years (Autorité de la concurrence and

Bundeskartellamt, 2019; Competition and Markets Authority, 2021; Ezrachi and

Stucke, 2016; OECD, 2017; Varian, 2018). They state that AI technologies could

enable �rms to analyze and monitor the market on the supply side as well as on the

demand side on an unprecedented scale. Algorithms are able to detect and scruti-

nize deviating behavior of competitors as well as to change prices more frequently

in order to adapt to a changing environment. In this context, a growing num-

ber of researchers argue that pricing algorithms may learn how to collude based

on reward and punishment schemes that occur with repeated interactions over a

su�ciently long time horizon, resulting in setting prices at a supra-competitive

level. Moreover, algorithms may be able to sustain these supra-competitive prices

without human intervention, and in contrast to traditional cartels, do not require

explicit agreements. Instead, learning algorithms may be able to autonomously

induce collusive behavior without having been programmed to do so and without

�rms' intent. In their simulations, Calvano et al. (2020) and Klein (2021) have

demonstrated that algorithms can e�ectively learn how to implement and sustain

collusive strategies over a reasonably long period.

The second phenomenon discussed in this work is algorithmic price discrim-

ination. Price discrimination means that companies charge di�erent prices to

di�erent consumers or groups of consumers for the same or a similar product

or service. In the context of the increasing use of big data by �rms and the

sometimes very careless disclosure of personal data by consumers online, which

might be explained by the privacy paradox1 (Norberg et al., 2007), concerns have

been raised that learning algorithms might engage in price discrimination as �rms

have access to huge amounts of data. AI algorithms are able to use this data to

create more accurate consumer pro�les and to gain a better understanding of

consumers' purchasing behavior with regard to their preferences or needs (Wood-

cock, 2019). Thus, access to large data sets on consumer behavior and the use

of AI technology may enable �rms to incorporate this information in marketing

1 The privacy paradox describes the apparent dichotomy between individuals' intentions to
disclose personal information and their actual privacy behavior: On the one hand, individuals
express concerns about the handling of their personal data and report a desire to protect their
data, whereas at the same time, they not only voluntarily disclose these personal data, but
also rarely make an e�ort to protect their data actively (Acquisti and Grossklags, 2005).
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or pricing applications resulting in targeted advertising, personalized pricing, or

personalized product recommendations. These concerns are further supported

by scienti�c research. In experimental studies, Shiller (2013), Ban and Keskin

(2020), and Dubé and Misra (2017) have demonstrated that �ner-grained price

discrimination is possible with the use of machine learning. Despite the new

opportunities to personalize prices that have been gained through digitalization

and advances in pricing technology, this has only rarely been observed in practice.

This could be due to the expectation of negative consumer reactions, as price dis-

crimination is often seen as an unfair violation of consumer equality (Kahneman

et al., 1986).

Even though price discrimination and collusive behavior of �rms both require

intensive use of data and advanced algorithms, they are unlikely to occur in the

same type of market. This is also supported by the studies of Colombo (2010)

and Helfrich and Herweg (2016) who have found that price discrimination is

not a facilitating factor for collusive behavior. Moreover, the e�ects of the two

phenomena on consumer surplus di�er. While supra-competitive prices always

reduce consumer surplus, the e�ect of price discrimination is not that clear. When

�rms engage in discriminatory pricing strategies, prices are closer to consumer's

willingness to pay. On the one hand, consumers with a high willingness to pay

will have a lower surplus as they will be charged higher prices. On the other hand,

there is the market expansion e�ect, which results from the fact that consumers

who would not have received an o�er under a uniform price are now able to buy the

product or service at a lower price. If the number of these consumers is su�ciently

large, the increase in demand has a positive e�ect on overall consumer surplus.

However, the global impact of price discrimination on consumer welfare depends

on the relative magnitude of these two e�ects. As both collusive behavior and

price discrimination may a�ect consumers, these topics are of particular interest

for competition authorities as well as for regulatory bodies.

Another event that created an awareness among �nancial media, academics,

and bankers regarding a signi�cant increase in prices was the COVID-19 pan-

demic. The outbreak of the coronavirus disease at the beginning of 2020 led to a

world health crisis of a type and magnitude never before experienced. In addition

to the dramatic health and societal impacts, there were also economic challenges:

In Germany, there was a rise in prices not seen since the beginning of the 1990s.

Increasing global interdependencies and the provision of intermediate products

according to the just-in-time approach have led to suppliers being very sensitive

to disruptions in the value chain (OECD, 2020). The pandemic even spurred

discussions emphasizing the risks and instability that is associated with global
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value chains leading to an international fragmentation of production (OECD,

2021). Disruption in these value chains has been caused by the closure of na-

tional borders and lockdown measures that were imposed by several governments

to contain the spread of the virus. Another consequence of these measures was

the limited availability of international workforces, which contributed to further

aggravation of the situation (Nicola et al., 2020). Consumers on the demand side

of the market were also a�ected by the measures. Social distancing and several

lockdowns led to a change in the spending patterns of consumers (Andersen et al.,

2020; Baker et al., 2020; Carvalho et al., 2020; Chen et al., 2021; Chronopoulos

et al., 2020; Landais et al., 2020). These are just a few examples of the di�er-

ent factors that may in�uence demand and supply, and as a consequence, prices.

In this context, it is important to know to what extent government measures,

which actually pursue other goals, can have an e�ect on price developments. In

the present work, we highlight the role of the stringency of government measures,

and thus reduced mobility, as a driver of consumer prices. Since many production

processes still rely on the physical presence of workers, labor-intensive products

seem to have been particularly a�ected by government measures that restricted

mobility. Thus, the increasing importance of AI, which could be used to (par-

tially) automate production processes, is also evident in this area. However, it is

obvious that humans cannot be completely replaced.

This dissertation contributes to the debate by extending the existing literature

on algorithmic pricing and collusion and to enhance the general understanding of

how government measures enforced during the COVID-19 pandemic contributed

to (short-term) price developments. More speci�cally, the main questions under

consideration are:

• Does the risk of collusive pricing by learning algorithms persist in real-world

scenarios?

• How does a self-learning pricing algorithm perform when faced with inequity-

averse consumers?

• To what extent does the stringency of pandemic-related government mea-

sures in�uence consumer price development?

The dissertation contains three papers that address the aforementioned re-

search questions. In Chapter 2, the concern is addressed that tacit collusion

might occur if �rms employ learning algorithms, as several simulation studies

have demonstrated that algorithms using reinforcement learning � a type of ma-

chine learning in which agents learn from interacting autonomously with their
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environment � are able to coordinate their pricing behavior and, as a result,

achieve a collusive outcome without having been programmed for it. These stud-

ies, however, use very restrictive assumptions about the involved �rms, the em-

ployed algorithms, and the environment in which they interact. Therefore, we

are skeptical that such results can be transferred to more realistic settings. More

speci�cally, in the �rst paper titled �Algorithmic Collusion: Fact or Fiction?�,

several conceptual challenges as well as challenges in the real-world application

of algorithms are discussed, and we show by our own simulations that resulting

market prices strongly depend on the type of algorithm or heuristic that is used

by the �rms to set prices. We conclude that the strategy combination of all

�rms employing a Q-learning algorithm, which is a crucial assumption in simu-

lation studies showing collusive behavior of algorithms, is certainly not a Nash

equilibrium.

In Chapter 3, the second paper titled �Price Discrimination with Inequity-

Averse Consumers: A Reinforcement Learning Approach� introduces inequity

aversion of consumers. This means that consumers respond with a lower accep-

tance probability of a �rm's price bid if they feel they are being treated unfairly.

We conducted experiments making use of a reinforcement learning algorithm and

answer the question of whether it is possible for this self-learning algorithm to

learn to engage in price discrimination on the basis of fairness to avoid upset-

ting customers but still maximize expected revenues by charging personalized

prices. Compared to a scenario where inequity aversion is not considered, an

improvement in fairness is seen in the situation where inequity-averse consumers

are introduced, while at the same time, the algorithm is able to maintain the goal

of maximizing revenue. We conclude from our simulations that consumers' sense

of fairness, which has prevented �rms from engaging in price discrimination, can

be incorporated into �rms' pricing decisions with the help of learning algorithms,

making di�erential pricing strategies more feasible.

The discussion surrounding the above-average price levels in many countries

during the COVID-19 pandemic is extended in Chapter 4 with the third paper

titled �The E�ects of Movement Restrictions on Consumer Prices During the

COVID-19 Pandemic.� The rapid increase in the number of COVID-19 infec-

tions prompted governments in a�ected countries to impose measures designed

to contain the spread of the coronavirus, including border closures that severely

restricted mobility between countries, so-called stay-at-home restrictions, and

workplace closures. These restrictions were expected to a�ect both supply and

demand. On the one hand, workers and goods could cross national borders only



6 Chapter 1. General Introduction

under more restrictive conditions, resulting in an abrupt worker shortage and de-

creased supplies of certain goods. On the other hand, consumers adjusted their

spending behavior in response to the pandemic due to shifts in preferences, ex-

pected income or health risks, or higher economic uncertainty. In this chapter,

we present empirical evidence of the impact of government-imposed restrictions

and, as a consequence of their enforcement, reduced mobility on consumer prices

during the COVID-19 pandemic. We show that the stringency of government

measures has a positive and signi�cant impact on the overall consumer price in-

dex as well as on the sub-index of the food category, which means that more

stringent measures induce higher consumer prices in these categories. Regres-

sions with actual mobility data instead of the stringency of government measures

support these results.

Finally, Chapter 5 summarizes the key �ndings of the thesis and draws con-

clusions with respect to the research questions posed. In addition, the concluding

remarks are brie�y put into perspective from a legal and political point of view.
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Chapter 2

Algorithmic Collusion: Fact or

Fiction?

This chapter is joint work with Jens Grüb, Matthias Muijs, and Ulrich Schwalbe.



Abstract

Concerns are growing that learning algorithms will harm competition as they

are said to be able to coordinate their pricing behavior to achieve a collusive

outcome. Simulation studies have shown that learning algorithms are indeed able

to autonomously induce collusive behavior without having been programmed for

it. These studies, however, use very restrictive assumptions about the involved

�rms, the employed algorithms, and the environment in which they interact.

Therefore, we are skeptical that such results can be transferred to more realistic

settings. In our paper, we address conceptual challenges as well as challenges in

the real-world application of algorithms, and we show by our own simulations

that market prices strongly depend on the type of algorithm or heuristic that is

used by the �rms to set prices. We can conclude that the strategy combination

of all �rms employing a Q-learning algorithm, which is a crucial assumption in

simulation studies showing collusive behavior of algorithms, is certainly not a

Nash equilibrium.
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2.1 Introduction

Algorithmic pricing is not a new phenomenon, as it has been common in some

industries for many years, such as airlines, hotels, and cruises. With the growth

of online trading, the use of such algorithms is increasing. Algorithms o�er a

number of advantages, such as adjusting prices better and more quickly to supply

and demand, gathering and processing increasingly larger amounts of data, and

freeing up resources through higher levels of automation. However, fears have

been expressed, especially in the last �ve to six years, that such algorithms may

have negative e�ects on consumers and on competition. For example, consumers

could be disadvantaged by algorithms in terms of higher prices.1

There are also concerns that learning algorithms can harm competition by

facilitating collusive behavior. In markets with high transparency, �rms might

deliberately use algorithms as an instrument to form a new cartel or to stabilize

an existing one, which would be similar to explicit collusion. Moreover, several

studies indicate that learning algorithms are able to autonomously induce collu-

sive behavior without having been programmed for it and without such behavior

having been intended by the �rms, which is known as tacit collusion. It is feared

that this will lead to additional and novel competition problems � i.e., that col-

lusive behavior will increase and that it will also take place in markets where

collusion would not have occurred without such algorithms. However, the as-

sumptions made in these studies are often based on a shallow understanding of

machine learning and rather intuitive considerations and assumptions.

The �rst papers on competitive concerns caused by self-learning, price-setting

algorithms � written mostly by legal scholars � pointed out that algorithmic col-

lusion would arise very quickly, that it would be virtually unavoidable, and that

it would also occur in markets with many �rms that are usually not prone to

collusion. This view has been criticized with the claim that such a collusion

would never happen tacitly, even in laboratory experiments, as it is generally

rather di�cult to achieve arrangements or agreements, particularly without any

communication. In the last few years, these extreme positions seem to have some-

what converged. The main reason for this is that some simulation studies have

demonstrated that comparatively simple learning algorithms are able to learn col-

lusive behavior without having been programmed to do so. The model structure

usually employed is a simple Bertrand model. The collusion that the algorithms

achieve is generally not perfect, i.e., they do not replicate a perfect cartel and the

1 For a detailed analysis on consumer harm caused by pricing algorithms, see MacKay and
Weinstein (2022).
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learning often takes many periods, but nevertheless these studies have demon-

strated that learning algorithms are very well able to learn collusive behavior and

set prices that are signi�cantly higher than those that would result from e�ective

competition in the Bertrand model. This demonstrates that algorithmic collusion

is indeed possible. However, the simulation studies in which collusive behavior

has occurred use very restrictive assumptions about the �rms involved, the algo-

rithms employed, and the environment in which they interact. For example, it

is assumed that all the �rms operating in that market use the same price-setting

algorithm. Since these assumptions do not re�ect realistic market conditions, we

are skeptical that such results can be transferred to economic reality. For this

reason, we have run additional simulations under more realistic assumptions �

e.g., considering �rms which produce di�erentiated products and allowing for the

use of algorithms as well as simple heuristics to set prices.2 We then examined

whether collusive behavior still occurs under these conditions.

The paper is organized as follows. In Section 2.2, we review the literature

on the recent debate over whether arti�cial intelligence algorithms are able to

autonomously learn to collude. Section 2.3 describes the basic machine learning

methods underlying the algorithms, providing a broader understanding of the

context. Additionally, the limitations of the previous approaches are considered.

In Section 2.4, conceptual challenges and challenges in the real-world application

of price-setting algorithms are described. Our arguments are supported by our

own simulations, which we provide in Section 2.5. Section 2.6 concludes.

2.2 Literature Review

The Competition and Markets Authority (2021) in the United Kingdom identi�ed

three main competition concerns with regard to the use of algorithmic pricing

software. First, algorithms may facilitate explicit collusion by making it easier

to detect and respond to competitors' deviations. Second, a so-called hub-and-

spoke scenario might emerge if �rms use the same third-party pricing software or

service. Third, it may be possible that algorithms will learn to collude without

being programmed to do so. In this study, we focus on the concern that algorithms

autonomously learn to collude, which we refer to as tacit collusion.3

Tacit collusion occurs when �rms coordinate prices, quantities, or any other

variable and achieve supra-competitive pro�ts, without any communication or

explicit agreements between them. Consequently, the outcome deviates from the

2 Di�erentiated products are also considered by Calvano et al. (2020).
3 Other terms used for tacit collusion include tacit coordination and conscious parallelism.
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competitive equilibrium and, as a result, leads to a reduction in consumer welfare

that is similar to the outcome of explicit collusion or a cartel. The necessary re-

quirements for tacit collusion to occur are �rms' abilities to detect and to punish

competitors' deviations from the collusive equilibrium. Otherwise, competitors

will always have the incentive to deviate from the collusive equilibrium by un-

dercutting rivals' prices in order to serve a larger share of the demand. If this

happens, the collusive equilibrium breaks down, and prices return to the compet-

itive level.

Whether algorithms are able to tacitly collude, not only in theoretical models

but also in the real world, is a controversial discussion in the economics liter-

ature. Several simulations have demonstrated that algorithmic collusion might

occur. Contributing to this literature, Waltman and Kaymak (2008) studied the

use of Q-learning algorithms in repeated Cournot oligopoly games. Drawing on

their computer simulations, the authors showed that �rms may learn to collude,

although full collusion usually does not occur. They also shed light on the fact

that Q-learning may explain the emergence of collusive behavior in settings in

which punishment mechanisms and communication between �rms are absent. Us-

ing the framework of a simple two-�rm Bertrand model, Calvano et al. (2020)

demonstrated that Q-learning algorithms are able to learn collusive strategies

when competing algorithms update their prices simultaneously and rivals' prices

are perfectly observable. In this setting, the authors also observed that deviating

behavior � i.e., setting a lower price than the collusive price � was sanctioned.

Typically, collusive strategies were followed by a �nite phase of punishment, with

a gradual return to prices that were set prior to the deviation. Klein (2021)

introduced a sequential setting and showed that in a sequential pricing duopoly

wherein �rms o�er a homogeneous good, competing Q-learning algorithms learn

to converge to collusive equilibria when the set of potential prices the algorithm

can choose is limited. When this set of potential prices expands, the algorithm

increasingly approaches supra-competitive asymmetric price cycles.

However, Schwalbe (2018) argued that these studies used extremely stylized

settings. Moreover, according to the author, the settings in which algorithms

achieved collusive outcomes correspond to those in which humans also colluded.

Contributing to this point of view, Ittoo and Petit (2017) argued that it is not

very likely that algorithms will be able to autonomously collude. The authors

studied di�erent types of reinforcement learning technologies, such as Q-learning,

and tried to determine whether the use of such algorithms can lead to tacit col-

lusion. They concluded that several signi�cant existing technological challenges,
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such as specifying an appropriate objective function, observing data on the com-

petitive environment, or dealing with a non-stationary environment, undermine

the capabilities of Q-learning algorithms to approach a tacit collusion equilib-

rium. A further aspect that was noted by Harrington (2018) is that collusive

behavior is more likely to occur if competitors use a symmetric price-setting

technology, which can be achieved by using the same pricing algorithms from the

same provider. Harrington further argued that even in this case, the competing

�rms would be required to train their algorithms with the same data and use the

same hyperparameter values for the algorithm.4 However, this does not sound

like a realistic scenario.

In contrast to these �ndings, Brown and MacKay (2021) introduced a model

of price competition that allows for asymmetric technology among �rms, whereby

�rms are able to change prices after short time intervals. In addition, the model

incorporates short-run commitment through the use of algorithms. The authors

showed that the use of superior pricing technology leads to an increase in markups

of all �rms: if all �rms adopt algorithms with high pricing frequency, collusive

prices are observed. Furthermore, the authors concluded that asymmetries in

pricing frequency and commitment allows �rms to set supra-competitive prices

even in a competitive equilibrium by using algorithms that are simple linear

functions of rivals' prices.

As shown above, several studies have indeed demonstrated that algorithms

are capable of collusive behavior in very stylized settings. The authors of these

papers performed several real-world robustness checks to prove that their results

are robust regardless of their theoretical study designs. For example, Calvano

et al. (2020) carried out a series of robustness checks in their work: the number

of �rms was increased from two to three or four �rms, and asymmetries between

�rms (such as di�erent marginal costs) were considered. Furthermore, they exam-

ined whether the results change fundamentally if �uctuating demand is assumed

or if the �rms use di�erent algorithms, while maintaining the same type of learn-

ing behavior, i.e., Q-learning. Moreover, robustness checks were carried out for

various forms of uncertainty. The authors introduced demand shocks, which were

modeled by stochastic entry and exit. They found that demand variability con-

strains collusion among �rms but does not eliminate it. Additionally, random

entry and exit of an �outsider� �rm, which alters the market structure, as well as

changes in substitutability of the product, do not lead to signi�cantly di�erent

results. Changes in the hyperparameters of the model � e.g., changing the initial

4 Further details on hyperparamter values of algorithms are provided in Sections 2.3.1 and
2.3.2.
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values the algorithm must update, and enlarging the action set of �rms by in-

creasing the number of feasible prices � have only limited impact on the collusive

strategies. Overall, even with modi�ed assumptions, the authors concluded that

such collusive behavior is essentially robust, apart from minor changes in the level

of the collusive price. We are, however, skeptical that these robustness checks are

su�cient to account for the complexity of economic reality.

A further robustness check was introduced by Calvano et al. (2021) by an-

alyzing the case of imperfect monitoring where �rms compete in quantities and

observe the competitors' price level but cannot perfectly infer their outputs be-

cause demand is stochastic. Perfect monitoring means that each seller is able

to monitor the competitors' prices in real time, and is assumed to be present

in online marketplaces, such as Amazon. However, perfect monitoring does not

appear to be a necessary condition for collusion, as theory shows that collusion

may also occur in markets where the strategies of competing �rms are not easy to

observe (Green and Porter, 1984; Tirole, 1988). Calvano et al. (2021) again used

Q-learning pricing algorithms and assumed that all �rms use similar algorithms.

The results indicated that if those algorithms were provided with su�cient time

to complete the learning process, they colluded even under the assumption of

imperfect monitoring. The prices set by the �rms still yielded supra-competitive

pro�ts, but no perfectly collusive outcome was observed. Moreover, the algo-

rithms required hundreds or thousands of periods to stabilize their behavior and

converge to a certain strategy. Consequently, the practical signi�cance of this

result is questionable. Hansen et al. (2020) contributed to this strand of lit-

erature as well, studying market outcomes in an oligopoly setting wherein two

competing �rms independently employ upper con�dence-bound algorithms that

are not able to observe competitors' choices. Simulation results suggest a re-

lationship between the price level and the information value of the underlying

pricing experiments: more informative pricing experiments result in correlated

price experiments across �rms, thereby competitors' pricing becoming correlated

unobservables in each �rms' pricing algorithm. Thus, the �rms' misspeci�ed

models overestimated own price sensitivity, resulting in supra-competitive prices.

The �rst empirical evidence for the appearance of collusive price levels due to

algorithmic pricing was presented by Assad et al. (2020), who investigated the

impact of algorithmic pricing software adoption on competition in the German

retail gasoline market by comparing the retail margins of adopting and non-

adopting stations. This software, which became widely available by mid�2017,

is able to perform high-frequency analysis of data on competitors' price-setting

in order to provide fast, intelligent, and agile pricing decisions in reaction to
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current market conditions, however, it does not include learning algorithms. The

authors were able to show that the pricing software has been used as a tool to

achieve higher prices and thus higher pro�ts: Regression results indicated that,

in non-monopoly markets, margins of gasoline retailers adopting the algorithmic

pricing software increased by 9%. Restricting their attention to duopoly markets,

the authors found that adoption of algorithmic pricing led to an average margin

increase of 28% when both gas stations adopted algorithmic pricing, while only

one station adopting algorithmic pricing did not lead to an increase in margins.

The authors also gave an explanation for why pricing algorithms could reach

margins above competitive levels by examining the timing of adaption e�ects

and by looking at the average number of price changes in duopoly markets. They

argued that the algorithms did not fail to learn to compete e�ectively but rather

actively learned how not to compete, i.e., how to tacitly collude.

The possibility of the occurrence of algorithmic collusion is well known to

competition authorities. The legal debate on pricing algorithms and collusion

has been waged by academics for several years (e.g., Ezrachi and Stucke (2015,

2016), Gal (2017), and Mehra (2016)), but competition authorities have also

started to develop measures to combat algorithmic collusion. To this end, the

Federal Trade Commission in the United States has issued a guidance paper

on the use of arti�cial intelligence (AI) in markets, providing guidance on the

desirable features of AI tools to avoid unintended consequences (Federal Trade

Commission, 2020). Currently, however, the Federal Trade Commission believes

that the existing US regulatory framework su�ciently addresses the risks asso-

ciated with the increasing use of AI systems (Federal Trade Commission, 2021).

