ON PROPERTIES OF RIEMANNIAN METRICS ASSOCIATED WITH B-ELLIPTIC OPERATORS

M. V. Polovinkina and I. P. Polovinkin

Abstract

In this paper, we consider a Riemannian metric in which the Laplace-Beltrami operator coincides with a B-elliptic operator up to a factor.

Keywords and phrases: B-elliptic operator, Riemannian metric, Laplace-Beltrami operator, isometry group, Killing conditions, Lobachevsky geometry.

AMS Subject Classification: 35J15

1. K-Homogeneous metrics. Let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$, where $\gamma_{i}, i=1 \ldots, n$, are fixed numbers such that

$$
\sum_{i=1}^{n} \gamma_{i}^{2}>0
$$

We denote by \mathbb{R}_{+}^{n} the set of $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ such that $x_{i} \in \mathbb{R}$ if $\gamma_{i}=0$ and $x_{i} \in(0,+\infty)$ if $\gamma_{i} \neq 0$. A variable x_{i} such that $\gamma_{i} \neq 0$ is said to be exclusive. As usually, we use the notation

$$
(x)^{\gamma}=\prod_{i=1}^{n} x_{i}^{\gamma_{i}}, \quad x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{+}^{n} .
$$

Let a function $u(x)$ be twice continuously differentiable in \mathbb{R}_{+}^{n}.
We define the operator $\Delta_{B_{\gamma}}$ by the formula

$$
\begin{equation*}
\Delta_{B_{\gamma}} u=\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}+\sum_{i=1}^{n} \frac{\gamma_{i}}{x_{i}} \frac{\partial u}{\partial x_{i}} . \tag{1}
\end{equation*}
$$

Operators of the form (1) were studied by I. A. Kipriyanov and his disciples (see [8-10]).
We state the following problem: Find a positive definite on \mathbb{R}_{+}^{n}, symmetric quadratic form (metric)

$$
d s^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} g_{i j} d x_{i} d x_{j}
$$

such that the Laplace-Beltrami operator corresponding to this metric (see [3])

$$
\begin{equation*}
\Delta_{\omega}=\frac{1}{\sqrt{|g|}} \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \sum_{j=1}^{n} g^{i k} \sqrt{|g|} \frac{\partial}{\partial x_{k}} \tag{2}
\end{equation*}
$$

coincides with the operator $\Delta_{B_{\gamma}}$ up to a factor. Here functions $g^{i j}, i, j=1, \ldots, n$, are elements of the matrix $\left\|g^{i j}\right\|$, which is inverse to the matrix $\left\|g_{i j}\right\|$ (the covariant metric tensor), and

$$
g=\operatorname{det}\left\|g_{i j}\right\| .
$$

The study of elliptic partial differential operators using the Riemannian metric has a long history (see, e.g., $[2,6]$).

Theorem 1. For $n \geq 3$, the elements of the matrix $\left\|g_{i j}\right\|$ are defined by the formula

$$
\begin{equation*}
g_{i j}=\delta_{i j} \prod_{i=1}^{n} x_{i}^{K_{i}}=\delta_{i j} x^{K}, \quad i, j=1, \ldots, n, \quad K=\left(K_{1}, \ldots, K_{n}\right), \tag{3}
\end{equation*}
$$

where $\delta_{i j}$ is the Kronecker delta and

$$
\begin{equation*}
K_{i}=\frac{2}{n-2} \gamma_{i} . \tag{4}
\end{equation*}
$$

Proof. Indeed, since $g_{i j}=0$ for $i \neq j$, substituting (3) into (2), we obtain

$$
\begin{equation*}
\Delta_{\omega} u=\frac{1}{\sqrt{|g|}} \sum_{k=1}^{n} \frac{\partial}{\partial x_{k}}\left(g^{k k} \sqrt{|g|} \frac{\partial u}{\partial x_{k}}\right) \tag{5}
\end{equation*}
$$

where

$$
\begin{gather*}
|g|=g=x^{n K}=\prod_{i=1}^{n} \prod_{i=1}^{N} n x_{i}^{K_{i}}=\prod_{i=1}^{n} x_{i}^{2 n \gamma_{i} /(n-2)}, \tag{6}\\
g^{k k}=x^{-K}=\prod_{i=1}^{n} x_{i}^{-2 \gamma_{i} /(n-2)} . \tag{7}
\end{gather*}
$$

