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ON PROPERTIES OF RIEMANNIAN METRICS
ASSOCIATED WITH B-ELLIPTIC OPERATORS

M. V. Polovinkina and I. P. Polovinkin UDC 517.956.226

Abstract. In this paper, we consider a Riemannian metric in which the Laplace-Beltrami operator
coincides with a B-elliptic operator up to a factor.
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1. K-Homogeneous metrics. Let v = (y1,...,7,), where ;, i = 1...,n, are fixed numbers such

that
n
Z %2 > 0.
i=1

We denote by R’ the set of x = (x1,...,2,) € R" such that 2; € R if ; = 0 and x; € (0, +o0) if
~v; # 0. A variable x; such that ~; # 0 is said to be exclusive. As usually, we use the notation

”’—Haj (x1,...,2n) € RY.

Let a function u(x) be twice continuously differentiable in R’}.
We define the operator Ap by the formula

d%u "~ Ou

AB u =
ki 9192 v O
=1 i i=1"" v

(1)

Operators of the form (1) were studied by I. A. Kipriyanov and his disciples (see [8-10]).
We state the following problem: Find a positive definite on R’', symmetric quadratic form (metric)

n o on
= Z Zgij d{L’Z d.’Ej,
=1 j=1

such that the Laplace-Beltrami operator corresponding to this metric (see [3])

A, \/|g| Z N Zglk\/lg\ D (2)

coincides with the operator Ap up to a factor. Here functions gY,i,7=1,...,n, are clements of the
matrix [|g¥/||, which is inverse to the matrix ||g;;|| (the covariant metric tensor), and

g = det [|g;].
The study of elliptic partial differential operators using the Riemannian metric has a long history (see,
e.g. [2, 6]).
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Theorem 1. For n > 3, the elements of the matriz ||g;;|| are defined by the formula
n
gij:(SinxiKi:(Siij, 1,7 =1,...,n, K:(Kl,...,Kn), (3)

where 0;; is the Kronecker delta and

2

Proof. Indeed, since g;; = 0 for ¢ # j, substituting (3) into (2), we obtain

B Kk ou
Aou= MZ oo, (#Vidl gt ). )

where

lg] = g = "X HHm: HM/("—”, (6)

1=117=1 =1
ﬁ —2v;/(n— 2 (7)

Taking into account (6) and (7), we can rewrite (5 ) in the following form:
1 - 0 ou
Ayu = -K Kn/2
YT gnk2 Z oz < ox;
7=1
- 82u ou
_ —K 2 Kn/2 Kz n—2)/2
DI Z ( ) da;
j=1 J
" 0%u _9y72 Kj(n —2) ou
=z K —Kn/2 Ki(n=2)/2 1% -1
T ; 8m§ +2x ZHml 9 T, oz,

j=11=1
n n
0%u Ki(n—2) du
_ .~ K —-K J _ .- K
- Z@xz—i_aj Z %:  Ox; BB,
j=1 J j=1 J J

that is,
Ayu = :E_KABWu. O

We consider the set R} equipped with a Riemannian metric
n
ds? = 2% Z dz? K cR, (8)
as a Riemannian space. We denote this space by K1I,; its metric (8) is called the K-homogeneous

metric.

Theorem 2. For n =2, the problem on the search for a metric satisfying Eq. () has no solutions.

Proof. Introduce the notation F = g11, F' = g12 = ¢21, and G = g29. Then

- - 2 o qviti gm
g =det|lgy;|| = EG - F°, g” = ( I)Z]EG—FT

Therefore,

o o o
Awu:Gau E d%u 2F 0*u (I)<8u 8u>

+ - )
lgl 2% |g| 023 lg| Ox10x9 Oz’ Oz
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where @ is the term depending only on the first-order derivatives of the function u. The expression (9)
is proportional to (1) if the condition F' = 0 holds; this implies

1 1
9=EG, g¢''= 9?2 = g2=gn=g"=g"=0

EJ GJ
Therefore,
Ay — 1 0 G| ou N 0 E| ou
Wi VIEG| \ 071 E| 0, 0z G | Oxo
_182u+182u+8 G8u+8 E| ou
 EOox? G 03 Oxy\[|E|0x1  Oxa\ |G| Oxo