In April 2021, the European Commission presented a new proposal for an EU

legal framework for AI, the �Arti�cial Intelligence Act� (AI Act)5. The draft AI

Act is the �rst attempt at horizontal regulation of AI and focuses on the speci�c

usage of AI systems and the associated risks to people's safety or fundamental

rights. It proposes a new de�nition of AI systems in European law and suggests

a new classi�cation for AI systems with di�erent requirements and obligations,

following a risk-based approach.

In addition, in a joint study the competition authorities of France and Ger-

many addressed potential competitive risks that are associated with the use of

algorithms (Autorité de la concurrence and Bundeskartellamt, 2019). With re-

gard to alignment of pricing algorithms, the competition authorities stated that

under current case law, Art. 101 of the Treaty on the Functioning of the European

5 European Commission, Document 52021PC0206, 21 April 2021, https://eur-lex.europa.
eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
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Union (TFEU) does not prohibit conscious parallel behavior. According to the

authors, a situation in which �an algorithm merely unilaterally observes, analyses

and reacts to the publicly observable behavior of the competitors' algorithms [. . .]

might usually have to be considered as an intelligent adaptation to the market

rather than a coordination� (Autorité de la concurrence and Bundeskartellamt,

2019, p. 56). Another legal question that was addressed in the study concerns the

issue of assessing a �rm's responsibility for collusive algorithmic behavior. The

authors showed that proposals range from releasing developers from all liability

to considering the behavior of an algorithm as the action of a �rm's employees,

which is to be held completely accountable. However, the authors did not propose

committing to a particular standard. Currently, without the ability to observe

algorithmic tacit collusion in real-life, the authors see no need for adapting the

existing legal regime or their methodological toolkit.

To sum up, the main challenge or novelty that arises with algorithmic col-

lusion is algorithms' ability to autonomously learn to collude, without being

programmed to do so. Furthermore, algorithmic collusion � if detected at all

� currently does not constitute a violation of competition law.

2.3 Technical Aspects of Reinforcement Learning

To put the topic of machine learning into a broader context, we will �rst di�eren-

tiate between di�erent types of learning. Machine learning is a sub�eld of AI and

refers to the extraction of knowledge from data. We can di�erentiate between

several models of machine learning, all of which use di�erent approaches. What

most of these models have in common is that they are based on several parameters

and an objective function that indicates the performance of the model. In this

way, we can distinguish between hyperparameters and parameters. A hyperpa-

rameter is a con�guration that is external to the model and whose value cannot

be estimated from the data. Since the best value for a hyperparameter on a given

problem is unknown, they are often set by using rules of thumb, or by searching

for the best value through trial and error. Examples of hyperparameters are the

choice of a particular optimization algorithm, the learning rate, the number of

hidden layers in a neural network, or the number of iterations in training a neural

network. In contrast, parameters are internal to the model. The algorithm tries

to learn or estimate from the data the parameter values that lead to the best

possible performance of the model for a given dataset. Examples of parameters

are the coe�cients of linear and logistic regression models or the weights and

biases of a neural network.
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Every machine learning method needs some kind of data, which in turn de-

termines which kind of algorithm is appropriate. Data may be structured in a

table-like format or unstructured, which can be text, images, videos, or audios.

Moreover, we distinguish between data that is labeled with a certain tag or data

that is unlabeled.

In the following, some types of machine learning are brie�y discussed. For a

comprehensive overview of machine learning methods used in economic contexts,

please refer to Athey and Imbens (2019).

The �rst type of machine learning that we consider is Supervised Learning.

Supervised learning requires labeled data, which can be used as input, and the

output of these methods is some kind of a prediction. To assess the performance

of the algorithm, the predictions are compared to the actual output that is de-

picted by the labels. The goal of supervised learning algorithms is to minimize

the discrepancy between actual output and predicted output. One example of a

supervised learning problem is predicting house prices: this requires data about

other houses, such as square footage, number of rooms, features, whether a house

has a yard or not, and so on, as well as the corresponding labels (i.e., the houses'

prices). By using data on those houses, their features, and their prices, a super-

vised machine learning model can be trained to predict a new house's price based

on the examples observed by the model.

In contrast to these algorithms, Unsupervised Learning algorithms do not rely

on labeled data, and no actual output is available. Instead, the performance

of this kind of algorithm is evaluated on the input data. Clustering is an un-

supervised learning approach that tries to �nd groups or clusters in a featured

space and interpret the input data. Clustering is commonly used in determining

customer segments in marketing data, for example, in order to approach these

customer segments in more targeted ways.

Another type of machine learning is Reinforcement Learning, which cannot

be classi�ed as either supervised or unsupervised learning and is therefore often

considered its own category. In this method, the algorithm learns how to map

situations to actions in order to maximize a numerical reward signal, which is

comparable to the above-mentioned objective function. The algorithm is not

explicitly told what actions to choose but instead has to learn which actions yield

the highest reward. Reinforcement learning methods use the formal framework of

Markov decision processes to de�ne the interaction between the algorithm (called

the agent) and its environment in terms of states, actions, and rewards.6

6 For a comprehensive introduction to single-agent reinforcement learning, we refer the reader
to the textbook by Sutton and Barto (2018).
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In the following paragraphs, we introduce some formal aspects of reinforce-

ment learning. The agent interacts with its environment at discrete time steps

t = 0, 1, 2, . . . . In each time step, the agent observes state st ∈ S, where S de-

notes the set of all states, and selects an action at ∈ A, where A denotes the set

of all actions that are available. After choosing this action, the agent obtains an

immediate reward rt+1 ∈ R. The agent can then observe the resulting state st+1

and select a subsequent action at+1, and so on. The agent's policy π at time step

t is a mapping from states to action probabilities and is described as

πt(s, a) = P (at = a|st = s).

The agent's objective is to receive as much of a reward as possible in the long

run. Therefore, the agent's objective function is given by the discounted return

for m time steps:

Rt = rt+1 + δrt+2 + δ2rt+3 + · · · =
∞∑
m=0

δmrt+m+1,

where δ ∈ [0, 1) is the discount factor. During the learning process, the agent

changes its policy as a result of the experience it has gained.

One of the challenges that arises in reinforcement learning is the trade-o�

between the strategies of exploration and exploitation when choosing an action.

To obtain a high reward, an agent with reinforcement learning exploits what it

has learned so far by preferring actions it has already tried that have led to a

high reward in the past. However, to discover such actions, it has to try (or

explore) actions that have not been chosen thus far. Therefore, the algorithm

should employ a dynamic policy of action selection that balances exploitation �

i.e., choosing the optimal action as currently perceived � and exploration � i.e.,

randomly choosing another action to improve future performance.

An algorithm receives feedback on its performance in di�erent ways. One way

is to apply a learning method that uses training information to evaluate chosen

actions instead of relying on instructions that give the correct actions. To do

so, algorithms have to explore which action leads to the highest reward. Purely

evaluative feedback depends on the action taken by answering the question of how

good the action was in receiving a high reward. In contrast, purely instructive

feedback does not depend at all on the action chosen by the algorithm but instead

indicates the correct action the algorithm should choose. In supervised learning,

instructive feedback is given to the algorithms, whereas in reinforcement learning,

evaluative feedback is present. In more complex environments, evaluative and
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instructive feedback can be combined.

We can further distinguish between associative and non-associative settings.

In associative settings, inputs are mapped to outputs, and thus algorithms learn

the best output for each input. In non-associative settings, algorithms learn (or

discover) one best output.

2.3.1 Multi-Armed Bandit

The �rst reinforcement learning algorithm we consider is the Multi-Armed Bandit

(MAB), which operates in a non-associative setting with evaluative feedback.

This algorithm is very simple, since the setting does not involve learning to act

in more than one state or situation.7

Let us consider an algorithm that chooses repeatedly from k actions (or arms).

After each action at, a reward rt is obtained. This reward is chosen from a

stationary probability distribution that depends on the selected action, and it is

denoted by the action value Q∗(at). The expected reward given that an arbitrary

action at is selected is described as

E{rt|at} = Q∗(at).

The objective of the MAB is to maximize the expected total reward, which

is also called the action value, over some period of time. However, the action

values are not known with certainty. Therefore, the estimated value of an action

a at time step t is denoted as Qt(a). These estimates of action values are stored,

so at any time step t there is at least one action whose estimated value is the

largest compared to other actions that were chosen. Actions that yield the highest

estimated value are called greedy actions. If the algorithm decides to choose one

of these greedy actions, we say that the algorithm exploits its current knowledge

of the action values. If the algorithm chooses one of the non-greedy actions that

has not been selected thus far, the algorithm is exploring, since this selection

enables the agent to improve the estimates of non-greedy action values.

There are di�erent ways to estimate the values of actions and to use these

estimates for future decisions about which action to take. Sutton and Barto

(2018) identify these methods as action-value methods. Here, we describe two

of them. Given that an action was chosen at multiple di�erent time steps, the

authors describe the true value of an action as the mean reward of this action.

This value can be calculated by averaging all rewards received in past periods

7 For a more detailed look at multi-armed bandit algorithms, see Sutton and Barto (2018) or
Slivkins (2019).
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(up to time step ma) after choosing this speci�c action. The estimated value of

choosing action a is then

Qt(a) =
r1 + r2 + · · ·+ rma

ma

.

The law of large numbers entails that the denominator ma goes to in�nity. As a

result, the estimated value Qt(a) converges to the true value Q∗(at). Since each

estimated value is an average of the relevant sample that includes all rewards

received when choosing a speci�c action, this form of estimating action values is

described as the sample-average method.

We now consider a single action and compute the estimate of its action value

Qm after this action has been selected m−1 times. We do this by calculating the

average of all m− 1 rewards received after this action was selected. This average

is given by

Qm =
r1 + r2 + · · ·+ rm−1

m− 1
.

GivenQm and themth reward (indicated by rm), the new average of allm rewards

can be calculated by accumulating the sum of all rewards and dividing by their

number. We then get

Qm+1 = Qm +
1

m
[rm −Qm] , (2.1)

which is a common form for update rules and, in general terms, can be displayed

as

NewEstimate← OldEstimate+ StepSize [Target−OldEstimate] .

The sample-average method is used primarily for stationary problems, mean-

ing that the probability distribution of the reward does not change over time.

However, for non-stationary reinforcement learning problems, it makes sense to

give more weight to recent rewards than to rewards obtained in past periods. One

way to do this is using a constant step-size parameter. We denote this parameter

by α. Consequently, the update rule (2.1) for updating the average Qm of the

m− 1 past rewards is modi�ed and now given as

Qm+1 = Qm + α [rm −Qm] ,

with α ∈ (0, 1] being a constant step-size parameter.

In addition to di�erent ways to estimate the Q-value, the agent has di�erent

ways to choose its action. One rule the agent might follow is to select one of
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the greedy actions, i.e., one of those actions with the greatest estimated value.

If several greedy actions are observed at one time step, the agent is assumed to

select one of these actions at random. This method to select an action can be

formulated as

at = a∗t = arg max
a
Qt(a).

An alternative method is to choose the greedy action most of the time but to

randomly choose with probability ε an action from all possible actions, indepen-

dent of the value of these actions. Methods that are based on this action selection

approach are called ε-greedy methods. If the number of time steps goes to in�n-

ity, every action will be sampled an in�nite number of times. Consequently, the

estimated values Qt(a) converge to Q∗(at).

In the general case of reinforcement learning, the observation st+1 following

the selection of an action depends on the previous state st and the action at taken

by the policy π. In the case of MABs discussed here, the following state, which is

observation st+1, does not depend on the action chosen by the agent. Therefore,

MABs are called single stage or stateless.

2.3.2 Q-Learning

A di�erent type of reinforcement learning that allows for multiple states is the

independent Q-learning (Watkins and Dayan, 1992) algorithm. By interacting

with its environment, the algorithm learns to maximize a reward according to

the function Q(s, a) that matches the optimal long-run value of choosing any

action a ∈ A when faced with any given state s ∈ S. During this interaction,

the algorithm uses the above-mentioned dynamic action selection policy, which

balances actions exploiting what has been previously learned with those exploring

what has not been tried before.

The Q-function can be represented as a |S| × |A| matrix. If this Q-matrix is

known, the algorithm can easily choose the optimal action for any given state.

However, as this matrix is unknown, the Q-learning algorithm �rst has to estimate

the values of the Q-matrix through an iterative procedure without knowing the

underlying model. Starting from an arbitrary initial matrix Q0, the algorithm

chooses action at in state st, observes the reward rt and subsequent state st+1, and

updates the corresponding cell of the matrix Q(st, at) according to the following

recursive relationship:

Q(st, at)← (1− α)Q(st, at) + α
(
rt + δmax

a
Q(st+1, a)

)
,
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where the updated value Q(st, at) is a convex combination of the previous value

Q(st, at) and the reward obtained after performing action at in state st plus the

discounted Q-value that is reached in state st+1. For all other cells of the matrix,

the Q-value does not change. The step-size parameter α ∈ (0, 1] is the learning

rate, and it determines how quickly new information replaces old information.

The parameter δ ∈ [0, 1) describes the discount factor. Action a denotes the

optimal strategy (i.e., the action leading to the highest reward) until this time

step.

To balance exploration and exploitation, the Q-learning algorithm adopts a

policy of selecting an action with some probability. Using a ε-greedy strategy, the

algorithm follows a random explorative action within a given interval [amin, amax]

with probability εt ∈ [0, 1] and an exploitative action with probability 1 − εt. If
several actions yield the same highest Q-value under exploitation, the algorithm

selects one of these actions randomly.8

at =

[amin, amax] with probability εt

arg maxaQ(st, a) with probability 1− εt

Therefore, the probability of exploration in period t is determined as

εt = ε0(1− θ)t,

where ε0 ∈ [0, 1] is the initial exploration probability and θ ∈ [0, 1] is a decay

parameter that ensures convergence to a deterministic strategy. If we want the

exploration rate to, say, decrease to a value of 0.1% after 100,000 periods, the

parameter θ is calculated as follows:

θ = 1− 0.001
1

100,000 .

The resulting exploration probabilities of such an experiment are displayed in

Figure 2.1, which shows the convergence of the exploration probability to the

value of 0.1% after 100,000 periods.9

8 This approach is based on the textbook of Sutton and Barto (2018) and is also used by
Calvano et al. (2020) and Klein (2021).

9 There are similar approaches to model the exploration probability. For example, Calvano
et al. (2020) determine the exploration probability by εt = e−βt with β > 0. Using this
approach, exploration decreases faster with greater β.
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Figure 2.1: Convergence of the Exploration Rate

2.3.3 Limitations of Reinforcement Learning

Many constrained optimization problems that are well known in economics can be

expressed within the framework of reinforcement learning, and several economic

studies have provided simulations utilizing reinforcement learning algorithms to

solve such problems. One example is the use of reinforcement learning and its

speci�cations for optimization and control of modern power and energy systems.10

However, in particular, the widely-used Q-learning has some shortcomings that

we address in this section.

One feature of Q-learning is that the size of the Q-matrix is determined by

the number of possible actions and the number of possible states, i.e., |A| × |S|,
wherein |A| = k and |S| = kn, and n denotes the number of agents. If the Q-

learning algorithm is transferred to a more realistic environment, especially one

with a higher number of agents, this leads to a vast increase in the size of the

Q-matrix. For an example, let us consider the study by Calvano et al. (2020),

where the Q-matrix for n = 2 agents and a restricted action set with k = 15

possible actions has 3, 375 entries. If the number of agents is increased to n = 3

or n = 4, the number of entries in the Q-matrix increases to around 50, 000 or

750, 000, respectively. In an oligopolistic setting with action sets that are not

restricted11, this implies huge storage capacities and signi�cant processing time,

which leads us to our next point: the time factor.

10Cao et al. (2020) provide a detailed application overview of single-agent as well as multiple-
agent reinforcement learning algorithms in power and energy systems.

11 In the study of Calvano et al. (2020), the number of actions in compared scenarios is restricted
to 15, 50 and 100 possible actions. Klein (2021) compares scenarios with 6, 12, and 24 possible
actions that can be chosen by the algorithm.
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Depending on the dimensions of the Q-matrix, learning can represent a large

or prohibitive investment of time, even if the price-setting intervals are quite

short. For example, if prices can be changed every 5�10 minutes12, the quite

simple algorithm employed by Calvano et al. (2019) would take roughly half

a year to realize that collusion may be pro�table, as their simulation results

indicated that the learning agents converge to collusive prices after approximately

70,000 iterations. In 2020, the authors conducted another study, in which the

required number of iterations to ensure convergence was even higher at 500,000,

and therefore would require an even longer time to learn a pro�t-maximizing

collusive strategy (Calvano et al., 2020). During this time span, conditions such

as the market environment might change, rendering obsolete the knowledge that

the algorithm has acquired up to that point. In this case, even previously learned

Q-values may have to be re-learned, which limits the application possibilities of

Q-learning.

However, the speed of the algorithm's learning process can be controlled by

the choice of certain hyperparameters, such as the learning rate (or step-size

parameter) α, which determines how quickly old information is replaced by new

information, and the decay parameter θ, which determines the speed at which the

exploration probability ε converges to zero. In terms of the learning rate, high

values of α indicate extensive experimentation, as the algorithm very quickly

forgets the action values it has learned in the past. Thus, values of α close to 1

may disrupt the learning process. In the experimental studies of Calvano et al.

(2020) and Klein (2021), the authors used learning rates that were close to zero

in order to ensure that the learning process was persistent. Additionally, the

learning process is a�ected by the probability of exploration ε. The smaller ε,

the smaller the chance that the algorithm randomly selects any price to learn the

respective Q-value. If ε = 0, the algorithm will no longer explore but instead will

exploit what it has learned so far, meaning that in any state the action leading

to the highest Q-value in the given state will be chosen. As mentioned above,

the speed of the probability of exploration ε converging to zero is determined

by the decay parameter θ. Figure 2.1 depicts the convergence of the exploration

probability for an example of 100,000 periods. Note that the value of the decay

parameter θ is set in a way that convergence to a deterministic strategy is achieved

(or even forced) as the exploration probability decreases to a value of 0.1% after

100,000 periods. Consequently, there is always a trade-o� between forcing the

algorithm to converge to a deterministic strategy and ensuring that it is provided

12Amazon changes the prices of its own products up to 8 times per hour, see https://www.se
llerlogic.com/en/blog/repricing-on-amazon/.

https://www.sellerlogic.com/en/blog/repricing-on-amazon/
https://www.sellerlogic.com/en/blog/repricing-on-amazon/
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with su�cient time to learn the optimal strategy, which has to be considered

when choosing the respective hyperparameter values.

A further challenge of reinforcement learning algorithms is that in multi-agent

settings, the choice of an action of one agent a�ects the reward signals of the

other agents, which in turn a�ects the agent's own learning process and may

result in already-learned Q-values no longer being valid. This type of problem

is known as a �moving target� problem, implying a non-stationary environment.

Contrary to the context of single-agent reinforcement learning algorithms, where

convergence is guaranteed, no proof has been provided as yet that convergence to

either a collusive or competitive equilibrium will occur in such a non-stationary,

multi-agent setting. For this reason, Calvano et al. (2020) made use of the above-

mentioned hyperparameter settings and applied heuristics to solve the problem,

assuming convergence when the optimal strategy has not changed for 100,000

consecutive periods.

Returning to the time factor, Calvano et al. (2020) argued that the time

needed to converge to a deterministic strategy is unproblematic if algorithms can

be trained o�ine before being employed in the market. However, o�ine training

does not seem to be representative of the real world since it might be very di�cult

to replicate realistic market conditions of online marketplaces in an o�ine setting.

Strategies learned in the simulated environment may be unsuitable, making o�ine

training in simple, stylized simulated market environments insu�cient for making

satisfactory decisions in real-world markets. This problem will be discussed in

more detail in the following section.

2.4 Reinforcement Learning in Economic Appli-

cations

As described in Section 2.2, several studies have demonstrated that learning al-

gorithms are able to learn collusive behavior and set prices that are signi�cantly

higher than the competitive prices in a standard Bertrand model. In these stud-

ies, many assumptions about market conditions are unrealistically restrictive. To

investigate whether learning algorithms are able to learn collusive behavior in a

more realistic setting, it seems sensible to �rst take a look at the assumptions

made within the frameworks of the simulation models available:

• Firms produce one homogeneous good;

• �rms charge a uniform price;
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• �rms compete exclusively on prices;

• the price a �rm charges is determined only by its costs, the prices set by

the competitors and the own past price;

• �rms use the same (or even an identical) type of algorithm, and the algo-

rithms are trained in the same scenario (sandbox);

• the environment is static, or only demand �uctuates, and the algorithms

used are not changed externally over time.

In the following, the central explicit and implicit assumptions made in the simu-

lation models are discussed in more detail and compared with the conditions that

exist in reality.

An essential assumption made in the model by Klein (2021) as well as in the

contribution by Calvano et al. (2020) concerns the number of goods o�ered by the

�rms. In both models it is assumed that each �rm o�ers exactly one product.

However, this is rather restrictive, in particular in consideration of �rms such as

online retailers, which are likely to employ price-setting algorithms. These �rms

generally o�er several products that could be substitutes or complements, and

algorithms have to learn which relationship between the products holds and have

to take that into account when setting prices. For example, if the price of game

consoles is changed, this usually has an impact on demand for video games.

Firms also di�er in the range of products they o�er, which a�ects pricing as well.

This can be illustrated by the following example of a duopoly: Firm 1 o�ers two

complementary products, a and b, while �rm 2 o�ers only product a. Firm 1 will

charge a di�erent price for product a than �rm 2, as it takes into account the

negative e�ect of a high price for product a on the demand for the complementary

product b. Thus, it will charge a lower price for product a than �rm 2, in order to

stimulate demand for product b. Consequently, �rm 2 arrives at a di�erent pro�t-

maximizing price than �rm 1. In addition, when a decision is made to include a

new product or brand in the range, the substitution relationships between all the

products change, and these new relationships then have to be re-learned by the

algorithm. If this happens online, it generally takes some time, because in order to

observe and learn consumer reactions, demand must be given time to respond to

the changed prices. This sets an upper limit to the speed at which the algorithm

can change prices. In online learning, assumptions about the new substitution

and complementarity relationships need to be integrated into the market model

used to train the algorithm. Similar pricing issues occur when some �rms are

able to o�er personalized products, but others cannot (simple examples include

personalized fountain pens or laptops).
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Next, we examine the extent to which the assumption that �rms set a uni-

form price for their product is a reasonable one. The discussion on price-setting

algorithms relates not only to the question of possible collusive behavior but also

to the question whether, given the information acquired about their customers,

�rms will price discriminate and set personalized prices. This has already been

observed in the United States, where companies used information about the ZIP

code of their customers' residential address13 or their operating system14 to charge

them di�erent prices. Additionally, it has been demonstrated in experimental

studies by, e.g., Shiller (2013), Ban and Keskin (2020), and Dubé and Misra

(2017), that �ner-grained price discrimination is possible with the use of machine

learning.