Taking into account (6) and (7), we can rewrite (5) in the following form:

$$
\begin{aligned}
& \Delta_{\omega} u=\frac{1}{x^{n K / 2}} \sum_{j=1}^{n} \frac{\partial}{\partial x_{j}}\left(x^{-K} x^{K n / 2} \frac{\partial u}{\partial x_{j}}\right) \\
&=x^{-K} \sum_{j=1}^{n} \frac{\partial^{2} u}{\partial x_{j}^{2}}+x^{-K n / 2} \sum_{j=1}^{n} \frac{\partial u}{\partial x_{j}}\left(\prod_{l=1}^{n} x_{l}^{K_{l}(n-2) / 2}\right) \frac{\partial u}{\partial x_{j}} \\
&=x^{-K} \sum_{j=1}^{n} \frac{\partial^{2} u}{\partial x_{j}^{2}}+x^{-K n / 2} \sum_{j=1}^{n} \prod_{l=1}^{n} x_{l}^{K_{l}(n-2) / 2} \frac{K_{j}(n-2)}{2} x_{j}^{-1} \frac{\partial u}{\partial x_{j}} \\
&=x^{-K} \sum_{j=1}^{n} \frac{\partial^{2} u}{\partial x_{j}^{2}}+x^{-K} \sum_{j=1}^{n} \frac{K_{j}(n-2)}{2 x_{j}} \frac{\partial u}{\partial x_{j}}=x^{-K} \Delta_{B_{\gamma}} u,
\end{aligned}
$$

that is,

$$
\Delta_{\omega} u=x^{-K} \Delta_{B_{\gamma}} u .
$$

We consider the set \mathbb{R}_{+}^{n} equipped with a Riemannian metric

$$
\begin{equation*}
d s^{2}=x^{K} \sum_{i=1}^{n} d x_{i}^{2} \quad K \in \mathbb{R} \tag{8}
\end{equation*}
$$

as a Riemannian space. We denote this space by $K I_{n}$; its metric (8) is called the K-homogeneous metric.

Theorem 2. For $n=2$, the problem on the search for a metric satisfying Eq. (\square) has no solutions. Proof. Introduce the notation $E=g_{11}, F=g_{12}=g_{21}$, and $G=g_{22}$. Then

$$
g=\operatorname{det}\left\|g_{i j}\right\|=E G-F^{2}, \quad g^{i j}=(-1)^{i+j} \frac{g_{i j}}{E G-F^{2}} .
$$

Therefore,

$$
\begin{equation*}
\Delta_{\omega} u=\frac{G}{|g|} \frac{\partial^{2} u}{\partial x_{1}^{2}}+\frac{E}{|g|} \frac{\partial^{2} u}{\partial x_{2}^{2}}-2 \frac{F}{|g|} \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}+\Phi\left(\frac{\partial u}{\partial x_{1}}, \frac{\partial u}{\partial x_{2}}\right), \tag{9}
\end{equation*}
$$

where Φ is the term depending only on the first-order derivatives of the function u. The expression (9) is proportional to (1) if the condition $F \equiv 0$ holds; this implies

$$
g=E G, \quad g^{11}=\frac{1}{E}, \quad g^{22}=\frac{1}{G}, \quad g_{12}=g_{21}=g^{12}=g^{21}=0
$$

Therefore,

$$
\begin{aligned}
\Delta_{\omega} u=\frac{1}{\sqrt{|E G|}}\left(\frac{\partial}{\partial x_{1}}\left(\sqrt{\left|\frac{G}{E}\right|} \left\lvert\, \frac{\partial u}{\partial x_{1}}\right.\right)+\frac{\partial}{\partial x_{2}}\right. & \left.\left(\sqrt{\left|\frac{E}{G}\right|} \frac{\partial u}{\partial x_{2}}\right)\right) \\
& =\frac{1}{E} \frac{\partial^{2} u}{\partial x_{1}^{2}}+\frac{1}{G} \frac{\partial^{2} u}{\partial x_{2}^{2}}+\frac{\partial}{\partial x_{1}} \sqrt{\left|\frac{G}{E}\right|} \frac{\partial u}{\partial x_{1}}+\frac{\partial}{\partial x_{2}} \sqrt{\left|\frac{E}{G}\right|} \frac{\partial u}{\partial x_{2}} .
\end{aligned}
$$

