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Abstract—For the general Euler–Poisson–Darboux equation, we prove a theorem on the unique-
ness of the solution of the Cauchy problem by the energy method. The solution of this problem
turns out to be unique only for nonnegative values of the parameter k in the Bessel operator
acting with respect to the time variable.
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INTRODUCTION

The main object of study in this article is the general Euler–Poisson–Darboux equation

(∆γ)xu = (Bk)tu, u = u(x, t), t > 0, x = (x1, . . . , xn), (1)

where Bk is the singular differential Bessel operator (see, e.g., [1, p. 5])

(Bk)t =
∂2

∂t2
+

k

t

∂

∂t
=

1

tk
∂

∂t
tk

∂

∂t
, t > 0, k ∈ R, (2)

and △γ is a B-elliptic operator of the form

△γ = (△γ)x =

n∑
i=1

(Bγi
)xi

. (3)

The general Euler-Poisson-Darboux equation is studied by methods that generalize the classical
ones and has many applications, for example, in electrostatic field theory, hydrodynamics, elasticity
theory, etc.

The solution of the singular Cauchy problem for Eq. (1) for an arbitrary real value of the
parameter k is the subject of many studies. For n = 1 and γ = 0, Eq. (1) appeared in the
work by L. Euler (see [2, p. 227]), later it was studied by S.D. Poisson [3] and G. Darboux [4]. The
interest in the multidimensional equation (1) for the case in which the Laplace operator acts on
the variable x originally arose in A. Weinstein’s papers [5, 6], and its study was continued in the
papers [7, 8]. The abstract Euler–Poisson–Darboux equation Au = (Bk)tu, u = u(x, t; k), where A
is a linear operator acting only on x, was considered by A.V. Glushak [9, 10]. The books [11–13]
studied the solvability of various problems for the classical Euler–Poisson–Darboux equation.

In the present paper, the uniqueness of the solution of the Cauchy problem for Eq. (1) for k > 0
is established by the energy method. For k < 0, the solution of this problem is not unique, but the
set of solutions has a certain structure (see [14]).

1. MAIN DEFINITIONS AND ASSERTIONS

We use the following notation: Rn is the n-dimensional Euclidean space,

Rn
+ =

{
x = (x1, . . . , xn) ∈ Rn : x1 > 0, . . . , xn > 0

}
,

Rn

+ =
{
x = (x1, . . . , xn) ∈ Rn : x1 ≥ 0, . . . , xn ≥ 0

}
,
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γ = (γ1, . . . , γn) is a multiindex that consists of given positive numbers γi, i = 1, . . . , n,
and |γ| = γ1 + . . .+ γn.

Consider an open set Ω in Rn symmetric about each hyperplane xi = 0, i = 1, . . . , n.
Set Ω+ = Ω ∩ Rn

+ and Ω+ = Ω ∩ Rn

+; then Ω+ ⊆ Rn
+ and Ω+ ⊆ Rn

+. Let Cm(Ω+) be the set of
functions m times differentiable on Ω+. By Cm(Ω+) we denote the subset of functions in Cm(Ω+)
such that all derivatives of these functions with respect to xi for any i = 1, . . . , n can be ex-
tended continuously to the plane xi = 0. The class Cm

ev(Ω+) consists of functions f ∈ Cm(Ω+) such
that ∂2k+1f/∂x2k+1

i |x=0 = 0 for all nonnegative integers k ≤ m and for i = 1, . . . , n (see [1, p. 21 ff.]).
Let e⃗1, e⃗2, . . . , e⃗n be the unit vectors along the axes x1, x2, . . . , xn, respectively, let

∇′
γ =

(
1

xγ1

1

∂

∂x1

, . . . ,
1

xγn
n

∂

∂xn

)
=

n∑
i=1

1

xγi

i

∂

∂xi

ei

be the first weighted nabla operator, and let

∇′′
γ =

(
xγ1

1

∂

∂x1

, . . . , xγn
n

∂

∂xn

)
=

n∑
i=1

xγi

i

∂

∂xi

ei

be the second weighted nabla operator; then (∇′
γ · ∇′′

γ) = ∆γ . We have

∇′
γ(uv) = u∇′

γv + v∇′
γu. (4)

To prove the uniqueness of the solution of the Cauchy problem for Eq. (1), we need the generalized
divergence theorem in [15].

Theorem 1. Let G+ be a domain in Rn

+ such that each line perpendicular to the plane xi = 0
i = 1, . . . , n, either does not meet G+ or has one common segment with G+ (possibly degenerating
into a point) of the form

αi(x
′) ≤ xi ≤ βi(x

′), x′ = (x1, . . . , xi−1, xi+1, . . . , xn), i = 1, . . . , n.