The first two terms must have the same coefficients, hence £ = G. Then the last two terms vanish,
which means the nonexistence of the desired metric for n = 2. O

2. Isometric transforms of K-homogeneous metrics. The necessary and sufficient condition
under which the one-parameter group G with the infinitesimal operator

is an isometry group is equivalent to the Killing conditions:

. al 88 as ..
Z<§s gj‘i‘gis €'+ng §>:0, ,j=1,...,n.
J

g 0x ox ox;
Obviously,
ng-j . 5”KSI‘K
ors 7 xg

Therefore, the Killing equations take the form

n

- 06 | 0&; -
S (6 K-1_, K AR _
<5’L]€8K8m +x (8% + 8mz>> 0, ¢57=1,...,n.

s=1

Summing and dividing by zx, we obtain

N
ésKs afz agj ..
O;i =0, 4,j57=1,...,n. 10
]; Ty +83:j+8332- bJ " (10)
For i # j, Eq. (10) can be written in the form
o0& 0§ . o
= =1,... . 11
For i = j Eq. (10) can be written in the form
a§ S ngs .
2 > =0, i=1,...,n 12
oz, + Sz:; - , 1 yeees (12)
The vector
é.:(flaaén)a szCxpx], (13)
where
= ( ) . zﬁz_zn:K’_1 (14)
p P1y---3Pn)y D1 P2 Pn 2 5



is a solution of the system (12); this can be verified by a direct calculation. Substituting the represen-
tation (13) into Eqgs. (11) and taking into account (14), we obtain

058£i+a§j20,8mp<$i+mj>, L,j=1,....,n, i#]
8$j 85137, €4 ZT;
Therefore,
pL=p2 = zpnzﬁz—zn:Kl—1=0 (15)
2 b

or, equivalently,
n
> K =-2 (16)
=1

Taking into account (4), we have
n
> yi=2-N. (17)
i=1

3. Characteristics of K-homogeneous metrics in the case of one exclusive variable. One
of the cases where the condition (15) (or, equivalently, (17)) is fulfilled is well known. The space KI,,
is the Poincaré model of the n-dimensional Lobachevsky space. In what follows, we consider the case

where 71 = v2 = -+ = -1 = 0, 7, # 0. The metric (3) has the form
gij = 5Z'jl‘nK, ’i,j = 1,...,71, (18)
where 5
K= : 1
n_o7 (19)

The following facts are proved by direct calculations.
Theorem 3. The Christoffel symbols of the first kind corresponding to the metric (8) have the form
1
Fij,k = 2KIL’nK_1 (52145]71 + 5jk5m — 5”5kn) .
Proof. From the definition of the Christoffel symbols of the first kind, taking into account (18)-(19),
we obtain

Lijr=

1 <agik ik 89¢j> 1
2

K-1 K-1 K—1
N o (5ik5jnKa;n 4 60 KKt = 6,0 K ) O

Theorem 4. The Christoffel symbols of the second kind corresponding to the metric (8) have the form

219; (@k@»n + 6510 — 5Z-j5kn).

Proof. From the definition of the Christoffel symbols of the second kind and Theorem 3 we have

ko _

n n
K _ _
Ffj = E gy = 5 E Skny Skt 1(5ih5jn+5jh5in_5ij5hn)
h=1 h=1

K n
= 9y ((5]%(5]71 + 5k]51n - 5”5kn> .
" h=1

Theorem 5. The components of the Riemann tensor corresponding to the metric (8) have the form

K? K K?
Réjk:< - )(5li6m5kn+6Z-k5jn5m—5ij6kn5m—5lk6m5jn)+ (6150 — o )-

42 222 422
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Proof. By definition, the components of the Riemann tensor are calculated by the formulas

ort, ort.
I k ij Z ! 1
ik 8ij Oy, * <F%ij _F?}ka>'

m=1

R

We calculate the partial derivatives:

ork. K
] o N
. = — 21% Osn (51437,5]” + 5]4;]5171 - 5ij5kn)a
therefore,
puy = a2 Sin <5li5kn + Ok din — 5ik5ln>, ooy 22 Okn <5lz'5jn + 01j0in — dij 5ln)-
We have

