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Chapter 1

Introduction

1.1 Background

With climate change and the COVID19 pandemic, sustainability has become a great challenge
of this century. To tackle this social issue there are several fields to focus on such as
logistics and drug discovery. One of the key common research fields between logistics and
drug discovery is Operations Research (OR). [45, 12] OR is the application of analytical
methods to help make better decisions. It has been an active field of research since the
1940s. Breakthroughs such as the Branch-and-Cut algorithm in the 1990s have made
linear programming a widely adapted method to solve combinatorial optimization problems
encountered in various applications [47]. Certain categories of combinatorial problems
remain difficult to tackle and are still actively researched: NP-hard problems.

Ten years ago, the first Quantum Annealer by D-Wave [36], a dedicated quantum computer
architecture to solve Quadratic Unconstrained Binary Optimization problems (QUBO) which
are NP-hard, was released [6]. QUBO is represented as a polynomial on binary variables
of the second order and quantum annealers find a combination of binary variable values to
minimize (or maximize) the polynomial. Since the release of the Quantum Annealer, silicon
based dedicated architectures have also emerged to solve QUBOs such as Hitachi’s CMOS
Annealer[62] or Fujitsu’s Digital Annealer (DA)[19, 46]. Those quantum and silicon based
architectures built to solve QUBOs have been called Ising machines. A common trait to the
fore-mentioned Ising machines is they are all related, to a certain extent, to the well-known
metaheuristic: Simulated Annealing (SA)[37].

The main characteristic of SA, compared to greedy metaheuristics, is it allows to make
decisions when solving a problem which can worsen the current cost value 𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡 of a
solution considered, with a certain probability 𝑃 depending on current temperature 𝑇 as
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Fig. 1.1 Replica Exchange mechanism used in Digital Annealer

described by the metropolis criterion represented in Equation (1.1) and [44].

𝑃 = min
(︃
1,exp

{︃
− (𝐸𝑛𝑒𝑥𝑡 −𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

𝑇

}︃)︃
(1.1)

where 𝐸𝑛𝑒𝑥𝑡 is the cost of the considered new solution. When annealing, 𝑇 starts with at 𝑇𝑚𝑎𝑥
and then gradually lowers to 𝑇𝑚𝑖𝑛 where both 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 are set by the user, 𝑇𝑚𝑎𝑥 ≥ 𝑇𝑚𝑖𝑛
and 𝑇𝑚𝑎𝑥 ,𝑇𝑚𝑖𝑛 ∈ R. Thus at the beginning of the annealing process, decisions worsening 𝐸
are more likely to happen than at the end of the process. Given enough solving time and
proper SA parameter setting, SA guarantees to reach optimal solution but the required solving
time could be astronomical thus many improvements to SA have been proposed since it was
created.

An example of Ising machine, the Digital Annealer, operates using parallel tempering
illustrated in Figure 1.1 and [42]. The main difference with SA is “replicas” explore the
state (solution) space 𝑋 in parallel, where each replica operate at a fixed 𝑇𝑟 value where
𝑇𝑚𝑖𝑛 < 𝑇𝑟 < 𝑇𝑚𝑎𝑥 . Once a replica 𝑟 finds a state with a lower 𝐸 value than adjacent replica
𝑟 −1 lowest found 𝐸 value, they both exchange their lowest 𝐸 state and resume their search.

Most combinatorial optimization problems can be modeled as QUBO, with a varying
amount of effort required [40], thus solving those problems on Ising machines has been
actively researched for 10 years, especially comparing solving performance with traditional
architectures and algorithms [32, 42]. A QUBO can be described by the following Equation
(1.2):

𝐸 (𝑥) =
∑︁
𝑖, 𝑗

𝑄𝑖 𝑗𝑥𝑖𝑥 𝑗 (1.2)

with 𝑥𝑖 ∈ B and coefficients 𝑄𝑖 𝑗 ∈ R for 1 ≤ 𝑖 ≤ 𝑗 . Regardless of the Ising machine used,
it has appeared clearly that depending on how a problem is modeled as QUBO, solving
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performance can vary greatly. Likewise, solving performance also depends on Ising machine’s
hyperparameters, parameters which are used to control the QUBO solving process.

To maximize combinatorial problem-solving performance on Ising machines, this disser-
tation aims at tacking both the QUBO modeling and the hyperparameter setting parts of the
QUBO solving process. This dissertation proposes a QUBO solving visualization technique
to help identifying bottlenecks in the solving process to improve the modeling as well as an
automated efficient Ising machine hyperparameter tuning framework.

Combinatorial problems used in this dissertation are the well known Quadratic Knapsack
Problem (QKP) [11], Cardinality Constrained Portfolio Optimization Problem [15], Traveling
Salesman Problem [51] and Quadratic Assignment Problem [13]. They all represent different
kind of difficulties when using an Ising machine making them relevant for the topics of this
dissertation. The Quadratic Knapsack Problem was first formulated as a QUBO in [25], at
the time of writing Chapter 2, results of running its QUBO on an Ising machine had yet
to be published. Since then, it has been studied in [58] which focuses on integer to binary
variable encoding, and [55] which focuses on proposing a new kind of Ising machine. For
Cardinality Constrained Portfolio Optimization Problem, although researches had been done
on using Ising machines for financial applications such as index tracking with cardinality
constraints [1], [21] and trading trajectory problem [53], it had never been solved on an Ising
machine at the time Chapter 3 was written. Traveling Salesman Problem as well as Quadratic
Assignment Problem had previously been studied in [43] and [42] respectively, and are used
for benchmarking purpose.

1.2 Dissertation Overview

The rest of this dissertation is organized as follows:
Chapter 2 [Analysis and Acceleration of the Quadratic Knapsack Problem on an

Ising Machine] proposes a QUBO search space landscape visualization technique which
uses two local minima solutions found to represent the multi-dimensional space in between
and understand what makes a QUBO hard to solve. This technique is applied to the Quadratic
Knapsack Problem (QKP) where the goal is to maximize the value of items inserted in
a knapsack. This is known to be an NP-hard problem. Chapter 2 shows that moving in
and out heavy items from the knapsack is difficult due to the nature of representing linear
inequality constraints as QUBO. With this insight, a solution mending method is proposed to
help Ising machines stuck in local minima which raises the chances of finding the optimal
solution with an Ising machine from only 6.7% to 60.7% for an Ising machine used with the
proposed solution mending method. Chapter 2 also compares the proposed Ising machine
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with solution mending against SA. Results show that for all problem instances evaluated on,
optimal solution is hard to reach for SA.

Chapter 3 [Cardinality Constrained Portfolio Optimization on an Ising Machine]
proposes a novel integer variable to binary variables modeling technique. Proposed landscape
technique from Chapter 2 helped us to identify another bottleneck when solving problems
which include integer variables. When using classic encoding methods, those encodings either
create large differences in the cost function when changing a binary variable value representing
a large integer value, which makes those moves unlikely to happen, or require a large quantity
of binary variables, creating both computing complexity and a larger memory footprint. A
“base10” encoding is proposed as a tradeoff between all fore-mentioned encodings. Proposed
encoding is applied to the Cardinality Constrained Mean Variance Portfolio Optimization
Problem (CCMVPOP), which is an NP-hard problem using real number variables. An
efficient QUBO model for the CCMVPOP is thus proposed by first converting real number
variables to integer variables using coefficient multiplication with rounding combined with
integer to binary variable encoding. Solving performance using the proposed encoding is
compared to classic encodings. Results show the time to the best-known solutions can be
improved by a factor of up to 10x for several CCMVPOP instances. Results also show the
proposed encoding is the only one which allows to reach the best-known solutions for the
largest CCMVPOP instance available in the used benchmark data.

Chapter 4 [Fast Hyperparameter Tuning for Ising Machines] proposes a novel Ising
machine hyperparameter tuning framework. It is based on machine learning state of the art
hyperparameter tuning method called Tree-structured Parzen Estimator (TPE), which is a kind
of Bayesian optimization technique. After extending TPE to Ising machines, as well comparing
TPE to random parameter sampling, an enhanced TPE called “FastConvergence” is proposed.
FastConvergence reduces the time required to find parameters which enable the same level of
performance as TPE. Random sampling, TPE, and "FastConvergence" are compared using
DA to solve Travel Salesman Problem (TSP) and Quadratic Assignment Problem (QAP),
two well-known NP-hard problems often used for Ising machine benchmarking. Results
show that the proposed FastConvergence can find parameters which give solving performance
equivalent or better than TPE with two to three times faster tuning time.

Chapter 5 [Conclusions] summarizes the dissertation. In conclusion, performance when
solving combinatorial problems using Ising machines vary greatly depending on the QUBO
modeling technique as well as the used Ising machine’s hyperparameters. It is thus vital to
keep developing bottleneck analysis techniques to inspire future Ising machine architectures
and solving algorithm techniques. It is also critical to have robust hyperparameter tuning
framework to both maximize Ising machines’ performance but also, in general, have fair
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comparisons between metaheuristics-based solvers which have highly sensitive parameters,
as one could easily disregard some solver in favor of another due to poor or lack of parameter
tuning. Continuing to improve the proposed hyperparameter tuning framework and QUBO
solving visualization are our future works.





Chapter 2

Analysis and Acceleration of the
Quadratic Knapsack Problem on an Ising
Machine1

2.1 Introduction

2.1.1 The Binary Quadratic Knapsack Problem

The binary quadratic knapsack problem (QKP) is the problem of finding the combination
items giving the highest profit within the capacity 𝐶 of a knapsack for a given triangular
profit matrix 𝑃 = {𝑝𝑖 𝑗 } of positive values. Let 𝑥𝑖 be a binary variable showing whether the
item 𝑖 is chosen or not. If 𝑥𝑖 = 1, the item 𝑖 is chosen. 𝑝𝑖 𝑗 is the profit when both item 𝑖 and
item 𝑗 are chosen. 𝑝𝑖𝑖 is the profit when only item 𝑖 is chosen. Each item 𝑖 has a weight 𝑤𝑖:

maximize
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑝𝑖 𝑗𝑥𝑖𝑥 𝑗 (2.1)

subject to
𝑛∑︁
𝑖=1
𝑤𝑖𝑥𝑖 ≤ 𝐶 𝑥𝑖 ∈ {0,1} (2.2)

It is a generalization of the binary knapsack problem (where 𝑝𝑖 𝑗 = 0 for 𝑖 ≠ 𝑗) as well
as several other combinatorial problems which can also be expressed as a QKP such as the
clique problem, and is considered a difficult NP-hard problem [14] [50].

1Technical contents in this chapter have been presented in the publication ⟨1⟩ and in the conference ⟨7⟩.
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Its known applications are VLSI design [22], compiler design [35], budgeting problem
[39] and network flows [52].

QKP has been investigated for more than 40 years since its introduction by Gallo et
al. [23]. Various approaches ranging from exact algorithms, heuristics, meta-heuristics,
linearization have been tried. The most efficient current approach to our knowledge comes
from C. Patvardhan et al. using a quantum inspired evolutionary algorithm (QIEA) [49] and
will thus be the base for comparing our results. Although the QKP was first formulated as an
Ising model in [25] by Glover et al., to our knowledge, results of running this Ising model on
an Ising machine have yet to be published.

2.1.2 Ising Machines

Ising machines have been gaining momentum over the course of the last 10 years with the
advent of commercialization of quantum annealers [36] and other specialized architectures
targeting the same problem. They take for input an Ising spin model and search for the lowest
energy configuration of spins (which can have an "up" or "down" value, translatable to 1 or
0) i.e. the ground state. Numerous kinds of combinatorial problems can be mapped to an
Ising model, such as QKP. Solving these mapped problems on Ising machines allows for
certain categories of problem to be solved more efficiently than conventional methods. They
represent an attempt to circumvent Moore’s Law [5] [30].

QKP’s quadratic objective function seemed like a good fit as it can be translated "as is" in
an Ising model, although the capacity constraint had to be converted to an objective function
using binary auxiliary variables. The broad applications of QKP, the fit to Ising model and
the novelty of Ising machines are what motivated our research.

2.1.3 Our Proposal

In this chapter we propose to analyze the results of running Ising models of QKP on an Ising
machine on benchmark instances. Firstly, we run them using a naive formulation without
any particular enhancements, secondly we analyze the bottlenecks of this first run, finally we
propose software solution improvement algorithms to improve the results.

2.1.4 Contributions

Our main contributions are the following to improve convergence to optimal solution:

• Visualization techniques of Ising models which inspired the following contribution.
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• Low 𝛼 coefficient for the constraint part of the Hamiltonian coupled with a software
solution improvement technique to "mend" non-feasible solutions and improve feasible
ones into high quality feasible solutions.

Our benchmark used in this chapter relies on instances from the work of Billionnet et al.
[11]. To our knowledge, since the publication of [50], quantum inspired evolution algorithm
approach from Patvardhan et Al. [49] is the approach yielding the best results both time wise
and chance of solving an instance, it will thus be used for comparison with our results.

We do not claim superiority of Ising machines for QKP, but we want to share the various
shortcomings we had and the techniques we came up with to overcome those and benchmark
those techniques efficiency within the paradigm of finding the best solution using Ising
models.

2.2 Simple QKP Trial on an Ising machine

In this section we present the results of the Ising models formulation found in [25] on instances
taken from [11] using an Ising machine called a "Digital Annealer" (DA) [3],[42] as well as a
"simulated annealing sampler"(SA) [18] for a baseline comparison.

2.2.1 Benchmark Instances Description

We used QKP instances from [11] which are all combinations of variable number 𝑛 =
[100,200,300], profit matrix density Δ = [0.25,0.5,0.75,1] randomly generated 10 times.
For 𝑛 = 300 only Δ = [0.25,0.5] are present. Weight values have a normal distribution
between 1 and 50. Profit values have a normal distribution between 1 and 100. Capacity is
randomly distributed in [50,

∑︁
𝑖 𝑤𝑖].