If g⃗ = (g1(x), . . . , gn(x)) is a vector field continuously differentiable in the domain G+ and F⃗ =
(F1(x), . . . , Fn(x)), F1(x) = xγ1

1 g1(x), . . . , Fn(x) = xγn
n gn(x), then one has the formula∫

G+

(∇′
γ · F⃗ )xγ dx =

∫
∂G+

(g⃗ · ν⃗)xγ dS, (5)

where ν⃗ = e⃗1 cos η1 + . . . + e⃗n cos ηn is the outward normal vector to the surface ∂G+ and ηi is the
angle between the vector ν⃗ and the axis Oxi , i = 1, . . . , n.

In the subspace Rn
+, consider the multidimensional generalized shift corresponding to the multi-

index γ; it has the form
γTy

x =γ1 T y1
x1

· · ·γn T yn
xn

,

where each of the one-dimensional generalized shifts is defined by the expression

γiT yi
xi
f(x) =

Γ((γi + 1)/2)

Γ(γi/2)Γ(1/2)

π∫
0

f
(
x1, . . . , xi−1,

√
x2
i + y2

i − 2xiyi cosαi, xi+1, . . . , xn

)
sinγi−1 αi dαi.

Based on the multidimensional generalized shift γTy, we construct a weighted spherical mean of
the function f , which, for n ≥ 2, has the form

Mγ
t [f(x)] =

1∣∣S+
1 (n)

∣∣
γ

γ∫
S+
1 (n)

Ttθ
x f(x)θ

γ dS, (6)
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where θγ =
∏n

i=1 θ
γi

i , S+
1 (n) = {θ : |θ| = 1, θ∈Rn

+} is part of a sphere in Rn
+, and

∣∣S+
1 (n)

∣∣
γ
=

∏n

i=1 Γ
(
(γi + 1)/2

)
2n−1Γ

(
(n+ |γ|)/2

) .
For n = 1, we set

Mγ
t

[
f(x)

]
=γ Ttθ

x f(x). (7)

Let Lγ
p(Rn

+) = Lγ
p , 1 ≤ p < ∞, be the space of all functions measurable on Rn

+, even in each of
the variables xi, i = 1, . . . , n, and such that∫

Rn
+

∣∣f(x)∣∣pxγ dx < ∞;

here and in the following, xγ =
∏n

i=1 x
γi

i . For real numbers 1 ≤ p < ∞, the norm of a function f
in Lγ

p is defined by the formula

∥f∥Lγ
p(Rn

+) = ∥f∥p,γ =

 ∫
Rn

+

∣∣f(x)∣∣pxγ dx


1/p

.

For p = ∞, the norm of the function f in the space Lγ
∞ has the form

∥f∥Lγ
∞(Rn

+) = ∥f∥∞,γ = ess sup
x∈Rn

+

∣∣f(x)∣∣.
It is well known [1, p. 42] that Lγ

p is a Banach space.
The operator Mγ

t is bounded in Lγ
p(Rn

+) for 1 ≤ p ≤ ∞. Moreover, one has the inequality

∥Mγ
t u∥p,γ ≤ ∥u∥p,γ , t > 0.

In the monograph [1], I.A. Kipriyanov presented a B-polyharmonic function u = u(x) =
u(x1, . . . , xn) of order p such that ∆p

γu = 0, where ∆γ is the operator (3). A function that is
B-polyharmonic of the first order is said to be B-harmonic.

2. UNIQUENESS OF THE SOLUTION OF THE CAUCHY PROBLEM FOR THE GENERAL
EULER–POISSON–DARBOUX EQUATION

Consider the Lorentz distance Γ between the points (x, t) and (ξ, τ) of the singular hyperplane,

Γ(x, t; ξ, τ) = (t− τ)2 −
m∑
i=1

(xi − ξi)
2.

Let (ξ, τ) be a point in Rn+1
+ . By G+ we denote the part of a conical domain in Rn+1

+ bounded
by the lower cavity of the cone Γ(x, t; ξ, τ) = 0 with vertex at the point (ξ, τ) and by the
planes xi = 0, i = 1, . . . , n, and t = 0.

For t = 0 we obtain the base of G+ in Rn
+, which is a ball (part of a ball) B+

n (ξ, τ) centered at
the point ξ of radius τ , B+

n (ξ, τ) = {x ∈ Rn
+ : |x− ξ| ≤ τ}.

