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Abstract: Linear equations in Banach spaces with a distributed fractional derivative given by the
Stieltjes integral and with a closed operator A in the right-hand side are considered. Unlike the
previously studied classes of equations with distributed derivatives, such kinds of equations may
contain a continuous and a discrete part of the integral, i.e., a standard integral of the fractional
derivative with respect to its order and a linear combination of fractional derivatives with different
orders. Resolving families of operators for such equations are introduced into consideration, and their
properties are studied. In terms of the resolvent of the operator A, necessary and sufficient conditions
are obtained for the existence of analytic resolving families of the equation under consideration.
A perturbation theorem for such a class of operators is proved, and the Cauchy problem for the
inhomogeneous equation with a distributed fractional derivative is studied. Abstract results are
applied for the research of the unique solvability of initial boundary value problems for partial
differential equations with a distributed derivative with respect to time.

Keywords: distributed fractional derivative; fractional differential equation; analytic k-resolving
family; Cauchy problem; initial boundary value problem
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1. Introduction

Equations with fractional derivatives of various forms attract the attention of re-
searchers both from a theoretical point of view and because of their widespread use in
applied problems, see, e.g., recent papers [1–3] and many other works. The distributed
derivatives (other names are continual derivatives [4], mean derivatives [5]) are used for
the investigation of some real phenomena and processes when an order of a fractional
derivative in a model continuously depends on the process parameters: in the theory of
viscoelasticity [5], in modeling dielectric induction and diffusion [6,7], in the kinetic the-
ory [8], and in other scientific fields [4,9–12]. This fact initiated the interest in equations with
distributed derivatives of specialists in computational mathematics [13,14], of researchers
in the qualitative theory of differential equations [15–21].

In the mentioned above works, researchers study specific equations or systems of
them with some possible arbitrariness in the choice of parameters. The idea of the present
work is to investigate the Cauchy problem for a class of abstract equations with distributed
derivatives in order to be able to reduce many initial boundary value problems for partial
differential equations or systems of equations of various forms to such a problem and study
them through the obtained general results.
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Let Z be a Banach space, Dβ be the fractional Gerasimov–Caputo derivative for β > 0
and the fractional Riemann–Liouville integral for β ≤ 0, and A be a linear closed densely
defined in Z operator. For an unknown function z : R+ → Z consider the distributed
order equation

c∫
b

Dαz(t)dµ(α) = Az(t), t > 0, (1)

with the Cauchy conditions

z(k)(0) = zk, k = 0, 1, . . . , m− 1. (2)

Here b, c ∈ R, b < c, m− 1 < c ≤ m ∈ N, µ : [b, c]→ C is a function with a bounded
variation, c is a variation point of the measure dµ(t), the integral in Equation (1) is of
Riemann–Stieltjes.

The Cauchy problem for the distributed order equation

c∫
b

ω(α)Dαz(t)dα = Az(t) (3)

with a given scalar function ω : (b, c) → C and a bounded operator A, or with an in-
finitesimal generator A of an analytic semigroup was studied in [22–24]. In the case b = 0,
c ∈ (0, 1], necessary and sufficient conditions on a linear closed operator A for the existence
of an analytic resolving family of operators for Equation (3) were found in [25]. It allowed
us to obtain a theorem on the existence of a unique solution for the corresponding inhomo-
geneous equation. In [26] these results were extended for the case c > 1 and a theorem on
perturbations of generators of analytic resolving operators families for Equation (3) was
proved. Paper [27] contains analogous results for equation with a discretely distributed
Gerasimov–Caputo derivative

n

∑
k=1

ωkDαk z(t) = Az(t).

In works [28,29] initial value problems for equations in Banach spaces with distributed
Riemann–Liouville derivatives were studied.

Equation (1) with the Riemann–Stieltjes integral in the present work includes the listed
above classes of equations as partial cases. Indeed, an arbitrary function µ with a bounded
variation has the form µ = µc + µd, where µc is a continuous function with a bounded
variation, µd is a jumps function. Therefore, Equation (1) has the form

c∫
b

Dαz(t)dµ(α) =

c∫
b

Dαz(t)dµc(α) +

c∫
b

Dαz(t)dµd(α) =

=

c∫
b

µ′c(α)Dαz(t)dα +
n

∑
k=1

ωkDαk z(t) = Az(t),

if there exists an appropriate derivative µ′c, αk are points of jumps of the function µd,
ωk are values of jumps, k = 1, 2, . . . , n. Moreover, here we consider b ≤ 0 in the lower
limit of integration and abandon the additional conditions of the fulfillment of some
inequalities related to the integral from the equation (see [25,26]) since we prove that
these inequalities follow from our general assumptions on parameters of the problem
(see Lemma 1, Lemma 2).

The second section contains the study of the properties of some analytic functions,
which are associated with an integral from Equation (1). Then the notion of a k-resolving
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family, k = 0, 1, . . . , m− 1, is introduced and the properties of such families are researched.
It is shown that the existence of a 0-resolving family implies the existence of k-resolving
families, k = 1, 2, . . . , m− 1. In the third section it is proved that inclusion A ∈ AW(θ0, a0)
for some θ0 ∈ (π/2, π), a0 ≥ 0 is necessary and sufficient for the existence of analytic
k-resolving families for distributed order Equation (1). This result allows us to obtain
a unique solvability theorem for Cauchy problem Equations (1) and (2). In the fourth
section a theorem on the perturbations for operators from the class AW(θ0, a0) is proved.
The unique solvability of the inhomogeneous equation with the distributed derivative and
with an operator A ∈ AW(θ0, a0) is studied in the fifth section. The last section concerns an
application of abstract results to the investigation of an initial boundary value problem for
the phase field system of equations with the distributed order time derivative.

2. Resolving Families of Operators and Their Properties

Let Z be a Banach space, denote for β > 0, h : R+ → Z the Riemann–Liouville
fractional derivative

Jβh(t) :=
1

Γ(β)

t∫
0

(t− s)β−1h(s)ds, t > 0.

Let m− 1 < α ≤ m ∈ N, Dm be the derivative of the m-th order, then the Gerasimov–
Caputo derivative has the form [30–32]

Dαh(t) := Dm Jm−α

(
h(t)−

m−1

∑
k=0

h(k)(0)
tk

k!

)
.

We will mean for α < 0 that Dαh(t) := J−αh(t).
The Laplace transform of a function h : R+ → Z will be denoted by ĥ or Lap[h], if the

expression for h is too large. The Laplace transform of the Gerasimov–Caputo derivative of
an order α ∈ (m− 1, m] satisfies the equality (see, e. g., [33])

D̂αh(λ) = λα ĥ(λ)−
m−1

∑
k=0

h(k)(0)λα−1−k. (4)

Introduce the notations Sθ,a := {µ ∈ C : | arg(µ− a)| < θ, µ 6= a} for θ ∈ [π/2, π],
a ∈ R, Σψ := {t ∈ C : | arg t| < ψ, t 6= 0} for ψ ∈ (0, π/2].

Theorem 1 ([34], Theorem 0.1, p. 5), ([35], Theorem 2.6.1, p. 84). Let θ0 ∈ (π/2, π], a ∈ R,
X be a Banach space, a map H : (a, ∞)→ X be set. The next assertions are equivalent.

(i) There exists an analytic function F : Σθ0−π/2 → X , for every θ ∈ (π/2, θ0) there exists
C(θ) > 0, such that for all t ∈ Σθ−π/2 the inequality ‖F(t)‖X ≤ C(θ)eaRe t is satisfied;
F̂(λ) = H(λ) at λ > a.

(ii) The map H is analytically continued on Sθ0,a, for every θ ∈ (π/2, θ0) there exists such a
K(θ) > 0, that for all λ ∈ Sθ,a ‖H(λ)‖X ≤ K(θ)|λ− a|−1.