2.2.2 QKP Ising Formulation

The first formulation of QKP as an Ising model or Hamiltonian was done by Glover et al.
[25]. It is the following:

𝐻 =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

(︁
−𝑝𝑖 𝑗𝑥𝑖𝑥 𝑗

)︁
+𝛼

(︄
𝑛∑︁
𝑖=1
𝑤𝑖𝑥𝑖 −𝐶 + 𝑦

)︄2

(2.3)

where 𝑝𝑖 𝑗 is the profit when both item 𝑖 and item 𝑗 are chosen, 𝑥𝑖 is the binary variable
representing if item 𝑖 is chosen or not, 𝑤𝑖 is the weight of item 𝑖, 𝐶 is the weight capacity of
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the knapsack and 𝑦 is the auxiliary integer variable for when the capacity is not fully used
with 0 ≤ 𝑦 < 𝐶. 𝐻 is called Hamiltonian energy or energy for short.

The integer auxiliary variable 𝑦 following a one-hot encoding is expressed by binary
variables 𝑦𝑖 as follows:

𝑦 =

𝑚∑︁
𝑖=0
𝑖𝑦𝑖 with 𝑦 ∈ Z and 𝑦𝑖 ∈ {0,1} (2.4)

subject to:

(︄
𝑚∑︁
𝑖=0
𝑦𝑖 −1

)︄2

= 0 (2.5)

Auxiliary variables only need to compensate for values up to the maximum value minus
one of an item in an instance of [11] as any values above would mean another item could be
added in the knapsack as the max possible capacity of the knapsack in any instance is

∑︁
𝑖 𝑤𝑖.

Therefore 𝑚 = max𝑤𝑖 −1. The reason for limiting the auxiliary variable range is to limit the
number of iterations consumed flipping those variables.

We set the constraint coefficient 𝛼 in Eqn. (2.3) as strength×𝑛×Δ with strength initial
value set to 0.1, 𝑛 being the problem size and Δ the profit matrix density. The larger and
denser a problem is, the more adding an item to the knapsack can generate higher profit. Thus,
𝛼 must be set to a higher value accordingly as Δ and 𝑛 grow to prevent penalty violation.

If all the replicas (detailed will be explained in Section 2.2.3) of the DA converged to an
infeasible solution, we judged that 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ was too low and increased it by 50%. We repeat
this process until at least one feasible solution was reached.

2.2.3 Digital Annealer and its Hyper-Parameters

The DA operating principle is searching for the ground state of an Ising model using the basis
of the Markov chain Monte Carlo (MCMC) method [42]. In the model used for the presented
experiments, up to 8,192 variables can be defined with up to 67,108,864 couplers to define
the weight binding the variables with a precision up to 64 bits (i.e. any variable 𝑥𝑖 can be
unconditionally connected to any variable 𝑥 𝑗 for a "full connectivity"). We choose the DA as
its full connectivity makes it attractive for QKP with a high profit matrix density as they can
be run without any transformation.

Another specificity of the DA is to have multiple processes, or replicas, doing the same
MCMC search, at different temperatures, to speedup finding the ground state [42]. All the
𝑟 replicas are given the same Ising model with their own different temperatures, evenly
spread on a logarithmic scale between 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛, set by the user. Temperature wise
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adjacent replicas exchange their state, which is their lowest energy found solution, every
"exchange rate" iterations. This parallel search is also known as parallel tempering [34].
Its main merit is to be less sensible to temperature scheduling in comparison to simulated
annealing, as search will not halt on a local minimum if temperature is too low. Another DA
specific mechanism is the "dynamic offset" [3] : every time a replica does not flip any binary
variable in an iteration, DA applies an energy offset allowance, set by a corresponding hyper
parameter called "offset_increase_rate", letting DA accept a binary flip causing an
energy increase less or equal than the accumulated offset allowance, regardless of temperature.
When a flip occurs, the offset allowance is reset to 0.

For our experiments we used parallel tempering with 𝑟 = 26 replicas with 𝑇𝑚𝑎𝑥 = 9000
and 𝑇𝑚𝑖𝑛 = 0, without any temperature decay, with a replica temperature exchange rate of 100
iterations and an offset_increase_rate value of 100.2 Thus every time a replica does
not flip any binary variable in an iteration, we apply an energy offset allowance of +100 and
then reset when a flip occurs. All problems are ran over 750 million iteration which takes
about 39 seconds with the above settings. Every result is evaluated over 20 different random
seeds. Finally, the initial value of every binary variable is set to 0.

2.2.4 Simulated Annealing

To provide a baseline to compare with DA results, we chose the SA from D-Wave [18], which
can perform simulated annealing on an Ising model. There are two reasons for this choice.
First, as far as we know, no SA implementation specialized for the QKP have been proposed.
The closest implementations we found were respectively for the quadratic multiple knapsack
problem [17] and the generalized quadratic multiple knapsack [16] but they are not the same
as our QKP. Secondly, the advantage of Ising model solvers is their ability to solve any
combinatorial problem mapped to an Ising model, whereas specialized SA implementations
are limited to the problem they are applied to. Thus, for a fair comparison, we decided to
choose a software implementation of SA for Ising models.

We ran the SA with the same 𝛼, 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 as DA. We adjusted the SA number of
iterations so that it would take 39 seconds, the same time as our DA experiments. This
gave an SA number of iterations of 2,750,000. As for DA, every result is evaluated over 20
different random seeds and every binary variable initial value is set to 0. We also ran another
experiment with double the number of iterations for a total of 5,500,000 for reference.

Because some SA runs would lead to a constraint-violating solution, we applied the
lightweight Algorithm 1 to mend these solutions to feasible solutions, whereas for DA, we

2Those parameters are the one which worked best for us over all instances after tuning them using hyperopt
[10].
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Algorithm 1 SA Solution Mending Algorithm
1: procedure solutionMending
2: input:
3: Initial SA solution: 𝑠 = {𝑥1, 𝑥2, ..., 𝑥𝑛}
4: output:
5: Mended solution: 𝑠′ = {𝑥1

′, 𝑥2
′, ..., 𝑥𝑛′}

6: main:
7: 𝑠′ = 𝑠;
8: for every 𝑥𝑘 in 𝑠′ | 𝑥𝑘 = 1 do
9: Evaluate 𝑥𝑘 removal cost loss;

10: Accept the item removal giving the minimum cost loss;
11: Repeat the above process until 𝑠′ is feasible;
12: return 𝑠′

keep as solution the best non constraint violating solution within all the replicas and our 𝛼
policy ensures at least one replica reached a feasible solution.

2.2.5 First Benchmark Results

Tables 2.1, 2.2 and 2.3 show the number of times optimal answer was reached over the 20
random seeds for each QKP instance of size 100, 200 and 300 respectively as "DA success%",
"SA1 success%" and "SA2 success%", respectively for a 39s DA run, 39s SA run and 78s SA
run, when trying to find the ground state of the Ising model. Likewise, "DA gap%", "SA1
gap%" and "SA2 gap%" are the mean gap achieved for the 20 seeds used. Gap is measured as
described in Eqn. 2.6:

Gap =
opt_val−obtainedValue

opt_val
×100 (2.6)

where opt_val is the known optimal profit value in every QKP instance from [49] and
obtainedValue is the value reached by DA or SA. "Instance name" is the name of the QKP
instance used. Δ is the profit matrix density expressed in %. The experiments on SA1 and
SA2 were conducted on an Intel Core i7-9700K, 8 cores CPU with a base frequency of 3.6
GHz, using python 3.7.9 and dwave-neal 0.5.7.

We observed that in all problem instances SA could not reach optimal solution once,
even for 78s runs. We also observed that in all instances, except r_100_75_1, r_200_100_1,
r_200_100_8 and r_300_50_3, DA gap is much closer to optimal than SA1 and SA2. The
average gap% over all instances for SA1 is 18.58%, for SA2 18.00% against 8.15% for DA.
The average success% over all instances for SA1 and SA2 is none against 6.7% for DA.
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Table 2.1 100 variables problem results.

Instance name Δ opt_val DA gap% SA1 gap% SA2 gap% DA success% SA1 success% SA2 success%

r_100_25_1 25.0 18,558.0 0.6 12.1 12.3 5.0 0 0
r_100_25_10 25.0 24,930.0 0.0 8.7 8.4 30.0 0 0
r_100_25_2 25.0 56,525.0 2.9 12.3 12.5 0.0 0 0
r_100_25_3 25.0 3,752.0 0.0 32.0 31.0 100.0 0 0
r_100_25_4 25.0 50,382.0 4.5 14.2 14.6 0.0 0 0
r_100_25_5 25.0 61,494.0 1.7 6.7 6.2 0.0 0 0
r_100_25_6 25.0 36,360.0 0.7 9.5 8.6 0.0 0 0
r_100_25_7 25.0 14,657.0 0.4 10.4 11.3 0.0 0 0
r_100_25_8 25.0 20,452.0 0.4 12.9 11.3 20.0 0 0
r_100_25_9 25.0 35,438.0 2.6 12.0 11.3 0.0 0 0
r_100_50_1 50.0 83,742.0 1.8 10.2 9.9 0.0 0 0
r_100_50_10 50.0 88,634.0 1.4 9.3 8.6 0.0 0 0
r_100_50_2 50.0 104,856.0 2.7 14.2 13.0 0.0 0 0
r_100_50_3 50.0 34,006.0 0.0 12.6 13.7 55.0 0 0
r_100_50_4 50.0 105,996.0 0.8 6.0 5.5 0.0 0 0
r_100_50_5 50.0 56,464.0 8.3 29.9 30.0 0.0 0 0
r_100_50_6 50.0 16,083.0 0.0 13.5 13.1 100.0 0 0
r_100_50_7 50.0 52,819.0 3.4 15.1 14.3 0.0 0 0
r_100_50_8 50.0 54,246.0 2.9 14.8 14.1 0.0 0 0
r_100_50_9 50.0 68,974.0 3.2 13.5 12.1 0.0 0 0
r_100_75_1 75.0 189,137.0 4.2 3.7 3.5 0.0 0 0
r_100_75_10 75.0 143,740.0 1.1 7.4 6.7 0.0 0 0
r_100_75_2 75.0 95,074.0 2.5 12.3 12.0 0.0 0 0
r_100_75_3 75.0 62,098.0 2.2 10.6 12.1 0.0 0 0
r_100_75_4 75.0 72,245.0 1.0 9.3 8.8 0.0 0 0
r_100_75_5 75.0 27,616.0 0.2 14.9 17.6 10.0 0 0
r_100_75_6 75.0 145,273.0 4.7 16.8 17.3 0.0 0 0
r_100_75_7 75.0 110,979.0 6.2 21.4 19.7 0.0 0 0
r_100_75_8 75.0 19,570.0 8.0 43.1 46.4 0.0 0 0
r_100_75_9 75.0 104,341.0 7.7 24.8 25.8 0.0 0 0
r_100_100_1 100.0 81,978.0 8.4 28.5 27.8 0.0 0 0
r_100_100_10 100.0 193,262.0 1.0 7.0 6.6 0.0 0 0
r_100_100_2 100.0 190,424.0 1.0 5.8 6.0 0.0 0 0
r_100_100_3 100.0 225,434.0 0.2 4.0 3.7 0.0 0 0
r_100_100_5 100.0 230,076.0 0.0 3.0 2.9 30.0 0 0
r_100_100_6 100.0 74,358.0 11.3 36.5 33.2 0.0 0 0
r_100_100_7 100.0 10,330.0 0.0 28.6 26.0 100.0 0 0
r_100_100_8 100.0 62,582.0 10.5 35.5 34.7 0.0 0 0
r_100_100_9 100.0 232,754.0 5.0 6.6 6.7 0.0 0 0

Whereas in [49] success% of 100% for all instances within less than 0.02 seconds is achieved
with QIEA.

In Table 2.2 and Table 2.3, having larger problem instances only make things worse:
optimal value solution found for only a single instance with DA.
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Table 2.2 200 variables problem results.

Instance name Δ opt_val DA gap% SA1 gap% SA2 gap% DA success% SA1 success% SA2 success%

r_200_25_1 25.0 204,441.0 2.4 6.7 6.6 0.0 0 0
r_200_25_10 25.0 48,459.0 9.5 28.8 27.2 0.0 0 0
r_200_25_2 25.0 239,573.0 0.4 2.9 2.6 0.0 0 0
r_200_25_4 25.0 222,361.0 4.9 11.0 10.8 0.0 0 0
r_200_25_5 25.0 187,324.0 3.3 7.8 7.8 0.0 0 0
r_200_25_6 25.0 80,351.0 7.3 17.7 15.8 0.0 0 0
r_200_25_7 25.0 59,036.0 10.7 25.4 25.3 0.0 0 0
r_200_25_8 25.0 149,433.0 4.4 11.1 10.2 0.0 0 0
r_200_25_9 25.0 49,366.0 8.2 23.8 24.9 0.0 0 0
r_200_50_1 50.0 372,097.0 4.5 8.9 8.5 0.0 0 0
r_200_50_10 50.0 284,751.0 8.6 14.7 15.6 0.0 0 0
r_200_50_2 50.0 211,130.0 7.4 15.7 14.6 0.0 0 0
r_200_50_3 50.0 227,185.0 18.1 31.3 28.4 0.0 0 0
r_200_50_4 50.0 228,572.0 18.9 31.3 31.8 0.0 0 0
r_200_50_5 50.0 479,651.0 0.3 2.0 2.2 0.0 0 0
r_200_50_6 50.0 426,777.0 1.6 4.6 4.5 0.0 0 0
r_200_50_7 50.0 220,890.0 11.4 21.3 19.1 0.0 0 0
r_200_50_8 50.0 317,952.0 5.9 10.5 9.7 0.0 0 0
r_200_50_9 50.0 104,936.0 11.2 25.5 23.0 0.0 0 0
r_200_75_1 75.0 442,894.0 16.5 22.0 22.5 0.0 0 0
r_200_75_10 75.0 142,694.0 8.6 21.3 19.1 0.0 0 0
r_200_75_2 75.0 286,643.0 15.1 24.1 21.9 0.0 0 0
r_200_75_3 75.0 61,924.0 4.0 26.0 23.2 0.0 0 0
r_200_75_4 75.0 128,351.0 18.8 36.6 35.8 0.0 0 0
r_200_75_5 75.0 137,885.0 10.2 26.8 24.8 0.0 0 0
r_200_75_6 75.0 229,631.0 21.2 33.5 32.3 0.0 0 0
r_200_75_7 75.0 269,887.0 9.9 20.9 19.0 0.0 0 0
r_200_75_8 75.0 600,858.0 11.1 13.8 13.3 0.0 0 0
r_200_75_9 75.0 516,771.0 14.2 20.4 18.8 0.0 0 0
r_200_100_1 100.0 937,149.0 7.2 6.1 5.3 0.0 0 0
r_200_100_10 100.0 378,442.0 10.0 15.8 14.5 0.0 0 0
r_200_100_2 100.0 303,058.0 14.7 23.1 22.3 0.0 0 0
r_200_100_3 100.0 29,367.0 0.0 21.3 18.9 100.0 0 0
r_200_100_4 100.0 100,838.0 8.3 27.1 26.8 0.0 0 0
r_200_100_5 100.0 786,635.0 7.7 9.8 9.7 0.0 0 0
r_200_100_6 100.0 41,171.0 11.3 31.9 29.9 0.0 0 0
r_200_100_7 100.0 701,094.0 6.3 9.5 9.0 0.0 0 0
r_200_100_8 100.0 782,443.0 14.2 14.1 14.1 0.0 0 0
r_200_100_9 100.0 628,992.0 6.3 9.3 9.0 0.0 0 0

Table 2.3 300 variables problem results.