The first two terms must have the same coefficients, hence $E=G$. Then the last two terms vanish, which means the nonexistence of the desired metric for $n=2$.
2. Isometric transforms of K-homogeneous metrics. The necessary and sufficient condition under which the one-parameter group G with the infinitesimal operator

$$
X=\sum_{i=1}^{n} \xi_{i}(x) \frac{\partial}{\partial x_{i}}
$$

is an isometry group is equivalent to the Killing conditions:

$$
\sum_{s=1}^{n}\left(\xi_{s} \frac{\partial g_{i j}}{\partial x_{s}}+g_{i s} \frac{\partial \xi_{s}}{\partial x_{j}}+g_{j s} \frac{\partial \xi_{s}}{\partial x_{i}}\right)=0, \quad i, j=1, \ldots, n
$$

Obviously,

$$
\frac{\partial g_{i j}}{\partial x_{s}}=\delta_{i j} \frac{K_{s} x^{K}}{x_{s}}
$$

Therefore, the Killing equations take the form

$$
\sum_{s=1}^{n}\left(\delta_{i j} \xi_{s} K_{s} x^{K-1}+x^{K}\left(\frac{\partial \xi_{i}}{\partial x_{j}}+\frac{\partial \xi_{j}}{\partial x_{i}}\right)\right)=0, \quad i, j=1, \ldots, n .
$$

Summing and dividing by x_{K}, we obtain

$$
\begin{equation*}
\delta_{i j} \sum_{s=1}^{N} \frac{\xi_{s} K_{s}}{x_{s}}+\frac{\partial \xi_{i}}{\partial x_{j}}+\frac{\partial \xi_{j}}{\partial x_{i}}=0, \quad i, j=1, \ldots, n \tag{10}
\end{equation*}
$$

For $i \neq j$, Eq. (10) can be written in the form

$$
\begin{equation*}
\frac{\partial \xi_{i}}{\partial x_{j}}+\frac{\partial \xi_{j}}{\partial x_{i}}=0, \quad i, j=1, \ldots, n, \quad i \neq j \tag{11}
\end{equation*}
$$

For $i=j$ Eq. (10) can be written in the form

$$
\begin{equation*}
2 \frac{\partial \xi_{j}}{\partial x_{j}}+\sum_{s=1}^{n} \frac{K_{s} \xi_{s}}{x_{s}}=0, \quad i=1, \ldots, n \tag{12}
\end{equation*}
$$

The vector

$$
\begin{equation*}
\xi=\left(\xi_{1}, \ldots, \xi_{n}\right), \quad \xi_{j}=C x^{p} x_{j}, \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
p=\left(p_{1}, \ldots, p_{n}\right), \quad p_{1}=p_{2}=\cdots=p_{n}=\beta=-\sum_{l=1}^{n} \frac{K_{l}}{2}-1, \tag{14}
\end{equation*}
$$

is a solution of the system (12); this can be verified by a direct calculation. Substituting the representation (13) into Eqs. (11) and taking into account (14), we obtain

$$
0 \equiv \frac{\partial \xi_{i}}{\partial x_{j}}+\frac{\partial \xi_{j}}{\partial x_{i}}=C \beta x^{p}\left(\frac{x_{i}}{x_{j}}+\frac{x_{j}}{x_{i}}\right), \quad i, j=1, \ldots, n, \quad i \neq j
$$

Therefore,

$$
\begin{equation*}
p_{1}=p_{2}=\cdots=p_{n}=\beta=-\sum_{l=1}^{n} \frac{K_{l}}{2}-1=0 \tag{15}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\sum_{l=1}^{n} K_{l}=-2 \tag{16}
\end{equation*}
$$

Taking into account (4), we have

$$
\begin{equation*}
\sum_{i=1}^{n} \gamma_{i}=2-N \tag{17}
\end{equation*}
$$

3. Characteristics of K-homogeneous metrics in the case of one exclusive variable. One of the cases where the condition (15) (or, equivalently, (17)) is fulfilled is well known. The space $K I_{n}$ is the Poincaré model of the n-dimensional Lobachevsky space. In what follows, we consider the case where $\gamma_{1}=\gamma_{2}=\cdots=\gamma_{n-1}=0, \gamma_{n} \neq 0$. The metric (3) has the form

$$
\begin{equation*}
g_{i j}=\delta_{i j} x_{n}^{K}, \quad i, j=1, \ldots, n, \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
K=\frac{2}{n-2} \gamma \tag{19}
\end{equation*}
$$