A key point that is often raised in discussions about algorithmic pricing is that

the large amount of customer data that is available to online �rms makes it pos-

sible to divide them into di�erent customer groups that di�er in their willingness

to pay. The �rms would then have an incentive to demand di�erent prices from

di�erent groups of customers for the same product, according to their respective

willingness to pay (Acquisti and Varian, 2005; Reinartz, 2002; Wertenbroch and

Skiera, 2002). In extreme cases, the classi�cation of customer groups would be so

�ne that this type of price discrimination would lead to personalized pricing. If

this were the case, a �rm could skim o� its customers' entire willingness to pay by

charging personalized prices. On the one hand, this would lead to some tension

between price discrimination and collusive pricing: if a �rm is able to siphon o�

its customers' entire willingness to pay through personalized prices, why should

it still have an interest in demanding a uniform collusive price? On the other

hand, one could argue that �rms could also collude on personalized prices. How-

ever, this could prove di�cult for several reasons. For example, �rms may have

collected di�erent data because the purchasing behaviors of their customers in

the past were not the same; thus, the classi�cation into di�erent customer groups

varies between �rms � e.g., one �rm could use a �ner classi�cation, and another a

coarser one, so that one �rm price discriminates while another �rm charges a unit

price because of a homogeneous customer group. Moreover, some �rms may not

price discriminate at all, because they do not want to be considered as unfair by

their customers. In addition, personalized prices could be hard to detect by other

�rms, giving rise to asymmetric information that makes collusion more di�cult.

Other forms of nonlinear pricing that make collusion more di�cult include

13Websites Vary Prices, Deals Based on Users' Information, in: Wall Street Journal, December
24, 2012.

14On Orbitz, Mac Users Steered to Pricier Hotels, in: Wall Street Journal, August 23, 2012.
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various forms of quantity or loyalty rebates. Here, the algorithm must not only

calculate the corresponding prices but also the respective sales quantities for

which the corresponding discount levels apply.15 A further complication is posed

by special promotions that are only valid for a short time span, such as Black

Friday or Cyber Monday. The time span is generally too short for the algorithm

to learn collusive behavior. In addition, competitors' actions on these days may

be misinterpreted by the algorithm as a deviation from collusive behavior, because

those actions do not represent a reaction to the �rm's pricing decision but are

instead determined by the external factor of these special events. Consequently,

the occurrence of irregular special promotions and discounts represent a non-

stationary environment, making it necessary to re-evaluate or re-learn certain

Q-values.

To sum up, if �rms do not charge a uniform price, then it is not immediately

clear which of the di�erent prices their own algorithm should be conditioned on.

In the case of personalized prices, information would be needed not only about

the prices, but also about the respective customers to whom these prices were

charged.

In the simulation models, but also implicitly in many other contributions

to the topic of algorithmic collusion, it is assumed that �rms compete ex-

clusively on prices. Stated otherwise, other competitive parameters, such as

product quality, service, innovation, etc., are not considered. It is questionable

whether this is a realistic assumption for markets where price-setting algorithms

are used, or whether parameters other than price are also essential to compe-

tition. Particularly in online trading, a number of competitive parameters are

present that are likely to hold similar signi�cance for customers as the product's

price, including the length of delivery times, the shipping costs, how easy it is to

return products, the security of the transaction, the existence and quality of rec-

ommender and reputation systems, and the overall service the �rm o�ers to the

customer (Fagerstrøm and Ghinea, 2011; Jun et al., 2004; Zhao et al., 2015). In

this context, the question Stigler (1968) posed at the end of the 1960s about the

signi�cance of price and non-price competition is relevant: �Will any monopoly

pro�t achieved by suppressing price competition be eliminated by non-price com-

petition?� Even if algorithms actually arrive at a collusive price, the �rms would

continue to compete on other parameters, and this non-price competition could

be so intense that no noticeable e�ects would result from mere price collusion.

Stigler (1968) pointed out that the result depends on the marginal costs of the re-

spective competitive parameters. As this question can ultimately only be decided

15 For various forms of online personalized sales promotion, see Changchien et al. (2004).
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empirically, it is necessary to examine these costs in the digital economy, in par-

ticular in online trading. Only then can a statement be made as to whether the

e�ects of a restriction of price competition can be compensated by competition

on other parameters.

The formulation of the algorithm in the simulation models also implies that

a �rm's price depends only on its costs, the prices of competitors, and

possibly the �rm's own price in the previous period.16 This is a rather

restrictive assumption, because it does not consider that several other factors are

also essential to pricing. One of these factors is a �rm's inventory.17 It is not only

the size of the stock that is decisive, but also the age of the products � especially

if the products are perishable goods, such as food, airline seats, or hotel rooms.18

For example, if the stock of a perishable good is still quite high shortly before its

expiry date, there is a strong incentive to lower the price of that product, so that

the stock is reduced as quickly as possible before the product loses its value.19

This indicates that not only are the amount of stock and the age of the products

important, but also the speed with which the stock changes. If the inventory

decreases too quickly, there is an incentive to raise prices so as to not run out of

stock, to prevent supply problems and to keep customers who do not receive the

product from switching to competitors. On the other hand, if inventory increases

and there is a risk of exhausting storage capacity, there is a signi�cant incentive

to reduce prices. Therefore, the algorithm would have to take both pricing and

inventory management into account simultaneously.20 Since �rms are likely to

di�er in their storage capacity, this results in a further asymmetry that makes

collusion more di�cult (Compte et al., 2002).

Of course, prices always depend on costs as well, but for retailers the costs

are mainly determined by the purchase prices of the goods. These prices can

develop very di�erently for di�erent retailers, depending on which manufacturer

they purchase their products from and how much they buy. Consequently, the

assumption that �rms are symmetric with respect to their cost is not very realistic.

Similar to the afore-mentioned asymmetric capacity constraints, cost asymmetries

also hinder collusion (Vasconcelos, 2005).

16The conditioning of the price on the own past price results from the design of the employed
reinforcement learning algorithm.

17 For a detailed overview of price optimization models that consider inventory replenishment,
see Chen and Simchi-Levi (2012).

18Airline seats and hotel rooms are considered perishable because they cannot be �stored� for
sale at a future date.

19 Similar problems arise with the demand of seasonal items, which is prone to �uctuations
within a year, but also within a week or even a day. Examples are fashion or gasoline, the
latter of which is mostly demanded by commuters in the morning on their way to work.

20 Initial approaches to this have been made, such as the work of Schlosser et al. (2018).
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In terms of price-setting, the extent to which a �rm should take its competi-

tors' prices into account must be considered, in particular when �rms produce

di�erentiated goods: If competitors produce a close substitute, the algorithm

should take into account that the price of that product is signi�cantly more im-

portant than the price charged by a competitor with a distant substitute. In the

former case, a price reduction by the competitor would lead to a signi�cant de-

crease in the �rm's demand, while a price change by a competitor with a distant

substitute is unlikely to have a signi�cant impact on the �rm's demand, which

therefore would not lead to a signi�cant price change. In general, �rms try to hin-

der substitutability by competitors' products through product di�erentiation.21

This includes innovations, o�ering the product with di�erent qualities, provid-

ing more (personalized) services, investing in advertising campaigns, and more.

As a consequence, products in real markets are often more complex and can be

personalized by giving the customer the opportunity to set certain con�gurable

parameters (Dewan et al., 2000).

To sum up, in contrast to the assumptions made in the simulation models

of price-setting algorithms, �rms in markets with di�erentiated products will

decide both on a pricing strategy and on the con�guration of their goods and

services, while consumers will base their purchasing decision on more complex

utility functions that also take into account the product's attributes.22 In the

context of di�erentiated products, �rms may also di�er in their customer bases:

one �rm's customers may have quite distinct preferences for the speci�c prod-

uct(s) o�ered, so that the price elasticity of demand for this group is relatively

low, while other �rms have customers who are more willing to buy a substitute,

i.e., are characterized by a comparatively high price elasticity of demand. In such

a case, a �rm that faces price-inelastic demand function tends to charge a higher

price than a �rm facing price-elastic demand. Furthermore, asymmetries in �rms'

cost structure and storage capacity make collusion more di�cult.

In the simulation studies, it is generally assumed that all �rms use ex-

actly the same algorithm or at least the same type of algorithm, e.g.,

Q-learning, but with di�erent hyperparameter values such as learning rates and

exploration probabilities. Besides Q-learning, there are many machine learning

methods that can be used, such as Optimal Adaptive Learning or Deep Neural

Networks, and it is not clear a priori why �rms would independently choose the

same algorithm or the same type of algorithm when they decide about which

21 For a comprehensive overview of product di�erentiation see, e.g., Church and Ware (2000).
22 For a detailed discussion of this issue we refer to Kephart et al. (2000), who examined how
agents might deal with complex multi-attribute goods and services by investigating a variety
of models that emphasize di�erent aspects of product di�erentiation.
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algorithm to employ for pricing. It is also not clear whether all �rms use learn-

ing algorithms at all, or if they instead adopt comparatively simple adaptive

rules, such as undercut the market price by x% as long as it is above your cost.

In the latter case, collusion would hardly result. Therefore, the question arises

whether di�erent algorithms, employed in the same simulated market environ-

ment, converge to the same strategy and, if not, what would happen if these

algorithms, having learned di�erent strategies, then interact in a market. The

simulation models implicitly assume that �rms have somehow coordinated about

the algorithm or the type of algorithm they use for price-setting. Fundamen-

tally, a �rm's choice of a certain algorithm is itself a strategic decision, because

its pro�t depends on their competitors' strategies, be it employing algorithms

or utilizing pricing rules. The decision as to which algorithm or method to use

for pricing would have to be modeled as a strategic game, requiring examination

as to whether coordination on the use of the same algorithm represents a Nash

equilibrium in this game. Of course, it would have to be assumed that each �rm

knows which algorithms are available for the �rm and its competitors, and which

payo�s are associated with each strategy combination. It is not clear whether in

such a game any coordination on a certain algorithm or learning procedure takes

place, or whether an equilibrium exists at all in this game, i.e., a combination of

algorithms or price-setting procedures that are mutual best replies.23

A similar problem is related to the simulated market environment that �rms

use for the o�ine training of their algorithms.24 Even if �rms employ the same

algorithm, it is not clear whether each �rm uses the same or at least a very similar

simulated environment, nor the extent to which the simulated environment corre-

sponds to the actual conditions. Thus, �rms' perceptions of the market situation,

the number and importance of their competitors, the way in which competitors

react to their own price-setting, the relevance of other competitive parameters,

such as service or quality, and further factors that are taken into account and

others that are deemed to be of no importance � all this can change. Especially

in markets with di�erentiated products, these perceptions may di�er between

�rms, and it is likely that asymmetric information exists about the simulated

environments other �rms use to train their algorithms. Due to this asymmetric

information, collusion is less likely to occur. It has been pointed out in the lit-

erature that without coordination between �rms about the algorithm to use, it

should be assumed that asymmetric information about competitive strategies will

prevail: �Regarding a self-regulatory option, note that at any point in time each

23This topic will be discussed further in Section 2.5.
24 See also Section 2.3.3.
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�rm may only know the algorithms it employs to carry out its market strategies,

but not necessarily the algorithms employed by other �rms operating in the mar-

ket. This means that each �rm will not be able to simulate with a high enough

degree of accuracy how its own algorithms will behave period after period as they

interact with other algorithms� (Gata, 2021, p. 87). Thus, if �rms have di�erent

perceptions of the market situation and train their algorithms in di�erent simu-

lated environments, it is not clear whether even identical algorithms will converge

to the same strategy and what the market outcome would be in such a case.

Alternatively, the assumption that all �rms use the same algorithm or very

similar algorithms and train them in an identical simulated market environment

can be seen as raising the coordination issue to a higher level: �rms no longer

discuss prices, but they coordinate on the type of learning algorithm they will

use, and in which simulated market environment they will train this algorithm.

This would essentially be a rather complex way for people to use algorithms as

a facilitative device to deliberately bring about collusive behavior, similar to the

Topkins case.25 In principle, however, this would not raise any novel concerns

related to competition law � only the problem of proof could prove to be di�cult.

In the simulation models, it is further assumed that both the algorithms

and the market environment remain essentially unchanged. This as-

sumption entails that collusive behavior is more likely to be observed in these

simulations, since theory shows that tacit collusion is more di�cult if the en-

vironment changes due to, for example, an increase in the number of market

participants or the introduction of a new, innovative product (Frass and Greer,

1977; Ivaldi et al., 2003). In this paragraph, we discuss which changes of the

algorithm and the market environment are likely to be observed in reality and

explain what these changes entail in the algorithmic setting.

If the algorithms lead to a collusive price, it is likely that this would have

an e�ect on the colluding �rms as well as on potential competitors, leading to

�rms potentially reprogramming the algorithm, whereby it is no longer static.

This follows from the fact that, as the collusive �rms would now charge higher

prices, sales volumes would decrease, inventory would increase, and some of the

production capacity would go unused. Similar to the case of traditional cartels,

it is likely that the �rm, especially in cases of perishable or seasonal goods, would

charge lower prices to clear the inventory or to exploit production capacity. To

do so, the �rm would have to override their algorithm, thereby undermining and

25 In this case, the U.S. Department of Justice prosecuted two retailers for aligning their pricing
algorithms to increase the price of posters online. Although this practice involved pricing
algorithms, the case is similar to explicit collusion, as both �rms agreed on a price-�xing
strategy via information sharing.
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eliminating the collusion brought about by the algorithms.26 Additionally, if a

�rm's management noticed that the pricing algorithms had reached a collusive

equilibrium at higher prices, it might be incentivized to override the price set by

the algorithm and charge a lower one to avoid antitrust sanctions.

Moreover, it can be expected that the introduction of new and improved

algorithms would lead to the replacement of the previous ones, which is also in

contrast to the assumption in the simulation models of the static character of

algorithms. Given the assumption that �rms modify the algorithms they use or

introduce new ones at di�erent points in time, it is not clear what e�ect this has

on pricing, but it is likely that this will not facilitate collusive behavior.

We are also critical of the assumption that market conditions do not change. If

algorithms have led to a collusive equilibrium with correspondingly higher prices

and pro�ts, potential competitors are likely to observe these higher pro�ts and

enter the market, at least if barriers to entry are low. Technically speaking,

this would represent a change in the environment. Moreover, changes in the

number of �rms also lead to changes in the dimensions of the Q-matrix, which is

especially challenging in the case of market entry as this dramatically increases

the dimensions of the Q-matrix, as pointed out in Section 2.3.3. In addition to

learning new Q-values, old Q-values may need to be re-learned, which is quite

time-intensive.

Although the model of Calvano et al. (2020) considers the possibility of market

entry and exit, both are considered as stochastic and not as systematic, which

one would expect in markets with above average pro�ts and low entry barriers

wherein the number of �rms would continuously increase. However, this would

cause a reaction from the incumbents to protect or extend their market share

against the entrants (Harrington, 1989; Ordover and Saloner, 1989). For example,

�rms might engage in predatory pricing strategies, expand output, introduce

new products, or redesign existing ones, which would again entail changes in the

market environment.

Further changes in the environment could be caused by governmental regula-

tions: for example, �rms' action spaces could be restricted by regulation such as

binding upper or lower price limits. A real-world example of lower price limits

can be observed for some agricultural products. Another example is a regulatory

26One real-life example of halting and overriding an algorithm is that of Uber, who's pricing
algorithm caused price surges of more than 200% in some districts of London since demand
for a taxi drive increased as a response to reports of a terrorist attack at London Bridge on
June 3, 2017. The company had to manually stop this pricing mechanism to avoid public
outrage(Bertini and Koenigsberg, 2021).
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measure implemented by the Austrian government in 2011, under which gas sta-

tions are only allowed to increase their prices once a day, at 12 a.m., although a

price reduction is allowed at any time. In the simplest case, such regulatory mea-

sures only lead to a limitation of the action set and the set of states. However,

in the presence of price regulations, the applicability of the pricing algorithms

employed in the simulation studies are limited since exploration is di�cult or not

useful.

2.5 Price-Setting Behavior in More Realistic En-

vironments

Part of the above arguments will be substantiated through our simulations. While

Calvano et al. (2020) and Klein (2021) have shown that simple Q-learning algo-

rithms are capable of generating supra-competitive prices, we argue that this re-

sult holds only in very simple market environments. Consequently, it is uncertain

whether these results can be transferred to a more realistic setting. To examine

whether the results of the simulation studies still bear up under more realistic

conditions, we slightly extend the model of Calvano et al. (2020) by considering

a duopoly where the two �rms o�er di�erentiated products. We then compare

scenarios wherein di�erent types of pricing rules and algorithms are used by the

�rms. The two reinforcement learning algorithms we consider are Q-learning and

an MAB algorithm which are explained in further detail in Sections 2.3.1 and

2.3.2. Since not every �rm is able to put the same e�ort into developing a com-

plex pricing algorithm, and since price-setting on popular platforms like Amazon

is usually done using simple if-then functions, we also introduce �rms that set

their prices based on a meeting competition clause (MCC) or a simple price

heuristic (H). An example of an MCC is a price guarantee, i.e. consumers can

claim a price discount up to the di�erence to the lowest price in the market.27 An

example of a price heuristic employed by some suppliers is the automatic pricing

option at Amazon. The Amazon Seller Central Europe website states that �[f]or

example, you can create a rule that stays 0,10 EUR below the Buy Box price�.28

The MCC implemented in our experiments is designed to always set a price that

is closest to the perfectly collusive price and automatically match any lower price

set by a competitor. The heuristic is implemented such that it always undercuts

27 For a survey on di�erent types of price relationship agreements see O�ce of Fair Trading
(2012).

28 https://sellercentral.amazon.de/help/hub/reference/external/201995750?ref=ef

ph_201995750_cont_202166010&locale=en-DE.

https://sellercentral.amazon.de/help/hub/reference/external/201995750?ref=efph_201995750_cont_202166010&locale=en-DE
https://sellercentral.amazon.de/help/hub/reference/external/201995750?ref=efph_201995750_cont_202166010&locale=en-DE
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the competitor's price by the smallest monetary unit provided that the price is

not below marginal cost. The heuristic matches the competitor's price if it is the

lowest price in the action set.

To illustrate how Q-learning algorithms compare to multi-armed bandits and

simple pricing rules, we conduct experiments in which two agents act in a market.

Demand for �rm i = 1, 2 is characterized by the demand function

Di(pi, pj) = 2− pi +
1

2
pj,

where j = 1, 2 and j 6= i. Firms produce heterogeneous goods with marginal

costs of c = 1 and compete in prices. The prices and pro�ts under oligopolistic

competition are pNi = 2.0 and πNi = 1.0. Under perfect collusion, �rms charge a

price pCi = 2.5 and earn a pro�t of πCi = 1.125.

It is assumed in the simulations that the action sets have a lower bound of

10 percent below the price in a non-cooperative Nash equilibrium and an upper

bound of 10 percent above the price under perfect collusion. This interval is then

equally divided into k = 6 prices. Thus, the action sets of both agents are given

as Ai = {1.8, 1.99, 2.18, 2.37, 2.56, 2.75}, describing the prices the �rms may set.

Exploration follows an ε-greedy strategy wherein the exploration probability is

1 in the �rst period (i.e., ε0 = 1) and decreases to a value of 0.1% after 700,000

periods. The learning rate is α = 0.1, and the discount factor is δ = 0.95.

Each experiment consists of ten runs, each lasting for a maximum of 2,000,000

periods. A run is terminated earlier if both agents choose the same action or

repeat the same cycle of actions for 10,000 consecutive periods.

In Table 2.1, simulation results are reported for the averages over the �nal

1,000 periods and of all runs.29 The �rst column indicates the experimental

setting, or what type of agents interact in the environment. For example, Q vs Q

indicates that two independent Q-learning agents are used. In all settings, �rm

1 is the �rst type of agent and �rm 2 is the second one. In the second scenario,

for example, �rm 1 employs a Q-learning agent and �rm 2 employs an MAB.

Comparing simulation results of the di�erent experimental settings, it becomes

clear that the resulting prices heavily depend on the type of algorithm or pricing

rule that is applied by the �rms, since observed prices range from below the

competitive to above the collusive price level. Prices above the collusive level

result from the choice of the action set. Due to the coarse discretization, it is not

29 In these periods, the learning process is complete and the agents repeatedly choose the same
exploitative action and explore with a probability of far below 0.1%. Prices and pro�ts
in italicized settings were not determined using simulations, but rather based on economic
reasoning.
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Experimental Setting p1 p2 π1 π2

Q vs Q 2.180 2.180 1.074 1.074
Q vs MAB 2.076 2.161 1.073 1.015
MAB vs MAB 1.990 1.990 0.995 0.995
Q vs Heuristic 2.370 2.180 0.986 1.186
Q vs MCC 2.560 2.560 1.123 1.123
MAB vs Heuristic 2.370 2.180 0.986 1.186
MAB vs MCC 2.560 2.560 1.123 1.123
MCC vs MCC 2.560 2.560 1.123 1.123
MCC vs Heuristic 1.800 1.800 0.880 0.880
Heuristic vs Heuristic 1.800 1.800 0.880 0.880

Table 2.1: Resulting Prices and Pro�ts

possible to set the exact collusive price (pCi = 2.5). Consequently, the algorithm

chooses the price from the action set that is closest to the collusive price. Prices

below the competitive level (pNi = 2.0) result from the design of the price heuristic,

which states that the competitor's price is always undercut provided it is above

marginal cost. Moreover, prices are bounded by the lower bound of the action

set.

The �rst scenario con�rms the results from other experiments that two in-

dependent Q-learning algorithms can learn to set collusive prices; however, the

agents do not achieve a perfectly collusive outcome. In the second scenario, in

which �rm 2 employs an MAB, prices are lower and, as a result, the the �rms'

pro�ts decrease compared to the �rst scenario. If both �rms employ MAB algo-

rithms, an even lower price and thus lower pro�ts follow. As a result, if all �rms

employ reinforcement learning algorithms, choosing the Q-learning algorithm is a

dominant strategy for both �rms. The subsequent four scenarios include one �rm

employing a learning algorithm and the other �rm using a simple pricing rule. In

the fourth scenario, a Q-learning agent (�rm 1) interacts with an opponent using

the price heuristic (�rm 2). It can be seen that the pro�t of �rm 1 drops even

lower, while �rm 2 is able to achieve a pro�t that is larger than its share under

perfect collusion. In this case, the agents set di�erent supra-competitive prices,

and �rm 2 bene�ts from the resulting price level as well as from the fact that the

price of the Q-learning agent is even higher, which provides �rm 2 with a larger

share of demand. In the �fth scenario, if �rm 2 utilizes an MCC instead, both

agents set a price that is slightly above the collusive level, and thus earn almost

the same pro�t as under perfect collusion. The following two scenarios replicate

the two proceeding scenarios but substitute the Q-learning agent for an MAB.