Instance name Δ opt_val DA gap% SA1 gap% SA2 gap% DA success% SA1 success% SA2 success%

r_300_25_1 25.0 29,140.0 15.2 43.9 43.7 0.0 0 0
r_300_25_10 25.0 383,377.0 9.4 14.5 14.0 0.0 0 0
r_300_25_2 25.0 281,990.0 20.8 30.9 29.3 0.0 0 0
r_300_25_4 25.0 444,759.0 13.2 19.8 18.8 0.0 0 0
r_300_25_5 25.0 14,988.0 5.6 36.8 37.4 0.0 0 0
r_300_25_6 25.0 269,782.0 22.9 34.0 33.3 0.0 0 0
r_300_25_7 25.0 485,263.0 4.2 7.8 7.4 0.0 0 0
r_300_25_8 25.0 9,343.0 0.0 30.4 27.6 100.0 0 0
r_300_25_9 25.0 250,761.0 12.8 20.1 20.3 0.0 0 0
r_300_50_1 50.0 513,379.0 35.0 36.4 36.6 0.0 0 0
r_300_50_10 50.0 996,070.0 4.2 5.9 5.9 0.0 0 0
r_300_50_2 50.0 105,543.0 41.7 52.3 50.1 0.0 0 0
r_300_50_3 50.0 875,788.0 17.5 16.8 16.9 0.0 0 0
r_300_50_4 50.0 307,124.0 40.7 41.2 42.9 0.0 0 0
r_300_50_5 50.0 727,820.0 22.2 24.2 23.7 0.0 0 0
r_300_50_6 50.0 734,053.0 22.7 23.4 23.4 0.0 0 0
r_300_50_7 50.0 43,595.0 2.3 24.3 21.2 0.0 0 0
r_300_50_8 50.0 767,977.0 22.7 23.1 22.9 0.0 0 0
r_300_50_9 50.0 761,351.0 9.3 12.6 12.2 0.0 0 0

2.3 Identifying Bottlenecks Using Visualization

Starting from the DA benchmark results from Section 2.2, we picked instance "r_100_25_10",
with penalty Hamiltonian 𝛼 = 5.5, where optimal solution was difficult to reach for some
random seeds and came up with the following algorithm for analyzing what makes reaching
optimal solution difficult.
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Algorithm 2 Visualization
1: procedure EnergyPerspective
2: input:
3: start← (𝑥1, . . . , 𝑥𝑛)
4: end← (𝑦1, . . . , 𝑦𝑛)
5: output:
6: (𝑥𝑎, 𝑥𝑏, . . . , 𝑥𝑘 ) | starta,b,...,k ⊕ enda,b,...,k = 1
7: energya,energya,b . . .energya,b...k
8: main:
9: PerspectiveOrder = Φ;

10: Energies = Φ;
11: while start ≠ end do
12: diff ← {𝑥𝑘 | startk ⊕ endk = 1}
13: for all 𝑥𝑘 ∈ diff do
14: Try all 𝑥𝑘 flips and record the index 𝑘 in PerspectiveOrder and energy𝑘 in

Energies of the one giving the largest energy decrease (or smallest energy increase).
15: Do the actual flip of the best 𝑥𝑘
16: return PerspectiveOrder, Energies

The key goal is to approximate the Hamiltonian energy landscape from an easy to reach
sub-optimal solution to an optimal solution to be able to pinpoint what makes a problem
hard to solve and eventually give us idea on how to tackle this difficulty. The procedure to
approximate the landscape is as follows in Algorithm 2.

In Algorithm 2, a set {𝑥1, . . . , 𝑥𝑛} of binary variables shows the sub-optimal solution
for QKP and a set {𝑦1, . . . , 𝑦𝑛} of binary variables shows the final optimal solution. The
procedure can be described as:

1. Extract the non-common variables between the sub-optimal solution "start" and optimal
solution "end".

2. Calculate and record which flip of non-common variable in start would cause the lowest
energy increase.

3. Do the actual flip and repeat from 2. until start = end.

Thus (𝑥𝑎, 𝑥𝑏, . . . , 𝑥𝑘 ) is the order in which to flip bits such that the Hamiltonian energy, given
by equation (2.3), increase is the minimum possible and energya,energya,b . . .energya,b...k

are the respective energies of flipping 𝑥𝑎, 𝑥𝑎 then 𝑥𝑏,𝑥𝑎 then 𝑥𝑏 ... then 𝑥𝑘 from start.
We then plot in order energya,energya,b . . .energya,b...k on the y axis, and on the x axis

the number of flips done from start. It gives us the perspective in Figure 2.1.
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Fig. 2.1 Energy landscape example: r_100_25_10 instance with 𝛼 = 5.5.

We annotated the variables which were switched at each move in order to go from our
best non-optimal solution(START) to one optimal solution (END). We also annotated their
energy (y axis value) for clarity.

The key takeaways from this perspective are:

1. START and END are only two variable swap away from each other: 𝑥74↔ 𝑥98 and
𝑥59↔ 𝑥85.

2. 𝑥59↔ 𝑥85 causes the largest spike on the landscape. (ΔE ≈ 7×103)

Tackling both takeaways will be the focus of respectively Sections 2.4.1 and 2.4.3.

2.4 Algorithms for Solution Improvement

2.4.1 Solution Improvement Algorithm v1

This algorithm is a simplified version of "Procedure ImproveLocal(P)" described in [49]
adapted for an Ising machine running parallel trials on different replicas such as we have here.
For all replicas’ solution obtained, we try all possible item swaps from inside and outside the
knapsack, do the swap which generates the largest profit increase (while not violating the
weight constraint), and iterate until no improvement can be done, resulting in a computing
intensive process to improve current solutions.
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Fig. 2.2 SIA v1 example.

We illustrate an example of our solution improvement algorithm v1 (SIA v1) in Figure
2.2 using a non-quadratic knapsack problem to simplify explanations. In this example, "W"
represents the weight of an item and "P" is the profit of this item and we have already a
solution obtained. We consider all possible swaps to improve the profit while staying under
the capacity limitation which leads us to "Swap1", replacing item3 by item5 and then "Swap2"
which replaces item2 with item6. The item coloring represents profit over weight metric,
green means a substantial amount of profit is generated for a weight unit whereas red is the
opposite.

Unlike "ImproveLocal(P)" from [49], we do not consider the action of adding without
removing an item to improve a solution. Our reasoning is that in a real world scenario, it is
unlikely that a replacement of an heavy item inside the knapsack by a light item outside the
knapsack would bring a profit increase, as heavy items tend to bring more value for one unit
of weight than lighter ones, and saves 1 loop of trials per solution to be improved. We note
that considering item adding might help on randomly generated instances such as here. The
pseudo-code is shown on Algorithm 3.

2.4.2 Solution Improvement Algorithm v1 Results

We made the following experiment to evaluate our proposed solution improvement algorithm
(SIA v1). We used exactly the same DA parameters as in Section 2.2. We allowed SIA v1
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Algorithm 3 Solution Improvement Algorithm
1: procedure solutionImprovement
2: input:
3: Initial solutions: 𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑟}
4: output:
5: Improved solutions: 𝑆′ = {𝑠1′, 𝑠2′, ..., 𝑠𝑟′}
6: main:
7: 𝑆′ = 𝑆;
8: for every 𝑠𝑖 in 𝑆′ do
9: for every pair (𝑥𝑖

𝑘
, 𝑥𝑖
𝑙
) in 𝑠𝑖 | {𝑥𝑖

𝑘
, 𝑥𝑖
𝑙
} = (1,0) do

10: Evaluate (𝑥𝑖
𝑘
, 𝑥𝑖
𝑙
) swap cost;

11: Accept the possible swap giving the maximum cost increase and update the
solution 𝑠𝑖;

12: Repeat the above process until no further improvement possible within timeout value;
13: return 𝑆′

Table 2.4 success% comparison.

DA DA + SIA v1
𝑛

100 11.54 68.33
200 2.56 61.67
300 5.26 13.95

mean 6.70 55.00

to do as many passes as it does for 40 seconds, which is the same timeout value as for the
DA. The experiments were conducted on an Intel Core i7-9700K, 8 cores CPU with a base
frequency of 3.6 GHz, using python 3.7.9 and NumPy 1.17.3 [31]. We recorded success% as
described in Section 2.2. For space issues purposes we aggregated the average success% of
each instance sizes in Table 2.4. The "mean" row is the average success% calculated over all
instances from Tables 2.1, 2.2 and 2.3 regardless of their size for both DA and DA+SIA v1.
Note that we will later include the full breakdown for the solution improvement algorithm v2.

We observe a very sharp increase in % of instances which can be solved using the SIA v1,
especially for smaller instances (100,200 items). We note that for the largest instances (300)
the increase is much smaller. We consider that it is due to the timeout of 40 seconds being
enough for smaller instances to converge to optimal solution in the majority of instances
whereas it is not enough for most 300 items instances.
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Table 2.5 "r_100_25_10" instance with 𝛼 = 5.5 metrics com-
parison. ∑︁

𝑗 𝑝𝑖 𝑗 𝑤𝑖 RPD
∑︁

𝑗
𝑗≠𝑖

𝑄𝑖, 𝑗 𝑄𝑖,𝑖

mean 1,222.4 26.1 99.0 198,331.5 -53,403.9
std 255.7 13.6 175.9 102,745.1 27,551.5
min 728.0 1.0 18.2 7,666.0 -101,500.0
Q1 1,051.2 15.0 31.9 114,570.0 -77,596.0
med 1,212.0 25.5 45.8 194,233.0 -52,389.5
Q3 1,368.2 38.0 87.9 288,496.0 -30,975.0
max 2,206.0 50.0 1,201.0 378,400.0 -2,079.0

𝑥59 1,668.0 36.0 46.3 273,456.0 -73,584.0
𝑥85 1,162.0 38.0 30.6 288,496.0 -77,596.0

mean, std, min, Q1, med, Q3 and max are respectively the
average, the standard deviation, the minimum, the first quartile,
the median, the third quartile and the maximum.

2.4.3 Solution Improvement Algorithm v2

As we saw in the perspective from Figure 2.1, changing the values of some variables while
trying to leave a local optimum in search of a global one can create energy spikes difficult
to overcome. We first try to understand what causes them by analyzing the problem’s data
and its formalization for the same r_100_25_10 instance with 𝛼 = 5.5. First, we define a few
metrics for statistical comparison:

• Potential sum of profit:
∑︁
𝑗 𝑝𝑖 𝑗 if all items 𝑗 connected to item 𝑖 were also chosen.

• Item 𝑖 ’s weight: 𝑤𝑖

• Relative profit density (RPD):
∑︁
𝑗 𝑝𝑖 𝑗/𝑤𝑖 also described in [49].

• Constraint Hamiltonian’s
∑︁

𝑗
𝑗≠𝑖

𝑄𝑖, 𝑗 where 𝑄𝑖, 𝑗 is the penalty value (the second term in

Eqn. (2.3)) added to the energy for item 𝑖 if all items 𝑗 connected to 𝑖 were also chosen.

• Constraint Hamiltonian’s 𝑄𝑖,𝑖: the value subtracted to the energy when item 𝑖 is chosen.

By comparing the distributions of the metrics described above with the items 59 and 85
(source of the energy spike in Figure 2.1), we observe that although 𝑥85 is chosen in most
DA solutions, it has a weaker RPD than 𝑥59 and also weights heavier. We notice that the
constraint Hamiltonian values are one order of magnitude larger than profit values. This
difference of magnitude comes from the fact that we need a high enough 𝛼, to prevent having
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Algorithm 4 Filtering for removal of items
1: procedure Filtering
2: input:
3: Profit: 𝑝𝑖 𝑗 (1 ≤ 𝑖 ≤ 𝑛,1 ≤ 𝑗 ≤ 𝑛)
4: Weight: 𝑤𝑖 (1 ≤ 𝑖 ≤ 𝑛)
5: filterLimit
6: output:
7: Indexes: 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖FilterLimit}
8: main:
9: for every item 𝑖 do

10: Calculate the relative profit density rpd(𝑖) = ∑︁
𝑗 𝑝𝑖 𝑗/𝑤𝑖;

11: Sort rpd(𝑖) and pick up 1st to filterLimit-th items into 𝐼;
12: return 𝐼

the global ground state of the Ising model having constraint penalties, and we need a limited
auxiliary variable range to limit the number of iterations spent on flipping auxiliary variable.
This difference of magnitude produces an energy landscape which drives an Ising machine to
fill the knapsack in priority and generating the highest profit second. The Hamiltonian thus
gives priority to heavier items regardless of how much profit they bring, and generates a high
penalty when trying to remove such item, which in turn makes escape from a local minimum
difficult for an Ising machine.

It gave us the idea to use the RPD metric help escape from local minimum while preserving
computing resources. The key idea is to give priority to the items with the lowest RPD for
removal from the knapsack . How many of those worst items we consider for removal is set
by a new parameter we introduce: "filterLimit".

We illustrate how the filtering works in Figure 2.3. Here with a filterLimit of 2 rather
than considering all the swaps such as in Figure 2.2, we consider only swapping out the worst
items RPD wise: item2 and item 3.