The following facts are proved by direct calculations.
Theorem 3. The Christoffel symbols of the first kind corresponding to the metric (8) have the form

$$
\Gamma_{i j, k}=\frac{1}{2} K x_{n}^{K-1}\left(\delta_{i k} \delta_{j n}+\delta_{j k} \delta_{i n}-\delta_{i j} \delta_{k n}\right) .
$$

Proof. From the definition of the Christoffel symbols of the first kind, taking into account (18)-(19), we obtain

$$
\Gamma_{i j, k}=\frac{1}{2}\left(\frac{\partial g_{i k}}{\partial x_{j}}+\frac{\partial g_{j k}}{\partial x_{i}}-\frac{\partial g_{i j}}{\partial x_{k}}\right)=\frac{1}{2}\left(\delta_{i k} \delta_{j n} K x_{n}^{K-1}+\delta_{j k} \delta_{i n} K x_{n}^{K-1}-\delta_{i j} \delta_{k n} K x_{n}^{K-1}\right)
$$

Theorem 4. The Christoffel symbols of the second kind corresponding to the metric (8) have the form

$$
\Gamma_{i j}^{k}=\frac{K}{2 x_{n}}\left(\delta_{i k} \delta_{j n}+\delta_{j k} \delta_{i n}-\delta_{i j} \delta_{k n}\right) .
$$

Proof. From the definition of the Christoffel symbols of the second kind and Theorem 3 we have

$$
\begin{aligned}
\Gamma_{i j}^{k}=\sum_{h=1}^{n} g^{k h} \Gamma_{i j, h}=\frac{K}{2} \sum_{h=1}^{n} \delta_{k h} x_{n}^{-K} x_{n}^{K-1}\left(\delta_{i h} \delta_{j n}+\delta_{j h} \delta_{i n}-\right. & \left.\delta_{i j} \delta_{h n}\right) \\
& =\frac{K}{2 x_{n}} \sum_{h=1}^{n}\left(\delta_{k i} \delta_{j n}+\delta_{k j} \delta_{i n}-\delta_{i j} \delta_{k n}\right)
\end{aligned}
$$

Theorem 5. The components of the Riemann tensor corresponding to the metric (8) have the form

$$
R_{i j k}^{l}=\left(\frac{K^{2}}{4 x_{n}^{2}}-\frac{K}{2 x_{n}^{2}}\right)\left(\delta_{l i} \delta_{i n} \delta_{k n}+\delta_{i k} \delta_{j n} \delta_{l n}-\delta_{i j} \delta_{k n} \delta_{l n}-\delta_{l k} \delta_{i n} \delta_{j n}\right)+\frac{K^{2}}{4 x_{n}^{2}}\left(\delta_{i j} \delta_{l k}-\delta_{i k} \delta_{l j}\right) .
$$

Proof. By definition, the components of the Riemann tensor are calculated by the formulas

$$
R_{i j k}^{l}=\frac{\partial \Gamma_{i k}^{l}}{\partial x_{j}}-\frac{\partial \Gamma_{i j}^{l}}{\partial x_{k}}+\sum_{m=1}^{n}\left(\Gamma_{i k}^{m} \Gamma_{m j}^{l}-\Gamma_{i j}^{m} \Gamma_{m k}^{l}\right) .
$$

We calculate the partial derivatives:

$$
\frac{\partial \Gamma_{i j}^{k}}{\partial x_{s}}=-\frac{K}{2 x_{n}^{2}} \delta_{s n}\left(\delta_{k i} \delta_{j n}+\delta_{k j} \delta_{i n}-\delta_{i j} \delta_{k n}\right)
$$

therefore,

$$
\frac{\partial \Gamma_{i k}^{l}}{\partial x_{j}}=-\frac{K}{2 x_{n}^{2}} \delta_{j n}\left(\delta_{l i} \delta_{k n}+\delta_{l k} \delta_{i n}-\delta_{i k} \delta_{l n}\right), \quad \frac{\partial \Gamma_{i j}^{l}}{\partial x_{k}}=-\frac{K}{2 x_{n}^{2}} \delta_{k n}\left(\delta_{l i} \delta_{j n}+\delta_{l j} \delta_{i n}-\delta_{i j} \delta_{l n}\right) .
$$

We have

$$
\frac{\partial \Gamma_{i}^{l}}{\partial x_{j}}-\frac{\partial \Gamma_{i j}^{l}}{\partial x_{s}}=-\frac{K}{2 x_{n}^{2}}\left(\delta_{j n} \delta_{l k} \delta_{i n}-\delta_{j n} \delta_{i k} \delta_{l n}-\delta_{k n} \delta_{l j} \delta_{i n}+\delta_{k n} \delta_{i j} \delta_{l n}\right) .
$$