ori o K

or o = g2 (Oinkdin = Gindidin — D + Gindijon ).
Now we calculate the last term in the definition. Taking into account Theorem 4, we obtain

n
> (F%ana’ - F?}ank)

m=1
K

T 4x

+ 0k 0in010mn — OmkOindm;ioim — 0ikOmnOimdjn — 0ikOmn01j0mn + 0ikOmnOm;din

= 0mi0jn0imOkn — OmiOjndikOmn + 0midjnOmkOin — Om;0indimOkn — OmjdinOikOmn

2 n
5 Z <5mz‘5kn5zm5jn + 0miOknO1;Omn — OmiOknOm;join + Omkindimdjn
" m=1

o OOt in + 8igdmnOtm b + 5 0mn 00k — O3 OOk )
Taking into account the properties of the Kronecker delta, in particular, the formulas d;; = J;; and

n
> Omidim = 04, after identity transformations we arrive to the desired formulas. O
m=1

Theorem 6. The components of the Ricci tensor corresponding to the metric (8) have the form
K

FRij = 42

((K —2)(2 = )6inbin + (K(n —2) + 2)5Z-j). (20)

Proof. Substituting the formulas obtained in Theorem 5 into the definition of the components of the

Ricci tensor ;
Rij =) Rjj,
k=1
we obtain (20). O
Theorem 7. The curvature of the space K1, is calculated by the formula
Kn(n—2) 2yn

R= L2 :$7(12~/+2n—4)/(n—2)' (21)

Proof. The formula (21) follows from the definition of the curvature

R=)> g'Ry
i=1 j=1

and the formulas obtained above. O
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Remark 1. There are no twice continuously differentiable changes of variables that reduce an equa-
tion of the form
" 9%y Ou B

A u = ) 07
By P 81‘% T, 0%y, 5o
to an equation of the form
" 9%
Au = D2 = f.
k=1 "k

Indeed, if such a substitution exists, then there exists a coordinate transform turning a metric with
nonzero curvature to a metric with zero curvature, which is impossible.

4. Geodesic lines for K-homogeneous metrics.
Theorem 8. The system of equations of geodesic lines of the space K1, is reduced to the first-order

system
dxy, C dzy, 2 Cn B?
ds :mT[L{7 k:l,...,n_l, <d8> :xf%{_m%[{7 (22)

n—1
where B = | Y C2.
k=1

Proof. The system of equations for geodesic lines of a given metric ||g;;|| has the form

Prr ==y dai d;
| P k=1,2,...
ds? +;; Y ds ds 0, 2490005 T

where s is the natural parameter (arclength). In our case, using the Christoffel symbols calculated
above, we rewrite this system in the form

Pz, K dx, dxy,

=0 k=1,....n—1 23
ds? =z, ds ds ’ pec TS (23)
Pr, K = (dr;\* K (dz,\’
_ =0. 24
ds? 2xn;<ds> +233n<d8> (24)
Equations (23) can be written in the form
d dx
K K k
= k=1,...,n—1. 2
T (mn ds> 0, N (25)
Multiplying (25) by =X, integrating, and dividing by 2, we obtain
dl‘k Ck
= k=1,...,n—1. 26
ds an 9 9 9 n ( )

Substituting (26) into (24), we have

2z,  KB2 K <dazn>2

_ =0 27
ds? 22K+l + 2x, \ ds ’ (27)

where B was defined above. Equations (27) admits reducing of the order. We set p = p(x,) = dx,,/ds
and v = p?; then d?z, /ds®> = p'p = v’ /2. Equation (27) takes the form
K B’K d B’K

/ K
V4 v= = (x,v) = .
I L2KH dz,, LI+
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Integrating and dividing by X, we obtain

In

dea\2  C B?
2 n n
ve=p ( ds > K g2k -

It is well known (see [1]) that geodesic lines possess the property

n n

dx; d;
U — const .
;;g ds ds

the case considered, this leads to the equality

zn:a:K a; 2:const (28)
"\ ds '

From (22) we can easily obtain that the constant in Eq. (28) coincides with C,.

—_

10.
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