The above translates to the pseudo-code described in Algorithm 4 with Profit and Weight
being the QKP input and filterLimit the parameter described above. For Figure 2.3 if we set
filterLimit = 2, the algorithm would thus return 𝐼 = [3,2] since the item 3 has the smallest
RPD and the item 2 has the second smallest RPD.

This new filtering procedure is called to filter 𝑥𝑘 on for loop of line 9 of Algorithm 3 to
only those belonging to the returned 𝐼. Note that 𝑥𝑙 from the same line is not filtered. If we
take Figure 2.3 for example, the filtering is only applied to the content inside the knapsack
but not on the outside. We present its results in the following sub-section.
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Fig. 2.3 SIA v2 example.

2.4.4 Solution Improvement Algorithm v2 Results

We use the environment described in Section 2.4.2 to experiment with different values for the
newly introduced filterLimit parameter as well as the number of DA iterations. We observed
its results in Figure 2.4. Best results are obtained with a filterLimit of 15. It represents an
increase of 5% over the results from Section 2.4.2. There is also a significant variation of
success% depending on the number of DA iterations.

Note that a high filterLimit does not allow to reach the results of SIA v1 which we could
consider as "no filter limit". We assume it is due to the filtering being consuming due to
the dot product and sorting involved, thus limiting the number of iterations which can be
done within 40 seconds. We can also note that reducing the number of DA iterations does
not degrade achieved success% much (going from 750 million iterations to 10 million only
degrade success% of 7% at the best filterLimit value(15) ).
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Fig. 2.4 Success% vs SIA v2 filterLimit.

We then focused on observing how success% evolves for a larger sample of DA iterations:
[500k,...750M] and values for filterLimit: [7,10,15] as shown in Figure 2.5. We observed
that although success% dramatically improves from 500k up to 200M iterations, it nearly
plateaus (even on log scale) from 200M up to 750M with the best results being achieved for
500 million DA iterations.

We then focused on how success% evolves with the SIA v2 timeout value, for the sweet
spot of 200M DA iterations, filterLimit:15 as shown in Figure 2.6. For small instances (100
items) even the minimum value of SIA v2 timeout we tried (5s) is enough to maximize
success%. For average instances (200 items), 15 seconds is enough. For large instances (300
items), success% maxes out at 30 seconds.

2.5 Results Comparison for Each Instance

Here we finally compare the success% achieved for: DA only; SIA v1 timeout 40s; and SIA
v2 filterLimit:15, DA iterations:750M, timeout:40s.
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Fig. 2.5 Success% vs DA iterations (log scale).

From Table 2.6 we observe that SIAv1 and v2 improve the success% overall but for instances
r_100_25_1, r_100_25_10, r_100_25_3, r_100_25_8, r_100_50_3 and r_100_100_7 DA
alone performs better. We consider that it might be due to either the fact that SIA does not
consider simply adding items in the knapsack and/or that the penalty Hamiltonian 𝛼 being
too weak makes all replicas converge to the same penalty violating state and from that state,
using SIA we can only reach a feasible local minimum.

In future works, we will consider revising SIA to consider item adding and our 𝛼 increasing
policy. We will also keep the best DA solution for fallback in case SIA performs worse than
SIA so that SIA results will be in the worst situation equal to DA results.

On Table 2.7 and Table 2.8, we observe a similar trend to Table 2.6: the only instance
which used to be solved consistently by DA is not solved by either SIA. Overall success% is
improved by SIA v1 and v2, and v2 gives the better results. Since overall SA performance is
poor compared to DA as seen in Section 2.2.5 and Solution Improvement Algorithm (SIA)
solution quality is assumed to be correlated to input solution quality, SA+SIA is expected to
be poorer than DA+SIA and we did not run any SA+SIA experiments. Our proposed DA+SIA
method is thus assumed to be superior to SA1 and SA2 as well as SA1+SIA and SA2+SIA.
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Fig. 2.6 Success% vs SIA v2 timeout.

2.6 Conclusions

In this chapter, a way to visualize the energy landscape between two states of Ising models
is proposed. This visualization method is based on the Ising model itself and solutions
found which represent states of the Ising model and thus can be applied when using other
Ising machines. It helped us conceive our other proposal: a software solution improvement
technique coupled with low 𝛼 value which can compensate for the problem of a low auxiliary
variable range giving too much priority to filling the knapsack over finding the solution which
generates the most profit. Our software solution improvement algorithms make handling
heavy items more efficient by considering swapping out the one with the lowest relative profit
density in priority with other items. They operate on the original quadratic knapsack problem
formulation, before being mapped to its corresponding Ising model, and thus can operate on
solutions found by other methods than Ising machines.

Our experiments showed promising results summarized in Table 2.9. In the "mean" row,
we compared the average success% over all instances from Tables 2.1, 2.2 and 2.3 for DA,
DA+SIA v1, DA+SIAv2, respectively. We went from an overall success% of 6.7% to a
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success% of 60.7%. We believe that our 𝛼 adjustment policy is reasonable yet coarse grained
and thus can potentially be improved. We also believe considering adding items without
swapping could improve results. In future works we will also continue to develop novel ways
to analyze Ising models and their behavior on Ising machines as well as test our current
algorithm on other kind of problems to evaluate how much potential they have for a more
general application, not limited to QKP.
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Table 2.6 100 variables problem results comparison.

Instance name Δ DA only DA + SIAv1 DA + SIAv2

r_100_25_1 25 5.0 0.0 0.0
r_100_25_10 25 30.0 0.0 0.0
r_100_25_2 25 0.0 100.0 100.0
r_100_25_3 25 100.0 0.0 0.0
r_100_25_4 25 0.0 100.0 100.0
r_100_25_5 25 0.0 100.0 100.0
r_100_25_6 25 0.0 0.0 0.0
r_100_25_7 25 0.0 100.0 100.0
r_100_25_8 25 20.0 0.0 0.0
r_100_25_9 25 0.0 100.0 100.0
r_100_50_1 50 0.0 100.0 100.0
r_100_50_10 50 0.0 10.0 15.0
r_100_50_2 50 0.0 100.0 100.0
r_100_50_3 50 55.0 0.0 0.0
r_100_50_4 50 0.0 100.0 100.0
r_100_50_5 50 0.0 100.0 100.0
r_100_50_6 50 100.0 100.0 100.0
r_100_50_7 50 0.0 100.0 100.0
r_100_50_8 50 0.0 100.0 100.0
r_100_50_9 50 0.0 100.0 100.0
r_100_75_1 75 0.0 100.0 100.0
r_100_75_10 75 0.0 100.0 100.0
r_100_75_2 75 0.0 45.0 50.0
r_100_75_3 75 0.0 100.0 100.0
r_100_75_4 75 0.0 80.0 90.0
r_100_75_5 75 10.0 100.0 100.0
r_100_75_6 75 0.0 100.0 100.0
r_100_75_7 75 0.0 100.0 100.0
r_100_75_8 75 0.0 100.0 100.0
r_100_75_9 75 0.0 30.0 30.0
r_100_100_1 100 0.0 0.0 0.0
r_100_100_10 100 0.0 0.0 0.0
r_100_100_2 100 0.0 100.0 100.0
r_100_100_3 100 0.0 100.0 100.0
r_100_100_5 100 30.0 100.0 100.0
r_100_100_6 100 0.0 100.0 100.0
r_100_100_7 100 100.0 0.0 0.0
r_100_100_8 100 0.0 100.0 100.0
r_100_100_9 100 0.0 0.0 0.0



2.6 Conclusions 27

Table 2.7 200 variables problem results comparison.

Instance name Δ DA only DA + SIAv1 DA + SIAv2

r_200_25_1 25 0.0 100.0 100.0
r_200_25_10 25 0.0 100.0 100.0
r_200_25_2 25 0.0 100.0 100.0
r_200_25_4 25 0.0 100.0 100.0
r_200_25_5 25 0.0 60.0 75.0
r_200_25_6 25 0.0 85.0 70.0
r_200_25_7 25 0.0 100.0 100.0
r_200_25_8 25 0.0 100.0 100.0
r_200_25_9 25 0.0 100.0 100.0
r_200_50_1 50 0.0 100.0 100.0
r_200_50_10 50 0.0 50.0 30.0
r_200_50_2 50 0.0 10.0 5.0
r_200_50_3 50 0.0 100.0 100.0
r_200_50_4 50 0.0 100.0 100.0
r_200_50_5 50 0.0 100.0 100.0
r_200_50_6 50 0.0 85.0 85.0
r_200_50_7 50 0.0 40.0 20.0
r_200_50_8 50 0.0 30.0 100.0
r_200_50_9 50 0.0 100.0 100.0
r_200_75_1 75 0.0 0.0 0.0
r_200_75_10 75 0.0 0.0 0.0
r_200_75_2 75 0.0 40.0 70.0
r_200_75_3 75 0.0 0.0 0.0
r_200_75_4 75 0.0 100.0 100.0
r_200_75_5 75 0.0 0.0 0.0
r_200_75_6 75 0.0 100.0 100.0
r_200_75_7 75 0.0 100.0 100.0
r_200_75_8 75 0.0 10.0 55.0
r_200_75_9 75 0.0 65.0 100.0
r_200_100_1 100 0.0 60.0 15.0
r_200_100_10 100 0.0 100.0 100.0
r_200_100_2 100 0.0 0.0 0.0
r_200_100_3 100 100.0 0.0 0.0
r_200_100_4 100 0.0 100.0 100.0
r_200_100_5 100 0.0 5.0 30.0
r_200_100_6 100 0.0 100.0 100.0
r_200_100_7 100 0.0 10.0 30.0
r_200_100_8 100 0.0 50.0 90.0
r_200_100_9 100 0.0 5.0 15.0
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Table 2.8 300 variables problem results comparison.

Instance name Δ DA only DA + SIAv1 DA + SIAv2

r_300_25_1 25 0.0 100.0 100.0
r_300_25_10 25 0.0 0.0 35.0
r_300_25_2 25 0.0 0.0 55.0
r_300_25_4 25 0.0 0.0 20.0
r_300_25_5 25 0.0 0.0 0.0
r_300_25_6 25 0.0 5.0 5.0
r_300_25_7 25 0.0 0.0 60.0
r_300_25_8 25 100.0 0.0 0.0
r_300_25_9 25 0.0 5.0 20.0
r_300_50_1 50 0.0 0.0 100.0
r_300_50_10 50 0.0 0.0 30.0
r_300_50_2 50 0.0 100.0 100.0
r_300_50_3 50 0.0 0.0 0.0
r_300_50_4 50 0.0 55.0 70.0
r_300_50_5 50 0.0 0.0 20.0
r_300_50_6 50 0.0 0.0 0.0
r_300_50_7 50 0.0 0.0 0.0
r_300_50_8 50 0.0 0.0 0.0
r_300_50_9 50 0.0 0.0 0.0

Table 2.9 Result Summary.

DA DA + SIA v1 DA + SIA v2
size

100 11.5 68.3 68.8
200 2.6 61.7 66.4
300 5.3 13.9 32.4

mean 6.7 55.0 60.7



Chapter 3

Cardinality Constrained Portfolio
Optimization on an Ising Machine1

3.1 Introduction

The mean-variance portfolio selection [41], introduced by Markowitz, is a quantitative
approach which aims at selecting assets which maximize return while minimizing their
variance (also known as risk). From an operations research perspective, it is a simple
quadratic problem from which optimal solution can easily be computed using quadratic
programming [15]. However, it is often more practical to limit the number of assets to consider
for portfolio selection, Chang et al. introduced the cardinality constrained mean-variance
portfolio optimization problem (CCMVPOP) [15] which, as the name implies, introduces a
cardinality constraint to limit the number of asset kinds to be considered. The introduction
of this cardinality constraint has been proven to make the problem NP-hard [54] and thus
challenging. Since CCMVPOP has been introduced, over the last 20 years metaheuristics
based approaches have been successful when cardinality constraint limits to approximately 10
to 15 asset kinds and exact approaches have been successful for 5 asset kinds and below [29].
Well used metaheuristics for this problem are tabu search [24] and simulated annealing[37].

Over the past 10 years, quantum-based Ising machines [36] and non-quantum based Ising
machines [42], [28], [62] have shown potential when solving certain kinds of combinatorial
problems formalized as a quadratic unconstrained binary optimization (QUBO) form.

Yet their limits have been shown on problems having certain kinds of constraints [48],
hybrid software-hardware technologies such as Fujitsu’s third generation Digital Annealer
(DA) [46], [19] have recently emerged to overcome such limitations. DA is now an Ising

1Technical contents in this chapter have been presented in the publication ⟨4⟩.
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machine-software system which can handle a binary quadratic program (BQP), expressed
using a limited set of constraints, in contrast to conventional Ising machines [36], [42], [28],
[62] which can only handle QUBO.

CCMVPOP is a quadratic problem in nature, thus we want to evaluate how such an Ising
machine-software system performs on this problem. Although researches have been done
on using Ising machines for financial applications such as index tracking with cardinality
constraints [1], [21] and trading trajectory problem [53], CCMVPOP on an Ising machine or
system has not been studied before.

As we will show in detail in Section 3.2, some of CCMVPOP variables are real numbers.
To encode those variables as binary variables, some established techniques exist such as unary
encoding, binary encoding and onehot encoding and their impact on convergence when using
Ising machines have been studied in [59] on the quadratic knapsack problem (QKP). However,
no studies have been done for CCMVPOP from the viewpoint of integer encoding techniques.

In this chapter, we firstly propose a BQP formulation of the CCMVPOP based on well
known integer to binary variable encoding. Secondly, we further propose a new base10
encoding where we have groups, composed of 10 binary variables for each power of 10,
which allows faster convergence to optimal portfolio composition. Lastly, we compare each
integer binary encoding formulations through experiments on the data used in [15] available
at [7],[8].

The contributions of this chapter are summarized as follows:

1. We propose an effective formulation of the CCMVPOP for Ising machines.

2. In the formulation of the CCMVPOP, base10 integer to binary variable encoding for
effectively solving the CCMVPOP by Ising machines is newly proposed.

3. Experimental evaluations demonstrate the effectiveness of the proposed CCMVPOP
formulation. Particularly, the proposed base10 encoding gives the best results for large
CCMVPOP solved.