Now we calculate the last term in the definition. Taking into account Theorem 4, we obtain

$$
\begin{aligned}
& \sum_{m=1}^{n}\left(\Gamma_{i k}^{m} \Gamma_{m j}^{l}-\Gamma_{i j}^{m} \Gamma_{m k}^{l}\right) \\
& \quad=\frac{K^{2}}{4 x_{n}^{2}} \sum_{m=1}^{n}\left(\delta_{m i} \delta_{k n} \delta_{l m} \delta_{j n}+\delta_{m i} \delta_{k n} \delta_{l j} \delta_{m n}-\delta_{m i} \delta_{k n} \delta_{m j} \delta_{l n}+\delta_{m k} \delta_{i n} \delta_{l m} \delta_{j n}\right. \\
& +
\end{aligned}
$$

Taking into account the properties of the Kronecker delta, in particular, the formulas $\delta_{i l}=\delta_{l i}$ and $\sum_{m=1}^{n} \delta_{m i} \delta_{l m}=\delta_{i l}$, after identity transformations we arrive to the desired formulas.

Theorem 6. The components of the Ricci tensor corresponding to the metric (8) have the form

$$
\begin{equation*}
R_{i j}=\frac{K}{4 x_{n}^{2}}\left((K-2)(2-n) \delta_{i n} \delta_{j n}+(K(n-2)+2) \delta_{i j}\right) . \tag{20}
\end{equation*}
$$

Proof. Substituting the formulas obtained in Theorem 5 into the definition of the components of the Ricci tensor

$$
R_{i j}=\sum_{k=1}^{n} R_{i j k}^{k},
$$

we obtain (20).
Theorem 7. The curvature of the space $K I_{n}$ is calculated by the formula

$$
\begin{equation*}
R=\frac{K n(n-2)}{x_{n}^{K+2}}=\frac{2 \gamma n}{x_{n}^{(2 \gamma+2 n-4) /(n-2)}} . \tag{21}
\end{equation*}
$$

Proof. The formula (21) follows from the definition of the curvature

$$
R=\sum_{i=1}^{n} \sum_{j=1}^{n} g^{i j} R_{i j}
$$

and the formulas obtained above.

Remark 1. There are no twice continuously differentiable changes of variables that reduce an equation of the form

$$
\Delta_{B_{\gamma}} u \equiv \sum_{k=1}^{n} \frac{\partial^{2} u}{\partial x_{k}^{2}}+\frac{\gamma}{x_{n}} \frac{\partial u}{\partial x_{n}}=f, \quad \gamma \neq 0
$$

to an equation of the form

$$
\Delta u \equiv \sum_{k=1}^{n} \frac{\partial^{2} u}{\partial x_{k}^{2}}=f
$$

Indeed, if such a substitution exists, then there exists a coordinate transform turning a metric with nonzero curvature to a metric with zero curvature, which is impossible.

4. Geodesic lines for K-homogeneous metrics.

Theorem 8. The system of equations of geodesic lines of the space $K I_{n}$ is reduced to the first-order system

$$
\begin{equation*}
\frac{d x_{k}}{d s}=\frac{C_{k}}{x_{n}^{K}}, \quad k=1, \ldots, n-1, \quad\left(\frac{d x_{n}}{d s}\right)^{2}=\frac{C_{n}}{x_{n}^{K}}-\frac{B^{2}}{x_{n}^{2 K}} \tag{22}
\end{equation*}
$$

where $B=\sqrt{\sum_{k=1}^{n-1} C_{k}^{2}}$.
Proof. The system of equations for geodesic lines of a given metric $\left\|g_{i j}\right\|$ has the form

$$
\frac{d^{2} x_{k}}{d s^{2}}+\sum_{i=1}^{n} \sum_{j=1}^{n} \Gamma_{i j}^{k} \frac{d x_{i}}{d s} \frac{d x_{j}}{d s}=0, \quad k=1,2, \ldots, n
$$

where s is the natural parameter (arclength). In our case, using the Christoffel symbols calculated above, we rewrite this system in the form

$$
\begin{align*}
& \frac{d^{2} x_{k}}{d s^{2}}+\frac{K}{x_{n}} \frac{d x_{n}}{d s} \frac{d x_{k}}{d s}=0, \tag{23}\\
& \frac{d^{2} x_{n}}{d s^{2}}-\frac{K}{2 x_{n}} \sum_{i=1}^{n}\left(\frac{d x_{i}}{d s}\right)^{2}+\frac{K}{2 x_{n}}\left(\frac{d x_{n}}{d s}\right)^{2}=0 . \tag{24}
\end{align*}
$$

