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ON PROPERTIES OF RIEMANNIAN METRICS
ASSOCIATED WITH B-ELLIPTIC OPERATORS
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Abstract. In this paper, we consider a Riemannian metric in which the Laplace–Beltrami operator
coincides with a B-elliptic operator up to a factor.
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1. K-Homogeneous metrics. Let γ = (γ1, . . . , γn), where γi, i = 1 . . . , n, are fixed numbers such
that

n∑

i=1

γ2i > 0.

We denote by R
n
+ the set of x = (x1, . . . , xn) ∈ R

n such that xi ∈ R if γi = 0 and xi ∈ (0,+∞) if
γi �= 0. A variable xi such that γi �= 0 is said to be exclusive. As usually, we use the notation

(x)γ =

n∏

i=1

xγii , x = (x1, . . . , xn) ∈ R
n
+.

Let a function u(x) be twice continuously differentiable in R
n
+.

We define the operator ΔBγ by the formula

ΔBγu =

n∑

i=1

∂2u

∂x2i
+

n∑

i=1

γi
xi

∂u

∂xi
. (1)

Operators of the form (1) were studied by I. A. Kipriyanov and his disciples (see [8–10]).
We state the following problem: Find a positive definite on R

n
+, symmetric quadratic form (metric)

ds2 =

n∑

i=1

n∑

j=1

gij dxi dxj ,

such that the Laplace–Beltrami operator corresponding to this metric (see [3])

Δω =
1√|g|

n∑

i=1

∂

∂xi

n∑

j=1

gik
√

|g| ∂

∂xk
(2)

coincides with the operator ΔBγ up to a factor. Here functions gij , i, j = 1, . . . , n, are elements of the

matrix ‖gij‖, which is inverse to the matrix ‖gij‖ (the covariant metric tensor), and

g = det ‖gij‖.
The study of elliptic partial differential operators using the Riemannian metric has a long history (see,
e.g., [2, 6]).
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Theorem 1. For n ≥ 3, the elements of the matrix ‖gij‖ are defined by the formula

gij = δij

n∏

i=1

xKi
i = δijx

K , i, j = 1, . . . , n, K = (K1, . . . ,Kn), (3)

where δij is the Kronecker delta and

Ki =
2

n− 2
γi. (4)

Proof. Indeed, since gij = 0 for i �= j, substituting (3) into (2), we obtain

Δωu =
1√|g|

n∑

k=1

∂

∂xk

(
gkk

√
|g| ∂u

∂xk

)
, (5)

where

|g| = g = xnK =
n∏

i=1

N∏

i=1

nxKi
i =

n∏

i=1

x
2nγi/(n−2)
i , (6)

gkk = x−K =
n∏

i=1

x
−2γi/(n−2)
i . (7)

Taking into account (6) and (7), we can rewrite (5) in the following form:

Δωu =
1

xnK/2

n∑

j=1

∂

∂xj

(
x−KxKn/2 ∂u

∂xj

)

= x−K
n∑

j=1

∂2u

∂x2j
+ x−Kn/2

n∑

j=1

∂u

∂xj

(
n∏

l=1

x
Kl(n−2)/2
l

)
∂u

∂xj

= x−K
n∑

j=1

∂2u

∂x2j
+ x−Kn/2

n∑

j=1

n∏

l=1

x
Kl(n−2)/2
l

Kj(n− 2)

2
x−1
j

∂u

∂xj

= x−K
n∑

j=1

∂2u

∂x2j
+ x−K

n∑

j=1

Kj(n− 2)

2xj

∂u

∂xj
= x−KΔBγu,

that is,

Δωu = x−KΔBγu. �
We consider the set Rn

+ equipped with a Riemannian metric

ds2 = xK
n∑

i=1

dx2i K ∈ R, (8)

as a Riemannian space. We denote this space by KIn; its metric (8) is called the K-homogeneous
metric.

Theorem 2. For n = 2, the problem on the search for a metric satisfying Eq. (�) has no solutions.

Proof. Introduce the notation E = g11, F = g12 = g21, and G = g22. Then

g = det ‖gij‖ = EG− F 2, gij = (−1)i+j gij
EG− F 2

.

Therefore,

Δωu =
G

|g|
∂2u

∂x21
+

E

|g|
∂2u

∂x22
− 2

F

|g|
∂2u

∂x1∂x2
+Φ

(
∂u

∂x1
,

∂u

∂x2

)
, (9)
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where Φ is the term depending only on the first-order derivatives of the function u. The expression (9)
is proportional to (1) if the condition F ≡ 0 holds; this implies

g = EG, g11 =
1

E
, g22 =

1

G
, g12 = g21 = g12 = g21 = 0.

Therefore,

Δωu =
1√|EG|

(
∂

∂x1

(√∣∣∣∣
G

E

∣∣∣∣
∂u

∂x1

)
+

∂

∂x2

(√∣∣∣∣
E

G

∣∣∣∣
∂u

∂x2

))

=
1

E

∂2u

∂x21
+

1

G

∂2u

∂x22
+

∂

∂x1

√∣∣∣∣
G

E

∣∣∣∣
∂u

∂x1
+

∂

∂x2

√∣∣∣∣
E

G

∣∣∣∣
∂u

∂x2
.