Theorem 2. Let u be a function in C2
ev(G

+) satisfying the general Euler–Poisson–Darboux
equation

(∆γ)xu = (Bk)tu, u = u(x, t; k) (8)
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in G+ , and let us assume that k ≥ 0 and the functions u and ut are zero on the base G+ ; i.e.,

u(x, 0; k) = ut(x, 0; k) = 0, x ∈ B+
n (ξ, τ); (9)

then u(x, t; k) is zero in the domain G+.

Proof. Take an arbitrary point (x̃, t̃) inside or on the boundary of the set G+ and construct a
new cone (part of the cone) (t− t̃)2 =

∑m

i=1(xi− x̃i)
2. Denote by D+ the part of the conical domain

in Rn+1
+ bounded by the lower cavity of the cone (t− t̃)2 =

∑m

i=1(xi − x̃i)
2 with vertex at (x̃, t̃) and

the planes xi = 0, i = 1, . . . , n and t = 0. The domain D+ is bounded in the plane t = 0 by the ball
(part of the ball) B+

n (x̃, t̃), which is part of the original ball (part of the ball) B+
n (ξ, τ); therefore,

relations (9) hold in B+
n (x̃, t̃).

We multiply Eq. (8) by ut and transform it as follows:

0 = ut(Bk)tu− ut∆γu = ut · utt +
k

t
u2
t − (∇′

γ · ut∇′′
γu) + ∂t

(
1

2
|∇u|2

)
= ∂t

(
1

2
u2
t

)
+

k

t
u2
t − (∇′

γ · ut∇′′
γu) + ∂t

(
1

2
|∇u|2

)
= ∂t

(
1

2
u2
t +

1

2
|∇u|2

)
+

k

t
u2
t − (∇′

γ · ut∇′′
γu).

(10)

Here we have used relations obtained from (4); namely

ut∆γu = (∇′
γ · ut∇′′

γu)− (∇′
γut · ∇′′

γu)

and

(∇′
γut · ∇′′

γu) =

(
1

xγ1

1

∂ut

∂x1

, . . . ,
1

xγn
n

∂ut

∂xn

)
·
(
xγ1

1

∂u

∂x1

, . . . , xγn
n

∂u

∂xn

)
=

n∑
i=1

(
1

xγi

i

∂ut

∂xi

)
·
(
xγi

i

∂u

∂xi

)
=

n∑
i=1

∂ut

∂xi

· ∂u

∂xi

=

n∑
i=1

∂t

(
1

2

∂u

∂xi

)2

= ∂t

n∑
i=1

(
1

2

∂u

∂xi

)2

= ∂t

(
1

2
|∇u|2

)
.

Let us integrate Eq. (10) over the domain D+ and apply formula (5) by setting

F⃗ =

(
1

2

(
u2
t + |∇u|2

)
, − utx

γ1

1

∂u

∂x1

, . . . , − utx
γn
n

∂u

∂x1

)
,

g⃗ =

(
1

2

(
u2
t + |∇u|2

)
, − ut

∂u

∂x1

, . . . , − ut

∂u

∂xn

)
;

as a result, we obtain

0 =

∫
D+

(
∂t

(
1

2
u2
t +

1

2
|∇u|2

)
+

k

t
u2
t − (∇′

γ · ut∇′′
γu)

)
xγ dt dx

=

∫
∂D+

(
1

2

(
u2
t + |∇u|2

)
cos η0 −

n∑
i=1

ut

∂u

∂xi

cos ηi

)
xγ dS +

∫
D+

k

t
u2
tx

γ dt dx

=
1

2

∫
∂D+

(
u2
t cos η0 − 2ut

n∑
i=1

∂u

∂xi

cos ηi +

n∑
i=1

(
∂u

∂xi

)2

cos η0

)
xγ dS +

∫
D+

k

t
u2
tx

γ dt dx,
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where n⃗ = (cos η0, cos η1, . . . , cos ηn) is the outward normal vector to the surface ∂D+, η0 is the
angle between the vector n⃗ and the axis Ot, and ηi is the angle between the vector n⃗ and the
axis Oxi, i = 1, . . . , n; moreover, cos η0 = 1/

√
2. Let us multiply the last equality by cos η0. Taking

into account the fact that
∑n

i=0 cos η
2
i = 1 and 1/2 = cos η2

0 = 1− cos η2
0 =

∑n

i=1 cos η
2
i , we have

0 =
1

2

n∑
i=1

∫
∂D+

(
ut cos ηi −

∂u

∂xi

cos η0

)2

xγ dS +

∫
D+

k

t
u2
tx

γ dt dx.