The rest of this chapter is organized as follows: Section 3.2 explains the general CCMVPOP
formulation. In Section 3.3 proposed BQP formulations, including our proposed base10
encoding, are exposed. In Section 3.4, the performance for the proposed BQP formulations
on well-known instances from [15] is measured. Lastly, Section 3.5 gives several concluding
remarks.

3.2 Cardinality Portfolio Optimization Problem With

Original Formulation In this section we will define the CCMVPOP original model from [15].
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Let 𝑁 be the number of assets to consider, 𝐾 be the fixed number of assets which
must compose the portfolio, `𝑖 be the expected return of asset 𝑖 (1 ≤ 𝑖 ≤ 𝑁), 𝜎𝑖 𝑗 be the
covariance between assets 𝑖 and 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑁), and 𝜖𝑖 and 𝛿𝑖 be respectively the minimum
and maximum proportion of a chosen asset 𝑖. The decision variables are 𝑤𝑖 which represent
the proportion (0 ≤ 𝑤𝑖 ≤ 1) of held of asset 𝑖 for a given solution. We also use a 𝑧𝑖 binary
variable to indicate if an asset 𝑖 is chosen or not. The CCMVPOP is formulated as follows:

minimize _

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝑤𝑖𝑤 𝑗𝜎𝑖 𝑗 − (1−_)

𝑁∑︁
𝑖=1
𝑤𝑖`𝑖 (3.1)

subject to
𝑁∑︁
𝑖=1
𝑤𝑖 = 1 (3.2)

𝑁∑︁
𝑖=1
𝑧𝑖 = 𝐾 (3.3)

𝜖𝑖𝑧𝑖 ≤ 𝑤𝑖 ≤ 𝛿𝑖𝑧𝑖, 𝑖 = 1, . . . , 𝑁 (3.4)

𝑧𝑖 ∈ {0,1}, 𝑖 = 1, . . . , 𝑁 (3.5)

Equation (3.1) represents the two objectives of CCMVPOP. The first objective is
minimizing the risk of the chosen assets of the porfolion, where the risk is represented by the
sums of covariance between all pairs 𝑖, 𝑗 of chosen assets,

∑︁𝑁
𝑖=1

∑︁𝑁
𝑗=1𝑤𝑖𝑤 𝑗𝜎𝑖 𝑗 . The second

objective is maximizing return of chosen assets, where return is represented by the sum of
expected return of each asset 𝑖,

∑︁𝑁
𝑖=1𝑤𝑖`𝑖. Equation (3.2) states 𝑤𝑖 is a proportion. Equation

(3.3) is the cardinality constraint which forces the number of chosen assets to be equal to
𝐾 . Equation (3.4) bounds the proportion of a chosen asset 𝑤𝑖 to be within a given 𝜖𝑖 and 𝛿𝑖.
Equation (3.5) states 𝑧𝑖 is a binary variable.

For 𝐾 values close to 𝑁 , this problem can easily be solved using quadratic programming,
for 𝐾 ≤ 5 it can be solved using exact methods, finally most works involving metaheuristics
are done using 𝐾 = 10 which is believed to be the sweet spot for them [54]. Historically,
Ising machines explore QUBO solution search space in order to lower its cost, using various
strategies such as quantum annealing [36] or simulated annealing with parallel tempering
[42]. Those machines fall within the category of metaheuristics. We thus for the rest of this
chapter choose 𝐾 = 10.

Although the problem is inherently a bi-objective optimization problem, current Ising
machines or systems target a single objective only. Accordingly, we use the weighted
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formulation in equation (3.1) which introduces a parameter _ to balance the importance given
to each objective.

3.3 Binary Quadratic Program Formulation for Cardinality
Mean-Variance Portfolio Optimization Problem Utiliz-
ing Ising Systems

As Ising machines or systems can only handle binary variables, we need to encode 𝑤𝑖 in
equations (3.1), (3.2) and (3.4) as a set of binary variables. The first step is to convert all
𝑤𝑖 to integer variables 𝑤′

𝑖
. We thus propose to multiply equation (3.2) by a strictly positive

integer “budget” number 𝐵. The larger 𝐵 is, the larger the number of possible 𝑤𝑖 can be
represented. Thus equations (3.2) and (3.4) become:

𝑁∑︁
𝑖=1
𝑤′𝑖 = 𝐵, 𝑤′𝑖 = 𝐵𝑤𝑖 𝐵 ∈ Z, 𝐵 > 0 (3.6)

𝜖′𝑖 𝑧𝑖 ≤ 𝑤′𝑖 ≤ 𝛿′𝑖𝑧𝑖, 𝜖 ′𝑖 = 𝐵𝜖𝑖, 𝛿′𝑖 = 𝐵𝛿𝑖 (3.7)

The next step is encoding 𝑤′
𝑖
as a set of binary variables. There are three main ways of

doing so, described in [59]: binary encoding, unary encoding and onehot encoding. We
adapt those encodings, which describe how to encode an integer between 0 and a constant
𝐶, to reflect the bounds described in equation (3.7). After that, we newly propose a base10
encoding for Ising systems, which must be superior to the existing encodings in terms of
converging faster to dominating solutions risk or profit wise.

3.3.1 Binary encoding

Binary encoding is described as follows:

𝑤′𝑖 =
∑︁
𝑟∈𝑉

𝑟 × 𝑏𝑖,𝑟 + 𝜖′𝑖 𝑧𝑖 (3.8)

where 𝑚 = ⌈log2(𝛿′𝑖 − 𝜖′𝑖 +1)⌉ is the number of 𝑏𝑖,𝑟 required per 𝑤′
𝑖
, 𝑏𝑖,𝑟 is a binary variable,

𝑤′
𝑖

is an integer variable, and 𝑉 = {1,2,4, ...,2𝑚−2, 𝛿′
𝑖
− 𝜖′

𝑖
− (2𝑚−1 − 1)}. Since we need an

extra binary variable 𝑧𝑖 to express when an asset is selected or not, we encode the minimum
proportion 𝜖′

𝑖
there. We thus only need to cover values from 0 to 𝐶 = 𝛿′

𝑖
− 𝜖′

𝑖
with each 𝑏𝑖,𝑟 .
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Fig. 3.1 𝑏𝑖,𝑟 configuration in regard to 𝑤′
𝑖
for binary encoding. Circled values represent 𝑟 or

𝜖′
𝑖
. A blue circle represents a variable at 1, a white circle 0.

We illustrate the binary variables 𝑏𝑖,𝑟 configuration in regard to the integer variable 𝑤′
𝑖
they

represent in Fig. 3.1. In this figure, 𝑤′1 = 5 is represented by 2+1×1+2×1+4×0+1×0 = 5,
where 𝜖′1 = 2. 𝑤′2 = 3 is represented by 2+1×0+2×0+4×0+1×1 = 3, where 𝜖′2 = 2.

3.3.2 Onehot encoding

Onehot encoding is described as follows:

𝑤′𝑖 =
∑︁
𝑟∈𝑉

𝑟 × 𝑏𝑖,𝑟 (3.9)

s.t:
∑︁
𝑟∈𝑉

𝑏𝑖,𝑟 = 1 (3.10)

where 𝑉 = {0, 𝜖 ′
𝑖
, 𝜖 ′
𝑖
+1, . . . , 𝛿′

𝑖
}. As each 𝑏𝑖,𝑟 covers a possible value of 𝑤′

𝑖
, it requires more

binary variables than binary encoding. On the other hand, it does not need the extra 𝑧𝑖
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Fig. 3.2 𝑏𝑖,𝑟 configuration in regard to 𝑤′
𝑖
for unary encoding. Circled values represent 𝑟 or 𝜖′

𝑖
.

A blue circle represents a binary variable at 1, a white circle 0.

variable, as we can use the 𝑏𝑖,0 variables to express the following constraint in replacement to
equation (3.3):

𝑁∑︁
𝑖=1
𝑧𝑖 = 𝐾⇔ 𝑁 −

𝑁∑︁
𝑖=1
𝑏𝑖,0 = 𝐾 (3.11)

3.3.3 Unary encoding

Unary encoding is described as follows:

𝑤′𝑖 =
𝑚∑︁
𝑟=1

𝑏𝑖,𝑟 + 𝜖′𝑖 𝑧𝑖 (3.12)

where 𝑚 = 𝛿′
𝑖
− 𝜖′

𝑖
is the number of binary variables 𝑏𝑖,𝑟 required per integer 𝑤′

𝑖
and 𝑏𝑖,𝑟 is a

binary variable. Note that as in the binary encoding, 𝑧𝑖 is still required to express if an asset is
chosen or not, we thus encode 𝜖′

𝑖
value there as well. It requires 𝑁 variables less than onehot

encoding as there is no need to encode value 0 as it is represented by having all 𝑏𝑖,𝑟 set to 0.
We illustrate the same example as Fig. 3.1 for binary encoding with unary encoding in Fig.
3.2.
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3.3.4 Base10 encoding proposal

Each encoding described before has a trade-off between the number of 𝑏𝑖,𝑟’s needed to
represent 𝑤′

𝑖
, the number of 𝑏𝑖,𝑟’s which need to be flipped to adjust 𝑤′

𝑖
, and impact on the cost

function when flipping every 𝑏𝑖,𝑟 . Binary encoding is the most compact but to adjust 𝑤′
𝑖
by a

value 1 might require at worst log2(𝛿′𝑖 − 𝜖𝑖 +1′) of 𝑏𝑖,𝑟 adjustments and 𝑏𝑖,𝑟 with higher 𝑟 index
will strongly impact the cost function making them hard to adjust. Unary encoding is less
compact, redundant as one integer value can be represented by different combination of 𝑏𝑖,𝑟
set to 1, but on the other hand adjusting each 𝑏𝑖,𝑟 has an impact of only 1 on the cost function.
Unary encoding has been proven in [59] to be the most efficient for the quadratic knapsack
problem. Onehot encoding, while being the less compact, can allow to go between any 𝑤′

𝑖

value within two 𝑏𝑖,𝑟 flips. Since the Ising machine-software system [46] has a dedicated
architecture to accelerate solving of problems which have onehot constraints, it makes onehot
encoding relevant for comparison.

With the above in mind, we also wanted to evaluate if a better trade-off between
compactness, number of binary variable adjustments required per integer value adjustment,
cost function landscape smoothness could be achieved. We thus propose a base10 encoding
where all variables corresponding to the value of a digit, will be expressed as a onehot group:

𝑤′𝑖 =

general terms⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟
𝑙−1∑︁
𝑞=0

9∑︁
𝑟=0
𝑟 ×10𝑞𝑏𝑖,𝑟,𝑞 +

𝑘∑︁
𝑟=0
𝑟 ×10𝑙𝑏𝑖,𝑟,𝑙

+

remainder term⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟
(𝑦− 𝑐)𝑏𝑖,𝑘+1,𝑙 +𝜖′𝑖 𝑧𝑖 (3.13)

𝑦 = 𝛿′𝑖 − 𝜖′𝑖 and 𝑐 =

𝑙−1∑︁
𝑞=0

9×10𝑞 (3.14)

s.t.
9∑︁
𝑟=0

𝑏𝑖,𝑟,𝑞 = 1(0 ≤ 𝑞 < 𝑙) and
𝑘+1∑︁
𝑟=0

𝑏𝑖,𝑟,𝑙 = 1 (3.15)

where 𝑏𝑖,𝑟,𝑞 is a binary variable and, 𝑙 and 𝑘 are the constants satisfying 𝑐 + 𝑘10𝑙 ≤ 𝑦 <
𝑐+ (𝑘 +1)10𝑙 . 𝑦 is the integer quantity to express as binary variables.

For instance, assume that 𝛿′
𝑖
= 350 and 𝜖′

𝑖
= 0. Then 𝑤′

𝑖
is expressed by:

𝑤′𝑖 =
1∑︁
𝑞=0

9∑︁
𝑟=0
𝑟 ×10𝑞𝑏𝑖,𝑟,𝑞 +

2∑︁
𝑟=0
𝑟 ×102𝑏𝑖,𝑟,2 +251𝑏𝑖,3,2
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Fig. 3.3 𝑏𝑖,𝑟 configuration in regard to 𝑤′
𝑖
for the proposed base10 encoding. Circled values

represent 𝑟 or 𝜖′
𝑖
. A blue circle represents a binary variable at 1, a white circle 0.

In this case, we have 𝑙 = 2, 𝑘 = 2, 𝑐 = 99, and 𝑦 = 350. We have the following three onehot
groups for each asset 𝑖: {𝑏𝑖,0,0, 𝑏𝑖,1,0, . . . 𝑏𝑖,9,0}, {𝑏𝑖,0,1, 𝑏𝑖,1,1, . . . 𝑏𝑖,9,1} and {𝑏𝑖,0,2, 𝑏𝑖,1,2, 𝑏𝑖,2,2, 𝑏𝑖,3,2}
as we illustrate in Fig. 3.3.

The coefficient 𝑦− 𝑐 = 251 of 𝑏𝑖,3,2 shows the remainder term. If 𝑤′
𝑖
= 55, then the three

onehot groups become {0,0,0,0,1,0,0,0,0}, {0,0,0,0,1,0,0,0,0}, and {1,0,0,0}. If 𝑤′
𝑖
= 350,

then the three onehot groups become {0,0,0,0,0,0,0,0,1}, {0,0,0,0,0,0,0,0,1}, and {0,0,0,1}.
Note that, in this encoding, several integer values can be encoded in two ways, which causes
no problems in the BQP formulation.

We will compare each encoding performance in Section 3.4.

3.3.5 Binary quadratic program input

In this section, we utilize an Ising machine-software system called the third generation Digital
Annealer (DA) [46] for solving CCMVOP. The input of this system is composed of one
objective function, 𝐻𝑜𝑏 𝑗 , in the QUBO form as well as one constraint penalty function, 𝐻𝑐𝑜𝑛𝑠𝑡 ,
also in QUBO form.2.