The last three scenarios do not involve learning algorithms, so simulations are
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not necessary since prices and pro�ts can be determined by economic reasoning.

If both �rms employ an MCC, perfectly collusive behavior occurs. This is in

line with the existing literature on the collusive e�cacy of competition clauses

(Doyle, 1988; Logan and Lutter, 1989).30 If one �rm uses an MCC and the other

implements the heuristic, the price of the �rm using the MCC is undercut until

marginal cost is met. Since action sets are bounded, �rms set the lowest price in

their action set. The same applies in the case where both �rms use the heuristic.

As pro�ts depend on the decision of whether learning algorithms or simple

pricing rules are employed by the �rm and its competitor, we can consider a �rm's

choice of a certain pricing algorithm or pricing rule to be a strategic decision in

itself. Modeling this decision as a strategic game would entail that each �rm

knows which strategies are available for the �rm and its competitor and which

payo�s are associated with each strategy combination.31

The payo�s for this game are given by the results from the pricing algorithm

experiments as averages over the last 1,000 periods over all runs and are shown

in Table 2.2.

Q MAB MCC H
Q 1.074, 1.074 1.073, 1.015 1.123, 1.123 0.986, 1.186

MAB 1.015, 1.073 0.995, 0.995 1.123, 1.123 0.986, 1.186
MCC 1.123, 1.123 1.123, 1.123 1.123, 1.123 0.880, 0.880

H 1.186, 0.986 1.186, 0.986 0.880, 0.880 0.880, 0.880

Table 2.2: Payo� Matrix of the Strategic Game

The Nash equilibria in pure strategies are {(MCC,MCC), (Q,H), (H,Q),

(MAB,H), (H,MAB)}. Of these equilibria, the equilibrium (MCC,MCC) gives

the highest sum of payo�s. Moreover, it is the only symmetric equilibrium of the

symmetric game. Thus, the equilibrium (MCC,MCC) could represent a so-called

�focal point� (Schelling, 1960).

Moreover, our simulations demonstrate that when both �rms use a learning

algorithm, the outcome is not an equilibrium when alternative price setting rules

are available. This holds true for the Q-learning strategy as well as for the even

easier to implement MAB. Thus, the situation described by Calvano et al. (2020)

and Klein (2021), wherein �rms employ such an algorithm which then learns

to set supra-competitive prices, represents a situation wherein both �rms would

30 In the theoretical papers of Doyle (1988) and Logan and Lutter (1989), it is claimed that all
retailers have to adopt competition clauses in order to enforce collusion. In a more recent
study, Trost (2021) questions this assumption and argues that it is in general not required
that all retailers have to adopt competition clauses in order to enforce collusion.

31 For games with imperfect information, �nding a (Bayesian) Nash equilibrium is far more
challenging.
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have an incentive to deviate from their strategy and employ a simple pricing rule

instead.

2.6 Conclusion

To summarize our �ndings, we can conclude that the assumptions made in sim-

ulation studies, which have demonstrated that learning algorithms are able to

autonomously collude, are not applicable to economic reality. We showed this by

�rst presenting several technical challenges that arise when algorithms are applied

in the real world. For example, a signi�cant increase in the dimensions of the

Q-matrix comes with an increase in the number of agents, actions, or states, as

well as a large time span needed to complete the learning process or deal with

non-stationary environments.

In a second step, we took a closer look at the assumptions made in simulation

studies where collusive behavior of algorithms was detected and tried to transfer

these to economic reality. In particular, we considered the assumptions that

�rms o�er only one homogeneous product at a time; that they charge a uniform

price and thereby base their decisions only on their own costs, the price of the

competitor(s), and their own price in the previous period; that they compete

exclusively in prices; that they make use of the same or even identical type of

algorithm, which are trained in the same scenario; that the environment is static

and that the algorithms used are not changed externally over time.

We then further investigated the assumption that �rms make use of the same

type of algorithm and ran simulations where �rms using a learning algorithm

compete with �rms either employing a learning algorithm as well or a simple

pricing rule to set prices. Our simulations showed that when both �rms use a

learning algorithm, the outcome is not an equilibrium when alternative price set-

ting rules are available. This result suggests that �rms are more likely to use a

simple pricing rule like price guarantees which are signi�cantly cheaper to imple-

ment and also promise a higher payo�. Therefore, fears that learning algorithms

may result in more opportunities for collusion appear unfounded, as even com-

paratively simple pricing rules seem to be more e�ective in producing cartel-like

behavior.32 Consequently, which antitrust regulations should be adopted in these

markets depends on which pricing rules are available to the �rms. At present,

32That price matching guarantees lead to higher prices in online markets has been shown by
Zhuo (2017).
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therefore, there seems to be no need for speci�c competition law regulations re-

garding algorithmic pricing. A closer examination of the anticompetitive e�ects

of simple pricing rules would be more appropriate instead.

Although it is no longer assumed that �rms use the same type of algorithm, the

setting is still very stylized and it is debatable whether these supra-competitive

pro�ts and prices can persist in economic reality, where far more pricing op-

tions are available. For example, it can be observed that large online platforms,

such as Amazon, use their own pricing software. Furthermore, a market for rev-

enue management, repricing and price optimization has quickly emerged in recent

years. The spectrum of solutions on o�er ranges from simple adaptive approaches

through modular systems in which the �rm can determine the parameters, such

as competitors' prices, the purchase price, the day of the week, the time of day,

the stock level, the sales �gures, and the weights with which these parameters

are included in its own pricing, all the way to approaches from machine learning.

The objective of these algorithms is not only direct pro�t maximization but also

maximization of the chance of ending up in Amazon's Buy Box (which is more

likely if a low price is charged), of appearing on the �rst page of search results, of

increasing customer loyalty, or of tapping into a new market segment. Given the

algorithms o�ered, the chances are good that di�erent �rms use di�erent types

of algorithms. However, it is unclear what the outcome might be. A problem

could arise, however, if �rms in the same market would coordinate on using an

MCC or the algorithm of the same repricer, which could lead to a hub-and-spoke

like cartel. This would shift the coordination problem on a higher level: �rms do

not coordinate on prices but on using the same algorithm or pricing rule. Since

this behavior would be similar to explicit collusion this would not raise any novel

concerns related to competition law.

To sum up, due to the above-mentioned aspects, autonomous collusion by

learning algorithms does not currently seem to be a major competition concern.

Nevertheless, this does not mean that no other concerns related to algorithms

justify a close monitoring of what is going on. Structural market conditions are

changing with the increasing use of algorithms, since market transparency has

increased horizontally (between �rms) as well as vertically (between �rms and

consumers). Moreover, algorithms are a new and e�cient facilitative device that

may be used by humans to enable and stabilize (explicit) collusion, as happened

in the Topkins33 and Trod34 cases. In those cases, online �rms selling posters on

33Department of Justice, Case 3:15-cr-00201-WHO, 6 April 2015, https://www.justice.go
v/atr/case/us-v-david-topkins.

34Department of Justice, Case 3:15-cr-00419-WHO, 27 August 2015, https://www.justice.
gov/atr/case/us-v-daniel-william-aston-and-trod-limited.

https://www.justice.gov/atr/case/us-v-david-topkins
https://www.justice.gov/atr/case/us-v-david-topkins
https://www.justice.gov/atr/case/us-v-daniel-william-aston-and-trod-limited
https://www.justice.gov/atr/case/us-v-daniel-william-aston-and-trod-limited
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Amazon Marketplace agreed to use the same algorithm to �x the prices of their

products. Another example of using price-setting algorithms to coordinate prices

is the Eturas case, in which several travel agencies employed a booking system

to engage in collusive behavior.35 However, these cases were covered by existing

laws.

Another area in which algorithms could be used in an anticompetitive man-

ner is in vertical relations � speci�cally, enforcing resale price maintenance. This

practice was already observed and sanctioned by the European Commission in

2018, when electronics manufacturers in Japan, Taiwan, and the Netherlands re-

quested that online retailers who o�ered their products not sell them below a

certain price.36 The price-setting of the online retailers was tracked by sophis-

ticated monitoring algorithms, and retailers who did not follow the instructions

faced threats or sanctions, such as blocking of supplies. The commission em-

phasized that many retailers in online markets use pricing software that adapts

their retail prices to those of competitors. They argued that horizontal pricing

restrictions imposed by manufacturers therefore have a broader impact on overall

online pricing for the respective products, since the prices of competing retail-

ers are based on those of the restricted retailers. According to the European

Commission, these interdependencies have kept the products' price levels high.

Additionally, the widely published statement by Competition Commissioner

Vestager made it clear that �rms' use of algorithms is a high priority for competi-

tion authorities and that a �rm using automated systems �will be held responsible

for what it does�.37 It remains to be seen whether this will include tacit collusion

in the future. At the present, however, this can largely be ruled out.

35European Commission, Document 62014CJ0074, 21 January 2016, https://eur-lex.europ
a.eu/legal-content/de/TXT/?uri=CELEX:62014CJ0074.

36European Commission, Press release IP/18/4601, 24 July 2018, https://ec.europa.eu/c
ommission/presscorner/detail/en/IP_18_4601.

37 Speech by Commissioner Margrethe Vestager at the Bundeskartellamt 18th Conference on
Competition, Berlin, 16 March 2017.

https://eur-lex.europa.eu/legal-content/de/TXT/?uri=CELEX:62014CJ0074
https://eur-lex.europa.eu/legal-content/de/TXT/?uri=CELEX:62014CJ0074
https://ec.europa.eu/commission/presscorner/detail/en/IP_18_4601
https://ec.europa.eu/commission/presscorner/detail/en/IP_18_4601
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Chapter 3

Price Discrimination with

Inequity-Averse Consumers: A

Reinforcement Learning Approach

This chapter is the author's own work.



Abstract

With the advent of big data, unique opportunities arise for data collection and

analysis and thus for personalized pricing. This study combines approaches from

machine learning and behavioral economics to answer the question whether al-

gorithms are able to exploit consumers' systematic deviations from rational be-

havior. In particular, this paper discusses the ability of reinforcement learning �

a type of machine learning in which agents learn from interacting autonomously

with their environment � to price discriminate based on a simulation of a price-

setting algorithm. Thereby, personalized prices are set considering additional

information about consumer sensitivities to analyze market outcomes for con-

sumers who have a preference for fair, equitable outcomes. For this purpose, we

compare a situation that does not consider consumers' sense of fairness to one

in which we allow for inequity-averse consumers. We show that the algorithm

learns to charge di�erent, revenue-maximizing prices and simultaneously increase

fairness in terms of a more homogeneous distribution of prices. We conclude that

consumers' sense of fairness, which have prevented �rms from engaging in price

discrimination, can be incorporated into �rms' pricing decisions with the help of

learning algorithms, making di�erential pricing strategies more feasible.
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3.1 Introduction

Engaging in price discrimination and determining the revenue-maximizing price

of a product or service for a particular customer is challenging. It requires, among

others, knowledge of the customer's willingness to pay and estimation of demands.

With the advent of big data, unique opportunities arise for data collection and

analysis and thus for personalized pricing. Concerns have been raised, besides the

discussion about collusive behavior (Ezrachi and Stucke, 2015, 2016; Woodcock,

2017), that learning algorithms might engage in price discrimination (O�ce of

Fair Trading, 2013; Reinartz, 2002) as these algorithms are able to use informa-

tion about customers to segment them into ever-smaller groups based on certain

characteristics related to their willingness to pay. Reports about customers who

were charged di�erent prices for the same product or service have been published

in the Wall Street Journal, the Washington Post, and the German business news

magazine Wirtschaftswoche.1 Consumers tend to be highly sensitive to such at-

tempts as they have a strong sense of fairness (Kahneman et al., 1986), which

might explain why price discrimination is still relatively rare in economic reality

(Competition and Markets Authority, 2018; Executive O�ce of the President of

the United States, 2015; Odlyzko, 2009; O�ce of Fair Trading, 2013).

This begs the question of whether it is possible for price-setting algorithms to

learn to engage in price discrimination on the basis of fairness to avoid upsetting

customers but still maximize expected revenues by charging personalized prices.

Therefore, we will discuss not only the potential of algorithms to conduct price

discrimination but also the ability of self-learning pricing algorithms to consider

and possibly exploit customers' deviations from rational behavior. If algorithms

are able to consider customers' inequity aversion while setting di�erential prices,

price discrimination is assumed to be more likely to occur. This is also in line with

growing public policy concerns discussed, for example, by Bourreau and Streel

(2018), the United Kingdom's Competition and Markets Authority (2018), and

the Executive O�ce of the President of the United States (2015).

However, the e�ect of personalized pricing on consumer welfare is ambiguous.

The Competition and Markets Authority (2018) stated that, in many cases, per-

sonalized pricing may be bene�cial. Especially in markets with switching costs,

the ability to o�er targeted discounts to consumers might help potential entrants

to compete with incumbents and could lead to expanding overall output in those

1 On Orbitz, Mac Users Steered to Pricier Hotels, in: Wall Street Journal, August 23, 2012;
On the Web, Price Tags Blur, Washington Post, September 27, 2000; Der Preis ist heiÿ,
Wirtschaftswoche, March 02, 2017.
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markets. According to the Competition and Markets Authority, however, per-

sonalized pricing may be harmful to consumers in some situations, particularly

if there is a lack of competition in the market, if discrimination is particularly

complex or opaque to consumers, or if consumers lose trust in the market and, as

a consequence, withdraw their demand or refuse to continue to participate in it.

E�ective price discrimination relies on the identi�cation of di�erent customer

groups. For each group, certain assumptions about price sensitivities must be

made. For instance, groups could be de�ned by customers' locations, commu-

nication channels, click behavior, or time spent on a certain website. The price

sensitivities within each group should be taken into account by the algorithm

in order to maximize expected revenues. In the two simulated scenarios studied

here, we assume that customer groups can be identi�ed and allow for di�erential

pricing. An algorithm is simulated that sets personalized prices that, in a �rst

scenario, must learn to set the revenue-maximizing prices to customers who have

no fairness considerations. In a second scenario, we want to investigate whether

the algorithm is able to learn the interdependencies between prices of di�erent

customer groups since the algorithm is now dealing with inequity-averse con-

sumers who have a preference for fair outcomes. For simpli�cation, it is assumed

that fairness is maximized if everyone pays the same price. This equality-based

fairness approach is widely used in the relevant literature, for example, by Fehr

and Schmidt (1999) or Bolton and Ockenfels (2000). Under this assumption,

the learning process of the algorithm should provide homogeneous prices among

customer groups while simultaneously taking into account the price sensitivities

within each group in order to maximize the expected revenue. Compared to the

�rst scenario, an improvement in fairness can be observed in the situation wherein

inequity-averse consumers are considered, while the algorithm maintains the goal

of maximizing the �rm's revenue.

The paper is organized as follows. Section 3.2 provides a brief introduction

into the main concepts of price discrimination, fairness, and reinforcement learn-

ing. The methodology is then presented in Section 3.3, where the di�erent groups

of customers are introduced, and reinforcement learning is applied to the di�er-

ential pricing problem. The simulation results are presented and discussed in

Section 3.4. Robustness checks can be found in Section 3.5 followed by a conclu-

sion in Section 3.6.
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3.2 Price Discrimination and Fairness in Algorith-

mic Settings

In this section, the main economic classi�cations of price discrimination are re-

visited. Subsequently, real-world examples where some vendors have already en-

gaged in price discrimination are described. We also introduce several studies that

showed how arti�cial intelligence (AI) methods have contributed to facilitating

price discrimination. As fairness aspects are considered, a method for measuring

perceived fairness is presented, followed by a brief introduction to reinforcement

learning, which is used as an algorithmic setting in this study.

3.2.1 Price Discrimination in Theory

In general, a �rm engages in price discrimination when it charges di�erent prices

for two units of the same or similar products, wherein the price di�erence does

not re�ect any cost di�erence (Stigler, 1966). Classical economic literature distin-

guishes between three types of price discrimination (Pigou, 1920).2 First-degree

price discrimination occurs when the seller charges each customer the maximum

price that he or she is willing to pay. Even if �rms do not have su�cient informa-

tion to assess each consumer's reservation price, they can still conduct imperfect

price discrimination, known as third-degree price discrimination or group pricing.

In this practice, sellers segment their customers into broad categories accord-

ing to observable characteristics; these categories are charged di�erent prices.

Third-degree price discrimination is probably the most common form of price

discrimination. If �rms are able to use information technologies to collect and

process a large amount of data, they can improve their knowledge of consumers'

preferences. As a result, they might be able to re�ne the group segmentation,

coming close to the ideal situation in which each group comprises a single con-

sumer. Thus, �rst-degree price discrimination can be seen as an extreme form of

group pricing.

First- and third-degree price discrimination rely on the existence of observable

and veri�able indicators of consumers' willingness to pay. When it is not possible

to identify consumer groups with similar levels of willingness to pay, the only

opportunity for o�ering di�erent prices to di�erent consumers is to propose to

all consumers the same menu of packages (i.e., some combination of price and

product characteristics), among which consumers self-select. This practice is

2 For a more detailed overview, we refer to Varian (1989) or Belle�amme and Peitz (2015).
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known as second-degree price discrimination, nonlinear pricing, menu pricing, or

versioning.

Successful price discrimination requires the discriminating �rm to be able to

segment their customers according to their di�erent price elasticities of demand

for goods or services.3 In addition, the �rm must either be able to prevent or

exclude arbitrage due to certain product characteristics (e.g., if the product or

service has to be consumed immediately). If these conditions are satis�ed, the

�rm is able to increase its revenue by using discriminatory pricing strategies.4 It

is not possible, however, to charge every consumer a di�erent price as there is a

smallest monetary unit, and therefore, only a limited number of possible prices;

consequently, there will always be some consumers who pay the same price as

others.

In this paper, we focus on third-degree price discrimination. We de�ne di�er-

ent customer groups, wherein each group has di�erent sensitivities, i.e., di�erent

acceptance probabilities for the price bids of the �rm. Among others, Ezrachi and

Stucke (2016) argue that with an increasing use of big data, learning algorithms

are able to di�erentiate and segment customers into ever-smaller reference groups

who have similar price sensitivities and purchase behaviors and who share com-

mon biases and levels of willpower. According to the authors, pricing algorithms

can use data on how other people in an individual's group react in order to predict

the individual's reaction under similar circumstances. This method enables the

algorithm to adjust prices for products and services according to the estimated

willingness to pay. Consequently, the more data the algorithm obtains, the closer

those personalized prices can be set to a customer's reservation price.

3.2.2 Real-World Price Discrimination

In recent years, we have witnessed a number of examples where price discrimi-

nation has occurred in real-world situations. The main reason is easier access to

data and the possibility of personalizing o�ers and prices. Firms are able to cre-

ate detailed pro�les of their customers; this can be facilitated by customers either

identifying themselves or by identifying them through static Internet addresses,

credit card numbers, cookies or various caching methods (Cahn et al., 2016).

Hypertext Transfer Protocols (HTTP) allow servers to set and read cookies that

store unique identi�ers or information about a transaction. These cookies persist

even after the session ends, so the next time the user accesses the server with the

3 Federal Trade Commission and U.S. Department of Justice, Horizontal Merger Guidelines.
4 It should also be noted that a unit price can be a special case of price discrimination if every
consumer's willingness to pay is exactly the same.
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same account, the server can identify that user and retrieve the stored data, which

can be matched with details of previous interactions (Acquisti and Varian, 2005).

Information about identi�ed regular customers, postal codes, or type of operat-

ing system may then be used to segment customers and apply personalization

mechanisms such as targeted advertising, product and service recommendations,

and personalized pricing.

As an increasing amount of commerce takes place on online platforms, there

is also the advantage that sellers can more easily o�er di�erent prices, product

combinations, and recommendations to di�erent customers (or groups) or, alter-

natively, quote a �at price but o�er customers individualized discounts and bonus

schemes. In particular, such discounts are not limited to online marketplaces. Be-

fore they were taken over by the supermarket corporation Edeka, customers of the

supermarket chain Kaiser's received individualized discounts depending on their

purchase history. However, the results were not really customized.5 Another use-

case is the one of the Swedish furniture retailer IKEA, reported by the Harvard

Business Review.6 In 2020, the company launched a temporary initiative at its

store in Dubai that allowed its customers to pay di�erent prices for its products

according to the time they spent driving to the store. Thereby, product prices

were expressed in two components: a �xed shelf price and a variable component

dependent on the travel time. When showing their Google Maps Timeline to

the cashier, an algorithm would calculate the value of the drive by taking into

account time spent, distance traveled, and the average hourly wage of a Dubai

worker. The higher this value, the less the customer had to pay for the item.

Similar approaches can also be found in online retailing. A study by ProPub-

lica, a nonpro�t organization in the United States, revealed that The Princeton

Review based the pricing for their online tutorial courses on information about

customers' ZIP codes.7 This practice was feasible as charging di�erent prices

to customers in di�erent geographic regions is regulated in Europe but not in

the United States. Since ZIP codes in the United States can often serve as a

proxy for the ethnicity of the majority of residents, this resulted in higher prices

being charged for some ethnic groups than for others. For example, in some re-

gions where the population is dominated by people of Asian descent, prices for

the online tutorial courses were 10%�20% higher compared to prices o�ered to

5 Der Preis ist heiÿ, Wirtschaftswoche, March 02, 2017.
6 The Pitfalls of Pricing Algorithms, in: Harvard Business Review, September-October 2021.
7 The Tiger Mom Tax: Asians Are Nearly Twice as Likely to Get a Higher Price from Princeton
Review, https://www.propublica.org/article/asians-nearly-twice-as-likely-to-g
et-higher-price-from-princeton-review, September 1, 2015.

https://www.propublica.org/article/asians-nearly-twice-as-likely-to-get-higher-price-from-princeton-review
https://www.propublica.org/article/asians-nearly-twice-as-likely-to-get-higher-price-from-princeton-review
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customers of the same descent who live in regions with other ZIP codes where an-

other ethnic group was the majority. Another case of price discrimination based

on ZIP codes was reported by the Wall Street Journal.8 Staples, a US retailer of

o�ce supplies, has di�erentiated between high and low prices on its e-commerce

website depending on the user's ZIP code. The Wall Street Journal reported

that customers living close to a direct rival brick-and-mortar store were o�ered

discounted prices. As a consequence, customers living in rural areas were charged

higher prices than those living in urban areas.

Furthermore, not only personalized prices but also the personalization of prod-

uct rankings displayed to consumers may occur. This practice is known as price

steering, which occurs when two users make the same query and receive di�er-

ent search results or the same results but in a di�erent order. There is evidence

that the ranking of search results in�uences click-through rates (Ghose and Yang,

2009). Since products or search results that are displayed at the top of lists are

frequently clicked by consumers, personal recommendations that are placed at

the top can be an e�ective tool for price discrimination. The online travel agent

Travelocity has taken advantage of this by showing users of a Safari web browser

di�erent search results than Chrome users are shown. In doing so, they have

changed the order of the search results and shown users of Apple's operating

system a price that was about 5% lower (Hannak et al., 2014). Interestingly, in

addition to this example of Apple users being favored, there was another example

of price steering where the opposite was true. This example involves the travel

agent Orbitz, which placed expensive o�ers at higher ranks in the search results

of Mac users compared to users of a Windows system because Orbitz determined

that owners of Mac computers spend as much as 30% more a night on hotels.9

After the case was made public, Orbitz stopped using personalization algorithms.