Let by L(Z) the Banach space of all linear continuous operators from Z to Z be
denoted, denote by C l(Z) the set of all linear closed operators, densely defined in Z , acting
in the space Z . Endow the domain DA of an operator A ∈ C l(Z) by the norm of its graph
‖ · ‖DA := ‖ · ‖Z + ‖A · ‖Z , then DA is a Banach space.

Consider the Cauchy problem

z(k)(0) = zk, k = 0, 1, . . . , m− 1, (5)

for the distributed order equation
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c∫
b

Dαz(t)dµ(α) = Az(t), t > 0, (6)

where b, c ∈ R, b < c, m− 1 < c ≤ m ∈ N, µ : [b, c] → C is a function with a bounded
variation, briefly µ ∈ BV([b, c];C), c is a variation point of the measure dµ(t). The integral
in Equation (6) is understood in the sense of Riemann–Stieltjes.

A solution of the problem in Equations (5) and (6) is a function z ∈ Cm−1(R+;Z) ∩

C(R+; DA), such that
c∫

b
ω(α)Dαz(t)dα ∈ C(R+;Z) and Equalities (5) and (6) are fulfilled.

Here R+ := R+ ∪ {0}.
It is evident, that under the conditions of this section the complex-valued functions

W(λ) :=
c∫

b

λαdµ(α) Wk(λ) :=
c∫

k

λαdµ(α), k = 0, 1, . . . , m− 1,

are analytic on the set Sπ,0. Here the Riemann–Stieltjes integrals are used also.

Lemma 1. Let b, c ∈ R, b < c, m− 1 < c ≤ m ∈ N, µ ∈ BV([b, c];C), c be a variation point of
the measure dµ(t). Then for k = 0, 1, . . . , m− 1

∀ε ∈ (0, c) ∃C, $ > 0 ∀λ ∈ Sπ,0 \ {λ ∈ C : |λ| < $} |Wk(λ)| ≥ C|λ|c−ε,

ε ∈ (0, c) ∃C, $ > 0 ∀λ ∈ Sπ,0 \ {λ ∈ C : |λ| < $} |W(λ)| ≥ C|λ|c−ε.

Proof. By the definition of the Riemann–Stieltjes integral for a small δ > 0 there exists
a division {α0 = b, α1, . . . , αn−1, αn = c} of the segment [b, c] with a sufficiently small
radius r := max{αk − αk−1 : k = 1, 2, . . . , n} and with intermediate points ξk ∈ [αk−1, αk],
k = 1, 2, . . . , n, we obtain for |λ| > $∣∣∣∣∣∣

c∫
b

λαdµ(α)

∣∣∣∣∣∣ ≥
∣∣∣∣∣ n

∑
j=1

λξ j(µ(αj)− µ(αj−1))

∣∣∣∣∣− δ ≥

≥ |λ|ξn

(
|µ(αn)− µ(αn−1)| −

∣∣∣∣∣n−1

∑
j=1

λξ j−ξn(µ(αj)− µ(αj−1))

∣∣∣∣∣− δ|λ|−ξn

)
≥

≥ |µ(αn)− µ(αn−1)|
2

|λ|ξn .

Here µ(αn) − µ(αn−1) = µ(c) − µ(αn−1) 6= 0 for sufficiently small r, since c is a
variation point of the measure dµ(t).

For every ε ∈ (0, c) there exists a division of [b, c], such that r ≤ ε, then αn − αn−1 =
c− αn−1 ≤ ε and ξn ≥ αn−1 ≥ c− ε.

For Wk the proof has the same form.

Lemma 2. Let b, c ∈ R, b < c, m− 1 < c ≤ m ∈ N, µ ∈ BV([b, c];C), c be a variation point of
the measure dµ(t). Then for all k, l = 0, 1, . . . , m− 1, k > l,

∃C, $ > 0 ∀λ ∈ Sπ,0 \ {λ ∈ C : |λ| < $} |Wk(λ)−Wl(λ)| ≤ C|λ|k;

∃C, $ > 0 ∀λ ∈ Sπ,0 \ {λ ∈ C : |λ| < $} |Wk(λ)−W(λ)| ≤ C|λ|k.
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Proof. Indeed,

|Wk(λ)−Wl(λ)| =

∣∣∣∣∣∣
k∫

l

λαdµ(α)

∣∣∣∣∣∣ ≤ Vc
b (µ)|λ|

k,

where Vc
b (µ) is the variation of the function µ on the segment [b, c]. The second inequality

can be proved in the same way.

Definition 1. A family of operators {Sk(t) ∈ L(Z) : t ≥ 0}, k ∈ {0, 1, . . . , m− 1}, is called
k-resolving for Equation (6), if:

(i) Sk(t) is strongly continuous for t ≥ 0;
(ii) Sk(t)[DA] ⊂ DA, Sk(t)Az = ASk(t)z for all z ∈ DA, t ≥ 0;
(iii) Sk(t)zk is a solution of the Cauchy problem

z(l)(0) = 0, l ∈ {0, 1, . . . , m− 1} \ {k}, z(k)(0) = zk (7)

to Equation (6) for any zk ∈ DA.

Remark 1. So, a k-resolving family {Sk(t) ∈ L(Z) : t ≥ 0} consists of operators, such that S(t)
for every fixed t ≥ 0 maps any zk ∈ DA into the value z(t) = Sk(t)zk at the point t of a solution
of Cauchy problem Equations (6) and (7). Thus, the totality of families {Sk(t) ∈ L(Z) : t ≥ 0},
k = 0, 1, . . . , m− 1, entirely determines the solution of the complete Cauchy problem Equations (5)
and (6).

Denote by ρ(A) the resolvent set {λ ∈ C : (λI − A)−1 ∈ L(Z)} of an operator
A ∈ C l(Z).

Lemma 3. Let b, c ∈ R, b < c, m− 1 < c ≤ m ∈ N, µ ∈ BV([b, c];C), c be a variation point
of the measure dµ(t), for some k ∈ {0, 1, . . . , m− 1} there exist a k-resolving family of operators
{Sk(t) ∈ L(Z) : t ≥ 0} for Equation (6), such that for all t ≥ 0 ‖Sk(t)‖L(Z) ≤ Keat at some
K ≥ 1, a ≥ 0. Then for Reλ > a we have W(λ) ∈ ρ(A) and

Ŝk(λ) =
Wk(λ)

λk+1 (W(λ)I − A)−1. (8)

Proof. For an exponentially bounded solution z of problem Equations (5) and (6), we have

c∫
b

Dαz(t)dµ(α) =

0∫
b

Dαz(t)dµ(α) +
m−1

∑
l=1

l∫
l−1

Dαz(t)dµ(α) +

c∫
m−1

Dαz(t)dµ(α),

hence

Lap

 c∫
b

Dαz(t)dµ(α)

 =

0∫
b

λα ẑ(λ)dµ(α) +
m−1

∑
l=1

l∫
l−1

(
λα ẑ(λ)−

l−1

∑
k=0

z(k)(0)λα−k−1

)
dµ(α)+

+

c∫
m−1

(
λα ẑ(λ)−

m−1

∑
k=0

z(k)(0)λα−k−1

)
dµ(α) = W(λ)ẑ(λ)−

m−1

∑
k=0

z(k)(0)
Wk(λ)

λk+1 = Aẑ(λ)

due to the closedness of A. Therefore, points (ii) and (iii) of Definition 1 imply that for
every zk ∈ DA

W(λ)Ŝk(λ)zk −
Wk(λ)

λk+1 zk = AŜk(λ)zk = Ŝk(λ)zk Azk.
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Consequently, there exists an inverse operator for W(λ)I − A : DA → Z and
Equality (8) holds. The right-hand side of this equation is a bounded operator by the
assumptions of this lemma for Sk, hence W(λ) ∈ ρ(A).