2The Ising-machine-software system[46] used can also take up to 10,000 linear inequality constraints but we
do not use inequality constraints in this dissertation
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Objective function 𝐻𝑜𝑏 𝑗

The objective function described in equation (3.1) needs to reflect the binary variable encoding.
Thus, the objective QUBO, or Hamiltonian becomes:

𝐻𝑜𝑏 𝑗 = _

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝑤′𝑖𝑤

′
𝑗𝜎𝑖 𝑗 − (1−_)

𝑁∑︁
𝑖=1
𝑤′𝑖`𝑖 (3.16)

Penalty

function 𝐻𝑐𝑜𝑛𝑠𝑡 For the constraint QUBO, or constraint Hamiltonian 𝐻𝑐𝑜𝑛𝑠𝑡 , solutions found
need to evaluate to 0 for them to be judged feasible. If a problem is composed of several
constraint Hamiltonians, we sum them as a feasible solution should evaluate to 0 for each of
them, thus their sum evaluating to 0 as well. Now let us describe each constraint Hamiltonian
needed for CCMVPOP.

The 𝑤′
𝑖

constraint described in equation (3.6), equivalent to the original constraint
described in equation (3.2), is expressed within each corresponding encoding. Onehot
encoding constraints described in equations (3.10), (3.11) and (3.15) need one extra step,
expressed by the three following Hamiltonians:

𝐻𝑜ℎ=

𝑁∑︁
𝑖=1

(︄∑︁
𝑟∈𝑉

𝑏𝑖,𝑟−1

)︄2

(3.17)

𝐻𝑜ℎ𝐾=

(︄
𝑁∑︁
𝑖=1
𝑏𝑖,0−(𝑁−𝐾)

)︄2

(3.18)

𝐻𝑜ℎ10=

𝑁∑︁
𝑖=1

⎛⎜⎝
𝑙−1∑︁
𝑞=0

(︄
9∑︁
𝑟=0
𝑏𝑖,𝑟,𝑞−1

)︄2

+
(︄
𝑘+1∑︁
𝑟=0
𝑏𝑖,𝑟,𝑙−1

)︄2⎞⎟⎠ (3.19)

For all other encodings than onehot encoding, the cardinality constraint is expressed by
the two following Hamiltonians:

𝐻𝑐ℎ𝑜𝑠𝑒𝑛=

𝑁∑︁
𝑖=1

(︄∑︁
𝑟∈𝑉

𝑏𝑖,𝑟 (1−𝑧𝑖)
)︄

(3.20)

𝐻𝐾=

(︄
𝑁∑︁
𝑖=1
𝑧𝑖−𝐾

)︄2

(3.21)
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Table 3.1 Number of variables for each encoding and instance.

𝑁 𝐾 onehot unary binary proposed
instance base10

port1 31 10 3131 3100 248 651
port2 85 10 8585 8500 680 1785
port3 89 10 8989 8900 712 1869
port4 98 10 9898 9800 784 2058
port5 225 10 22725 22500 1800 4725

Equation (3.20) ensures that for any binary variable 𝑏𝑖,𝑟 from the corresponding 𝑤′
𝑖

to
be chosen, its corresponding 𝑧𝑖 has to be chosen or else 𝐻𝑐ℎ𝑜𝑠𝑒𝑛 will be positive and thus
constraint violated.

Finally, common to all encodings, budget equality constraint becomes:

𝐻𝑏𝑢𝑑𝑔𝑒𝑡=

(︄
𝑁∑︁
𝑖=1
𝑤′𝑖−𝐵

)︄2

(3.22)

Then the constraint term 𝐻𝑐𝑜𝑛𝑠𝑡 is constructed by summing up equations (3.20)–(3.22)
for binary encoding, equations (3.17), (3.18), and (3.22) for onehot encoding, equations
(3.20)–(3.22) for unary encoding, and (3.19)–(3.22) for the proposed base10 encoding.

3.4 Encoding and Equality Formulation Experimental Eval-
uations

The goal of our experiments is to show the formulation in equations (3.16)–(3.22) is effective
enough for an Ising machine and also to show which encoding allows to converge faster to the
best solution for a given public instance of CCMVPOP published in [15]. We align ourselves
with [15] and take 𝐾=10, 𝜖𝑖=0.01 and 𝛿𝑖=1 to generate our BQPs. Before explaining in
details our experiment protocol, let us have a look at the number of assets, in each available
instance as well as the number of binary variables it translates to in Table 3.1. In this table,
the “instance” column refers to the instance’s name according to [15]. 𝑁 column represents
the number of considered assets in the corresponding instance. 𝐾 column represents the
number of asset kinds which must be chosen. All other columns represent the number of
binary variables required for each their corresponding integer binary encoding. We can
already observe binary encoding is in all instances one order of magnitude more compact
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than onehot and unary encodings. We can also observe binary encoding is 2.625 times more
compact than the proposed base10 encoding.

To run our experiments, we use DA[46] with its default settings, except for base10 and
onehot encodings, which thus possess onehot constraints. For those we use the DA onehot
constraint feature which allows acceleration when solving problems which have constraints
similar to equation (3.10) as well as changing “gs_level” from 5 to 0 as suggested in [60].
We set the run time for each instance solving to 150 seconds. We compare results for _=0
(maximizing profit only), _=0.5 and _=1 (minimizing risk only) in equation (3.1). We
measure the lowest value of 𝐻𝑜𝑏 𝑗 achieved among found feasible solutions. We use 20
different random seeds.

We separate the results for each instance. For each (instance, _) pair, we take the lowest
value of 𝐻𝑜𝑏 𝑗 found across all encodings as reference value 𝐻𝑜𝑏 𝑗𝑅𝑒 𝑓 . We measure the gap
𝐺𝐴𝑃 defined as follows for each run:

𝐺𝐴𝑃=
𝐻𝑜𝑏 𝑗 (𝑊′)−𝐻𝑜𝑏 𝑗𝑅𝑒 𝑓

𝐻𝑜𝑏 𝑗𝑅𝑒 𝑓
(3.23)

where 𝐻𝑜𝑏 𝑗 (𝑊′) is the value of 𝐻𝑜𝑏 𝑗 for the best solution 𝑊′ found for a given encoding
for a random seed, for an instance, for a given _. We then aggregate the mean of the gap
for each given encoding across all seeds, named “gap” for each instance in Table 3.2. For
encodings which have reached 𝐻𝑜𝑏 𝑗𝑅𝑒 𝑓 we measure the ratio of seeds which have reached it
as “success”. Finally, for encodings which have a non-zero success ratio, we aggregate on
all random seeds the mean and standard deviation of the time needed to reach 𝐻𝑜𝑏 𝑗𝑅𝑒 𝑓 as
“TTB_mean” and “TTB_std”, where TTB stands for “time to best”.

For instance port1, we observe that the unary encoding, contrary to the trend observed in
[59], is performing the worst with TTB one order of magnitude higher than other encodings
for all _ values. For _=1.0, unary encoding is the only encoding needing more than 10
seconds to converge to 𝐻𝑜𝑏 𝑗𝑅𝑒 𝑓 . Although binary encoding is also performing poorly for
_=0 and _=0.5, with TTB_mean almost 20 times worse than the best performing encoding,
which is the proposed base10, it is the best performing encoding for _=1, converging to
𝐻𝑜𝑏 𝑗𝑅𝑒 𝑓 1.5 times faster than the second best, base10 encoding. Both onehot and base10
encodings are strong performers for all _ values, always converging to 𝐻𝑜𝑏 𝑗𝑅𝑒 𝑓 in less than
10 seconds. When comparing those two encodings, the proposed base10 encoding converges
more than 17 times faster to 𝐻𝑜𝑏 𝑗𝑅𝑒 𝑓 for _=0 and _=0.5 and 1.5 times slower for _=1. Thus
we can make the claim for port1 instance, base10 encoding is the better performing encoding
overall. We can also make the assumption that the difference of performance for encoding
such as binary encoding depending on _ value, could be explained by how the search space
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landscape changes when we adjust _. We also note that for binary encoding, 1 seed could not
reach 𝐻𝑜𝑏 𝑗𝑅𝑒 𝑓 solution for _=0.5.

For instance port2, trends overall remain similar with base10 encoding performing the
best for _=0 and _=0.5. For TTB_mean, “NaN” values implies the corresponding encoding
could not reach the best found solution 𝐻𝑜𝑏 𝑗𝑅𝑒 𝑓 by other encodings and thus TTB could
not be evaluated. “NaN” only present in TTB_std column means only 1 seed could reach
𝐻𝑜𝑏 𝑗𝑅𝑒 𝑓 thus standard deviation could not be computed. We also note that binary encoding
cannot converge to 𝐻𝑜𝑏 𝑗𝑅𝑒 𝑓 for _=1 (minimizing risk only). Binary encoding could only
reach 𝐻𝑜𝑏 𝑗𝑅𝑒 𝑓 for 1/20 seed for _=0.0 and 3/20 seeds for _=0.5. We also note base10 success
ratio is 35% for _=1. Only onehot encoding can consistently reach 𝐻𝑜𝑏 𝑗𝑅𝑒 𝑓 for all _ values.
Port2 results thus suggest its landscape is a better fit for onehot encoding solution quality
wise. Note that proposed base10 encoding is the fastest for _=0, being one or two order of
magnitude faster than other encodings, and _=0.5 where it’s 1.3 times faster than onehot
encoding.

Instance port3 has a similar number of assets to port2 (89 vs 85). We can observe similar
trend to port2 for binary encoding as it cannot converge at all to 𝐻𝑜𝑏 𝑗𝑅𝑒 𝑓 solution for _=0 and
_=0.5 and has a low success ratio on _=1. Only onehot encoding achieves 100% convergence
to 𝐻𝑜𝑏 𝑗𝑅𝑒 𝑓 solution for all _ values. Unary encoding is close when looking at success ratio as
it achieves 100%, 100% and 80% respectively for _=0, _=0.5 and _=1. TTB wise onehot is
approximately three times faster than unary encoding for all _ values making it the superior
encoding overall. We note that the proposed base10 encoding performs the best for _=0
being 16.9 times faster than onehot encoding, the second best.

Instance port4 is larger than port3, with 98 assets. The main difference is unary encoding’s
poor solution quality as its success ratio is lower than 40% across all _ values. We observe
the same trend of onehot encoding being the best all around with a success ratio higher than
80% across all _ values. Again, the proposed base10 encoding is the best for _=0, being 8.7
times faster than onehot but has success ratio below 50% for other _ values. Binary performs
poorly overall again with success ratio below 25% for all _ values.

Instance port5 is more than double the size of previous instances with 𝑁=225 and shows
drastically different trends. The large number of variables required for unary and onehot
encoding largely impedes their performance as they can never reach the 𝐻𝑜𝑏 𝑗𝑅𝑒 𝑓 value nor
even lead to feasible solutions, which explains the “NaN” values for their gap. Base10
encoding has an advantage over binary encoding for all _ values as binary encoding can never
reach 𝐻𝑜𝑏 𝑗𝑅𝑒 𝑓 .
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Overall, the experimental evaluations demonstrate the effectiveness of the proposed
CCMPOP formulation. Particularly, the proposed base10 encoding gives the best results
when the large-sized CCMVPOP is solved with 𝑁=225 as shown in Table 3.2.

3.5 Conclusion

In this chapter, we first proposed a BQP formulation for the CCMVPOP and furthermore
we proposed a new base10 integer binary encoding. In the case of CCMVPOP we showed
that among the well-known encodings, onehot encoding leads most of the time to faster TTB
than unary or binary encodings for the smallest 4 instances. Furthermore, we showed there is
room to come up with new encoding schemes. In fact, our proposed base10 encoding could
lead to TTB between same level and 10 times faster than onehot encoding in some cases. The
proposed base10 encoding is also unequivocally the best for the largest instance, port5.

In the future, we will extend our proposed base10 encoding to other bases and study the
impact of the used base for convergence in regard to CCMVPOP as well as other combinatorial
problem involving integer variables.
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Table 3.2 Encoding performance comparison

gap success TTB_mean TTB_std
instance _ encoding [%] [%] [sec] [sec]

port1 0.0 onehot 0.0 100.0 6.5 0.0
unary 0.0 100.0 30.5 2.1
binary 0.0 100.0 23.6 20.9
base10 0.0 100.0 0.6 0.1

0.5 onehot 0.0 100.0 6.5 0.1
unary 0.0 100.0 32.2 0.3
binary 0.0 95.0 23.3 11.5
base10 0.0 100.0 1.3 0.6

1.0 onehot 0.0 100.0 7.0 0.1
unary 0.0 100.0 34.6 0.3
binary 0.0 100.0 1.5 0.7
base10 0.0 100.0 2.3 1.6

port2 0.0 onehot 0.0 100.0 55.9 1.0
unary 0.0 100.0 123.5 0.5
binary 0.5 5.0 141.4 NaN
base10 0.0 100.0 3.9 1.2

0.5 onehot 0.0 100.0 40.2 1.5
unary 0.0 100.0 99.0 5.2
binary 0.1 15.0 81.0 11.1
base10 0.0 100.0 32.9 19.0

1.0 onehot 0.0 100.0 52.4 2.2
unary 0.1 30.0 121.8 7.4
binary 0.1 0.0 NaN NaN
base10 0.0 35.0 82.8 29.3

port3 0.0 onehot 0.0 100.0 62.4 1.0
unary 0.0 100.0 139.1 3.0
binary 1.2 0.0 NaN NaN
base10 0.0 100.0 3.7 0.4

0.5 onehot 0.0 100.0 34.0 3.4
unary 0.0 100.0 104.6 3.0
binary 0.0 0.0 NaN NaN
base10 0.0 45.0 83.3 42.5

1.0 onehot 0.0 100.0 47.4 1.2
unary 0.1 80.0 131.1 7.2
binary 0.0 25.0 93.3 41.6
base10 0.2 25.0 62.3 63.8

port4 0.0 onehot 0.0 100.0 78.1 1.6
unary 47.4 0.0 NaN NaN
binary 1.0 0.0 NaN NaN
base10 0.0 100.0 9.1 12.6

0.5 onehot 0.0 80.0 74.8 26.6
unary 0.1 25.0 131.3 18.1
binary 0.2 5.0 19.6 NaN
base10 0.2 35.0 101.2 44.8

1.0 onehot 0.0 90.0 73.0 16.1
unary 0.4 40.0 138.7 2.7
binary 0.1 25.0 49.5 22.9
base10 0.2 50.0 74.9 42.2

port5 0.0 onehot NaN 0.0 NaN NaN
unary NaN 0.0 NaN NaN
binary 2.2 0.0 NaN NaN
base10 0.0 100.0 14.3 5.3

0.5 onehot NaN 0.0 NaN NaN
unary NaN 0.0 NaN NaN
binary 0.3 0.0 NaN NaN
base10 0.0 100.0 30.7 18.3

1.0 onehot NaN 0.0 NaN NaN
unary NaN 0.0 NaN NaN
binary 0.4 0.0 NaN NaN
base10 0.0 100.0 43.8 18.2



Chapter 4

Fast Hyperparameter Tuning for Ising
Machines1

4.1 Introduction

Ising machines such as [36], [42], [28], [62] or Ising machine-software system such as [46],
have a varying number of hyperparameters and tuning them is a time and money consuming
task as most machines’ usage price are significant. Popular automated tuning techniques are
random sampling where hyperparameters values are picked randomly, grid-search where
predefined combinations of hyperparameters are explored, and manual search done by experts.