One case that also attracted wide attention and caused a storm of protest

was Amazon's attempt at di�erential pricing, described in the Washington Post

in 2000.10 Customers discovered that the online retailer varied prices charged

for DVDs depending on the particular customer's frequency of purchases. For

example, one user noticed that, after deleting cookies that identi�ed him as a

regular customer, the price of a DVD in his Amazon shopping cart dropped from

$26.24 to $22.74. The online retailer denied that this practice was a discrimina-

tory pricing strategy, instead describing it as a random �price test.� Moreover, the

company refunded all customers who had paid the higher price (Cavallo, 2018).

8 Websites Vary Prices, Deals Based on Users' Information, in: Wall Street Journal, December
24, 2012.

9 On Orbitz, Mac Users Steered to Pricier Hotels, in: Wall Street Journal, August 23, 2012.
10On the Web, Price Tags Blur, in: Washington Post, September 27, 2000
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After the public outcry, Amazon stopped charging di�erent prices for its DVDs

and since then has served as an example of the reaction of customers to detected

price discrimination.

To summarize, the advent of the Internet and electronic commerce has pro-

vided the opportunity for sellers to move from a �xed-price strategy for their

goods and services toward a dynamic pricing model or even engage in di�erential

pricing. Reasons for this development are that transaction costs are reduced since

buyers and sellers do not have to be physically present in the same place at the

same time to participate in the market and realize a transaction. In addition,

the opportunity of selling products online has dramatically increased not only the

number of potential customers but also the number of competitors, resulting in a

higher degree of uncertainty regarding other sellers' prices and demand volatility.

As a consequence, using a single �xed price in volatile online markets may be

ine�cient and ine�ective for retailers. Instead, retailers may choose to vary their

prices, thereby considering two dimensions of price variation. First, prices can

vary over time, i.e., prices may be set di�erently at di�erent times of the day,

week, or year. Second, the retailer may charge di�erent customers and/or groups

of customers di�erent prices, which is the aforementioned price discrimination.

Retailers now have to decide along these two dimensions when setting their prices.

In the simulations provided in this study, we only focus on the latter dimension.

3.2.3 Algorithmic Price Discrimination

Nearly 20 years ago, a paper was published by Raju et al. (2003), who solved

dynamic pricing problems using reinforcement learning techniques such as Q-

learning and actor-critic algorithms. In particular, the authors discussed how sell-

ers can use these methods of automated pricing agents, which are also known as

price bots, to determine revenue-maximizing prices. Since then, however, compa-

nies' technical capabilities have expanded even further. The scienti�c studies pre-

sented below have examined the ability of pricing algorithms to provide methods

for calculating the best (i.e., pro�t-maximizing) prices for individual consumers

or groups of consumers. These studies attempted to acquire a more precise esti-

mate of more narrowly de�ned consumer groups' willingness to pay. To calculate

such estimates, algorithms use not only demographic data but also information

about consumers' browsing behaviors, purchasing histories, and preferences de-

rived from their online activities. Analyzing this information may enable �rms

to obtain a more precise estimate of those consumers' willingness to pay and to

better estimate purchase probabilities through machine learning or econometric

models.
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Shiller (2013) proposed a model predicting the probability that a consumer

subscribes to the streaming service provider Net�ix. The probability of sub-

scribing was derived by running a probit regression model. The author used a

data set including both demographic and web behavioral variables. The simula-

tions showed that the increase in pro�ts due to personalizing prices was relatively

small when based on demographic variables alone (0.8%). Conversely, there was

a 12.2% increase in pro�ts when web-browsing behavior, such as frequency of

website visits and time spent browsing, were used to predict the consumers' will-

ingness to pay, and prices were charged accordingly. In this latter case, the price

range o�ered to di�erent consumers was signi�cantly large, with some consumers

even having to pay almost double the price paid by others.

Another model for implementing algorithmic price discrimination was devel-

oped by Chen et al. (2022). In their model, an algorithm making joint pricing

and assortment decisions based his action selection on a particular set of cus-

tomer features. After an action was chosen, the algorithm observed whether the

product was purchased by the customer or not. By repeating this process, the

algorithm learned to select the action that yields the highest revenue with regard

to the speci�c set of customer features. The interdependencies between customer

features, action selection and the resulting outcome, i.e., the purchasing deci-

sion, were learned using a logit regression model, whereby the probability of a

customer choosing a product was dependent on the selected action and the cus-

tomer's attributes. The expected revenue obtained by the seller was calculated

using the estimated probabilities. By using such a pricing algorithm, the authors

showed that the seller was able to derive the customers' reservation value for the

products o�ered and set prices accordingly to maximize his pro�t. Furthermore,

the results of experimental simulations were transferred to the real world using

data from a European airline carrier on sales of a priority-seating option. The

results have indicated that the model proposed by Chen et al. (2022) for deter-

mining customers' willingness to pay and then setting prices accordingly resulted

in higher revenue compared to a uniform pricing policy.

In a further study, Ban and Keskin (2020) based their personalized pricing

model on similar assumptions. The algorithm again learned the e�ect of customer

characteristics on demand for the product o�ered and used this information to set

revenue-maximizing prices. The interaction e�ects between demand and pricing

policy were modeled by a lasso regression. The authors were able to show that

their experimentation-based personalized pricing strategy is superior to other

approaches such as myopic pricing and segment-then-optimize policies, which are

comparable to group pricing based on clusters of customers.
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Another study dealing with algorithmic price discrimination was conducted by

Dubé and Misra (2021). The authors assumed that customers' individual price

sensitivity can be characterized by a vector of observable customer attributes.

With the application of machine learning tools, sellers should be able to learn

statistically about the demands of heterogeneous customers in order to set per-

sonalized prices. For this purpose, the authors used a lasso regression model to

identify those observable customer features that have a signi�cant impact on de-

mand. Afterward, they approximated the supplier's demand uncertainty using a

logistic regression model. The model was then applied by evaluating business-

to-business price experiments for potential new customers of a recruiting �rm.

In a �rst experiment, the algorithm was trained on experimental data in order

to learn the relationship between price sensitivity and the observed features of

customers. In a second experiment, the trained algorithm was applied to a new

set of customers, and the pricing recommendations of the algorithms were evalu-

ated against the �rm's status-quo pricing. The model showed that personalized

pricing increased a �rm's expected pro�ts by 19% relative to an optimized uni-

form pricing strategy designed by the authors and by 86% relative to the �rm's

status-quo pricing. The authors also considered the impact of pricing strategies

on consumer surplus. In doing so, they found that personalized pricing would

reduce total consumer surplus. However, at an individual level, the majority of

customers would bene�t from being charged prices lower than the uniform price.

3.2.4 Fairness

When it comes to di�erential pricing, the fairness debate is not far behind. Con-

sumers' notion of fairness have been a discussion point in economics since the

works of Rabin (1993), Fehr and Schmidt (1999), and Bolton and Ockenfels

(2000), if not earlier. A number of experiments have demonstrated that eco-

nomic agents care not only about their own payo�s but also about the payo�s of

others, and they act accordingly. Fehr and Schmidt (1999) modeled fairness as

inequity aversion, which means that economic agents resist inequitable outcomes

and are willing to forgo part of their payo� to achieve a more equitable outcome.

Thus, fairness or unfairness with regard to prices is evaluated by a comparison to

prices o�ered to other consumers under similar circumstances. The approach of

Fehr and Schmidt (1999) also includes the aspect of self-centered inequity aver-

sion, which means that consumers su�er more from inequality that is to their

disadvantage (they have to pay a higher price) than from inequality that is to

their advantage (they have to pay a lower price). A way to measure the fairness
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of a given distribution is provided by Jain et al. (1984), who took into consider-

ation consumers' preferences for equality, which favors similarly distributed, i.e.,

homogeneous, prices. The proposed fairness index is represented by the following

equation:

f(x) =
[
∑
xi]

2

n
∑
x2i
∈ [0, 1] , (3.1)

where f measures the fairness if resources are allocated to n individuals such

that the ith individual receives an allocation xi. If customer groups rather than

individuals are considered, n can be interpreted as the number of customer groups.

The variable xi can represent either the price that is charged or the quantity

that is sold to a particular customer group i. The index measures the equality

of the allocation x: If all customers receive the same amount or pay the same

price, i.e., all xi's are equal, then the index is 1, and the policy is 100% fair.

If disparity increases, the outcome is perceived as unfair; a policy that favors

only a few selected customers has a fairness index near 0. The proposed index is

dimensionless and independent of scale; it is bounded between 0 and 1; and it is

continuous, so that any slight change in xi changes the index.

Previous attempts have been made to combine the aforementioned aspects

of personalized pricing and fairness considerations when solving dynamic pricing

problems by using reinforcement learning techniques. Examples for these are

the works by Maestre et al. (2018) and Cohen et al. (2021). The present work

also contributes to this strand of literature. Maestre et al. (2018) considered the

topic of dynamic pricing with demand learning and integrated the fairness aspect

into their model using Jain's index as a metric. The authors demonstrated that

reinforcement learning algorithms have the ability to adapt pricing policies that

consider fairness but, at the same time, maintain optimization of revenue. Since

the authors considered fairness part of the revenue function of �rms, fairness

would be taken into consideration only if �rms explicitly wanted to do so. In

contrast, our approach considers fairness part of the demand side as we assume

a lower propensity to buy if customers note unfair price-setting behavior by the

respective �rm. A further di�erence is the algorithm that is employed. Maestre et

al. (2018) applied neural networks to Q-learning, also known as deep Q-learning,

while we show that even simple Q-learning algorithms are able to incorporate

fairness considerations with a manageable amount of computing capacity.

Cohen et al. (2021) studied dynamic pricing with unknown demand under

price fairness constraints. Similar to the work conducted by Raju et al. (2003),

they considered prices as fair if they were similar for di�erent customer groups

(group fairness) and if prices were stable over time for each customer group (time
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fairness). By using an infrequently changed upper-con�dence-bound algorithm,

the authors showed that imposing group fairness does not a�ect the demand

learning problem in contrast to imposing time fairness. By contrast, results have

revealed that imposing time fairness, unlike imposing group fairness, does not

a�ect the optimal revenue.

3.2.5 Reinforcement Learning

As this study examines price discrimination and fairness considerations through

learning algorithms, we introduce reinforcement learning as a basic machine learn-

ing concept. In this method, the algorithm learns how to map situations to actions

in order to maximize a numerical reward signal. The algorithm (or agent) is not

explicitly told what actions to choose but instead has to learn which actions yield

the highest reward through trial. Reinforcement learning uses the formal frame-

work of Markov decision processes to de�ne the interaction between a learning

agent and its environment in terms of states, actions, and rewards. In the fol-

lowing paragraphs, we give a short summary of the most important features of

this type of machine learning, which are discussed in further detail by Sutton and

Barto (2018).

One of the challenges that arises in reinforcement learning is the trade-o�

between the strategies of exploration and exploitation. To obtain a high reward,

an agent with reinforcement learning exploits what it has learned so far by pre-

ferring actions it has already tried and that have led to a high reward in the past.

However, to discover such actions, it has to try (or explore) actions that have

not been chosen before. Therefore, the algorithm should use a dynamic action

selection policy that balances exploitation, that is choosing the optimal action as

currently perceived, and exploration, that is choosing another action to improve

action selections in the future.

Independent Q-learning (Watkins and Dayan, 1992) is a simple but well-

established reinforcement learning algorithm. By interacting with its environ-

ment, the algorithm learns to maximize a reward according to the Q-function

Q(s, a) that matches the optimal long-run value of choosing any action a ∈ A
when faced with any given state s ∈ S. During this interaction, the algorithm

uses the above-mentioned dynamic action selection policy, which balances actions

exploiting what has been previously learned with those exploring what has not

been tried before. The Q-function can be represented as a |S| × |A| matrix. If

the Q-matrix is known, the algorithm can easily choose the optimal action for

any given state. However, as this matrix is unknown, the Q-learning algorithm

�rst has to estimate the values of the Q-matrix through an iterative procedure
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without knowing the underlying model. Starting from an arbitrary initial matrix

Q0, the algorithm chooses action at in state st, observes reward rt and subsequent

state st+1, and updates the corresponding cell of the matrix Q(st, at) according

to the following recursive relationship:

Q(st, at)← (1− α)Q(st, at) + α
(
rt + δmax

a
Q(st+1, a)

)
, (3.2)

where the updated value Q(st, at) is a convex combination of the previous value

Q(st, at) and the reward obtained after performing action at in state st plus the

discounted value of the state that is reached in the following period. For all other

cells of the matrix, the Q-value does not change. The parameter α ∈ (0, 1] is the

learning rate that regulates how quickly new information replaces old information,

and δ ∈ [0, 1) is the discount factor. Action a denotes the optimal strategy (i.e.,

the action leading to the highest reward) until this time step.

To balance exploration and exploitation, the Q-learning algorithm adopts a

probabilistic action selection policy according to equation (3.3).

at =

[amin, amax] with probability εt

arg maxaQ(st, a) with probability 1− εt
(3.3)

Using what is called a ε-greedy strategy, the algorithm follows a random action

(exploration) within a given interval [amin, amax] with εt ∈ [0, 1] probability and

exploitative action with 1−εt probability. If several actions yield the same highest

Q-value under the exploitation approach, the algorithm randomizes across these

actions.11

The probability of exploration is determined by:

εt = ε0(1− θ)t ,

where ε0 ∈ [0, 1] is the initial exploration probability and θ ∈ [0, 1] is a decay

parameter. Whenever θ > 0, the decay in exploration ensures convergence to a

deterministic strategy.

Although other more complex independent-learning algorithms are currently

being applied to diverse strategic settings, this paper focuses on a simple Q-

learning algorithm. In contrast to more sophisticated algorithms, this simple

algorithm can be fully described by just two parameters: the learning rate α

and the decay parameter θ. For more complex algorithms such as deep learning

11This approach is based on the textbook of Sutton and Barto (2018) and is also used by
Calvano et al. (2020) and Klein (2021).
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algorithms, a number of additional parameters must be speci�ed. Apart from

learning and experimentation parameters, the functional form of the Q-function,

the number of estimation layers, and the structure of the neural network in each

layer has to be determined. A disadvantage of the Q-learning algorithm is the

slowness of learning, which increases with the complexity of the environment.

However, since the environment in this paper is very simple, Q-learning provides

an adequate approach for this problem.

3.3 Methodology

Customer groups gi with i = 1, 2, . . . , n are de�ned in advance. This can be

interpreted as an algorithm that divides customers into groups based on collected

and analyzed data. The characteristics used to classify customers must have an

e�ect on their willingness to pay. For the sake of simplicity, customer groups in

this paper are exogenous. Therefore, the processes of de�ning customer groups,

allocating customers, and setting prices are sequential.

Furthermore, we assume that customers are equally uniformly distributed in

the interval [0, 1]; thus, we assume a unit mass of customers and unit demand. We

de�ne two customer groups i = 1, 2 which can be expanded in later simulations.

Every customer belongs to exactly one group (either g1 or g2), and each customer

accepts the price charged by the algorithm with probability φ ∈ [0, 1]. This

acceptance probability is given by the following function:

φi(a) =
[
1 + e−(vi+wi·a)

]−1
, (3.4)

where a is the action (i.e., the price) chosen by the algorithm, and vi and wi are

parameters de�ning the sensitivity of each customer group, de�ned in Table 3.1.

Group v w

1 18.229 −23.690
2 4.4757 −15.526

Table 3.1: Parameters of the Probability Functions

The larger the parameter v is, the higher the acceptance probability of the

customer group. Parameter w determines how strong and in which direction

(positive or negative) the customer reacts to a change in the price. If w > 0,

the customers' acceptance rate increases with the price. This happens when

customers judge quality by price, for example. If w < 0, the acceptance rate

decreases when the price increases.
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We provide a scenario simulating two di�erent types of customer behavior.

Customers in g1 accept much higher prices than customers in g2. Both groups

show a decrease in the acceptance probability if the price increases. The accep-

tance probability functions of the two customer groups for the price interval [0, 1]

are shown in Figure 3.1.
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Figure 3.1: Acceptance Probability Functions

The action space is de�ned as an interval for choosing action a ∈ [amin, amax],

i.e., the price. Since Q-learning requires a �nite action space, action a is a discrete

variable scaled between 0 and 1 with k equally-sized intervals; thus, actions are

taken from a discrete set A = {0, 1
k
, 2
k
, . . . , 1}. Note that, as long as the action set

A is constrained between amin and amax, the algorithm will never set �non-sense�

prices.

The state space of group i is given by all prices that can be set for group j

and vice versa. Consequently, the state space is given by S = {0, 1
k
, 2
k
, . . . , 1}.

Whether a price distribution is considered fair is measured by the following

fairness index:

f(a) =
[
∑

i amax − ai]
2

n
∑

i(amax − ai)2
∈ [0, 1] , (3.5)

where amax is the maximum price that can be set (i.e., the maximum price of the

given action set), ai is the price set for group gi, and n is the number of groups.

This index is based on the index of Jain et al. (1984) shown in equation (3.1) and

was modi�ed as proposed by Maestre et al. (2018). Using the original index, an

allocation x is perceived as fair, and thus increases the index, if all xi's are large

and homogeneous distributed. However, in a di�erential pricing context, higher

prices are not perceived as fair. Therefore, the original index was modi�ed as
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presented in equation (3.5) to guarantee that lower, homogeneously-distributed

prices lead to a higher fairness index.

In order to consider the customers' sense of fairness, the fairness parameter

shown in equation (3.5) is integrated into the acceptance probability function such

that a low fairness index decreases the acceptance probability and vice versa. The

modi�ed acceptance probability is given as:

φ(a) =
[
1 + e−(vi+wi·a)+β(1−f(a))

]−1
, (3.6)

where β denotes a parameter for considering fairness (β = 1) or not considering

fairness (β = 0). The modi�ed acceptance probabilities are shown in Figure 3.2

for di�erent values of the fairness parameter f . Note that customers' aversion

to higher prices is captured in both the acceptance probability function (as the

acceptance probability decreases with a higher price) and the fairness index (f

is larger for lower, homogeneously-distributed prices). To determine how fairness

develops over time, it is necessary to capture this feature as a separate aspect in

the form of a fairness index. Since the fairness aspect is modeled as a part of

the acceptance probability function, the algorithm has to learn how important

fairness is for customers in order to be able to set the revenue-maximizing prices.
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Figure 3.2: Acceptance Probability Functions of Customer

Groups g1 (left) and g2 (right) for Di�erent Fairness Levels

As customers are equally uniformly distributed within each group gi, the re-

ward ri � i.e., the expected revenue generated by the sale to group i � is de�ned in

equation (3.7) as the price multiplied by the acceptance probability from equation

(3.6), where i = 1, 2 denotes the respective customer group:

ri = ai · φi . (3.7)
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The Q-learning is simulated as follows. In t = 1, the algorithm sets a price

for each group. For all subsequent periods, the algorithm sets prices alternately,

wherein the last price set for one group serves as the current state for the other

group. Additionally, this price serves as the comparative price for the fairness

index. Depending on the selected parameter values, the reward is either indepen-

dent of the state (β = 0, if inequity aversion is not considered in the model) or

dependent on the current state (β = 1, if customers are inequity-averse). The al-

gorithm learns to set the optimal price for each group by updating its Q-function

for customer group i according to the following recursive relationship:

Qi(aj, ai)← (1− α)Qi(aj, ai) + α
(
ri + δr′j + δ2 max

a
Qi(a

′
j, a)

)
, (3.8)

where action ai denotes the price set for group i and aj denotes the price set

for group j, which determines the state for the Q-function of customer group i.

The updated value Qi(aj, ai) is a combination of the previous value Qi(aj, ai),

the reward obtained for group i, the discounted reward r′j for group j that will

be achieved in the following period, and the discounted value of the new state a′j
that will be reached in the following period.

To constrain the number of possible actions, we use the discrete action set

A = {0, 1
k
, 2
k
, . . . , 1} with k = 10. Consequently, there are a total of eleven

possible prices. We consider two customer groups, making i = 1, 2. We take an

initial exploration probability ε0 = 1, decay parameter θ = 6.908 · 10−5, learning

rate α = 0.1, and discount factor δ = 0.9. To assess the performance of the

algorithm, the statistics are computed over 100 runs. In each run, 100, 000 price

choices (periods) are simulated. Over these 100, 000 periods, the exploration

probability drops to below 0.1%. To compensate for outliers, we average over

the 100 simulated runs for each period to see how an average market price and

reward develop over time.

The pseudocode for the Q-learning algorithm is provided below.
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Pseudocode Q-learning

1 Set demand and learning parameters

2 Initialize Q1 and Q2 as empty matrices

3 Initialize a1,1 and a2,1 randomly

4 Initialize t = 2, i = 1 and j = 2

5 Loop over each period

6 | Set action ai,t according to (3.3)

7 | Calculate reward according to (3.7)

8 | Update Qi(aj, ai) according to (3.8)

9 | Update t← t+ 1

10 Until t = T (speci�ed number of periods)

3.4 Results and Discussion

Two di�erent scenarios are conducted in order to compare the outcomes of these

two di�erent approaches. In the �rst scenario, the algorithm learns to set di�erent

prices for each customer group. We do not include inequity aversion in our model

in this case, so the parameter β is set equal to zero. Therefore, the acceptance

probability simpli�es to equation (3.4). The reward is calculated according to

equation (3.7). Since the fairness index has been dropped, the reward of a chosen

action does not depend on the current state (i.e., the price charged to the other

group).12 In the second scenario, inequity aversion is considered (β = 1); thus,

prices ai and aj depend on each other, due to the fairness index. Customers are

assumed to be inequity-averse, i.e., they have a strong preference for equitable,

homogeneous prices. As a result, the acceptance probability decreases with a

decreasing value of the fairness parameter. The reward is calculated the same way

as in scenario I, with the only di�erence being that the acceptance probability

now depends on the fairness parameter and is calculated according to equation

(3.6). Consequently, the algorithm learns to increase the price within each group

and thereby maximizing the expected revenue (as observed in the �rst scenario)

while reducing price di�erences between groups, in order to maximize revenue

and fairness at the same time. It is assumed that maintaining a balance of price

distribution among the di�erent groups of customers leads to fairer prices, as

these prices are chosen by considering customers' preference for equality.

12Note that this simpli�ed setting is a one-stationary problem, which could be solved more
e�ciently by a multi-armed bandit algorithm; however, for a better comparison of both
scenarios, the Q-learning algorithm is also applied in this case.
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To examine whether this statement is true, we display the price histories

for both scenarios in Figures 3.3 and 3.4, whereby prices are calculated as the

averages over all runs. The corresponding reward histories for both scenarios are

shown in Appendix 3.A in Figures 3.A.1 and 3.A.2.
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Figure 3.3: Price Histories Scenario I
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Figure 3.4: Price Histories Scenario II

It can be observed that the algorithm starts on average at a common price

level for both groups in the �rst periods, but then learns very quickly that a

price di�erentiation between customer groups leads to a higher reward. After

about 60,000 periods, prices converge to the �nal level. In the second scenario,

the algorithm adjusts the price for group 1 back down slightly to achieve a more
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homogeneous distribution of prices. As a consequence, rewards in both scenarios

increase continuously and stabilize at the levels of 0.747 and 0.744, respectively.