Theorem 2. Let b, c ∈ R, b < c, m − 1 < c ≤ m ∈ N, µ ∈ BV([b, c];C), c be a variation
point of the measure dµ(t), for some k ∈ {0, 1, . . . , m − 1} there exist a k-resolving family of
operators {Sk(t) ∈ L(Z) : t ≥ 0} for Equation (6), such that for all t ≥ 0 S(k)

k (t) ∈ L(Z),
‖S(k)

k (t)‖L(Z) ≤ Keat at some K ≥ 1, a ≥ 0. Then {S(k)
k (t) ∈ L(Z) : t ≥ 0} is continuous in

the point t = 0 in the operator norm in L(Z), if and only if A ∈ L(Z).

Proof. For Reλ > a due to Lemma 3

∞∫
0

e−λt(S(k)
k (t)− I)dt =

Wk(λ)

λ
(W(λ)I − A)−1 − I

λ
.

Let the function η(t) := ‖S(k)
k (t) − I‖L(Z) is continuous on the segment [0, 1] and

η(0) = 0. For ε > 0 take δ > 0, such that η(t) ≤ ε for all t ∈ [0, δ], hence

∥∥∥∥Wk(λ)

λ
(W(λ)I − A)−1 − I

λ

∥∥∥∥
L(Z)

≤
δ∫

0

e−λtη(t)dt +
∞∫

δ

e−λtη(t)dt ≤ ε

λ
+ o
(

1
λ

)

as Reλ → +∞, since η(t) ≤ Keat + 1 for t ≥ 0. Therefore, for large enough Reλ > 0∥∥Wk(λ)(W(λ)I − A)−1 − I
∥∥
L(Z) < 1, consequently, the operator (W(λ)I − A)−1 is contin-

uously invertible, [(W(λ)I − A)−1]−1 = W(λ)I − A ∈ L(Z). Thus, A ∈ L(Z).
Let A ∈ L(Z), R > max{$, (C−1‖A‖L(Z))1/(c−ε)}, where constants C, $ > 0,

ε ∈ (0, c−m + 1) are taken from Lemma 1. Construct the contour ΓR = Γ1,R ∪ Γ2,R ∪ Γ3,R,
where Γ1,R = {Reiϕ : ϕ ∈ (−π, π)}, Γ2,R = {reiπ : r ∈ [R, ∞)}, Γ3,R = {re−iπ : r ∈ [R, ∞)}.
For t ≥ 0 due to Lemma 3 by the inverse Laplace transform we obtain

S(k)
k (t) =

1
2πi

∫
ΓR

Wk(λ)

λ
(W(λ)I − A)−1eλtdλ =

1
2πi

∫
ΓR

Wk(λ)

λ

∞

∑
l=0

Aleλtdλ

W(λ)l+1 =

= I +
1

2πi

∫
ΓR

1
λ

∞

∑
l=1

Aleλtdλ

W(λ)l +
1

2πi

∫
ΓR

Wk(λ)−W(λ)

λ

∞

∑
l=0

Aleλtdλ

W(λ)l+1 .

The series is convergent, since for λ ∈ ΓR by choosing R |W(λ)|−1‖A‖L(Z) < 1 due
to Lemma 1, moreover, by Lemma 1 and Lemma 2 we obtain∥∥∥∥∥ Al

λW(λ)l

∥∥∥∥∥
L(Z)

≤
C1‖A‖l

L(Z)

|λ|(c−ε)l+1
,

∥∥∥∥∥ (Wk(λ)−W(λ))Al

λW(λ)l+1

∥∥∥∥∥
L(Z)

≤
C2‖A‖l

L(Z)

|λ|(c−ε)(l+1)+1−k
.

For small t > 0 take R = 1/t and obtain

‖S(k)
k (t)− I‖L(Z) ≤ C3

3

∑
k=1

 ∞

∑
l=1

∫
Γk,R

‖A‖l
L(Z)|dλ|

|λ|(c−ε)l+1
+

∞

∑
l=0

∫
Γk,R

‖A‖l
L(Z)|dλ|

|λ|(c−ε)(l+1)+1−k

 ≤

≤ C4

(
∞

∑
l=1

‖A‖l
L(Z)

R(c−ε)l
+

∞

∑
l=0

‖A‖l
L(Z)

R(c−ε)(l+1)−k

)
=

C4tc−ε‖A‖L(Z)
1− tc−ε‖A‖L(Z)

+
C4tc−ε−k

1− tc−ε‖A‖L(Z)
→ 0

as t→ 0+, since c− ε− k ≥ c− ε−m + 1 > 0.
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Theorem 3. Let b, c ∈ R, b < c, 1 ≤ m− 1 < c ≤ m, µ ∈ BV([b, c];C), c be a variation point
of the measure dµ(t), there exist a 0-resolving family of operators {S0(t) ∈ L(Z) : t ≥ 0} for
Equation (6), such that for all t ≥ 0 ‖S0(t)‖L(Z) ≤ Keat at some K ≥ 1, a ≥ 0. Then there exist
k-resolving families {Sk(t) ∈ L(Z) : t ≥ 0}, k = 1, 2, . . . , m− 1, for Equation (6).

Proof. Consider for k = 1, 2, . . . , m− 1 functions

Wk(λ)

λkW0(λ)
=

1
λk −

W0(λ)−Wk(λ)

λkW0(λ)
.

Due to Lemmas 1 and 2 ∣∣∣∣W0(λ)−Wk(λ)

λkW0(λ)

∣∣∣∣ ≤ C1

|λ|c−ε
.

For c > 1 choose ε > 0, such that c − ε > 1, then there exists the inverse Laplace
transform

wk(t) :=
d+i∞∫

d−i∞

Wk(λ)eλt

λkW0(λ)
dλ, d > 0, k = 1, 2, . . . , m− 1,

moreover, there exists K1 > 0, such that for all t ≥ 0 |wk(t)| ≤ K1edt. For k = 1 we take
into account that λ−1 = 1̂. The functions wk are continuous for t ≥ 0, since integrals
converge uniformly with respect to t on every segment. Consequently, functions of the

form Sk(t) :=
t∫

0
wk(t− s)S0(s)ds, k = 1, 2, . . . , m− 1, are strongly continuous for t ≥ 0;

point (ii) of Definition 1 holds for Sk also. Moreover, ‖Sk(t)‖L(Z) ≤ K2e(a+d)t for all t ≥ 0.
The derivatives

w(l)
k (t) :=

d+i∞∫
d−i∞

Wk(λ)eλt

λk−lW0(λ)
dλ, d > 0, l = 1, 2, . . . , k− 1; k = 1, 2, . . . , m− 1,

are continuous for t ≥ 0 also, since

Wk(λ)

λk−lW0(λ)
=

1
λk−l −

W0(λ)−Wk(λ)

λk−lW0(λ)
,
∣∣∣∣W0(λ)−Wk(λ)

λk−lW0(λ)

∣∣∣∣ ≤ C1

|λ|c−l−ε
. (9)

From relations Equation (9) it follows that w(l)
k (0) = 0, l = 0, 1, . . . , k− 2, w(k−1)

k (0) = 1.
Thus, for k = 1, 2, . . . , m− 1, zk ∈ DA

S(l)
k (t)zk =

t∫
0

w(l)
k (t− s)S0(s)zkds, l = 1, 2, . . . , k− 1,

S(l)
k (t)zk = w(k−1)

k (t)S(l−k)
0 (0)zk +

t∫
0

w(k−1)
k (s)S(l−k+1)

0 (t− s)zkds, l = k, k + 1, . . . , m− 1,

therefore, Sk(t)zk satisfies initial value conditions Equation (7).
From point (iii) of Definition 1, it follows that

W(λ)Ŝ0(λ)zk − λ−1W0(λ)zk = AŜ0(λ)zk, zk ∈ DA. (10)

Since

Ŝk(λ) = ŵk(λ)Ŝ0(λ) =
Wk(λ)

λkW0(λ)
Ŝ0(λ),
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after the multiplying Equation (10) by ŵk(λ) we obtain

Wk(λ)

λkW0(λ)
W(λ)Ŝ0(λ)zk −

Wk(λ)

λk+1 zk =
Wk(λ)

λkW0(λ)
AŜ0(λ)zk,

W(λ)Ŝk(λ)zk −
Wk(λ)

λk+1 zk = AŜk(λ)zk.