The first two terms must have the same coefficients, hence E = G. Then the last two terms vanish,
which means the nonexistence of the desired metric for n = 2. �

2. Isometric transforms of K-homogeneous metrics. The necessary and sufficient condition
under which the one-parameter group G with the infinitesimal operator

X =

n∑

i=1

ξi(x)
∂

∂xi

is an isometry group is equivalent to the Killing conditions:
n∑

s=1

(
ξs
∂gij
∂xs

+ gis
∂ξs
∂xj

+ gjs
∂ξs
∂xi

)
= 0, i, j = 1, . . . , n.

Obviously,
∂gij
∂xs

= δij
Ksx

K

xs
.

Therefore, the Killing equations take the form
n∑

s=1

(
δijξsKsx

K−1 + xK
(
∂ξi
∂xj

+
∂ξj
∂xi

))
= 0, i, j = 1, . . . , n.

Summing and dividing by xK , we obtain

δij

N∑

s=1

ξsKs

xs
+

∂ξi
∂xj

+
∂ξj
∂xi

= 0, i, j = 1, . . . , n. (10)

For i �= j, Eq. (10) can be written in the form

∂ξi
∂xj

+
∂ξj
∂xi

= 0, i, j = 1, . . . , n, i �= j. (11)

For i = j Eq. (10) can be written in the form

2
∂ξj
∂xj

+
n∑

s=1

Ksξs
xs

= 0, i = 1, . . . , n. (12)

The vector

ξ = (ξ1, . . . , ξn), ξj = C xpxj, (13)

where

p = (p1, . . . , pn), p1 = p2 = · · · = pn = β = −
n∑

l=1

Kl

2
− 1, (14)
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is a solution of the system (12); this can be verified by a direct calculation. Substituting the represen-
tation (13) into Eqs. (11) and taking into account (14), we obtain

0 ≡ ∂ξi
∂xj

+
∂ξj
∂xi

= Cβxp
(
xi
xj

+
xj
xi

)
, i, j = 1, . . . , n, i �= j.

Therefore,

p1 = p2 = · · · = pn = β = −
n∑

l=1

Kl

2
− 1 = 0, (15)

or, equivalently,
n∑

l=1

Kl = −2. (16)

Taking into account (4), we have
n∑

i=1

γi = 2−N. (17)

3. Characteristics of K-homogeneous metrics in the case of one exclusive variable. One
of the cases where the condition (15) (or, equivalently, (17)) is fulfilled is well known. The space KIn
is the Poincaré model of the n-dimensional Lobachevsky space. In what follows, we consider the case
where γ1 = γ2 = · · · = γn−1 = 0, γn �= 0. The metric (3) has the form

gij = δijx
K
n , i, j = 1, . . . , n, (18)

where

K =
2

n− 2
γ. (19)

The following facts are proved by direct calculations.

Theorem 3. The Christoffel symbols of the first kind corresponding to the metric (8) have the form

Γij,k =
1

2
KxK−1

n

(
δikδjn + δjkδin − δijδkn

)
.

Proof. From the definition of the Christoffel symbols of the first kind, taking into account (18)–(19),
we obtain

Γij,k =
1

2

(
∂gik
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

)
=

1

2

(
δikδjnKxK−1

n + δjkδinKxK−1
n − δijδknKxK−1

n

)
. �

Theorem 4. The Christoffel symbols of the second kind corresponding to the metric (8) have the form

Γk
ij =

K

2xn

(
δikδjn + δjkδin − δijδkn

)
.

Proof. From the definition of the Christoffel symbols of the second kind and Theorem 3 we have

Γk
ij =

n∑

h=1

gkhΓij,h =
K

2

n∑

h=1

δkhx
−K
n xK−1

n

(
δihδjn + δjhδin − δijδhn

)

=
K

2xn

n∑

h=1

(
δkiδjn + δkjδin − δijδkn

)
. �

Theorem 5. The components of the Riemann tensor corresponding to the metric (8) have the form

Rl
ijk =

(
K2

4x2n
− K

2x2n

)(
δliδinδkn + δikδjnδln − δijδknδln − δlkδinδjn

)
+

K2

4x2n

(
δijδlk − δikδlj

)
.
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Proof. By definition, the components of the Riemann tensor are calculated by the formulas

Rl
ijk =

∂Γl
ik

∂xj
− ∂Γl

ij

∂xk
+

n∑

m=1

(
Γm
ikΓ

l
mj − Γm

ijΓ
l
mk

)
.

We calculate the partial derivatives:

∂Γk
ij

∂xs
= − K

2x2n
δsn

(
δkiδjn + δkjδin − δijδkn

)
;

therefore,

∂Γl
ik

∂xj
= − K

2x2n
δjn

(
δliδkn + δlkδin − δikδln

)
,

∂Γl
ij

∂xk
= − K

2x2n
δkn

(
δliδjn + δljδin − δijδln

)
.