Table 3.2 shows the pricing strategies the algorithm has learned, as captured

by the average over the �nal 1, 000 periods of all runs. In these periods, the algo-

rithm barely explores but instead exploits what it has learned thus far. Moreover,

the resulting fairness index and the reward generated at these prices are displayed.

In the �rst scenario, the Q-learning agent is able to conduct price discrimination

and does not consider inequity aversion. Accordingly, the value of the fairness

parameter is lower than 1, since customers are charged di�erent prices. If in-

equity aversion is introduced in the second scenario, the price for customer group

2 remains nearly unchanged, while the price charged to group 1 decreases. As

a result, prices are more homogeneously distributed (however, there is no unit

price), since the price-setting policy balances between maximizing revenue and

providing a fair market outcome. This is further illustrated by a higher value of

the fairness parameter in scenario II compared to scenario I. The higher reward

is obtained in scenario I, wherein prices are set on a discriminatory basis without

considering inequity aversion.

ā1 ā2 r̄ f̄

Scenario I 0.640 0.201 0.747 0.872
Scenario II 0.600 0.201 0.744 0.900

Table 3.2: Average Market Outcomes of the Final 1,000 Periods

To assess the performance of the algorithm, we compare the results of the

algorithmic learning procedure with the analytical solution of the pro�t maxi-

mization problem displayed in Table 3.3. Since we assume zero marginal cost,

pro�t equals revenue in this case, which is equal to the reward that the algorithm

tries to maximize. If inequity aversion is not considered in the model, prices for

both customer groups are higher compared to scenario II wherein inequity aver-

sion is considered. Thus, the �rm is able to extract more consumer surplus from

both groups in this case.

a∗1 a∗2 r∗

Scenario I 0.656 0.228 0.778
Scenario II 0.649 0.225 0.767

Table 3.3: Analytical Solution

The comparison of simulated and analytical market outcomes displayed in

Tables 3.2 and 3.3 shows that the algorithm charges prices slightly below the
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optimal (i.e., the pro�t-maximizing) levels. This may be either because we re-

strict the action set to numbers with one decimal place (in the case of k = 10),

leading to the fact that the simulation results are not able to converge to the

exact numbers of the analytical solution, or because the algorithm does not have

su�cient time to learn in the provided setting. Nevertheless, the algorithm is

able to take into account customers' fairness considerations and realize a revenue

that is only slightly below the calculated value of the analytical solution of the

pro�t maximization problem, despite this more di�cult relationship.

Certainly, the simulation setting is very stylized, however, the assumptions

made above do re�ect economic reality at least to some extent. For example,

in a perfectly competitive market, price discrimination is not feasible, as �rms

undercut each other until they end up in a (unit) price that equals marginal

cost. However, prices might be di�erentiated due to search costs, lock-in e�ects,

transportation costs, or asymmetric information. As a result, �rms compete

with each other, but real markets do not seem to be perfectly competitive, and

di�erential prices are likely to occur. Much empirical work tests for the presence of

price discrimination in imperfectly competitive environments, e.g. Shepard (1991)

in the gasoline market, Goldberg (1995) in the market for European automobiles,

and Leslie (2004) in the Broadway theater market.13

Another assumption that applies in reality is that of a limited action space:

since �rms have a price limit under which they would never sell the product (typi-

cally under average or marginal cost) the price interval has a lower bound, and the

upper bound of the price interval is potential customers' maximum willingness to

pay. Moreover, the lower bound is ensured by law: Despite the willingness to ob-

tain negative pro�ts in particular situations, retailers in the European Union are

not allowed to sell below cost (called predatory pricing) according to the Treaty

on the Functioning of the European Union (TFEU), Art. 102. The reason given

is that such behavior, exercised over a longer period of time, can drive smaller

competitors out of the market. With regard to the upper bound of the price

interval, it should be mentioned that each customer's actual willingness to pay

cannot be determined by �rms, as they only obtain imperfect information about

each customer. For this reason, personalized prices in real markets are generally

not identical to perfect price discrimination.

Additionally, the implications of personalized pricing for consumer and total

welfare are ambiguous, as welfare could move in many directions relative to the

benchmark of a uni�ed market. Bergemann et al. (2015) showed that while

obtaining additional information about customers can never hurt the seller, it

13 For a survey of price discrimination in imperfectly competitive markets, see Armstrong (2006).
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can increase both total and consumer surplus, decrease both, or increase one and

decrease the other. In the study of Dubé and Misra (2021) mentioned in Section

3.2.3, the authors conducted an experiment with an online recruiting company,

comparing the existing uniform price, an optimized uniform price, and targeted

prices. They found that customer surplus declines slightly with personalized

pricing relative to uniform pricing. However, over 60% of customers bene�t from

personalized prices since they had to pay a lower price than the optimal uniform

price. Nevertheless, the distribution of welfare in cases of price discrimination

must be assessed on a case-by-case basis, as no general conclusions can be drawn.

3.5 Robustness Checks

To check robustness of our results, we consider various changes in the parameters

that are used for de�ning the algorithm and the environment. We run simulations

with changes in (1) parameter k to allow for a larger action space, (2) learning

rate α, (3) discount parameter δ, (4) decay parameter θ, and (5) price sensitivities

vi and wi for customer groups i = 1, 2.

Choosing the discretization parameter k that determines the number of actions

a within the action set A is a trade-o� between, on the one hand, making the

acceptance probability functions of the two customer groups more substantial

and, on the other hand, negatively a�ecting the learning process since the Q-

matrix increases signi�cantly with the number of possible actions (and states),

resulting in a much longer time needed to learn the optimal pricing strategy.

Experimenting with various values for the parameter k, we �nd k = 10 providing

a good balance between expanding and reducing the number of possible actions

and, therefore, being appropriate for our setting. For example, for the value

k = 100 we observe signi�cantly higher average prices charged to both groups,

however, the reward is signi�cantly lower. This is valid in both scenarios. This

leads us to conclude that the algorithm has not yet �nished its learning process

after the 100, 000 periods. Please note that the optimal value of k changes if

simulation settings, such as the number of periods per run, changes.

The learning parameter α, which determines how quickly new information

replaces old information, may range from 0 to 1. High values of α indicate ex-

tensive experimentation, as the algorithm forgets too quickly what it has learned

in the past. Thus, values of α close to 1 may disrupt the learning process. To

be e�ective, the learning process has to be persistent, which requires the learning

rate to be very small, i.e., close to zero.14 Accordingly, in our baseline simulation,

14 In computer science literature, a value of α = 0.1 is common.
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we set α = 0.1, which is also in line with the �ndings of Calvano et al. (2020). In

contrast, in his study, Klein (2021) used a parameter value of α = 0.3. Changing

the value of α to this number as a further robustness check does not e�ect our

results signi�cantly.

The discount factor of δ = 0.9 was chosen reasonably close to one (i.e., the

future is not discounted so much) as the price setting intervals and, therefore,

the periods, are generally small. In case of very short time periods, the actual

discount factor would be even closer to 1. However, choosing a discount factor

very close to 1 in the algorithmic learning environment, su�cient learning may

not be possible because Q-values estimated in the past will get too much weight.

When observing this problem, it may be required to set a lower value of δ. This

issue is also discussed in more detail by Klein (2021).

Changes in the decay parameter θ lead to changes in the exploration proba-

bility since θ determines the speed of convergence to a deterministic strategy, i.e.,

how fast the probability of exploration decreases. Thereby, the higher the value

of θ, the faster the algorithm converges to a deterministic strategy. For example,

if we set θ = 9.210 ·10−5 as suggested by Klein (2021), the exploration probability

decreases to 0.01% at the end of the run. Thus, there is a trade-o� between a

higher probability that the algorithm will explore (and not exploit the previously

learned best strategy) in the �nal periods and the risk that the algorithm con-

verges to a deterministic strategy although the learning process might not have

been �nished at that point and, as a consequence, converged to an ine�ective

strategy. In our simulation, we choose a value of θ = 6.9075 · 10−5 resulting in

the exploration probability gradually decreasing from 100% in the �rst period to

3.16% halfway through the run and reaching 0.1% at the end of the run. What

we observe in our robustness checks is that for lower values of θ, price variation

increases since the exploration probability is quite high even in the �nal peri-

ods leading to prices being set randomly very high or very low in these periods.

However, the average results over 100 runs do not vary signi�cantly.

If we model the consumers' acceptance probability functions with di�erent

sensitivities, this has an impact on the di�erence in prices charged for the two

customer groups as well as on the extent of the price adjustment in the second

scenario: The more the acceptance probabilities of both groups diverge, the larger

the price di�erence between the two groups in the �rst scenario. In the second

scenario, prices are adjusted to a greater extent if acceptance probabilities are

more diverged. If the di�erence in willingness to pay is su�ciently large, it

is pro�t-maximizing for the �rm to charge the same price to both groups of

customers in scenario II in order to obtain the maximum revenue from group 1
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having the higher willingness to pay, which is the highest for a fairness index of

1. In this case, the acceptance probability of customer group 2 is close to zero.

The exact numbers of a robustness check with similar willingness to pay and a

robustness check with a very high willingness to pay for group 1 and a very low

willingness to pay for group 2 are provided in Appendix 3.B. It can be shown

that the algorithm is also able to learn the respective pro�t-maximizing prices for

di�erent values of sensitivity parameters, showing that our �ndings are robust to

such changes.

3.6 Conclusion

Using reinforcement learning, this paper demonstrates how a �rm maximizes its

revenue while taking into consideration customers' inequity aversion. If we assume

that customers' acceptance probability decreases when they realize that they are

being charged di�erent prices, companies have to sacri�ce part of their revenue

compared to a scenario with customers who do not consider prices charged to

others and equalize prices at least to some extent to ensure improved fairness

between customer groups.

In the present simulation, we chose two customer groups with similar demand

characteristics. Revenue maximization by the algorithm becomes incomparably

more complex as more groups with more diverse demand functions are in the

market. Considering additional customer groups would be a further attempt

to make the environment more realistic, but solving this problem would require

much more computing capacity.

Referring to the use of alternative algorithms, a comparison with other rein-

forcement learning methods could be useful for gaining additional insights. The

complexity of the algorithm might be further increased by including the processes

of de�ning and re�ning customer groups as well as setting prices simultaneously.

Moreover, using di�erent algorithms might allow for the investigation of multi-

agent learning by simulating a competitive environment instead of a monopolistic

structure. At this time, the outcomes of settings with multiple agents using dif-

ferent algorithms have hardly been studied.

Further extensions of this study might include a rede�nition of the fairness

index. For example, Jain's index does not account for self-centered inequity

aversion, which occurs when economic agents do not care about inequity that

is present among other economic agents and are interested only in the equity of

their own payo� relative to the payo�s of others. Moreover, according to Fehr

and Schmidt (1999), the judgment and feelings associated with advantaged and
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disadvantaged price inequality are di�erent, because consumers su�er more from

inequality that is to their disadvantage. These approaches, however, are not

considered in the current index and are of particular interest if more than two

groups of customers are considered.

A shortcoming of the employed algorithm is the relatively long time that is

needed to converge to the optimal price. If the algorithm were employed in the

real world, it would not have 100,000 trials in which to identify the optimal prices,

as frequent price changes might lead to a loss of consumer con�dence. A possible

solution could be to train algorithms o�ine before they are deployed in the market

to avoid upsetting customers by explorative pricing, which occurs more often in

the �rst periods, and to shorten the learning process.

Apart from the aforementioned aspects, the applicability of personalized pric-

ing in the real world depends on many factors, which may include both technical

and legal restrictions on data collection and use as well as on technical limitations

of the algorithms themselves. From the simulations, we can conclude that con-

sumer characteristics such as their sense of fairness, which have prevented �rms

from engaging in price discrimination, can be incorporated into �rms' pricing de-

cisions with the help of learning algorithms, making di�erential pricing strategies

more feasible. Policy debates should take these aspects into consideration when

evaluating the bene�ts and risks associated with the use of pricing algorithms.
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3.A Appendix: Reward Histories
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Figure 3.A.1: Reward Histories
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Figure 3.A.2: Reward Histories of the Final 1,000 Periods



3.B. Appendix: Robustness Checks 77

3.B Appendix: Robustness Checks

Robustness checks were conducted for di�erent values of the sensitivity parame-

ters. Below are the values representing two customer groups with very distinct

willingness to pay for a �rst robustness check (RC1) and two customer groups

with similar willingness to pay for a second robustness check (RC2).

Group v w

RC1 1 20 −23.690
2 3.5 −15.526

RC2 1 8 −16
2 5.5 −15.526

The respective acceptance probability functions for both robustness checks are

shown in Figure 3.B.1.
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Figure 3.B.1: Acceptance Probability Functions for Distinct

(left) and Similar (right) Sensitivities

Table 3.B.1 provides the analytical solution as well as simulation results for both

robustness checks.

Scenario a∗1 a∗2 r∗ ā1 ā2 r̄ f̄

RC1 I 0.727 0.185 0.805 0.700 0.190 0.794 0.826
II 0.726 0.698 0.685 0.700 0.700 0.678 1.000

RC2 I 0.395 0.277 0.546 0.400 0.300 0.542 0.994
II 0.394 0.278 0.545 0.399 0.299 0.541 0.994

Table 3.B.1: Analytical Solution and Simulation Results for RC1

and RC2
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Abstract

In this study, we present empirical evidence for the impact of government mea-

sures that were imposed to contain the spread of the coronavirus and, as a con-

sequence of their enforcement, reduced mobility on consumer prices during the

COVID-19 pandemic. For this, we use the Oxford COVID-19 Government Re-

sponse Tracker (OxCGRT) to examine the e�ect of the stringency of governmental

measures and compare this result to the e�ect of actual mobility by using mobil-

ity data sourced from Google on the overall consumer price index as well as on

the categories of food and housing and utilities. Since the main categories of the

consumer price index are a highly aggregated measure, we take a more detailed

look at sub-categories of the food sector, which involve nonperishable staple foods

that can be stored as well as high-value products that should be consumed im-

mediately. Our sample includes 32 European countries plus the United States for

the period from January 2020 to May 2021. To summarize our �ndings, results

of �xed-e�ects panel regressions show that more stringent measures lead to a

signi�cant increase in consumer prices. This �nding is supported by the result of

the regression analysis using actual mobility data as the independent variable.
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4.1 Introduction

By the end of 2021, the cumulative number of con�rmed COVID-19 infections

had reached more than 288.6 million worldwide, and the death toll associated

with the coronavirus had increased to more than 5.4 million cases. The rapid

increase in the number of COVID-19 infections prompted governments in a�ected

countries to impose measures designed to contain the spread of the coronavirus,

including border closures that severely restricted mobility between countries, so-

called stay-at-home restrictions, and workplace closures. These restrictions were

expected to a�ect both demand and supply. On the one hand, workers and goods

could cross national borders only under more restrictive conditions, resulting in

an abrupt worker shortage and decreased supplies of certain goods. On the other

hand, consumers adjusted their spending behavior in response to the pandemic

due to shifts in preferences, expected income or health risks, or higher economic

uncertainty. After the relaxation of several lockdown measures, a strong economic

recovery and continuing supply chain disruptions have caused the price of goods

and services to rise since the start of 2021 (Attinasi et al., 2021; Helper and

Soltas, 2021).

In this study, we present empirical evidence for the impact of pandemic-related

government measures and, as a consequence of their enforcement, reduced mo-

bility on consumer prices. We use data from the European Union's Harmonized

Index of Consumer Prices (HICP) for all member states of the European Union

as well as for Switzerland, the United Kingdom, Iceland, Norway, Serbia and the

United States for the period January 2020 to May 2021. Thus, we cover the very

beginning of the pandemic, the major lockdowns during winter 2020, and the

time when the �rst restrictions were eased in spring 2021. Moreover, we use the

Oxford COVID-19 Government Response Tracker (OxCGRT) to determine the

stringency of governmental measures.

Since the stringency of government-imposed restrictions does not necessarily

re�ect the real-world behavior of consumers, we further examine the e�ects of

actual mobility by using mobility data sourced from Google on the consumer

price index in an additional speci�cation.

By means of �xed-e�ects panel regressions, we then attempt to answer the

following research questions: (1) Is there a signi�cant impact of the stringency

of pandemic-related measures that were imposed by governments on consumer

prices? (2) Are there di�erent e�ects of government measures that aim to reduce

population's mobility and the actual observed mobility on consumer prices?

Our �ndings show that the stringency of measures imposed by governments
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has a positive and signi�cant impact on the overall consumer price index as

well as on the sub-index of the food category, which means that more stringent

measures induce higher consumer prices in these categories. Regressions with

actual mobility data instead of the stringency of government measures support

these results. To the best of our knowledge, this is the �rst paper to consider a

larger time span of the pandemic and to provide supporting results with regard

to the e�ect of the stringency of measures with actual mobility data.

The paper is structured as follows: Section 4.2 summarizes the existing litera-

ture on consumer spending during the COVID-19 pandemic, as well as the impact

of pandemic-related lockdowns on the supply-side of markets. Section 4.3 then

presents our data followed by the econometric methodology described in Section

4.4. Section 4.5 provides our results with further robustness checks in Section

4.6, and Section 4.7 gives a conclusion as well as several policy implications of

our results.

4.2 Literature Review

During the pandemic, numerous measures were adopted in the a�ected coun-

tries to contain the spread of the coronavirus. In addition to closing borders,

which severely restricted mobility between countries, stay-at-home restrictions

and workplace closures were imposed. These measures were expected to a�ect

both demand and supply.

In its technical report, the OECD (2020a) estimated the potential direct im-

pact of lockdowns, taking into account sectoral output as well as consumption

patterns across countries. Looking at di�erent output categories, the authors con-

clude that activities involving travel and direct contact between consumers and

service providers were adversely a�ected by movement restrictions and social dis-

tancing. Due to these restrictions, most retailers, restaurants, and cinemas were

closed and the loss of sales could not be fully compensated by take-away or online

o�ers. Moreover, nonessential construction work was delayed, either because of

containment policies such as closed borders, which directly a�ect labor availabil-

ity, or because of temporary reductions in investments. In manufacturing sectors,

the impact of lockdown measures seemed to be smaller since these sectors are less

labor intensive. Nevertheless, complete shutdowns or limited production of cer-

tain producers of transport equipment were observed due to di�culties obtaining

necessary inputs from suppliers in other countries.

Additionally, the authors of the OECD report looked at detailed categories

of consumer spending to estimate the e�ect of shutdowns in di�erent sectors.
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Similar to the results for changes in output, shop closures and travel restrictions

naturally led to less spending or no spending, for example, on clothing and pack-

age holidays. Moreover, spending involving direct contact between consumers

and service providers was likely to be postponed. Although expenditures for lo-

cal travel, restaurants, and recreational services continued to a certain extent,

there was a decline overall. Spending on essential items, however, remained al-

most unchanged. The European Central Bank drew the same conclusions (Lane,

2021).

As the report of the OECD (2020a) has shown, the impact of pandemic-related

government measures on di�erent economic sectors varies. Therefore, it is rea-

sonable to focus on a sector where restrictions are expected to have the most

severe impact: In addition to the main categories of the consumer price index,

which are highly aggregated, we take a more detailed look at the food sector

in our study. This sector is of particular interest because it includes di�erent

types of products such as meat, fruits, vegetables, and dairy products, as well as

nonperishable goods that are di�erentiated in the calculation of the index. Food

products can be divided into di�erent categories according to their production,

delivery, and storage options. The �rst category includes staple foods that can

be stored for a longer period, such as various grains, beans, or oil seeds. The sec-

ond category includes high-value products that should be consumed immediately,

such as fruits, vegetables, �sh, and meat. According to the report of the Food

and Agriculture Organization of the United Nations (2020), constrained mobility

between regions and countries has a negative impact on the distribution of staple

foods, while the largely mechanized processing of these products is expected to be

less a�ected. By contrast, in the production of high-value and fresh products, the

higher demand for labor input leads to a more sensitive reaction to restrictions

on workers, which was also identi�ed by S. Aday and M. S. Aday (2020).

Tauber and van Zandweghe (2021) divided goods into durable and non-durable

products. In their study, they observed an increase in consumer spending for

durable goods on the US market. The increase was explained by consumer de-

mand that shifted from services toward durable goods due to lockdowns, social

distancing, and panic-buying, on the one hand, and an increase in disposable

income resulting from �scal policy measures designed to stimulate consumption

expenditures, including those on durable goods, on the other hand.

Additional studies that examined the impacts of COVID-19 on spending be-

havior in Denmark (Andersen et al., 2020), France (Landais et al., 2020), Spain

(Carvalho et al., 2020), the United Kingdom (Chronopoulos et al., 2020), the

United States (Baker et al., 2020) and China (Chen et al., 2021) used bank
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transaction data and observed a decline in aggregate consumer spending during

the �rst wave of the pandemic. On the US market, Baker et al. (2020) found

signi�cant changes in consumer spending across a broad variety of product cate-

gories, with only food delivery and grocery spending as major exceptions, which

di�ered mainly by levels of liquidity and family structure. Andersen et al. (2020)

found that in Denmark the decline in consumer spending varied across product

categories, where individual exposure to health risks and supply restrictions was

associated with much larger spending cuts than exposure to income risk and

unemployment. However, these demand shocks were temporary, and consumer

spending recovered quickly as the number of infections declined and restrictions

eased.

Restricting mobility during a lockdown might also have the potential to impair

economic activity, especially in the food market. For example, instead of visiting

their usual retailers, consumers may shop at grocery stores close to their place of

residence instead. Contributing to this topic, Bounie et al. (2020) observed that

households concentrated their purchases on a smaller number of food retailers.

Visiting a smaller number of retailers nearby reduces consumers' ability to choose

from a su�ciently large portfolio of competing o�ers, thereby limiting substitution

opportunities and, thus, decreasing the price elasticity of demand. Moreover,

restaurants, cafés or snack bars which are engaged in food services or the sale of

processed foods can be considered as substitutes for purchasing food at grocery

stores and preparing meals at home. During lockdowns, these businesses needed

to temporarily shut down, resulting in a reduced number of food suppliers and,

as a result, less competition. Together with the aforementioned reduced price

elasticity of demand, the temporary increase of market power of retailers that

maintain food provision may have led to raising retail prices. The underlying

micro-economic e�ects are further discussed by Ihle et al. (2020) who also provided

a framework to quantify them.

The study by Akter (2020) further examined the e�ect of government-induced

stay-at-home restrictions on food prices in the European Union in the �rst wave

of the pandemic. Results suggested that meat, �sh and seafood, and vegetables

witnessed the most signi�cant price surges, whereas prices of bread and cereals,

fruits, milk, cheese and eggs as well as oils and fats were not signi�cantly a�ected.