A more sophisticated tuning approach which takes into account past results to find the best
hyperparameter values is Tree-structured Parzen Estimator (TPE), which is a sequential model-
based optimization approach originally created and shown to be highly efficient for neural
network hyperparameter tuning [9]. TPE has recently been shown to be efficient for QUBO
penalty coefficient tuning [57, 56, 33, 27, 38] but not for Ising machine hyperparameters
themselves. Tuning of QUBO penalty coefficient is an extensive topic and area of research.
The reason for its popularity is QUBO penalty coefficient is often the most critical parameter
to improve performance. In fact, this coefficient tuning will result in higher performance
across all Ising machines [61, 4, 20]. However tuning of hyperparameters of Ising machine
themselves is not covered as extensively, thus our motivation to research black-box tuning
approach such as random sampling or TPE.

In this chapter, after analyzing tuning performance of random sampling and TPE alone,
a new convergence acceleration method for TPE called FastConvergence is proposed. It
aims at limiting the number of required TPE trials to reach best performing hyperparameter

1Technical contents in this chapter have been presented in the publication ⟨3⟩ and have been applied to the
patent office in the patent ⟨11⟩.
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values combination. We compare FastConvergence to previously mentioned well-known
hyperparameter tuning techniques to show its effectiveness. Our main contributions are:

• We show that TPE converges to better parameters than random sampling and how much
improvement it can yield compared to default parameters.

• We propose a method called FastConvergence, which allows TPE to converge to better
parameters faster than TPE alone.

In Section 4.2, we will define Ising machine performance and how to evaluate Ising
machines hyperparameters in regard to said performance. In Section 4.3, we explain what
tuning techniques can be used as baselines and what kind of objective they should target. In
Section 4.4, we describe our main contribution which aims at accelerating TPE convergence.
In Section 4.5, we show the efficiency of our proposed method using well-known combinatorial
optimization problems: Travel Salesman Problem(TSP) and Quadratic Assignment Problem
(QAP). Finally Section 4.6, gives several concluding remarks.

4.2 Evaluating Ising Machine Hyperparameters

To illustrate the importance of hyperparameter tuning, we first define Ising machines
performance and what problem they solve. BQP solved by DA are defined as follows:

minimize 𝐸 (𝑥)=𝑥𝑇𝑄𝑜𝑏 𝑗𝑥 (4.1)

subject to 𝑥𝑇𝑄𝑝𝑒𝑛𝑥=0 (4.2)

𝑊𝑖𝑥≤𝐶𝑖, ∀𝑖 (4.3)

where 𝑥=(𝑥1,...,𝑥𝑚) is an 𝑚-dimensional vector of binary variables. 𝑄𝑜𝑏 𝑗 , an 𝑚×𝑚 matrix
called a QUBO matrix, represents the objective function we want to minimize. 𝑄𝑝𝑒𝑛 is an
𝑚×𝑚 QUBO constraint to respect, if any. 𝑊𝑖 the linear inequality constraint 𝑖 weights for
each binary variable, and 𝐶𝑖 the constant for linear inequality constraint 𝑖, if any. An example
where𝑊𝑖 and 𝐶𝑖 are inputs is when solving a combinatorial problem which has one or more
linear constraints such as the binary knapsack problem where𝑊0 would represent the weight
of each item and 𝐶0 the capacity of the knapsack.

DA’s objective is thus to find the vector 𝑥 which gives the lowest value for 𝐸 (𝑥) described
in (4.1) which respects (4.2) and (4.3) if (4.2) and/or (4.3) are present.

In this chapter, we will focus on BQPs difficult enough so that their optimal solutions
cannot be found within the set experiment DA run time𝑇 . Thus hyperparameters performance
means the set of hyperparameters which give the lowest 𝐸 found at 𝑇 respecting the
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constraints, which we will call 𝐸𝑚𝑖𝑛 hereinafter. In this chapter, we do not discuss trade-off
of hyperparameters leading to a better 𝐸 (𝑥) within a smallest time 𝑡1<𝑇 but have a worse
𝐸 (𝑥) than others past 𝑡2 where 𝑡1<𝑡2≤𝑇 .

We define 𝐺𝐴𝑃 between 𝐸𝑚𝑖𝑛 and another hyperparameter set 𝑝 tried, leading to worse
𝐸𝑝 as follows:

𝐺𝐴𝑃=
𝐸𝑝−𝐸𝑚𝑖𝑛
|𝐸𝑚𝑖𝑛 |

(4.4)

where 𝐸𝑝 is the lowest 𝐸 found for given hyperparameter set 𝑝. Thus, the best hyperparameter
tuning method will lead to the best 𝑝 with a 𝐺𝐴𝑃𝑝 value of 0, which corresponds to 𝐸𝑚𝑖𝑛,
and other methods will lead to worse 𝑝 which will lead to 𝐺𝐴𝑃𝑝 values strictly positive.

4.3 Black-box Hyperparameter Tuning Techniques

Black-box hyperparameter tuning techniques consist in picking a set of hyperparameters,
input this set in an objective black-box function which should be minimized or maximized,
record said objective value for the tried hyperparameter set and repeat the process until
satisfied. In our case, the black-box is the DA, which is fed DA hyperparameters values and a
given fixed BQP for which the hyperparameters are tuned for. What we measure are metrics
related to finding the lowest 𝐸 (𝑥) for a given BQP for a given hyperparameter values set.
Metrics are described in Section. 4.3.3. This tuning flow is illustrated in Fig. 4.1.

The hyperparameter selection techniques (Step 1 in Fig. 4.1) we use as baselines for
comparison are random sampling and TPE.

4.3.1 Baseline1: Random Sampling

Random sampling consists in randomly picking combination of hyperparameters within a
given range 𝑟 for each hyperparameter following a set distribution. 𝑟𝑚𝑖𝑛 is the minimum
value allowed for a given parameter and 𝑟𝑚𝑎𝑥 its maximum. We thus have 𝑟=𝑟𝑚𝑎𝑥−𝑟𝑚𝑖𝑛
with 𝑟𝑚𝑎𝑥>𝑟𝑚𝑖𝑛≥0. Every time a random combination of hyperparameters is chosen, it is
evaluated using DA on the given BQP (Step 2) then the objective from DA solving metrics is
computed (Step 3). Finally, the hyperparameter set and its corresponding objective value are
recorded during Step 4. After doing 𝑛 trials, the set of parameters 𝑝 giving the lowest 𝐸𝑝 is
chosen as the best parameter set for the hyperparameter selection technique.
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Parameter 
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Fig. 4.1 DA Black-box tuning method

4.3.2 Baseline2: Tree-structured Parzen Estimator

Tree-structured Parzen Estimator (TPE) is a Bayesian method whose main difference with
random sampling is that, in order to determine the next hyperparameter values to try (Step
1), it will consider past hyperparameter trials recorded during Step 4. Those past trials are
used to constitute a surrogate model to the objective to minimize which is differentiable
and thus easier to minimize than the original objective function. This surrogate model
represents prior probability distributions 𝑝(𝑥 |𝑦) and 𝑝(𝑦) where 𝑦 is the expected objective
value given hyperparameter value 𝑥 using tree-structured adaptive Parzen estimators. 𝑝(𝑥 |𝑦)
is modeled using one Gaussian mixture model 𝑙 (𝑥) to the set of hyperparameter values
corresponding to the best objective values and another Gaussian mixture model 𝑔(𝑥) for the
remaining parameter values. TPE selects the hyperparameter value 𝑥 which maximizes the
ratio 𝑙 (𝑥)/𝑔(𝑥). TPE is used in hyperparameter optimization frameworks such as Hyperopt
[10] and Optuna [2]. In this dissertation we use Optuna for our experiments.
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4.3.3 Objective Computation

For objective computation (Step 3 in Fig. 4.1), we propose to calculate it as follows:

𝑂 (𝑝)=𝑡×𝐸𝑝+𝑇𝐸𝑝
(4.5)

where 𝑂 (𝑝) is the objective value for given hyperparameter set 𝑝, 𝐸𝑝 is the lowest 𝐸 found
using 𝑝 during the DA experiment run time 𝑇 , 𝑇𝐸𝑝

is the time at which solution corresponding
to 𝐸𝑝 was found, and 𝑡 is a coefficient we set to 𝑇 . The reason we do not simply record
𝐸𝑝 is to differentiate two sets of parameters leading to the same 𝐸𝑝. By adding 𝑇𝐸𝑝

, the
hyperparameter set which leads to finding a solution corresponding to 𝐸𝑝 the fastest is
prioritized. Differentiating parameter set leading to same 𝐸𝑝 is only useful for TPE based
methods as it models the relation between hyperparameters and objective value to gradually
converge to the best possible 𝑝. It is also only useful for BQP where 𝐸𝑝 ties happen often.

4.4 Tree-structured Parzen Estimator acceleration for Ising
Machines

Our main contribution is a “fast convergence" method to accelerate TPE when using TPE for
optimizing hyperparameter values of Ising machines. We describe the method in Fig. 4.2.

The differences with the method described in Fig. 4.1 are twofold as we introduce:

• Range narrowing: a tuning warm-up phase which lasts 𝑚 trials after which we update
each hyperparameter range to explore (Step 5 and 6 in Fig. 4.2).

• Convergence judgment: if 𝐸𝑚𝑖𝑛 was not updated for 𝑙 number of trials (Step 7 in Fig.
4.2) after warm-up phase has been done, we terminate the tuning regardless of how
many trials were left to be run in regard to set 𝑛.

4.4.1 Range Narrowing

In Step 6 in Fig. 4.2, for each parameter 𝑥 we update its search range 𝑟 by narrowing
it and centering on current best parameter value. Thus 𝑟𝑛𝑒𝑤=𝑟𝑜𝑙𝑑/𝛾 with 𝑟𝑛𝑒𝑤 the new
range of a given hyperparameter, 𝑟𝑜𝑙𝑑 its previous range until 𝑚 trials were completed and
𝛾 an introduced hyperparameter for our method. We note 𝑚 is also a newly introduced
hyperparameter representing how long the warm-up phase will be. The new min and
max of each parameter range is centered on their bast values after 𝑚 trials, they become
𝑟𝑛𝑒𝑤𝑚𝑖𝑛

=𝑥𝑏− 𝑟𝑛𝑒𝑤2 and 𝑟𝑛𝑒𝑤𝑚𝑎𝑥
=𝑥𝑏+ 𝑟𝑛𝑒𝑤2 where 𝑥𝑏 is the parameter value leading to 𝐸𝑚𝑖𝑛 during
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Fig. 4.2 DA fast-convergence tuning method

the warm-up phase. If 𝑟𝑛𝑒𝑤𝑚𝑖𝑛
would become lower than the lowest value allowable for that

parameter, it is clipped to this lowest allowable value. If 𝑟𝑛𝑒𝑤𝑚𝑎𝑥
would become higher than

the highest value allowable for that parameter, it is clipped to to this highest allowable value.
The intuition behind our concept of range narrowing is that hyperparameter range allowed

by an Ising machine such as DA as its input can be significantly wide and the actual “effective"
range can be much narrower. Thus, even when using intelligent method such as TPE, it
can be challenging and our proposed range narrowing method can be effective although we
introduce two new hyperparameters in our method: 𝑚 and 𝛾.

4.4.2 Convergence Judgment

Step 7 in Fig. 4.2 avoids doing hyperparameter trials which have a low probability of finding
better hyperparameter values and thus lowering 𝐸𝑚𝑖𝑛 when a significant number of trials
have already been completed and 𝐸𝑚𝑖𝑛 has not been updated for a set number of trials 𝑙. To
implement this part, after warm-up phase is over, we simply count how many trials have been
done without updating 𝐸𝑚𝑖𝑛. If more than 𝑙 trials have been completed without updating
𝐸𝑚𝑖𝑛, the tuning is terminated.
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4.4.3 Newly Introduced Hyperparameters

As we we have described in Section 4.4.1 and 4.4.2, we have introduced three new hyper-
parameters: 𝑙, 𝑚 and 𝛾. In this sub-section we discuss the trade-off of introducing new
hyperparameters, with their related complexity, against expected benefit of finding better
parameters, faster.

First, we make the claim that 𝑙 virtually replaces 𝑛 and is easier to tune. Our reason is, now
instead of setting a fixed number of trials to run 𝑛, hoping it will be large enough to reach low
enough 𝐸𝑚𝑖𝑛 but not so large that a significant amount will be ran without any improvement,
and thus wasting Ising machine time, we have 𝑙 where the user consciously decides after how
many trials without 𝐸𝑚𝑖𝑛 updates he judges the hyperparameter tuning should end. The user
should set 𝑙 proportionally to the BQP difficulty he wants to solve, with a larger 𝑙 value for
more difficult problems. Thus, we think our proposed convergence judgment should not just
benefit TPE but any black-box tuning method where a certain number of trials to execute has
to be input.

For 𝑚, the length of our warm-up phase for hyperparameter range narrowing described in
Section 4.4.1, like for 𝑙, we suggest to set it at a value proportional to BQP difficulty to solve.
We also note it has to be inferior to 𝑛. We suggest to have 𝑚=𝑙, as we used in Section 4.5.