We have
∂Γl

i

∂xj
− ∂Γl

ij

∂xs
= − K

2x2n

(
δjnδlkδin − δjnδikδln − δknδljδin + δknδijδln

)
.

Now we calculate the last term in the definition. Taking into account Theorem 4, we obtain

n∑

m=1

(
Γm
ikΓ

l
mj − Γm

ijΓ
l
mk

)

=
K2

4x2n

n∑

m=1

(
δmiδknδlmδjn + δmiδknδljδmn − δmiδknδmjδln + δmkδinδlmδjn

+ δmkδinδljδmn − δmkδinδmjδln − δikδmnδlmδjn − δikδmnδljδmn + δikδmnδmjδln

− δmiδjnδlmδkn − δmiδjnδlkδmn + δmiδjnδmkδln − δmjδinδlmδkn − δmjδinδlkδmn

+ δmjδinδmkδln + δijδmnδlmδkn + δijδmnδlkδmn − δijδmnδmkδln

)
.

Taking into account the properties of the Kronecker delta, in particular, the formulas δil = δli and
n∑

m=1
δmiδlm = δil, after identity transformations we arrive to the desired formulas. �

Theorem 6. The components of the Ricci tensor corresponding to the metric (8) have the form

Rij =
K

4x2n

(
(K − 2)(2 − n)δinδjn +

(
K(n− 2) + 2

)
δij

)
. (20)

Proof. Substituting the formulas obtained in Theorem 5 into the definition of the components of the
Ricci tensor

Rij =

n∑

k=1

Rk
ijk,

we obtain (20). �

Theorem 7. The curvature of the space KIn is calculated by the formula

R =
Kn(n− 2)

xK+2
n

=
2γn

x
(2γ+2n−4)/(n−2)
n

. (21)

Proof. The formula (21) follows from the definition of the curvature

R =

n∑

i=1

n∑

j=1

gijRij

and the formulas obtained above. �
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Remark 1. There are no twice continuously differentiable changes of variables that reduce an equa-
tion of the form

ΔBγu ≡
n∑

k=1

∂2u

∂x2k
+

γ

xn

∂u

∂xn
= f, γ �= 0,

to an equation of the form

Δu ≡
n∑

k=1

∂2u

∂x2k
= f.

Indeed, if such a substitution exists, then there exists a coordinate transform turning a metric with
nonzero curvature to a metric with zero curvature, which is impossible.

4. Geodesic lines for K-homogeneous metrics.

Theorem 8. The system of equations of geodesic lines of the space KIn is reduced to the first-order
system

dxk
ds

=
Ck

xKn
, k = 1, . . . , n− 1,

(
dxn
ds

)2

=
Cn

xKn
− B2

x2Kn
, (22)

where B =

√
n−1∑
k=1

C2
k .

Proof. The system of equations for geodesic lines of a given metric ‖gij‖ has the form

d2xk
ds2

+

n∑

i=1

n∑

j=1

Γk
ij

dxi
ds

dxj
ds

= 0, k = 1, 2, . . . , n,

where s is the natural parameter (arclength). In our case, using the Christoffel symbols calculated
above, we rewrite this system in the form

d2xk
ds2

+
K

xn

dxn
ds

dxk
ds

= 0, k = 1, . . . , n− 1, (23)

d2xn
ds2

− K

2xn

n∑

i=1

(
dxi
ds

)2

+
K

2xn

(
dxn
ds

)2

= 0. (24)

Equations (23) can be written in the form

x−K
n

d

ds

(
xKn

dxk
ds

)
= 0, k = 1, . . . , n− 1. (25)

Multiplying (25) by xKn , integrating, and dividing by xKn , we obtain

dxk
ds

=
Ck

xKn
, k = 1, . . . , n− 1. (26)

Substituting (26) into (24), we have

d2xn
ds2

− KB2

2x2K+1
n

+
K

2xn

(
dxn
ds

)2

= 0, (27)

where B was defined above. Equations (27) admits reducing of the order. We set p = p(xn) = dxn/ds
and v = p2; then d2xn/ds

2 = p′p = v′/2. Equation (27) takes the form

v′ +
K

xn
v =

B2K

x2K+1
n

⇐⇒ d

dxn
(xKn v) =

B2K

xK+1
n

.
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Integrating and dividing by xKn , we obtain

v = p2 =

(
dxn
ds

)2

=
Cn

xKn
− B2

x2Kn
. �

It is well known (see [1]) that geodesic lines possess the property
n∑

i=1

n∑

j=1

gij
dxi
ds

dxj
ds

= const .

In the case considered, this leads to the equality
n∑

i=1

xKn

(
dxi
ds

)2

= const . (28)

From (22) we can easily obtain that the constant in Eq. (28) coincides with Cn.

REFERENCES

1. L. P. Eisenhart, Riemannian Geometry, Princeton Univ. Press, Princeton (1926).
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