However, the author considered only the period from January to March 2020.

As the consumer price index is the dependent variable in our regression anal-

ysis, we would like to draw attention to several problems that might occur when

using this variable. As previously stated, consumers changed their spending pat-

terns during the pandemic. These changes in consumption and, thereby, the
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composition of expenditure are taken into account by reweighting the price index

each January. It follows, then, that the 2021 HICP, which considers the di�erent

expenditure composition of the previous year, assigns more weight to sectors that

experienced a surge in expenditure in 2020 and, as a result, are associated with a

higher pricing pressure compared with sectors that su�ered a drop in expenditure

and are associated with a lower pricing pressure. Gonçalves et al. (2021) showed

that this reweighting of the price index alone accounted for 0.3 percentage points

of the increase in the HICP in January 2021.

Related to this, Cavallo (2020) empirically studied the impact that changes in

consumer expenditure patterns have had on the measurement of consumer price

index in�ation in the United States.1 The author computed alternative �Covid

Basket� price indices and showed that low-income households experienced higher

in�ation during the crisis than high-income households. However, we rely on

the data for the traditional basket of goods used to calculate the consumer price

index.

In addition, Blundell et al. (2020) stated that some cost increases could not

be recorded. The authors argued that supply disruptions and stockpiling forced

consumers to switch to smaller and usually more expensive package sizes (as

measured by unit cost) or to di�erent brands than they would normally buy.

Consumers may also have had to shop at other stores where prices of the pur-

chased goods were higher. Because the consumer price index captures the prices

of �xed items at �xed locations, these additional costs were not re�ected in the

overall price increase.

With regard to the consumer price index, another problem arises during the

collection of consumer prices in a pandemic as the collection in bricks-and-mortar

stores stopped when they were closed due to government-related measures. In

addition, sampling in supermarkets and drugstores was largely discontinued in

order to protect price collectors. This resulted in the requirement of an estimation

in areas where the collection of actual prices was substantially reduced.2

Additionally, other external factors such as the change in crude oil price as

well as the implementation of temporary value added tax (VAT) reductions in

several countries contributed to a change in consumer prices (Lane, 2021). We

will consider these external factors in greater detail in our robustness checks.

1 A similar attempt to construct experimental indices based on real-time consumption patterns
was made by Kouvavas, Trezzi, Eiglsperger, et al. (2020) for the euro area.

2 For a detailed discussion of this issue, see Kouvavas, Trezzi, Goldhammer, et al. (2020).
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4.3 Data

Our sample includes all member states of the European Union as well as Switzer-

land, the United Kingdom, Iceland, Norway, Serbia, and the United States; thus,

we consider a total of 33 countries in our sample. We collected data for the pe-

riod January 2020 to May 2021 to grasp the full development and spread of the

pandemic and its impacts from its beginning until the easing of restrictions in

spring 2021.

Data for the consumer prices stems from the European Statistical O�ce (Eu-

rostat).3 We use monthly data of the HICP for the above-mentioned countries.

To calculate the consumer price indices, the national statistical institutes in the

selected countries collect the prices of over 700 representative items in di�erent

regions and types of shops across the respective country. The list of items is up-

dated annually. Price collectors survey the prices of examples of these items each

month to see how they are changing, holding constant features such as brand,

make, and package size. Average price changes for each item are then weighted

according to their importance in households' budgets in a baseline year.

The consumer price index measures how much the cost of purchasing a typical

basket of goods and services has changed over time, leading to a reasonable idea

of how price increases are a�ecting households, or at least a �typical� one. In our

analysis, we use the HICP, where the term �harmonized� indicates that all the

countries follow the same methodology to determine the index. This ensures that

the data for one country is comparable to the data for another. To disentangle the

e�ects on di�erent product areas, we utilize the classi�cation of HICP components

according to the Classi�cation of individual consumption by purpose (COICOP).

In addition to the overall index, we consider the COICOP headings of (1) food4

and (2) housing, water, electricity, gas, and other fuels5, since these two categories

include the most essential products for everyday life and account for the largest

shares of expenditures covered by the overall index.6 Furthermore, we look more

closely at the food classi�cation, which is further divided into the categories (1.1)

3 Data are available at https://ec.europa.eu/eurostat/databrowser/product/view/PRC
_HICP_AIND. For the United Kingdom, data are provided by the O�ce of National Statistics
at https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerp
riceinflation.

4 Contains food products purchased for consumption at home. Note that food is a sub-category
of the classi�cation food and non-alcoholic beverages.

5 Contains rentals for housing, maintenance and repair of the dwelling, water supply, electricity,
gas and other fuels. In the following, we refer to this category as housing and utilities.

6 In 2020, the average expenditure weight of the food category for our sampled countries was at
15.94%. On average, 13.27% of total expenditure covered by the index was spent on housing
and utilities in the same year. In 2021, average expenditure weights of the categories of food
and housing and utilities were at 18.04% and 14.40%, respectively.

https://ec.europa.eu/eurostat/databrowser/product/view/PRC_HICP_AIND
https://ec.europa.eu/eurostat/databrowser/product/view/PRC_HICP_AIND
https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerpriceinflation
https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerpriceinflation
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bread and cereals ; (1.2) meat ; (1.3) �sh and seafood ; (1.4) milk, cheese and eggs ;

(1.5) oils and fats ; (1.6) fruits ; (1.7) vegetables ; and (1.8) sugar, jam, honey,

chocolate and confectionery. Except for the United States, all countries in our

sample report prices in these sub-categories.

To explain changes in supply and demand induced by pandemic policies, we

use the stringency index (SI) of the OxCGRT introduced by Hale et al. (2021).7

The OxCGRT tracks governmental COVID-19 responses in real-time and aggre-

gates them in several policy domains. The stringency values are provided as a

composite index ranging from 0 (low stringency) to 100 (high stringency), and are

calculated based on nine indicators including (1) school closures, (2) workplace

closures, (3) canceled public events, (4) restrictions on gathering size, (5) pub-

lic transport closures, (6) stay-at-home requirements, (7) restrictions on internal

movement, (8) restrictions on international travel, and (9) public information

campaigns. Each of these indicators is measured on a daily basis by an ordinal

scale and takes the geographical scope into account. The codebook used by Hale

et al. (2021) can be found in the Appendix 4.A. For our analysis, we calculated

average monthly values of each indicator for each country. The stringency index

SIi,t is then calculated by averaging the values of the k = 9 indicators according

to the equation

SIi,t =
1

k

k∑
j=1

(
100 · vi,j,t − 0.5(Fj − fi,j,t)

mj

)
,

where j is the indicator, t is the month, i represents the country, vi,j,t is the

recorded policy value, Fj is a binary variable that is 1 if the indicator has a �ag

variable or 0 if not, fi,j,t is the recorded binary �ag indicating the geographical

scope of the respective indicator8, and mj is the maximum value of the respective

indicator. This calculation normalizes the di�erent ordinal scales to produce an

index score between 0 and 100.

The various measures taken by the governments in our sample aimed to restrict

the mobility of their respective citizens and, thereby, to reduce close contacts and

the resulting spread of coronavirus infections. For an understanding of the e�ects

of reduced mobility on consumer behavior and prices, we include mobility data by

7 Data are available at https://www.bsg.ox.ac.uk/research/research-projects/covi
d-19-government-response-tracker.

8 For school closures, workplace closures, canceled public events, restrictions on gathering size,
public transport closures, stay-at-home requirements and public information campaigns, this
�ag variable is equal to 1 meaning that measures apply across the country. For the indicators
of restrictions on internal movement and restrictions on international travel, this �ag variable
is equal to 0 meaning that measures apply only to a sub-region of a country, or a speci�c
sector.

https://www.bsg.ox.ac.uk/research/research-projects/covid-19-government-response-tracker
https://www.bsg.ox.ac.uk/research/research-projects/covid-19-government-response-tracker
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Google in our data set. Reduced mobility should coincide with disrupted supply

chains as workers have to stay home instead of going to their factories or o�ces.

Furthermore, we also expect changes in demand since customers might choose to

do less grocery shopping to protect themselves from infection and might reduce

consumption to a necessary minimum or shift consumption to a later time in line

with a precocious saving behavior.

Google's data sets use aggregated and anonymized data from its app Google

Maps showing how visits and length of stays at di�erent geographic regions and

categories of locations9 change compared to a baseline. Changes for each day are

compared to a baseline value for that day of the week, which is the median value

for the corresponding day of the week during the �ve-week period from January 3

to February 6, 2020.10 For Cyprus and Iceland, there is missing mobility data. In

our analysis, we consider only the category of workplaces. There are a number of

reasons for choosing this category of mobility data since a change in mobility at

workplaces induces changes on both the demand and the supply side. Reduced

mobility at workplaces suggests that people are more likely to stay at home

and consume other goods and services there, such as food or energy. Moreover,

reduced mobility at workplaces could also indicate that employees are not only

working from home but that their working hours were reduced or they have even

lost their jobs. The latter would imply a further shift in consumption. The supply

side is also a�ected by workplace closures, which are associated with reduced

mobility at workplaces; this is especially true for work areas where employees'

presence is mandatory, such as on production lines.

The extent to which these changes have actually occurred cannot be quanti-

�ed on the basis of Google's mobility data. However, in combination with a com-

parison of the impact of the stringency of government measures, this provides an

initial idea about the extent to which the measures have been implemented specif-

ically at the workplace and the kind of e�ect(s) these types of policy measures

have had on consumer prices.

We also include indicators of pandemic severity as additional control variables

in our data set. These are measured by the number of new cases and deaths

due to COVID-19 per million people per month for each country.11 COVID-19

case and death numbers were log(x+ 1)-transformed to reduce skewness in their

9 Categories are Residential, Parks, Grocery and Pharmacy Stores, Retail and Recreation,
Workplaces, and Transit Stations.

10Due to this baseline date, data on mobility changes will not be available before February 15,
2020. Data are available at https://www.google.com/covid19/mobility/.

11Data on con�rmed cases and deaths stem from the COVID-19 Data Repository by the Center
for Systems Science and Engineering (CSSE) at Johns Hopkins University. The data are
available at https://coronavirus.jhu.edu/.

https://www.google.com/covid19/mobility/
https://coronavirus.jhu.edu/
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distributions. To control for external e�ects of oil-price �uctuations that occurred

during the pandemic (Le et al., 2021; OECD, 2020b), we added the crude oil price

(in US dollars) as a further control variable in our data set.12

4.4 Methodology

With the data described above, we run panel regressions with country-�xed

e�ects. We use serial correlation-robust standard errors to account for het-

eroskedasticity and autocorrelation. Before that, we check whether the coe�-

cients of a �xed-e�ects model di�er signi�cantly from a random-e�ects approach.

The test by Hausman (1978) suggests that a random-e�ects model in general

would be enough. However, it is common in policy evaluation and applied micro-

econometrics (see, e.g., Angrist and Pischke (2008) or Khandker et al. (2009)) to

focus on �xed-e�ects estimates to account for latent time-invariant characteristics

in the observed sample. Furthermore, random e�ects require much stronger as-

sumptions for consistency, which, in practice, are di�cult to ful�ll. Particularly,

the consistency of random-e�ects estimates requires that unobserved individual

e�ects that are constant across time (captured by αi in our model) are not cor-

related with any of the observable covariates. In our particular case, this is

not likely to be reasonable as unobserved heterogeneity might occur in terms of a

country's (health) infrastructure, main industry type (capital- vs. labor-intensive

industries), trust in the policy regime, and other factors that are constant over

time. Such factors are likely to be correlated with the ability to deal with the

pandemic, the policy trend (a more relaxed or a stricter approach to �ghting the

pandemic), or the willingness of a country's inhabitants to comply with measures,

which, in turn, a�ects our observable covariates.

Additionally, Wooldridge (2015) stated that, in some applications of panel

data methods, a sample cannot be treated as a random sample from a large pop-

ulation, especially when the unit of observation is a large geographic unit such

as states or provinces. Then, it often makes sense to think of each αi as a sep-

arate intercept to estimate for each cross-sectional unit and use a �xed-e�ects

approach. Wooldridge (2015) also noted that a �xed-e�ects approach is almost

always much more convincing than a random-e�ects approach for policy anal-

ysis using aggregated data. Nevertheless, in addition, we run panel regressions

with random e�ects where the results do not di�er qualitatively. The results are

reported in Appendix 4.B.

12Data are available at https://databank.worldbank.org/home.

https://databank.worldbank.org/home


90 Chapter 4. The E�ects of Movement Restrictions on Consumer Prices

Another approach often used in policy analysis is the additional inclusion of

time-�xed e�ects, which allows the elimination of bias from unobservables that

change over time but are constant over entities. As a result, any variable that

varies only across time and not across units will be collinear with the dummy

variables, and its e�ect cannot be estimated. Given that, due to the nature of

the pandemic, there were parallel trends in COVID-19 case numbers and, as a

result, also in the stringency of restrictions across the countries in our sample.

Including time-�xed e�ects in our regressions led to very large standard errors,

indicating only minor di�erential variation in the explanatory variable across time

by country, which is further exacerbated by the small sample size. Thus, in our

main regressions, we only use cross-sectional �xed e�ects.

We then distinguish between two types of regressions to examine the e�ect of

government measures as well as actual consumer behavior.

The equation for regressions of type one is

HICPi,t = β0 + β1SIi,t + β2ln(NewCases+ 1)i,t

+ β3ln(NewDeaths+ 1)i,t + β4oilpricei,t + αi + ui,t ,

where the vector HICPi,t represents a set of harmonized consumer price indices.

In a �rst speci�cation we use the overall HICP, the index for food, and the one

for housing and utilities. After that, we di�erentiate between speci�c sub-indices

for di�erent food categories, namely bread and cereals, meat, �sh and seafood,

dairy products, oils and fats, vegetables, and fruits. Meanwhile, SIi,t indicates

the stringency of government measures to reduce mobility in the countries in our

sample, ln(NewCases+1)i,t gives the logarithm of new case numbers for COVID-

19 infections per million people, and ln(NewDeaths + 1)i,t gives the logarithm

of the number of new deaths per million people resulting from COVID-19. In

addition, oilpricei,t denotes the crude oil price, αi represents country �xed-e�ects,

and ui,t the error term. These regressions shed light on the e�ects of the stringency

of government-imposed measures on consumer prices.

The equation for the second type of regressions is then

HICPi,t = β0 + β1MobilityDatai,t + β2ln(NewCases+ 1)i,t

+ β3ln(NewDeaths+ 1)i,t + β4oilpricei,t + αi + ui,t ,

where the vector HICPi,t again represents a set of harmonized consumer price

indices. As before, we �rst use the overall HICP classi�cations described above

and then di�erent sub-indices for di�erent food categories. Instead of the strin-

gency of restrictions imposed by a government, we use MobilityDatai,t as a
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variable consisting of mobility data at workplaces provided by Google. Again,

ln(NewCases+1)i,t gives the logarithm of new case numbers for COVID-19 infec-

tions per million people, ln(NewDeaths+1)i,t gives the logarithm of the number

of new deaths per million people resulting from COVID-19, oilpricei,t denotes the

crude oil price, αi represents country �xed-e�ects, and ui,t the error term. These

regressions examine the e�ects of reduced actual mobility on consumer prices.

4.5 Results

4.5.1 Descriptive Statistics

Table 4.1 presents descriptive statistics for our sampled countries from January

2020 to May 2021. Because the United States does not report detailed food

classi�cations, the number of observations di�ers between the overall HICP and

this sub-category. The summary statistics illustrate, once again, why the food

sector in particular is of great interest for our study: This category shows major

�uctuations in the HICP, which are driven primarily by the product categories

of fruits and vegetables.

Table 4.1: Summary Statistics

Variables Obs. Mean SD Min Max
HICP All 561 106.84 3.92 98.41 118.40

HICP Food 544 109.76 6.12 91.50 127.14
Bread, Cereals 544 107.72 6.72 90.20 125.85
Meat 544 109.76 6.87 90.20 124.88
Fish, Seafood 544 112.18 7.55 92.90 131.34
Milk, Cheese, Eggs 544 107.20 6.42 93.10 129.52
Oils, Fats 544 112.71 9.38 90.44 135.39
Fruits 544 115.14 11.79 95.90 172.35
Vegetables 544 115.14 13.03 88.09 172.82
Sugar, Jam, a.o. 544 104.32 6.51 78.70 117.69

HICP Housing and 561 107.86 6.27 92.64 137.50
Utilities

SI 561 53.23 22.78 0 98.45

Mobility Workplaces 496 -25.24 11.54 -68.60 5.87

New Cases per Million 561 135,452.80 182,040.70 0 935,091.20

New Deaths per Million 561 2,531.38 3,626.40 0 21,354.43

Crude Oil Price 561 47.20 12.78 21.04 66.40

The price index for housing and utilities also shows �uctuations. Within this

category, rentals account for the largest share of expenditures and thus have the
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greatest impact on the index value. Since only a small fraction of the rental

payments covered by the HICP � typically those referring to new rental agree-

ments for non-social housing � might be expected to directly adapt to market

forces, index �uctuations during the observed period may be explained primarily

by changes in prices for energy supply. However, with respect to our research

question, prices for energy supply are assumed to be quite robust to pandemic-

related policy measures due to the energy market's essential and highly automated

character making it less prone to disruptions in the workforce or supply chain.

The reason for the negative mean value of the mobility at workplaces is that

Google displays mobility changes by comparing changes in mobility for each day

to a baseline value for that day of the week. Therefore, a negative sign indicates

a reduction in mobility.

As an illustrative example, Figure 4.1 presents the trend in aggregate HICP

in Germany for all categories as well as for the speci�c categories of food and

housing and utilities. The trend of the HICP for these categories is almost parallel,

although a stronger �uctuation of the index was observed for food items. We can

already see from this �gure that the price index rose in those months when there

were stricter restrictions due to increases in the numbers of COVID-19 cases, i.e.,

in the second quarter of 2020 and in the �rst and second quarters of 2021.
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Figure 4.1: HICP and Stringency Index in Germany

In contrast to the HICP for food, the German price index for housing and

utilities remained stable and only minor �uctuations were observed, at least until

the end of 2020. The increase in the price index at the beginning of 2021 could

be explained by the reweighting of the index in January 2021. We consider this

in our robustness checks.
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4.5.2 Regressions Type 1

Table 4.2 presents a panel �xed-e�ects regression model for the overall HICP and

the sub-indices for food and housing and utilities according to the COICOP. For

each sub-index, coe�cients of the stringency of government measures to reduce

mobility and curb the spread of the virus are estimated from a model with a

set of control variables including indicators for the severity of the pandemic and

the crude oil price. Please note that the interpretation of coe�cients is complex

since the HICP still includes many di�erent goods even in its sub-categories and,

therefore, is a highly aggregated measure.

Table 4.2: Regressions Type 1: Main Categories

HICP All Food Housing and

Utilities

SI 0.017*** 0.031*** 0.020

(0.005) (0.008) (0.017)

Control Variables Yes Yes Yes

Constant 103.379*** 109.273*** 102.137***

(0.466) (0.642) (1.436)

Obs. 561 544 561

Overall R2 0.325 0.087 0.276

This table reports results of �xed-e�ects panel regressions with het-
eroskedasticity and autocorrelation consistent (HAC) standard errors.
The HICP and its speci�cations is the dependent variable. The indepen-
dent variable is the SI indicating the stringency of measures imposed by
the government due to the COVID-19 pandemic. Controls include the
crude oil price and variables describing the severeness of the pandemic.
These include the logarithm of new reported cases of COVID-19 infec-
tions per million people and the logarithm of new reported deaths due to
COVID-19 per million people. Standard errors are in parentheses. ***
denotes signi�cance at the 1% level; ** denotes signi�cance at the 5%
level; * denotes signi�cance at the 10% level.

The coe�cient of SI is positive and signi�cant at the 1% level for the overall

HICP and the HICP for food items. This implies that prices of items collected for

these indices increase parallel to the strictness of government-imposed measures.

On average, each one-point increase in the stringency index increases the overall

HICP by 0.017 points. Consequently, a 58.82 increase in the stringency index is

associated with a one-point increase in the overall HICP when all other variables

in the model are held constant. For the food category, a smaller increase in the
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stringency index of 32.26 is associated with a one-point increase in the HICP for

food, assuming all other variables are held constant.

The coe�cient of SI for housing and utilities is also positive but not signi�cant.

This result supports our hypothesis that prices of goods and services covered

by this category are robust to the stringency of pandemic-related government

measures.

Investigating the relationship between the stringency of government measures

and prices of sub-categories of the HICP for food items, we observe that coe�-

cients of SI are positive and signi�cant at the 1% level for meat; at the 5% level

for �sh and seafood, milk, cheese, and eggs, vegetables and fruits; and at the 10%

level for oils and fats. The coe�cients of SI for bread and cereals as well as for

sugar, jam, and others are not signi�cant. As the regression results shown in Ta-

ble 4.3 indicate, it appears that the prices of perishable, labor-intensive products

are more sensitive to restrictions than those of durable, capital-intensive products.

Naturally, fresh products have a shorter shelf life and have to be processed and

transported quickly using just-in-time delivery. Thus, shortages of workers and

disrupted supply chains and transportation routes due to movement and travel

restrictions signi�cantly and strongly a�ect the prices of these goods (Attinasi

et al., 2021; Helper and Soltas, 2021).
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Table 4.3: Regressions Type 1: Food Categories

HICP Food Bread, Meat Fish, Milk, Cheese, Oils, Vegetables Fruits Sugar, Jam,

Cereals Seafood Eggs Fats and others

SI 0.011 0.024*** 0.019** 0.017** 0.026* 0.060** 0.127** -0.004

(0.007) (0.008) (0.008) (0.007) (0.014) (0.026) (0.047) (0.010)

Control Variables Yes Yes Yes Yes Yes Yes Yes Yes

Constant 105.452*** 110.256*** 111.682*** 105.947*** 107.935*** 116.910*** 116.494*** 103.217***

(0.792) (0.718) (0.897) (0.638) (1.836) (1.804) (2.325) (0.911)

Obs. 544 544 544 544 544 544 544 544

Overall R2 0.191 0.128 0.018 0.080 0.093 0.106 0.118 0.045

This table reports results of �xed-e�ects panel regressions with HAC standard errors. The HICP for food and its speci�cations is the dependent variable.
The independent variable is the SI indicating the stringency of measures imposed by the government due to the COVID-19 pandemic. Controls include
the crude oil price and variables describing the severeness of the pandemic. These include the logarithm of new reported cases of COVID-19 infections
per million people and the logarithm of new reported deaths due to COVID-19 per million people. Standard errors are in parentheses. *** denotes
signi�cance at the 1% level; ** denotes signi�cance at the 5% level; * denotes signi�cance at the 10% level.