Acting by the inverse Laplace transform, we obtain that Sk(t)zk is a solution of
Equation (6).

3. Analytic Resolving Families

A resolving family of operators is called analytic, if it has an analytic continuation
to a sector Σψ0 at some ψ0 ∈ (0, π/2]. An analytic resolving family of operators {S(t) ∈
L(Z) : t ≥ 0} has a type (ψ0, a0) at some ψ0 ∈ (0, π/2], a0 ∈ R, if for all ψ ∈ (0, ψ0), a > a0
there exists C(ψ, a) > 0, such that for all t ∈ Σψ the inequality ‖S(t)‖L(Z) ≤ C(ψ, a)eaRe t

is satisfied.

Remark 2. Analogous notions of analytic resolving families of operators are used in the study of
integral evolution equations [34] and fractional differential equations [36]. They generalize the
notion of analytic resolving semigroup of operators for the first order equation D1

t z(t) = Az(t)
(see [37–39]).

Following the works [25,26] define a class AW(θ0, a0) as the set of all operators
A ∈ C l(Z) satisfying the following conditions:

(i) there exist θ0 ∈ (π/2, π], a0 ≥ 0, such that W(λ) ∈ ρ(A) for every λ ∈ Sθ0,a0 ;
(ii) for every θ ∈ (π/2, θ0), a > a0 there exists K(θ, a) > 0, such that for all λ ∈ Sθ,a

‖(W(λ)I − A)−1‖L(Z) ≤
|λ|K(θ, a)
|W(λ)||λ− a| .

Remark 3. The classes AW(θ0, a0) in works [25–27] are partial cases of this class with the same
denotation AW(θ0, a0) due to the more general construction of the distributed derivative in the
present work. If µ is a constant, excluding a unique jump in the point α = c, class AW(θ0, a0)
coincides with the class Aα(θ0, a0), defined in [36]. Operators from the class A1(θ0, a0) are
generators of an analytic semigroup of operators exactly [37–39].

Remark 4. If A ∈ L(Z), then for

|λ| > (2‖A‖L(Z))1/(c−ε) (11)

due to Lemma 1

(W(λ)I − A)−1 =
∞

∑
n=0

An

(W(λ))n+1 ,

‖(W(λ)I − A)−1‖L(Z) ≤
1

|W(λ)|
∞

∑
n=0

‖A‖n
L(Z)

|λ|(c−ε)n
≤ 2|λ|
|W(λ)||λ− a|

(
1 +

a
|λ|

)
.

We can choose a0 = 2(2‖A‖L(Z))1/(c−ε), θ0 = π/4, then for λ ∈ Sθ0,a0 we have inequalities
Equation (11) and 1 + a0

|λ| ≤ 1 +
√

2. Thus, A ∈ AW(θ0, a0). In this reasoning we may take a0

greater and θ0 closer to π, if necessary.

For A ∈ AW(θ0, a0) the operators
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Zk(t) :=
1

2πi

∫
Γ

Wk(λ)

λk+1 (W(λ)I − A)−1eλtdλ, k = 0, 1, . . . , m− 1,

are defined at t > 0. Here Γ = Γ+ ∪ Γ− ∪ Γ0, Γ± = {µ ∈ C : µ = a + re±iθ , r ∈ (δ, ∞)},
Γ0 = {µ ∈ C : µ = a + δeiϕ, ϕ ∈ (−θ, θ)} for some δ > 0, a > a0, θ ∈ (π/2, θ0).

Theorem 4. Let b, c ∈ R, b < c, m − 1 < c ≤ m ∈ N, µ ∈ BV([b, c];C), c be a variation
point of the measure dµ(t). Then there exists an analytic 0-resolving family of operators of the type
(θ0−π/2, a0) for Equation (6), if and only if A ∈ AW(θ0, a0). In this case, there exists a unique k-
resolving family of operators for every k = 0, 1, . . . , m− 1, it has the form {Zk(t) ∈ L(Z) : t ≥ 0}.

Proof. Let A ∈ AW(θ0, a0), R > δ, Γ1,R = Γ0, Γ2,R = {λ ∈ C : λ = a + Reiϕ, ϕ ∈ (−θ, θ)},
Γ3,R = {λ ∈ C : λ = a + reiθ , r ∈ [δ, R]}, Γ4,R = {λ ∈ C : λ = a + re−iθ , r ∈ [δ, R]},
ΓR =

⋃4
k=1 Γk,R is the positively oriented closed loop, Γ5,R = {λ ∈ C : λ = a + reiθ ,

r ∈ [R, ∞)}, Γ6,R = {λ ∈ C : λ = a + re−iθ , r ∈ [R, ∞)}, then we have Γ = Γ5,R ∪ Γ6,R ∪
ΓR \ Γ2,R.

For t > 0, z0 ∈ DA

Z0(t)z0 =
1

2πi

∫
Γ

W0(λ)

λ
(W(λ)I − A)−1z0eλtdλ =

1
2πi

∫
Γ

eλt

λ
z0dλ+

+
1

2πi

∫
Γ

eλt

λ
(W(λ)I − A)−1 Az0dλ +

1
2πi

∫
Γ

W0(λ)−W(λ)

λ
(W(λ)I − A)−1eλtz0dλ.

For t ∈ [0, 1], λ ∈ Γ \ {λ ∈ C : |λ| ≤ $}∥∥∥∥ eλt

λ
(W(λ)I − A)−1 Az0

∥∥∥∥
Z
≤ ea+δK(θ, a)‖Az0‖Z

|W(λ)||λ− a| ≤ C1

|λ|c+1−ε
,

∥∥∥∥W0(λ)−W(λ)

λ
(W(λ)I − A)−1eλtz0

∥∥∥∥
Z
≤ Cea+δK(θ, a)‖z0‖Z

|W(λ)||λ− a| ≤ C1

|λ|c+1−ε
,

where we can take any ε ∈ (0, c), see Lemma 1. Since c + 1− ε > 1, the integral Z0(t)
converges uniformly with respect to t ∈ [0, 1] and by the continuity

Z0(0)z0 = z0 +
1

2πi

∫
Γ

1
λ
(W(λ)I − A)−1 Az0dλ+

+
1

2πi

∫
Γ

W0(λ)−W(λ)

λ
(W(λ)I − A)−1z0dλ =

= z0 + lim
R→∞

1
2πi

 ∫
ΓR

−
∫

Γ2,R

+
∫

Γ5,R

+
∫

Γ6,R

 1
λ
(W(λ)I − A)−1 Az0dλ+

+ lim
R→∞

1
2πi

 ∫
ΓR

−
∫

Γ2,R

+
∫

Γ5,R

+
∫

Γ6,R

W0(λ)−W(λ)

λ
(W(λ)I − A)−1z0dλ = z0

due to Cauchy theorem and inequalities∥∥∥∥∥∥∥
∫

Γs,R

1
λ
(W(λ)I − A)−1 Az0dλ

∥∥∥∥∥∥∥
Z

≤ C2

Rc−ε
, s = 2, 5, 6,
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∥∥∥∥∥∥∥
∫

Γs,R

W0(λ)−W(λ)

λ
(W(λ)I − A)−1z0dλ

∥∥∥∥∥∥∥
Z

≤ C2

Rc−ε
, s = 2, 5, 6.