On the plane t = 0, we have ut(x, 0) = 0. Since k ≥ 0, t > 0, from the last equality we conclude
that on the lateral surface of the cone (part of the cone) ∂D+ we have the identities

ut cos ηi −
∂u

∂xi

cos η0 ≡ 0

and ut ≡ 0 in D+. It follows that ∂u/∂xi ≡ 0, i = 1, . . . , n. This means that on the lateral surface
of the cone (part of the cone) ∂D+ the vector gradu is parallel to the normal. Take an arbitrary
point (x, t) on ∂D+ and draw the generator ℓ through it. The vector gradu is orthogonal to ℓ, and
so ∂u/∂ℓ = 0. This means that u is constant along any generator of the lateral surface of the cone
(part of the cone) ∂D+ and the value of u at the vertex (x̃, t̃) is equal to the value u at a point of
the generatrix ℓ that lies in the plane t = 0. However, by conditions (9) we have u(x, 0; k) = 0, and
hence u(x̃, t̃; k) = 0. Since the point (x̃, t̃) was taken arbitrarily in G+, we conclude that u(x, t; k) ≡ 0
in G+. The proof of the theorem is complete.

Corollary. Let (x̃, t̃) be a point, and let G+ be the domain described in Theorem 2. Assume that
two functions ul and u2 in the class C2

ev(G
+) satisfy Eq. (8) in G+ ; moreover, u1(x, 0) = u2(x, 0)

and ∂u1/∂t|t=0 = ∂u2/∂t|t=0 = 0. Then u1 ≡ u2 in G+.
Combining the result in Theorem 2 and the results in [16], we obtain the following assertions.

Theorem 3. Assume that the domain G+ has the form described in Theorem 2, the point (x, t)
is inside or on the boundary of the set G+ , and u ∈ C2

ev(G
+). Then for k ≥ n+ |γ| − 1 the unique

solution of the problem

△γu(x, t) = (Bk)tu, u = u(x, t; k),

u(x, 0; k) = f(x),
∂u

∂t

∣∣∣∣
t=0

= 0

has the form

u(x, t; k) =
2t1−kΓ

(
(k + 1)/2

)
Γ
(
(k − n− |γ|+ 1)/2

)
Γ
(
(n+ |γ|)/2

) t∫
0

(t2 − r2)(k−n−|γ|−1)/2rn+|γ|−1Mγ
r f(x) dr,

where Mγ
t f(x) is the weighted spherical mean defined by Eq. (6) or (7).

Let k ≥ n + |γ| − 1 and 1 ≤ p ≤ ∞; then the solution of the Cauchy problem u = u(x, t; k) in
Theorem 3 with the initial function f ∈ Lγ

p(Rn
+) admits the estimate∥∥u( · , t; k)∥∥

p,γ
≤ Cn,γ,k∥f∥p,γ , t > 0.

Moreover, lim
t→0

u(x, t; k) = f(x) for almost all x ∈ Rn
+.

Theorem 4. Let the domain G+ have the form described in Theorem 2; let the point (x, t) be
located inside or on the boundary of the set G+ , and let u ∈ C2+[(n+|γ|−k)/2]

ev (G+). The solution of
the Cauchy problem

△γu(x, t) = (Bk)tu, u = u(x, t; k), (11)
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u(x, 0; k) = f(x),
∂u

∂t

∣∣∣∣
t=0

= 0 (12)

for k < n+ |γ| − 1, k ̸= −1,−3,−5, . . ., has the form

u(x, t; k) = t1−k

(
∂

t ∂t

)m

(tk+2m−1u(x, t; k + 2m)), (13)

where m is the minimum integer such that m ≥ n+ |γ| − k − 1

2
and u(x, t; k + 2m) is the solution

of the Cauchy problem

(Bk+2m)tu = (∆γ)xu,

u(x, 0; k + 2m) =
f(x)

(k + 1)(k + 3) · · · (k + 2m− 1)
, ut(x, 0; k + 2m) = 0.

The solution (13) is unique for k ≥ 0 and nonunique for k < 0. If f is a B-polyharmonic function
of order (1 − k)/2 and f ∈ C1−k

ev , then one of the solutions of the Cauchy problem (11), (12)
for k = −1,−3,−5, . . . has the form

u(x, t; k) = f(x), k = −1,

u(x, t; k) = f(x) +

−(k+1)/2∑
h=1

∆h
γf

(k + 1) · · · (k + 2h− 1)

t2h

2 · 4 · · · 2h
, k = −3,−5, . . .

CONCLUSIONS

The above theorem on the uniqueness of the solution of the Cauchy problem for the general
Euler–Poisson–Darboux equation, proved by the energy method, supplements the results of studies
of problems for singular hyperbolic equations.
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