96 Chapter 4. The E�ects of Movement Restrictions on Consumer Prices

4.5.3 Regressions Type 2

With the second type of regressions, we want to determine whether there is

a di�erence between governments' instructions advising people to restrict their

mobility and their actual mobility. Again, Table 4.4 shows the results of a panel

�xed-e�ects regression model for the overall HICP and the sub-indices for food

and housing and utilities. For each sub-index, coe�cients of Google's data on

mobility at workplaces are estimated from a model with a set of control variables

including indicators for the severity of the pandemic and the crude oil price.

Table 4.4: Regressions Type 2: Main Categories

HICP All Food Housing and

Utilities

Mobility Workplaces -0.014** -0.016** -0.019

(0.007) (0.007) (0.012)

Control Variables Yes Yes Yes

Constant 104.018*** 110.604*** 101.510***

(0.480) (0.422) (1.401)

Obs. 496 480 496

Overall R2 0.307 0.054 0.298

This table reports results of �xed-e�ects panel regressions with HAC stan-
dard errors. The HICP and its speci�cations is the dependent variable. The
independent variable is mobility data from Google, describing the percent-
age change from the baseline in the area of workplaces. Controls include
the crude oil price, and variables describing the severeness of the pandemic.
These include the logarithm of new reported cases of COVID-19 infections
per million people and the logarithm of new reported deaths due to COVID-
19 per million people. Standard errors are in parentheses. *** denotes sig-
ni�cance at the 1% level; ** denotes signi�cance at the 5% level; * denotes
signi�cance at the 10% level.

While our previous regression results suggest a signi�cant e�ect of the strin-

gency of measures on overall HICP and the HICP for food, the results of regres-

sions considering actual mobility suggest a signi�cant impact of actual mobility

on the same categories. The coe�cients of mobility at workplaces are negative

and signi�cant for overall HICP and HICP for food at the 5% level. The nega-

tive sign of our coe�cients indicates that less mobility (which might be induced

by stricter mobility restrictions or their expectation) is associated with higher

prices. On average, a one percentage point decrease in mobility is associated

with a 0.014 point increase in the overall HICP. In other words, a 71.43 percent-

age point reduction in mobility increases the overall HICP by one point while
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the other variables in the model are held constant. In the food category, a 62.5

percentage point decrease in mobility results in a one-point increase in the HICP

for food, assuming all other variables are held constant.

This is in line with the regression results for the coe�cients of SI in Table 4.2,

where we observed a positive relationship between SI and HICP, i.e., stricter gov-

ernment measures designed to reduce mobility are associated with higher prices.

As for the �rst regression type, actual mobility data also show no signi�cant

e�ect on the HICP for the category of housing and utilities.

As shown in Table 4.3, the coe�cients of mobility at workplaces are negative

and signi�cant for fruits at the 1% level; negative and signi�cant at the 5%

level for milk, cheese, and eggs and oils and fats; negative and signi�cant at the

10% level for �sh and seafood; and positive and signi�cant at the 5% level for

vegetables. For the sub-categories of meat, bread and cereals, as well as sugar,

jam, and others, coe�cients are not signi�cant, meaning that actual mobility

does not have a signi�cant e�ect on prices of these items. Again, the negative

and signi�cant coe�cients are in line with our previous �ndings. The positive

sign for the sub-index of vegetables is somewhat counterintuitive.
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Table 4.5: Regressions Type 2: Food Categories

HICP Food Bread, Meat Fish, Milk, Cheese, Oils, Vegetables Fruits Sugar, Jam,

Cereals Seafood Eggs Fats and others

Mobility Workplaces -0.009 -0.006 -0.025* -0.012** -0.049** 0.095** -0.136*** 0.004

(0.006) (0.007) (0.014) (0.005) (0.019) (0.041) (0.032) (0.008)

Control Variables Yes Yes Yes Yes Yes Yes Yes

Constant 106.208*** 111.673*** 112.252*** 106.387*** 108.039*** 123.747*** 118.034*** 103.610***

(0.684) (0.722) (0.912) (0.417) (2.107) (1.987) (1.455) (0.777)

Obs. 480 480 480 480 480 480 480 480

Overall R2 0.158 0.091 0.022 0.021 0.101 0.089 0.155 0.021

This table reports results of �xed-e�ects panel regressions with HAC standard errors. The HICP for food and its speci�cations is the dependent variable.
The independent variable is mobility data from Google, describing the percentage change from the baseline in the area of workplaces. Controls include the
crude oil price, and variables describing the severeness of the pandemic. These include the logarithm of new reported cases of COVID-19 infections per
million people and the logarithm of new reported deaths due to COVID-19 per million people. Standard errors are in parentheses. *** denotes signi�cance
at the 1% level; ** denotes signi�cance at the 5% level; * denotes signi�cance at the 10% level.
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4.6 Robustness Checks

To further determine the validity of our results, we employ di�erent robustness

checks. First, we use di�erent speci�cations of the OxCGRT to explain changes

in the categories of the HICP. Our main results focus on the stringency of a

composite index of various government measures. With this robustness check, we

want to examine whether our results change if we only focus on the stringency

of particular measures. More speci�cally, we run regressions with the indicators

of stay-at-home restrictions, internal movement restrictions, and workplace clos-

ings as our independent variable. The regression results show that the sign of

coe�cients is the same as in our main regressions, however, some coe�cients are

not signi�cant anymore. This can be explained by the fact that the individual

indicators have a very coarse scale, whereas the composite stringency index allows

for more variation as it covers more indicators and thus areas which are a�ected

by the restrictions.

With regard to current numbers related to the COVID-19 pandemic, we in-

cluded the number of new cases per million people, the number of new deaths

per million people, and intensive care unit (ICU) and hospital admissions per

million people simultaneously in our regressions as a second robustness check.

This comes with the risk of multicollinearity, but our results are robust and do

not change qualitatively to the regressions where only new cases and deaths are

included.

A further issue we take into consideration for a robustness check is the e�ect of

a reduced VAT in Germany.13 In addition, several other countries induced sector-

speci�c VAT cuts; for example, the British government allowed VAT-registered

businesses to apply a temporary 5% reduced VAT rate to certain supplies relating

to hospitality and hotel and holiday accommodations purchased between July 15,

2020 and March 31, 2021. To check our results for robustness to the VAT cuts,

we run our regression analyses with a sub-sample excluding Germany, which

was the only country in our sample that introduced a cut in the VAT across all

products present in the index categories we consider here. Other countries that

implemented VAT reductions focused, instead, on areas that we do not consider

speci�cally in our sub-indices (e.g., hospitality or tourism). Since products from

these categories are present only in the overall HICP at a low weighting because

they were hardly consumed in relation to other products, their e�ect on the

overall HICP can be ignored. This thesis is also supported by the results of

our robustness checks. Neither signs of coe�cients nor signi�cance change when

13The standard VAT rate was reduced from 19% to 16% from July 1 to December 31, 2020.
The reduced VAT rate of 7% was cut to 5%.
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running the regression with the sub-sample excluding Germany. Thus, our results

are robust to the implemented VAT cuts.

In order to capture changes in consumption and, thereby, the composition

of expenditure, HICP weights are updated annually. Since the COVID-19 pan-

demic led to large shifts in consumption patterns, this resulted in considerable

adjustments in weights of the 2021 HICP. Gonçalves et al. (2021) showed that

this reweighting accounted for 0.3 percentage points of the increase in HICP in

January 2021. To rule out an e�ect on our regression results, we run our regres-

sion analyses with a subset of our data including only the months from January

2020 to December 2020, thereby �nding the qualitatively same results as for our

main regressions.

4.7 Conclusion

The COVID-19 pandemic continues to a�ect many aspects of daily life worldwide,

and while every consumer directly experienced the e�ects of government measures

to curb its spread, they might also have been in�uenced indirectly by the virus

through higher consumer prices.

To summarize the results of our analysis, with regard to our �rst research

question, we �nd that the stringency of government measures to restrict mobility

in order to contain the spread of the virus signi�cantly increased consumer prices.

This is true for the overall HICP as well as for the HICP for food. When we look

further at the food sector, we �nd price increases due to more strict lockdown

measures for the speci�c indices of meat, �sh and seafood, dairy, oils, vegetables,

and fruits. One reason might be that suppliers have to deal with disrupted supply

chains, which is especially a problem for products that are freshly processed and

delivered and require labor-intensive production. In contrast, products with a

long shelf life are not a�ected by short-term restrictions.

For our second type of regressions, we �nd a negative and signi�cant impact

of actual mobility on overall HICP as well as on the HICP for food, meaning that

less mobility is associated with a higher price index, which supports the results

of our �rst regression model. Again, those results also hold for the granular

sub-categories of the food index.

The HICP for housing and utilities is not signi�cantly a�ected neither by the

stringency of government measures nor by actual mobility. As mentioned earlier,

prices for rentals do not seem to be a�ected by the pandemic in the short run,

which leads us to conclude that changes in the HICP for this category may be

explained by price changes in energy supply. However, energy supply is one of
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the most essential business sectors in an economy and, thus, disruptions due to

missing workers were kept to an absolute minimum. Additionally, the energy

supply is highly automated as pipelines and re�neries are set up for long-term

production, making this sector robust to supply-chain disruptions.14

Our �ndings, then, also have implications for economic policy. The �rst and

most important goal of policymakers at the beginning of the pandemic had to

be the protection of citizens and their health. Thus, strict measures to curb the

spread of the virus and to reduce mobility were necessary at that point. However,

those measures came with a variety of drawbacks. Besides the psychological strain

lockdowns put on people, the economic consequences cannot be neglected. As we

show, the severity of government measures signi�cantly pushes prices upwards.

In a pandemic, with lower incomes or short-time work, this hits consumers hard,

especially households with lower incomes. Thus, with fewer deadly variants of

the virus and high numbers of vaccinated citizens, governments must now re-

evaluate their stay-at-home measures and keep an eye on their contribution to

price increases.

14The current war in Ukraine poses a whole di�erent shock to the energy supply, however, did
not a�ect prices during the observed period.
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4.A Appendix: Codebook of Indicators

Table 4.A.1: Codebook of Indicators of Government Measures (Hale et al., 2021)

ID Name Description Measurement Coding instructions

C1 School closing
Record closings of
schools and
universities

Ordinal scale;
binary for geographic
scope

0 � No measures
1 � Recommend closing
2 � Require closing (only some levels or categories)
3 � Require closing all levels

0 � Targeted
1 � General

C2
Workplace
closing

Record closings of
workplaces

Ordinal scale;
binary for geographic
scope

0 � No measures
1 � Recommend closing (or work from home)
2 � Require closing (or work from home) for some sectors or

categories of workers
3 � Require closing (or work from home) all-but-essential

workplaces (e.g. grocery stores, doctors)

0 � Targeted
1 � General

C3
Cancel public
events

Record canceling
public events

Ordinal scale;
binary for geographic
scope

0 � No measures
1 � Recommend canceling
2 � Require canceling

0 � Targeted
1 � General
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ID Name Description Measurement Coding instructions

C4
Restrictions
on gatherings

Record the cut-o�
size for bans on
gatherings

Ordinal scale;
binary for geographic
scope

0 � No restrictions
1 � Restrictions on very large gatherings (> 1000 people)
2 � Restrictions on gatherings between 101-1000 people
3 � Restrictions on gatherings between 11-100 people
4 � Restrictions on gatherings of 10 people or less

0 � Targeted
1 � General

C5
Close public
transport

Record closing of
public transport

Ordinal scale;
binary on geographic
scope

0 � No measures
1 � Recommend closing (or signi�cantly reduce volume/

route/means of transport available)
2 � Require closing (or prohibit most citizens from using it)

0 � Targeted
1 � General

C6
Stay at home
requirements

Record orders to
�shelter-in-place�
and otherwise
con�ne to home

Ordinal scale;
binary on geographic
scope

0 � No measures
1 � Recommend not leaving house
2 � Require not leaving house with exceptions for daily

exercise, grocery shopping, and �essential� trips
3 � Require not leaving house with minimal exceptions

(e.g. only one person can leave at a time)

0 � Targeted
1 � General
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ID Name Description Measurement Coding instructions

C7
Restrictions
on internal
movement

Record restrictions
on internal
movement

Ordinal scale;
binary on geographic
scope

0 � No measures
1 � Recommend not to travel between regions/cities
2 � Internal movement restrictions in place

0 � Targeted
1 � General

C8
International
travel controls

Record restrictions
on international
travel

Ordinal scale

0 � No measures
1 � Screening
2 � Quarantine arrivals from high-risk regions
3 � Ban on arrivals from some regions
4 � Ban on all regions or total border closure

H1
Public info
campaigns

Record presence of
public info
campaigns

Ordinal scale;
binary on geographic
scope

0 � No COVID-19 public information campaign
1 � Public o�cials urging caution about COVID-19
2 � Coordinated public information campaign (e.g. across

traditional and social media)

0 � Targeted
1 � General
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4.B Appendix: Results of the Random-E�ects

Model

Table 4.B.1: Random-E�ects Regressions Type 1: Main Cate-

gories

HICP All Food Housing and

Utilities

SI 0.016*** 0.030*** 0.020

(0.005) (0.008) (0.017)

Control Variables Yes Yes Yes

Constant 103.388*** 109.284*** 102.133***

(0.464) (0.927) (1.291)

Obs. 561 544 561

This table reports results of random e�ects panel regressions with HAC
standard errors. The HICP and its speci�cations is the dependent vari-
able. The independent variable is the SI indicating the stringency of
measures imposed by the government due to the Covid-19 pandemic.
Controls include the crude oil price and variables describing the severe-
ness of the pandemic. These include the logarithm of new reported cases
of Covid-19 infections per million and the logarithm of new reported
deaths due to Covid-19 per million. Standard errors are in parentheses.
*** denotes signi�cance at the 1% level; ** denotes signi�cance at the
5% level; * denotes signi�cance at the 10% level.
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Table 4.B.2: Random-E�ects Regressions Type 1: Food Categories

HICP Food Bread, Meat Fish, Milk, Cheese, Oils, Vegetables Fruits Sugar, Jam,

Cereals Seafood Eggs Fats and others

SI 0.010 0.024*** 0.018** 0.017** 0.025* 0.059** 0.124*** -0.005

(0.007) (0.008) (0.008) (0.007) (0.014) (0.026) (0.047) (0.010)

Control Variables Yes Yes Yes Yes Yes Yes Yes

Constant 105.462*** 110.267*** 111.689*** 105.949*** 107.945*** 116.986*** 116.618*** 103.225***

(0.922) (1.416) (1.583) (0.856) (2.245) (2.295) (2.868) (1.068)

Obs. 544 544 544 544 544 544 544 544

This table reports results of random e�ects panel regressions with HAC standard errors. The HICP for food and its speci�cations is the dependent
variable. The independent variable is the SI indicating the stringency of measures imposed by the government due to the Covid-19 pandemic. Controls
include the crude oil price and variables describing the severeness of the pandemic. These include the logarithm of new reported cases of Covid-19
infections per million and the logarithm of new reported deaths due to Covid-19 per million. Standard errors are in parentheses. *** denotes signi�cance
at the 1% level; ** denotes signi�cance at the 5% level; * denotes signi�cance at the 10% level.
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Table 4.B.3: Random-E�ects Regressions Type 2: Main Categories

HICP All Food Housing and

Utilities

Mobility Workplaces -0.014** -0.015** -0.019

(0.007) (0.007) (0.012)

Control Variables Yes Yes Yes

Constant 104.029*** 110.636*** 101.510***

(0.464) (0.978) (1.287)

Obs. 496 480 496

This table reports results of random e�ects panel regressions with HAC stan-
dard errors. The HICP and its speci�cations is the dependent variable. The
independent variable is mobility data from Google, describing the percent-
age change from the baseline in the area of workplaces. Controls include
the crude oil price, and variables describing the severeness of the pandemic.
These include the logarithm of new reported cases of Covid-19 infections
per million and the logarithm of new reported deaths due to Covid-19 per
million. Standard errors are in parentheses. *** denotes signi�cance at the
1% level; ** denotes signi�cance at the 5% level; * denotes signi�cance at
the 10% level.
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Table 4.B.4: Random-E�ects Regressions Type 2: Food Categories

HICP Food Bread, Meat Fish, Milk, Cheese, Oils, Vegetables Fruits Sugar, Jam,

Cereals Seafood Eggs Fats and others

Mobility Workplaces -0.009 -0.005 -0.025* -0.012** -0.048** 0.101** -0.124*** 0.005

(0.006) (0.007) (0.014) (0.005) (0.019) (0.040) (0.032) (0.008)

Control Variables Yes Yes Yes Yes Yes Yes Yes

Constant 106.222*** 111.703*** 112.258*** 106.400*** 108.051*** 124.011*** 118.471*** 103.629***

(0.859) (1.566) (1.646) (0.926) (2.593) (2.603) (2.686) (1.102)

Obs. 480 480 480 480 480 480 480 480

This table reports results of random e�ects panel regressions with HAC standard errors. The HICP for food and its speci�cations is the dependent variable.
The independent variable is mobility data from Google, describing the percentage change from the baseline in the area of workplaces. Controls include the
crude oil price, and variables describing the severeness of the pandemic. These include the logarithm of new reported cases of Covid-19 infections per million
and the logarithm of new reported deaths due to Covid-19 per million. Standard errors are in parentheses. *** denotes signi�cance at the 1% level; **
denotes signi�cance at the 5% level; * denotes signi�cance at the 10% level.
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Chapter 5

General Conclusions

This dissertation has dealt with questions around the implementation of pricing

algorithms that use a reinforcement learning approach from two di�erent per-

spectives. The �rst addresses algorithmic collusion. This topic was discussed

in Chapter 2 of this dissertation in order to come to a better assessment of the

extent to which there is indeed a risk of collusion by learning algorithms. The

occurrence of tacit collusion was identi�ed as a concern by Ezrachi and Stucke

(2016) because, according to the authors, the existing regulations in the United

States are not su�cient to prohibit tacit collusion where no intent to collude

can be proven. Other scholars have called for improved enforcement practices,

such as monitoring of algorithms by competition authorities (Harrington, 2018)

or allowing �rms to correct pricing decisions of their algorithms if they implement

collusive strategies, which requires them to continuously monitor their algorithms

(Massarotto, 2019).

In the European Union, the situation is somewhat di�erent. In his study,

Blockx (2017) pointed out that EU competition law allows tacit collusion to be

captured. However, as stated in Chapter 2, collusive behavior of algorithms is (at

least from the current point of view) not very likely to occur in reality. The reasons

for this are technical challenges of reinforcement learning algorithms that are not

solved at that point, such as dealing with non-stationary environments and a large

number of possible actions and competitors, both requiring immense processing

and time capacities to complete the learning process. Moreover, assumptions

made in experimental studies were shown to be quite unrealistic and do not re�ect

economic reality. Consequently, autonomous collusion by learning algorithms

does not currently seem to be a major competition concern.

Nevertheless, technological developments are not standing still, of course,

and the application of other pricing algorithms and new technologies (such as

blockchain technology) will certainly keep competition authorities busy, also with

regard to collusive behavior (Cong and He, 2019; Schrepel, 2019). Thus, from a
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legal point of view, raising awareness for technological improvements and devel-

opments is still very important and one of the major challenges in this area.

Another ongoing debate is that of personalized pricing and the potential of

learning algorithms to engage in discriminatory pricing strategies when more re-

alistic assumptions about consumers are made. In particular, inequity aversion

of consumers was considered in this thesis. As shown in Chapter 3, learning algo-

rithms are indeed capable of recognizing consumers' fairness preferences and still

setting revenue-maximizing, di�erential prices while taking the inequity aversion

into consideration. This leads to the question of whether this result calls for

political action. From a welfare economic perspective, the e�ect of price discrim-

ination is ambiguous. Armstrong (2006), Stole (2007) and Varian (1989) provide

a good overview on the outcomes and welfare e�ects of price discrimination in

various settings. Generally, for price discrimination to improve overall welfare,

a substantial increase in output is required by o�ering products to consumers

who were previously unserved due to a low willingness to pay. This may lead to

an improvement of both consumer and producer welfare. In cases where price

discrimination does not lead to an increased supply, it often shifts welfare from

consumers to producers or even reduces total welfare when the loss of consumer

surplus is larger than the gain on the producers' side. In any case, consumers

who are willing to pay higher prices are most probably worse o� if sellers engage

in price discrimination (Zuiderveen Borgesius and Poort, 2017).

For this reason, it is also worth taking a look at the current legal situation

with regard to price discrimination and, a topic that is also involved, privacy

issues of consumers. In general, personalized pricing strategies do not entirely �t

the scenarios where discrimination is accepted under Article 102 of the Treaty

on the Functioning of the European Union (TFEU); however, Article 102 TFEU

is su�ciently �exible to capture the currently rare forms of price discrimination

(Graef, 2017). As algorithmic personalized pricing is only possible when �rms

have enough information that is usually obtained by analyzing data, the European

General Data Protection Regulation (GDPR) may be applied. This data protec-

tion law applies if personal data are processed. Zuiderveen Borgesius and Poort

(2017) argue that online shops, which use cookies for identi�cation, tracking, and

categorization of customers, indeed use personalized pricing strategies and, thus,

the GDPR can be applied to these cases. Since this regulation requires �rms

to be transparent about the purpose of the personal data processing, they must

inform their customers and request their consent for processing the data if they

engage in personalized pricing. However, when further regulating the collection

of personal data one must take into consideration that this is only advantageous
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under certain conditions, e.g., when consumers are not very privacy-sensitive and

the market is characterized by limited competition and �rms engaging in price

discrimination (Koh et al., 2017).

Another challenge faced by many governments in the short and mid run is

combating in�ation. This is currently reaching peak levels worldwide due to the

war in Ukraine. Furthermore, measures introduced by governments during the

ongoing pandemic also resulted in price increases. In Chapter 4, we examined

the impact of the stringency of government measures that were imposed during

the COVID-19 pandemic on consumer prices. Results of the �xed-e�ects regres-

sion models have demonstrated that governmental measures a�ecting population

mobility had a signi�cant impact on consumer prices mainly in the food sector.

Within this category of the HICP, stricter measures led to higher prices. As a

consequence, such measures should be weighed carefully, especially since it will

probably not be the last time that the use of such measures will be considered

as there may be further waves of the pandemic. The particular reason for the

increase in prices was beyond the scope of this dissertation, but it is reasonable

to assume that this is due to rising costs on the supply side. From a welfare

economics perspective, producer welfare has at best remained the same (with the

exception of a few pro�teers of the pandemic), while consumer welfare has in

any case declined due to the increase in prices. Thus, it is likely that an overall

welfare loss occurred. Since it cannot be assumed that governments will be able

to completely compensate for the rising prices (nor should they), it remains to

be seen whether suitable measures will be found that do not drive prices up even

further.

To conclude, this dissertation addressed the topic of algorithmic pricing,

thereby showing that autonomous collusion by learning agents does not currently

pose a major competition concern, in contrast to personalized pricing strategies,

which have been shown to be more feasible with pricing algorithms using a re-

inforcement learning approach. Additionally, the thesis provides insight into the

e�ects of pandemic-related policy measures by showing that more stringent gov-

ernment measures led to an aggravation of the situation during the COVID-19

pandemic by contributing to price increases in certain product categories.
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