Analogously, for t > 0, z0 ∈ DA, k ∈ {1, 2, . . . , m− 1}

Z(k)
0 (t)z0 =

1
2πi

∫
Γ

λk−1W0(λ)(W(λ)I − A)−1eλtz0dλ =

=
1

2πi

∫
Γ

λk−1eλtdλz0 +
1

2πi

∫
Γ

λk−1(W(λ)I − A)−1 Aeλtz0dλ+

+
1

2πi

∫
Γ

λk−1(W0(λ)−W(λ))(W(λ)I − A)−1eλtz0dλ,

for t ∈ [0, 1], λ ∈ Γ \ {λ ∈ C : |λ| ≤ $}

∥∥∥λk−1(W(λ)I − A)−1eλt Az0

∥∥∥
Z
≤ |λ|

kea+δK(θ, a)‖Az0‖Z
|W(λ)||λ− a| ≤ C1

|λ|c+1−ε−k ,

∥∥∥λk−1(W0(λ)−W(λ))(W(λ)I − A)−1eλtz0

∥∥∥
Z
≤ C|λ|kea+δK(θ, a)‖z0‖Z

|W(λ)||λ− a| ≤ C1

|λ|c+1−ε−k ,

Z(k)
0 (0)z0 = 0 +

1
2πi

∫
Γ

λk−1(W(λ)I − A)−1 Az0dλ+

+
1

2πi

∫
Γ

λk−1(W0(λ)−W(λ))(W(λ)I − A)−1z0dλ = 0,

since c + 1− ε− k > 1 for ε ∈ (0, c−m + 1).
Consider for t > 0, zk ∈ DA, k = 1, 2, . . . , m− 1, l = 0, 1, . . . , m− 1

Z(l)
k (t)zk =

1
2πi

∫
Γ

λl−k−1Wk(λ)(W(λ)I − A)−1eλtzkdλ =

=
1

2πi

∫
Γ

λl−k−1eλtdλzk +
1

2πi

∫
Γ

λl−k−1(W(λ)I − A)−1eλt Azkdλ+

+
1

2πi

∫
Γ

λl−k−1(Wk(λ)−W(λ))(W(λ)I − A)−1eλtzkdλ,

for t ∈ [0, 1], λ ∈ Γ \ {λ ∈ C : |λ| ≤ $}

∥∥∥λl−k−1(W(λ)I − A)−1eλt Azk

∥∥∥
Z
≤ |λ|

l−kea+δK(θ, a)‖Azk‖Z
|W(λ)||λ− a| ≤ C1

|λ|c+1−ε−l+k ,

∥∥∥λl−k−1(Wk(λ)−W(λ))(W(λ)I − A)−1eλtzk

∥∥∥
Z
≤ C2|λ|lea+δK(θ, a)
|W(λ)||λ− a| ≤

C1

|λ|c+1−ε−l .

Then for k 6= l Z(l)
k (0)zk = 0, Z(k)

k (0)zk = zk.
Thus, the functions Zk(t)zk ∈ Cm−1(R+;Z) for zk ∈ DA satisfy Cauchy conditions

Equation (7) with the correponding k ∈ {0, 1, . . . , m− 1}. Since the operator A is closed and
commutes with (W(λ)I − A)−1 on DA, at zk ∈ DA AZk(t)zk ∈ C(R+;Z), so, Zk(t)zk ∈
C(R+; DA), k = 0, 1, . . . , m− 1.
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For Re ν > a we have

Ẑk(ν) =
1

2πi

∫
Γ

Wk(λ)

λk+1(ν− λ)
(W(λ)I − A)−1dλ.

For λ ∈ Sθ,a∥∥∥∥ Wk(λ)

λk+1(ν− λ)
(W(λ)I − A)−1

∥∥∥∥
L(Z)

≤ K(θ, a)
|λ|k|λ− a||λ− ν|

,

hence,

lim
R→∞

1
2πi

∫
Γs,R

Wk(λ)

λk+1(ν− λ)
(W(λ)I − A)−1dλ = 0, s = 2, 5, 6,

and by the Cauchy integral formula

Ẑk(ν) = lim
R→∞

1
2πi

∫
ΓR

Wk(λ)

λk+1(ν− λ)
(W(λ)I − A)−1dλ =

Wk(ν)

νk+1 (W(ν)I − A)−1.

Take in Theorem 1

Hk(λ) =
Wk(λ)

λk+1 (W(λ)I − A)−1, Fk = Zk, k = 0, 1, . . . , m− 1,

then due to the inclusion A ∈ AW(θ0, a0) and Lemma 1 for every θ ∈ (π/2, θ0), a > a0

‖Hk(λ)‖L(Z) =
1

|λ|k+1

(
‖(Wk(λ)−W(λ))(W(λ)I − A)−1‖L(Z)+

+‖W(λ)(W(λ)I − A)−1‖L(Z)
)
≤ K(θ, a)
|λ− a|

(
1

|W(λ)| + 1
)
≤ K1(θ, a)
|λ− a|

and by Theorem 1 the mappings Zk : Σθ0−π/2 → L(Z) are analytic and for every
θ ∈ (π/2, θ0), a > a0 there exists Ck(θ, a) > 0 such that for all t ∈ Σθ−π/2 ‖Zk(t)‖L(Z) ≤
Ck(θ, a)eaRe t, k = 0, 1, . . . , m− 1.

For zk ∈ DA put xk(t) := Zk(t)zk, then Âxk(λ) = λ−k−1Wk(λ)(W(λ)I − A)−1 Azk.
Hence x̂k(λ) ∈ DA, Ax̂k(λ) = Âxk(λ), x̂k(λ) and Âxk(λ) have analytic extensions on Sθ0,a0 ,
since A ∈ AW(θ0, a0). By Formula (4) of the Laplace transform

Lap

 c∫
b

Dαxk(t)dµ(α)

(λ) = W(λ)Wk(λ)

λk+1 (W(λ)I − A)−1zk −
Wk(λ)

λk+1 zk =

=
Wk(λ)

λk+1 (W(λ)I − A)−1 Azk = Âxk(λ).

Apply the inverse Laplace transform to both sides of the obtained equality and get
equality Equation (6) for all points of the function Axk continuity, hence for all t > 0.
Therefore, xk is a solution of problem Equations (6) and (7) and {Zk(t) ∈ L(Z) : t ≥ 0}
is an analytic k-resolving family of operators of the type (θ0 − π/2, a0) for Equation (6),
k = 0, 1, . . . , m− 1.

If there exists an analytic 0-resolving family of operators {S0(t) ∈ L(Z) : t ≥ 0} of
the type (θ0 − π/2, a0) for Equation (6), by Lemma 3

Ŝ0(λ) =
W0(λ)

λ
(W(λ)I − A)−1, Reλ > a0.
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Theorem 1 implies that A ∈ AW(θ0, a0), S0(t) ≡ Z0(t) by virtue of the uniqueness of
the inverse Laplace transform.

By Theorem 3 there exist k-resolving families of operators {Sk(t) ∈ L(Z) : t ≥ 0} for
Equation (6), k = 1, 2, . . . , m− 1, such that

Ŝk(λ) =
Wk(λ)

λk+1 (W(λ)I − A)−1, Reλ > a0.

This equality implies that Sk(t) ≡ Zk(t), k = 1, 2, . . . , m− 1.

Theorem 5. Let b, c ∈ R, b < c, m− 1 < c ≤ m ∈ N, µ ∈ BV([b, c];C), c be a variation point
of the measure dµ(t), A ∈ AW(θ0, a0). Then for any zk ∈ DA, k = 0, 1, . . . , m− 1, the function

z(t) =
m−1
∑

k=0
Zk(t)zk is a unique solution of problems (5) and (6). In this case, the solution is analytic

in the sector Σθ0−π/2.

Proof. From Theorem 4 and linearity of problems (5) and (6) it follows that this funtion z
is an analytic in the sector Σθ0−π/2 solution of the problem.