Equations (23) can be written in the form

$$
\begin{equation*}
x_{n}^{-K} \frac{d}{d s}\left(x_{n}^{K} \frac{d x_{k}}{d s}\right)=0, \quad k=1, \ldots, n-1 \tag{25}
\end{equation*}
$$

Multiplying (25) by x_{n}^{K}, integrating, and dividing by x_{n}^{K}, we obtain

$$
\begin{equation*}
\frac{d x_{k}}{d s}=\frac{C_{k}}{x_{n}^{K}}, \quad k=1, \ldots, n-1 . \tag{26}
\end{equation*}
$$

Substituting (26) into (24), we have

$$
\begin{equation*}
\frac{d^{2} x_{n}}{d s^{2}}-\frac{K B^{2}}{2 x_{n}^{2 K+1}}+\frac{K}{2 x_{n}}\left(\frac{d x_{n}}{d s}\right)^{2}=0 \tag{27}
\end{equation*}
$$

where B was defined above. Equations (27) admits reducing of the order. We set $p=p\left(x_{n}\right)=d x_{n} / d s$ and $v=p^{2}$; then $d^{2} x_{n} / d s^{2}=p^{\prime} p=v^{\prime} / 2$. Equation (27) takes the form

$$
v^{\prime}+\frac{K}{x_{n}} v=\frac{B^{2} K}{x_{n}^{2 K+1}} \quad \Longleftrightarrow \quad \frac{d}{d x_{n}}\left(x_{n}^{K} v\right)=\frac{B^{2} K}{x_{n}^{K+1}} .
$$

Integrating and dividing by x_{n}^{K}, we obtain

$$
v=p^{2}=\left(\frac{d x_{n}}{d s}\right)^{2}=\frac{C_{n}}{x_{n}^{K}}-\frac{B^{2}}{x_{n}^{2 K}} .
$$

It is well known (see [1]) that geodesic lines possess the property

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} g^{i j} \frac{d x_{i}}{d s} \frac{d x_{j}}{d s}=\text { const }
$$

In the case considered, this leads to the equality

$$
\begin{equation*}
\sum_{i=1}^{n} x_{n}^{K}\left(\frac{d x_{i}}{d s}\right)^{2}=\text { const } \tag{28}
\end{equation*}
$$

From (22) we can easily obtain that the constant in Eq. (28) coincides with C_{n}.

REFERENCES

1. L. P. Eisenhart, Riemannian Geometry, Princeton Univ. Press, Princeton (1926).
2. W. Feller, "Über die Lösungen der linearen partiellen Differentialgleichungen zweiter Ordnung vom elliptischen Typus," Math. Ann., 102, 633-649 (1930).
3. S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York-London (1962).
4. S. Helgason, Groups and Geometric Analysis, Academic Press, New York-London (1984).
5. N. Kh. Ibragimov, Transformation Groups Applied to Mathematical Physics, Kluwer Academic, Dordrecht-Boston-Lancaster (1985).
6. V. A. Il'in, "On Fourier series with respect to fundamental systems of the Beltrami operator," Differ. Uravn., 5, No. 11, 1940-1978 (1969).
7. V. V. Katrakhov and S. M. Sitnik, "Transformation method and boundary-value problems for singular elliptic equations," Sovr. Mat. Fundam. Napr., 64, No. 2, 211-426 (2018).
8. I. A. Kipriyanov, "Fourier-Bessel transform and embedding theorems for weighted classes," Tr . Mat. Inst. Steklova, 89, 130-213 (1967).
9. I. A. Kipriyanov, Singular Elliptic Boundary-Value Problems [in Russian], Nauka, Moscow (1997).
10. L. N. Lyakhov, Weighted Spherical Functions and Riesz Potentials Generated by Generalized Shifts [in Russian], Voronezh (1997).
M. V. Polovinkina

Voronezh State University of Engineering Technologies, Voronezh, Russia
E-mail: polovinkina-marina@yandex.ru
I. P. Polovinkin

Voronezh State University, Voronezh, Russia
E-mail: polovinkin@yandex.ru