For 𝛾, we suggest to use a value of 4, as reducing the 𝑟 to a fourth of its width worked well
in our experiments in Seciton 4.5. A sidenote on BQP difficulty, BQP size can be used as a
proxy as well as the number of linear inequalities, but other more sophisticated approaches
can also be considered.

4.5 Experimental Results

As we stated in Section 4.2, we focus on BQP difficult enough so that we will never reach
its optimal solution when we try to solve them using DA within run time 𝑇 , no matter what
parameter was used. We chose two well-known permutation problems Travelling Salesman
Problem (TSP) and Quadratic Assignment Problem (QAP). Within their publicly available
benchmark, respectively “tsplib"[51] and “qaplib"[13], we chose 2 instances from each. First,
we will describe TSP and QAP formulations as BQP.
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4.5.1 Travelling

Salesman Problem as Binary Quadratic Program A well known formulation of Travel
Salesman Problem as QUBO is described in [40], the cost of the QUBO is:

𝐸 (𝑥)=
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝐷𝑖, 𝑗𝑥𝑖,𝑡𝑥 𝑗 ,𝑡+1 (4.6)

where 𝐷 is the TSP distance matrix, 𝑁 is the number of nodes of the TSP, 𝑥𝑖,𝑡 is the 𝑖 visited
node at time slot 𝑡, and 𝑥 𝑗 ,𝑡+1 is the 𝑗 visited node at next time slot 𝑡+1. We thus have 𝑁
binary variables per time slot which represent for each time slot, which node was visited, for
a total of 𝑁2 binary variables. The goal is to find the order in which to travel each node so
that (4.6) is minimized. The coefficients between each binary variable constitute 𝑄𝑜𝑏 𝑗 , the
objective input of the DA. The constraints of the TSP are that each node should be visited
once and only once and that at each time slot, only one node should be visited. This can be
expressed as:

𝐻𝑝𝑒𝑛 (𝑥)=
𝑁∑︁
𝑡=1

(︄
1−

𝑁∑︁
𝑖=1
𝑥𝑖,𝑡

)︄2

+
𝑁∑︁
𝑖=1

(︄
1−

𝑁∑︁
𝑡=1
𝑥𝑖,𝑡

)︄2

(4.7)

The coefficients between each binary variable in 𝐻𝑝𝑒𝑛 (𝑥) constitute 𝑄𝑝𝑒𝑛, the constraint
QUBO input of the DA. If both constraints are satisfied, 𝐻𝑝𝑒𝑛 (𝑥) value will be 0.

4.5.2 Quadratic Assignment Problem as Binary Quadratic Program

A well-known formulation of QAP as a QUBO has been established in [26]. From it, we
derive its formulation as BQP:

𝐸 (𝑥)=
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1

𝑁∑︁
𝑙=1
𝐹𝑖, 𝑗𝐷𝑘,𝑙𝑥𝑖,𝑘𝑥 𝑗 ,𝑙 (4.8)

where 𝑥𝑖,𝑘 is a binary variable which represents factory 𝑖 assigned at location 𝑘 , 𝐹 is known as
the flow matrix representing the amount of exchange between each factory, and 𝐷 the distance
matrix between each location. We thus have 𝑁 binary variables per location which represent
for each location, which factory should be assigned, for a total of 𝑁2 binary variables. The
goal is to assign each factories at locations such that (4.8) is minimized. The coefficients
between each binary variable constitute 𝑄𝑜𝑏 𝑗 , the objective input of the DA.
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The constraints are similar to TSP, each factory should be assigned once and only once,
and at each location only one factory should be assigned:

𝐻𝑝𝑒𝑛 (𝑥)=
𝑁∑︁
𝑖=1

(︄
1−

𝑁∑︁
𝑗=1
𝑥𝑖, 𝑗

)︄2

+
𝑁∑︁
𝑗=1

(︄
1−

𝑁∑︁
𝑖=1
𝑥𝑖, 𝑗

)︄2

(4.9)

Likewise the coefficients between each binary variable in 𝐻𝑝𝑒𝑛 (𝑥) constitute 𝑄𝑝𝑒𝑛, the
constraint QUBO input of the DA. If both constraints are satisfied, 𝐻𝑝𝑒𝑛 (𝑥) value will be 0.

4.5.3 Experimental Settings

We chose two difficult instances from tsplib and qaplib: respectively kroA100, gr120 for TSP
and tai80a, tai100a for QAP. We run one experiment per problem instance. We describe the
common settings between all experiment (and thus all problem instances BQP) below.

We used Optuna which allows to choose between both random and TPE sampler. Among
the hyperparameters available for the DA, we chose to tune “gs_level", “gs_cutoff", “num_run"
and “num_group" as they are the only parameters related to the search engine performance.
Their description available in [60] is:

num_run: The number of parallel attempts of each group (int64 type). (num_run ×
num_group) specifies the number of parallel attempts.

num_group: The number of groups of parallel attempts (int64 type). (num_run ×
num_group) specifies the number of parallel attempts.

gs_level: Level of the global search (int64 type). In the global search, the search starting point
with local solution group escape is determined, and the constrained search combining
various search methods is repeatedly executed as a processing unit. The higher the
value, the longer the constraint exploitation search. Specifies the level of the global
search. Lower level is weak on Global Search.

gs_cutoff: Global search cutoff level (int64 type). Specifies the convergence judgment level
for global search constraint usage search. The higher the value, the longer the period
during which the constraint-based search energy on which convergence is based is not
updated. Convergence assessment is turned off at 0.

We tuned the above parameters using their full parameter range, “gs_level": [0,100],
“gs_cutoff": [0,106], “num_run": [1,16], “num_group": [1,16].

Those parameters are integers, thus the total search space is approximately 25.9×109

combinations of hyperparameter values. For each trial, we use a DA run time 𝑇 of 30 seconds,
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Fig. 4.3 TSP kroA100 Results

exploring the full space would require approximately twenty-five thousand years. We run
𝑛=1000 trials. We use 𝛾=4 to reduce the range of parameters to a fourth of their original
range after the warm-up phase is completed, as described in Section 4.4.1. We compare,
after each trial, each baseline method and the proposed fast-convergence method average cost
value of their best-found feasible solution, for their best-found hyperparameter set since the
start of the experiment over 5 different Optuna random seeds. We plot them respectively on x
and y axis in Fig. 4.3, 4.4, 4.5 and 4.6. In addition, we also plot as a horizontal line the cost
obtained after 𝑇=30𝑠 using default hyperparameter values.

4.5.4 Results

For KroA100 instance, which is composed of 100 nodes, we use 𝑙=𝑚=150 as settings for
Step 5 and 7 of our FastConvergence method in Fig. 4.2. We then observe the results in
Fig. 4.3. Gray line represents the cost value when using default hyperparameters values for
𝑇 , green line Random Sampling, blue line TPE and red line the proposed FastConvergence
method.
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Fig. 4.4 TSP gr120 Results

We observe FastConvergence performs better than random sampling and TPE. It converges
in average after 304 trials, referred to as "END" on Fig. 4.2 and is symbolized by the grey
dashed line in Fig .4.3. Whereas for other methods, 𝑛=1000 trials are ran. At the 304 trials
point, there is a GAP of 0.3% in favor of FastConvergence against TPE, where GAP means
the relative difference in 𝐸 (𝑥) between FastConvergence and TPE. This instance illustrates
how if the total number of trials 𝑛 to complete tuning was smaller than 150, performance
would have been significantly worse and how going beyond 150 trials yields only marginal
improvements. Thus, FastConvergence yields top performing parameters for approximately a
third of the tuning time of standalone TPE and random sampling.

For TSP instance gr120, which is composed of 120 nodes, we use FastConvergence
settings 𝑚=𝑙=200 and observe the results in Fig. 4.4. We setup a higher value for 𝑙 and 𝑚
since the number of TSP nodes is larger. In this instance, compared to kroA100, random
sampling perform significantly worse than the other two methods. We note FastConvergence
converges after 496 trials in average, at which point the GAP with TPE is of 0.7% in favor
FastConvergence which is larger than for kroA100.

For QAP instance tai80a, which is composed of 80 factories and locations, we use
FastConvergence settings 𝑚=𝑙=200 and observe the results in Fig. 4.5. Although the number
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Fig. 4.5 QAP tai80a Results

of variables is smaller than for gr120, we setup a similar value to gr120 for 𝑙 and 𝑚 since
QAP is a more complex problem than TSP. We still have FastConvergence, TPE, random
sampling in order of most well performing tuning technique as for TSP. FastConvergence
converges in average after 388 trials at which point the GAP with TPE is 0.05%.

For QAP instance tai100a, which is composed of 100 factories and locations, we use
FastConvergence settings 𝑚=𝑙=250 and observe the results in Fig. 4.6. FastConvergence
converges after 422 trials in average at which point the GAP with TPE is 0.01% and is the
best performing method overall.

Across all tested instances, FastConvergence was able to find better parameters than
TPE alone, within between 304 and 496 trials. Compared to the 𝑛=1000 trials, it represents
approximately between a third and a half of the learning time to obtain similar performing
hyperparameter values.
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Fig. 4.6 QAP tai100a Results

4.6 Conclusion

In this chapter, we showed popular black-box tuning techniques such as random sampling
or tree-structured Parzen estimator can be used effectively to tune Ising machines. We
proposed to improve on the state of the art, TPE, to allow it to converge faster while still
being able to obtain similar parameter quality. The proposed FastConvergence method as
well as the objective we defined for TPE are the first steppingstones in our hyperparameter
tuning framework for Ising machines.

In our futures works, we would like to try FastConvergence on other problem categories
and Ising machines to demonstrate how general it is. We also would like to study how
hyperparameter values in general can be re-used across different problem instance and how
we could do that efficiently to accelerate tuning time.





Chapter 5

Conclusions

This dissertation goal was to maximize Ising Machines’ combinatorial problem-solving
performance. To that end, it proposed a visualization method to find bottlenecks in QUBO
modeling and illustrated how to solve bottlenecks by using a solution mending algorithm and
a different integer to binary variables encoding. It also proposed an efficient Ising machine
hyperparameter tuning framework which help improve performance regardless of the type of
QUBO input. Overall, this dissertation demonstrated what are the most important aspects to
consider to maximize Ising machine performance, and that the proposed methods are efficient
to this end. In this regard, this dissertation has successfully achieved its goal.

Chapter 2 [Analysis and Acceleration of the Quadratic Knapsack Problem on an
Ising Machine] proposed a QUBO search space landscape visualization technique which uses
two local minima solutions found to represent the multi-dimensional space in between and
understand what makes a QUBO hard to solve. This technique was applied to the Quadratic
Knapsack Problem (QKP) where the goal was to maximize the value of items inserted in a
knapsack. Chapter 2 showed that moving in and out heavy items from the knapsack is difficult
due to the nature of representing linear inequality constraints as QUBO. With this insight, a
solution mending method was proposed to help Ising machines stuck in local minima which
raises the chances of finding the optimal solution with an Ising machine from only 6.7% to
60.7% for an Ising machine used with the proposed solution mending method. Chapter 2 also
compared proposed Ising machine used with solution mending against SA. Results showed
that SA never reaches optimal solution for all problem instances evaluated on.

Chapter 3 [Cardinality Constrained Portfolio Optimization on an Ising Machine]
proposed a novel integer variable to binary variables modeling technique. Proposed landscape
technique from Chapter 2 helped us to identify another bottleneck when solving problems
which include integer variables. Classic encoding methods either create large differences
in the cost function when changing a binary variable value representing a large integer
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value, which makes those moves unlikely to happen, or require a large quantity of binary
variables, creating both computing complexity and a larger memory footprint. A “base10”
encoding was proposed as a tradeoff between having binary variables representing large
integer values and having a high number of binary variables. Proposed encoding was applied
to the Cardinality Constrained Mean Variance Portfolio Optimization Problem (CCMVPOP),
an NP-hard problem which uses real number variables. An efficient QUBO model for the
CCMVPOP was thus proposed by first converting real number variables to integer variables
using coefficient multiplication with rounding combined with integer to binary variable
encoding. Solving performance using the proposed encoding was compared to classic
encodings. Results showed the time to the best-known solutions can be improved by a factor
of up to 10x for several CCMVPOP instances. Results also showed the proposed encoding is
the only one which allows to reach the best-known solutions for a large CCMVPOP instance.

Chapter 4 [Fast Hyperparameter Tuning for Ising Machines] proposed a novel Ising
machine hyperparameter tuning framework. It is based on machine learning state of the
art hyperparameter tuning method called Tree-structured Parzen Estimator (TPE), which
is a kind of Bayesian optimization technique. After showing TPE effectiveness extends
to Ising machines, as well comparing TPE to random parameter sampling, it proposed an
enhanced TPE called "FastConvergence". "FastConvergence" reduces the time required to
find parameters which enable the same level of performance as TPE. Random sampling, TPE,
and "FastConvergence" are compared using DA to solve Travel Salesman Problem (TSP) and
Quadratic Assignment Problem (QAP), two well-known NP-hard problems often used for
Ising machine benchmarking. Results showed that the proposed“FastConvergence” can
find parameters which give solving performance equivalent or better than TPE with two to
three times faster tuning time.

In conclusion, several methods to improve Ising machines’ performance have been
proposed. However, several tasks remain to achieve peak performance. Our future works are
as follows:

• Further improve our hyperparameter tuning framework to reduce tuning time.

• Continue to develop QUBO solving visualization techniques to identify bottlenecks,
to give hints for future QUBO modeling techniques and Ising machines architecture
improvements.

• Perform in-depth benchmarking to compare Ising machines peak performance with
other solvers, which is a complex task as, depending on the considered problem,
reference solving techniques can vary greatly.
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• Combine bottleneck analysis, hyperparameter tuning and benchmarking into an auto-
mated evaluation system to accelerate on Ising machines.

First, since current hyperparameter tuning is still a long process, we aim at reducing the
necessary tuning time further, so that tuning could be an integrated part in the solving process.
Second, we will develop more QUBO visualization techniques to quickly understand when an
Ising machine is under-performing. Third, we will do more benchmarking to understand in
which applications Ising machines are viable to replace other solving technologies. Finally,
we will develop a system to automate hyperparameter tuning, benchmarking and bottleneck
analysis to accelerate experiment turnover time and allow researchers to focus on the most
promising applications for Ising machines.
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