If there exist two solutions y1, y2 of problems (5) and (6), then their difference y = y1 − y2
is a solution of Equation (6), which satisfies the initial value conditions y(k)(0) = 0,
k = 0, 1, . . . , m− 1. Take T > 0 and redefine the function y on [T, ∞) by zero, denote the
obtained function by yT . It satisfies Equation (6) on R+, excluding, possibly, the point t = T,
where the function yT may be discontinuous. Acting by the Laplace transform on both parts
of Equation (6) and due to the initial conditions, we get the equality W(λ)ŷT(λ) = AŷT(λ).
Since A ∈ AW(θ0, a0), for λ ∈ Sθ0,a0 we get the identity ŷT(λ) = 0. This means that yT ≡ 0
and y1(t) = y2(t) for t ∈ [0, T). We can choose arbitrary large T > 0, therefore, y1 ≡ y2
on R+.

Theorem 6. Let b, c ∈ R, b < c, 2 < c, µ ∈ BV([b, c];C), c be a variation point of the
measure dµ(t), µ(t) ∈ R for all t from some left neighbourhood of c, A ∈ AW(θ0, a0) for some
θ0 ∈ (π/2, π), a0 ≥ 0. Then A ∈ L(Z).

Proof. Due to the definition of the Riemann–Stieltjes integral for a small δ1 > 0 there exists
a division {α0 = b, α1, . . . , αn−1, αn = c} of the segment [b, c] with a sufficiently small radius
r := max{αk − αk−1 : k = 1, 2, . . . , n} and with any intermediate points ξk ∈ [αk−1, αk],
k = 1, 2, . . . , n, such that ∣∣∣∣∣W(λ)−

n

∑
j=1

λξ j(µ(αj)− µ(αj−1))

∣∣∣∣∣ < δ1,

for all sufficiently large |λ| due to Lemma 1 |W(λ)| > 1, therefore, for some d > 0∣∣∣∣∣arg W(λ)− arg

(
n

∑
j=1

λξ j(µ(αj)− µ(αj−1))

)∣∣∣∣∣ < dδ1.

Since lim
|λ|→∞

n−1
∑

j=1
λξ j−ξn(µ(αj)−µ(αj−1)) = 0 and µ(αn)−µ(αn−1) ∈ R for a sufficiently

small radius r > 0, for every γ > 0 there exists δ > 0, such that for all |λ| > δ

ξn arg λ− γ

2
≤ arg

(
n

∑
j=1

λξ j(µ(αj)− µ(αj−1))

)
=

= arg λξn + arg

(
n−1

∑
j=1

λξ j−ξn(µ(αj)− µ(αj−1)) + µ(αn)− µ(αn−1)

)
≤ ξn arg λ +

γ

2
.
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Choosing ξn = c and sufficiently small δ1 < γ/(2d) we obtain

| arg W(λ)− c arg λ| < γ. (12)

Since c > 2, there exist λ ∈ Sθ0,a0 , such that | arg W(λ)| > π. We have also

C|λ|c−ε ≤ |W(λ)| ≤ C1|λ|c. (13)

Further, without limitation of generality, we can assume that C1 ≥ 1.
For arbitrary ν0 ∈ C, such that |ν0| > (C1δ)c + 1, take λ0 = ν1/c

0 , then |λ0| > δ,
arg λ0 = arg ν0/c ∈ (−π/c, π/c), λ0 ∈ Sθ0,a0 for sufficiently large δ > 0. The boundary of
the region

Ωλ0 :=

{
λ ∈ C :

(
|ν0| − 1

C

)1/(c−ε)

< |λ| <
(
|ν0|+ 1

C1

)1/c
,
∣∣∣arg λ− arg ν0

c

∣∣∣ < 2γ

c

}
,

which belongs to Sθ0,a0 for small enough γ > 0, is mapped by the function ν = W(λ)
into the contour, for the point of which due to inequalities (12) and (13) ||ν| − |ν0|| ≥ 1,
| arg ν − arg ν0| ≥ γ. Therefore, ν0 lies inside the contour W[∂Ωλ0 ] and is the image of
some point from Ωλ0 . Thus, {ν ∈ C : |ν| > (C1δ)c + 1} ⊂ W[Sθ0,a0 ] ⊂ ρ(A), since
A ∈ AW(θ0, a0). Moreover, for sufficiently large |ν|, where ν = W(λ),

‖νRν(A)‖L(Z) ≤
K(θ, a)|λ|
|λ− a| ≤ C2,

hence Lemma 5.2 [40] implies the boundedness of the operator A.

4. Perturbations of Operators of the Class AW(θ0, a0)

The result of this section generalizes the perturbation theorem for analytic semigroups
of operators [39] and a similar result for generators of resolving families of the distributed
fractional derivative of the partial form in [26].

Theorem 7. Let b, c ∈ R, b < c, m − 1 < c ≤ m ∈ N, µ ∈ BV([b, c];C), c be a variation
point of the measure dµ(t), A ∈ AW(θ0, a0) for some θ0 ∈ (π/2, π), a0 ≥ 0, B ∈ C l(Z), for all
x ∈ DA ⊂ DB

‖Bx‖Z ≤ β‖Ax‖Z + γ‖x‖Z , (14)

where β, γ ≥ 0, there exists q ∈ (0, 1) such that β(1 + K(θ, a)) < q for every θ ∈ (π/2, θ0),
a > a0. Then A + B ∈ AW(θ0, a1) for sufficiently large a1 > a0.

Proof. Take k > sin−1 θ0, λ ∈ Sθ,ka ⊂ Sθ,a for some θ ∈ (π/2, θ0), a > a0, then inequal-
ity (14) implies that

‖B(W(λ)I − A)−1‖L(Z) ≤ β‖A(W(λ)I − A)−1‖L(Z) + γ‖(W(λ)I − A)−1‖L(Z) ≤

≤ β

(
1 +
|λ|KA(θ, a)
|λ− a|

)
+

γ|λ|KA(θ, a)
|λ− a||W(λ)| ,

where KA is the constant from the definition of the class AW(θ0, a0). Note that the value

|λ|
|λ− a| ≤

1
1− a

|λ|
≤ 1

1− 1
k sin θ0

is close to 1 and
|λ|

|λ− a||W(λ)| ≤
1(

1− 1
k sin θ0

)
C(ka0 sin θ0)c−ε
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is close to 0 for a large enough number k. Here C is the constant from Lemma 1. Hence
for such a k the inequality

‖B(W(λ)I − A)−1‖L(Z) ≤ β

(
1 +

KA(θ, a)
1− 1

k sin θ0

)
+

γKA(θ, a)(
1− 1

k sin θ0

)
C(ka0 sin θ0)c−ε

≤ q < 1

holds. Further, we have

(W(λ)I − A− B)−1 ≤ (W(λ)I − A)−1(I − B(W(λ)I − A)−1)−1 =

= (W(λ)I − A)−1
∞

∑
n=0

[B(W(λ)I − A)−1]n,

|λ− ka|
|λ− a| =

∣∣∣∣1− (k− 1)a
λ− a

∣∣∣∣ ≤ 1 +
(k− 1)a
|λ− a| ≤ 1 +

1
sin θ0

.

Therefore,

‖(W(λ)I − A− B)−1‖L(Z) ≤
|λ|KA(θ, a)

(1− q)|λ− a||W(λ)| ≤
|λ|KA(θ, a)

(
1 + 1

sin θ0

)
(1− q)|λ− ka||W(λ)| .

Thus, A + B ∈ AW(θ0, a1), a1 = ka0, we can take for all θ ∈ (π/2, θ0), a > a1

KA+B(θ, a) =
KA(θ, a/k)

1− q

(
1 +

1
sin θ0

)
.

Remark 5. Any bounded operator B ∈ L(Z) satisfies (14) with β = 0, γ = ‖B‖L(Z).

5. Inhomogeneous Equation

A solution to the Cauchy problem

z(k)(0) = zk, k = 0, 1, . . . , m− 1, (15)

for the inhomogeneous equation

c∫
b

Dαz(t)dµ(α) = Az(t) + g(t), t ∈ (0, T], (16)

where b < c, m− 1 < c ≤ m ∈ N, µ ∈ BV([b, c];C), T > 0, g ∈ C([0, T];Z), is a function

z ∈ Cm−1([0, T];Z) ∩ C((0, T]; DA), such that there exists
c∫

b
Dαz(t)dµ(α) ∈ C((0, T];Z)

and equalities (15) and (16) are fulfilled.
Denote

Z(t) :=
1

2πi

∫
Γ

eλt(W(λ)I − A)−1dλ.

Lemma 4. Let b, c ∈ R, b < c, m − 1 < c ≤ m ∈ N, µ ∈ BV([b, c];C), c be a variation
point of the measure dµ(t), θ0 ∈ (π/2, π], a0 ≥ 0, A ∈ AW(θ0, a0), g ∈ C([0, T]; DA). Then
the function

zg(t) =
t∫

0

Z(t− s)g(s)ds (17)

is a unique solution of problems (15) and (16) with zk = 0, k = 0, 1, . . . , m− 1.
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Proof. Due to Lemma 1 and the inclusion A ∈ AW(θ0, a0), we have for ε ∈ (0, c−m + 1)

‖Z(k)(t)‖L(Z) ≤ C1

∫
Γ

etRe λ|dλ|
|λ|c−ε−k , k = 0, 1, . . . , m− 1.

Since c− ε− k ≥ c− ε−m + 2 > 1 for k = 0, 1, . . . , m− 2, we have Z(k)(0) = 0. For
k = m− 1 ∫

Γ0

etRe λ|dλ|
|λ|c−ε−m+1 ≤ 2πδm−c+εea+δ,

∫
Γ±

etRe λ|dλ|
|λ|c−ε−m+1 ≤

∞∫
δ

ert cos θdr
rc−ε−m+1 = (−t cos θ)c−ε−mΓ(m− c + ε).

Thus, ‖Z(m−1)(t)‖L(Z) = O(tc−ε−m) as t→ 0+,

z(k)g (t) =
t∫

0

Z(k)(t− s)g(s)ds,

z(k)g (0) = 0, k = 0, 1, . . . , m − 2, ‖z(m−1)
g (t)‖ ≤ C1tc−ε−m+1 → 0 as t → 0+. Therefore,

conditions (15) with zk = 0, k = 0, 1, . . . , m− 1, are fulfilled.
Define g(t) ≡ 0 at t > T, then zg is defined on R+, zg = Z ∗ g, ẑg = Ẑĝ. Be-

sides, Ẑ(λ) = (W(λ)I − A)−1, since due Lemma 1 and the inclusion A ∈ AW(θ0, a0) at
λ ∈ Γ \ {κ ∈ C : |κ| < $} for Reν > a∥∥∥∥ 1

ν− λ
(W(λ)I − A)−1

∥∥∥∥ ≤ C3

|λ|c−ε+1 .

Since c− ε + 1 > 1,

Lap

 b∫
0

Dαzgdµ(α)

(ν) = W(ν)(W(ν)I − A)−1 ĝ(ν) = ĝ(ν) + A(W(ν)I − A)−1 ĝ(ν).

Acting by the inverse Laplace transform, we get

b∫
0

Dαzg(t)dµ(α) = g(t) + A(Z ∗ g)(t) = g(t) + Azg(t).

Here due to the inclusion g ∈ C([0, T]; DA), the closedness of the operator A and
the commutation of operators Z(t), t ∈ R+, with A by their construction, the values
A(Z ∗ g)(t) = Z ∗ Ag(t), t ∈ (0, T], are defined.

The proof of the uniqueness of problems (15) and (16) solution is the same as in the
proof of Theorem 5.

Denote by Cγ([0, T];Z) for γ ∈ (0, 1] the class of functions f : [0, T] → Z , such that
for all t, s ∈ [0, T] the inequality ‖ f (t)− f (s)‖Z ≤ C|t− s|γ is satisfied with some C > 0.

Lemma 5. Let b, c ∈ R, b < c, m− 1 < c ≤ m ∈ N, µ ∈ BV([b, c];C), c be a variation point of
the measure dµ(t), θ0 ∈ (π/2, π], a0 ≥ 0, A ∈ AW(θ0, a0), γ ∈ (0, 1], g ∈ Cγ([0, T];Z). Then
function (17) is a unique solution to problems (15) and (16) with zk = 0, k = 0, 1, . . . , m− 1.
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Proof. Denote for t > 0

Y(t) =
1

2πi

∫
Γ

(W(λ)−W0(λ))(W(λ)I − A)−1eλtdλ.

Due to the closedness of A we have for t > 0

AZ(t) =
1

2πi

∫
Γ

A(W(λ)I − A)−1eλtdλ =
1

2πi

∫
Γ

W(λ)(W(λ)I − A)−1eλtdλ =

= Y(t) + D1Z0(t), ‖Y(t)‖L(Z) ≤ C1

∫
Γ

etReλ|dλ|
|λ|c−ε

,

hence imZ(t) ⊂ DA. Arguing as in the previous proof, we obtain that ‖Y(t)‖L(Z) =

O(tc−ε−1) as t→ 0 + .
Since∥∥∥∥∥∥
∫
Γ

W(λ)(W(λ)I − A)−1eλtdλ

∥∥∥∥∥∥
L(Z)

≤ C2 + K(θ, a)
∫

Γ±

|λ|etRe λ

|λ− a| ds ≤ C3

−t cos θ
,

we have ‖AZ(t)‖L(Z) = O(t−1) as t→ 0+, therefore,

‖AZ(t− s)(g(s)− g(t))‖Z ≤ C3|t− s|γ−1.

Then the integral

t∫
0

AZ(t− s)g(s)ds =
t∫

0

AZ(t− s)(g(s)− g(t))ds +
t∫

0

Y(t− s)g(t)ds + (Z0(t)− I)g(t)

converges, since∥∥∥∥∥∥
t∫

0

AZ(t− s)g(s)ds

∥∥∥∥∥∥
Z

≤ C4(tγ + tc−ε) + ‖(Z0(t)− I)g(t)‖Z .

Therefore, zg(t) ∈ DA, zg ∈ C([0, T]; DA).
The rest of the proof is the same as for Lemma 4.

Theorem 5, Lemmas 4 and 5 imply the following assertion.

Theorem 8. Let b, c ∈ R, b < c, m− 1 < c ≤ m ∈ N, µ ∈ BV([b, c];C), c be a variation point of
the measure dµ(t), θ0 ∈ (π/2, π], a0 ≥ 0, A ∈ AW(θ0, a0), g ∈ C([0, T]; DA) ∪ Cγ([0, T];Z),
γ ∈ (0, 1], zk ∈ DA, k = 0, 1, . . . , m− 1. Then the function

z(t) =
m−1

∑
k=0

Zk(t)zk +

t∫
0

Z(t− s)g(s)ds

is a unique solution of problems (15) and (16).
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6. Application to an Initial-Boundary Value Problem

Let Ω ⊂ Rd be a bounded region with a boundary ∂Ω of the class C∞, β, γ, δ, ν ∈ R,
b ≤ 0, c ∈ (1, 2), α1 < α2 < · · · < αn ≤ c, ωj ∈ R \ {0}, j = 1, 2, . . . , n, ω ∈ C([b, c];R),
ω(c) 6= 0 in a some left vicinity of c. Consider the initial-boundary value problem

u(s, 0) = u0(s), v(s, 0) = v0(s), s ∈ Ω, (18)

∂u
∂t

(s, 0) = u1(s),
∂v
∂t

(s, 0) = v1(s), s ∈ Ω, (19)

u(s, t) = v(s, t) = 0, (s, t) ∈ ∂Ω× (0, T], (20)

for the system of equations in Ω× (0, T]

n

∑
j=1

ωjD
αj
t u(s, t) +

c∫
b

ω(α)Dα
t u(s, t)dα = ∆u(s, t)− ∆v(s, t) + f1(s, t), (21)

n

∑
j=1

ωjD
αj
t v(s, t) +

c∫
b

ω(α)Dα
t v(s, t)dα = ν∆v(s, t) + βu(s, t) + γv(s, t) + f2(s, t). (22)

The system at ω2 = ω3 = · · · = ωn = 0, α1 = 1, ω(α) ≡ 0 for all α ∈ (b, c) up
to linear replacement of unknown functions u(s, t) = ũ(s, t) + l

2 ṽ(s, t), v(s, t) = l
2 ṽ(s, t),

l ∈ R, coincides with the linearization of the phase field system of equations, describing
phase transitions of the first kind within the framework of mesoscopic theory [41,42].

Set

Z = (L2(Ω))2, A =

(
∆ −∆
βI γI + ν∆

)
, DA = (H2

0(Ω))2,

where H2
0(Ω) :=

{
z ∈ H2(Ω) : z(s) = 0, s ∈ ∂Ω

}
. Hence A ∈ C l(Z).

Denote Λ1z = ∆z, DΛ1 = H2
0(Ω) ⊂ L2(Ω). By {ϕk : k ∈ N} denote an orthonormal

in the sense of the inner product 〈·, ·〉 in L2(Ω) eigenfunctions of the operator Λ1, which
are enumerated in the non-increasing order of the corresponding eigenvalues {λk : k ∈ N}
taking in account their multiplicities.

Theorem 9. Let c ∈ (1, 2), ν > 0, β, γ, δ ∈ R, then there exist θ0 ∈ (π/2, π), a0 ≥ 0, such that
A ∈ AW(θ0, a0),

σ(A) =

{
λ =

1
2
(λk(1 + ν) + γ±

√
(γ + λk(ν− 1))2 − 4βλk) ∈ C : k ∈ N

}
.

Proof. Using decomposition by the basis {ϕk : k ∈ N} in the space L2(Ω) and the denota-
tions µ±k := 1

2 (λk(1 + ν) + γ±
√
(γ + λk(ν− 1))2 − 4βλk), for

W(λ) =
n

∑
j=1

ωjλ
αj +

c∫
b

ω(α)λαdα 6= µ±k , k ∈ N,

obtain the operators

W(λ)I − A =

(
W(λ)I − ∆ ∆
−βI (W(λ)− γ)I − ν∆

)
,

(W(λ)I − A)−1 =
∞

∑
k=1

(
W(λ)− γ− νλk −λk

β W(λ)− λk

)
〈·, ϕk〉ϕk

(W(λ)− µ+
k )(W(λ)− µ−k )

.

Since µ+
k ∼ νλk and µ−k ∼ λk as k → ∞ (or inversely, depending on the condition

ν ≥ 1 or ν ∈ (0, 1)), for ν > 0 lim
k→∞

arg µ±k = π, therefore, there exists µ0 = max
k∈N

Reµ±k .



Mathematics 2022, 10, 2979 18 of 20

In the proof of Theorem 6 it was shown that for every ε > 0 there exists δ ≥ 1 such
that for |λ| > δ we have | arg W(λ)− c arg λ| < ε. Therefore, we can choose sufficiently
close to π/2 θ0 ∈ (π/2, π) and large enough a0 > δ sin−1 θ0, such that for all k ∈ N
µ±k /∈ Scθ0+2ε,a0 , where cθ0 + 2ε < π for small enough ε > 0. Then due to Lemma 1
|W(λ)| > C|λ|c−ε > |λ|c−ε/2, where ε ≤ 2(c − 1), hence W(λ) ∈ Scθ0+ε,a0 . Then for
λ ∈ Sθ0,a0∣∣∣∣∣W(λ)− γ− νλk

W(λ)− µ+
k

∣∣∣∣∣ ≤ 1 +
|γ|

|W(λ)| sin ε
≤ 1 +

|γ|
(a0 sin θ0)c−ε/2 sin ε

= C1,

∣∣∣∣∣ λk

W(λ)− µ−k

∣∣∣∣∣ ≤ 1 +
1

sin ε
= C2,

∣∣∣∣∣ β

W(λ)− µ+
k

∣∣∣∣∣ ≤ |β|
(a0 sin θ0)c−ε/2 sin ε

= C3,

∣∣∣∣∣W(λ)− λk

W(λ)− µ−k

∣∣∣∣∣ = 1.

Hence for all λ ∈ Sθ0,a0 , z ∈ (L2(Ω))2

‖RW(λ)(A)z‖2
L(Z) ≤ C4 sup

k∈N

(
1

|W(λ)− µ−k |
+

1
|W(λ)− µ+

k |

)
≤ 2C4 sin−2 ε

|W(λ)− a0|
.

Thus, A ∈ AW(θ0, a0).

By Theorems 8 and 9 we obtain the corollary.

Corollary 1. Let c ∈ (1, 2), ν > 0, β, γ, δ ∈ R, κ ∈ (0, 1], fi ∈ C([0, T]; H2(Ω)) ∪
Cκ([0, T]; L2(Ω)), i = 1, 2. Then for all u0, u1, v0, v1 ∈ H2

0(Ω) there exists a unique solution of
problem (18)–(22).

Remark 6. Analogously, but essentially simpler, we can study the initial boundary value problem

u(s, 0) = u0(s),
∂u
∂t

(s, 0) = u1(s), s ∈ Ω, (23)

u(s, t) = 0, (s, t) ∈ ∂Ω× (0, T], (24)

for the ultraslow diffusion equation

n

∑
j=1

ωjD
αj
t u(s, t) +

c∫
b

ω(α)Dα
t u(s, t)dα = ∆u(s, t) + f (s, t), Ω× (0, T]. (25)

For this aim, put Z = L2(Ω), A = Λ1. A similar equation without the sum
n
∑

j=1
ωjD

αj
t u(s, t)

was investigated in [7].

7. Conclusions

The Cauchy problem for equations in Banach spaces with a distributed fractional
derivative and with a linear closed operator A at the unknown function is studied. The
derivative is given by the Riemann–Stieltjes integral with respect to the order of the
fractional differentiation, therefore, the considered class of equations includes equations
with a distributed derivative, defined by a standard integral, or with a discretely distributed
derivative, which was researched earlier. The notion of a k-resolving family of operators
for the equation is introduced, and properties of such families are studied. It is shown
that the existence of a 0-resolving family implies the existence of other k-resolving families,
k = 1, 2, . . . , m− 1. Necessary and sufficient conditions for the existence of an analytic
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0-resolving family of operators in terms of the resolvent of the operator A is the key
result of this work. The corresponding class of the operators is denoted by AW(θ0, a0).
The properties of analytic resolving families, generated by operators from this class, are
investigated, and a perturbutaion theorem for such class of operators is proved. The unique
solvability theorem for the inhomogeneous equation with a distributed fractional derivative
and with A ∈ AW(θ0, a0) is obtained. Results of the work are applied to the research of
an initial boundary value problem for a system of partial differential equations with a
distributed time derivative in a general form.

There are a large number of various types of fractional derivatives, and in recent
decades, new constructions of them have appeared: Riemann–Liouville derivative, Hadamard
derivative, Marchot derivative, Dzhrbashyan–Nersesyan derivative, Prabhakar derivative,
Caputo–Fabrizio and Atangana–Baleanu integro-differential operators, etc. Every con-
struction of a fractional derivative corresponds to certain features of considered problems.
The Gerasimov–Caputo derivative is the most studied (along with the Riemann–Liouville
derivative) and mathematically simplest among such derivatives. The results obtained in
this paper allow us to understand the features of equations with distributed derivatives
given by the Stieltjes integral. This will allow us to move on to the study of equations with
integrals with respect to the differentiation order of fractional derivatives of other types.
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