
�
�

Proceedings of the
Open Source Software Development

Workshop

Newcastle upon Tyne, U.K.
25th - 26th February, 2002

Photograph by David Greathead

Edited by
Cristina Gacek and Budi Arief
(University of Newcastle upon Tyne)

- i -

Message from the Editors

This is the second in a series of workshops to be supported by the Dependability
Interdisciplinary Research Collaboration (DIRC). The focus of the Open Source
Software Development workshop is on dependability and open source software
development. Dependability is a deliberately broad term which, among others, covers
reliability, security, safety and availability.

DIRC starts from the position that society’s dependence on computer-based systems
continues to increase and the systems themselves (embracing humans, computers and
engineered systems) become ever more complex. Our interest is therefore in
developing improved means of specifying, designing, assessing, deploying and
maintaining complex computer-based systems in contexts where high dependability is
crucial.

Within DIRC, the “open source approach” has been reviewed for its potential to
contribute to aspects of dependability. One key observation is that there are many,
quite different, characteristics of projects which are described as "Open Source". The
open source approach is sometimes characterised as 'massively diverse human
scrutiny': this both extends the idea of reviews or inspections and introduces a way of
confirming final decisions about the inclusion of changes to a system. It poses
interesting psychological, sociological and software engineering questions.

Examples of open source projects (e.g. operating systems, development tools, web
and mail servers) indicate that a community can be built which can create software
that is (claimed to be) highly dependable. It is not entirely clear what determines
whether such a community can be built. Addressing such questions requires
interdisciplinary research involving people from various backgrounds, including but
not limited to sociology and computer science.

Our two keynote speakers add enormous value to the workshop. We have been
fortunate enough to get Graham Button and Peter Neumann for this task. Graham
Button is a sociologist, working for Xerox Research Centre Europe. He is well known
for his work addressing Software Engineering and its development organisations.
Peter Neumann is a computer scientist, working at SRI's Computer Science Lab. He
has made a major contribution to the general problem of risks of computer systems.
Of specific relevance to this workshop, Peter’s more recent interest in Robust Open
Source (RoS) has lead to a widely disseminated mailing list.

We have received a considerable number of very good contributions to this workshop.
The main areas addressed include: understanding open source, trust and dependability,
community, and software engineering and open source. Submissions came from a
variety of sources in industry, government and academia, some being personally
involved in open source software development, others in using such systems, and still
others on doing research on the topic. This is coupled with an interesting diversity of
disciplinary backgrounds of the contributors, originating from several continents
(America North and South, Europe and Oceania).

This workshop could not have happened without the support and dedication of several
people involved. We are very thankful to all of them, including:

- ii -

• Joan Atkinson
• Denis Besnard
• Angela Birrell
• Diana Bosio
• David Greathead
• Cliff Jones
• Tony Lawrie
• Mark Rouncefield
• Carles Sala-Oliveras
• Claire Smith
• Tim Smith

We are grateful for the support of our sponsors, the Centre for Software Reliability
and the Department of Computing Science at the University of Newcastle, and the
DIRC project.

February 2002 Cristina Gacek and Budi Arief

 - - iii

Table of Contents

Keynote Speakers

Organisational Considerations In The Work Of Software Engineering ………………1
Graham Button

Developing Dependable Open Source Systems: Principles for Composable
Architectures ………………………………………………………………………….2
Peter Neumann

Trust & Dependability (1)

Trusted Open-Source Operating Systems Research and Development ……………..20
Rick Murphy and Douglas Maughan

Advantages of open source processes for reliability: clarifying the issues ………….30
Diana Bosio, Bev Littlewood, Lorenzo Strigini and M.J. Newby

Understanding Open Source

A Business Case Study of Open Source Software ………………………………..…47
Carolyn Kenwood

Interdisciplinary Insights on Open Source …………………………………………..68
Tony Lawrie, Budi Arief and Cristina Gacek

Community

Rebel Code? The open source 'code' of work ……………………………………….83
Adrian Mackenzie, Phillipe Rouchy and Mark Rouncefield

What is in a Bazaar? A Model of Individual Participation in an Open Source
Community …………………………………………………………………………101
Haggen So, Nigel Thomas and Hossein Zadeh

Trust & Dependability (2)

KeyMan: Trust Networks for Software Distribution ………………………………197
Ben Laurie and Matthew Byng-Maddick

On the Pareto distribution of open source projects ………………………………...122
Francis Hunt and Paul Johnson

 - - iv

Software Engineering & Open Source

Goal-Diversity in the Design of Dependable Computer-Based Systems …………..130
Tony Lawrie and Cliff Jones

An Overview of the Software Engineering Process and Tools in the Mozilla
Project ………………………………………………………………………………155
Christian Reis and Renata Pontin de Mattos Fortes

Architectural Requirements for an Open Component and Artefact Repository System
within GENESIS …………………………………………………………………...176
Cornelia Boldyreff, David Nutter and Stephen Rank

Organisational Considerations In The Work Of Software Engineering
Graham Button, Xerox Research Centre Europe, Cambridge

The movement towards ’open source’ has mainly concerned what are relatively small
undertakings. Yet, some of the problems of large-scale engineering projects done within
complex organisational structures and involving scores and even hundreds of software
engineers may also be addressed through the open source concept.

Within software engineering organisations, projects that are managed independently of
one another are often addressing similar problems and might benefit from sharing code
with each other, and past projects may have relevance for current projects. However, the
organisational difficulties that often beset engineering projects may be a barrier to the
idea of open source. For example, software development is done under strict deadlines
and often falls behind schedule, any work not directly involved in moving the project
forward is an unaffordable overhead. Also, the preservation of code from one project to
another is often jeopardised through lack of documentation and the break up of teams.
Further, developments are often done under a regime of SPI which requires code
validation.

In this paper, we offer a sketch of some of the organisational issues that surround
software and hardware development on middle to large scaled engineering projects. It is
based upon ethnographic studies that we have carried out on four such projects. As
sociologists, it is not our place to comment upon the appropriateness of open source
itself, nor upon the way in which it could scale up to support the sorts of undertakings
witnessed in our studies. However, with regard to the latter, we outline some of the
organisational considerations that we have witnessed and the way in which they bear
upon the actual doing of the engineering that may be relevant to a consideration of open
source in these environments. Again, it is not our place to draw conclusions here, but to
support others in doing that by providing evidence and data for their subsequent
deliberations.

� � � � � � 	 � � � � 	 � � � � � �

� 	 � � � � � � � � � " # � & " ' (� � � � 	 � � "

- � � / � & 	 � " � � � � 2 � � 3 � # � � # � � � "

: / � � � � � = � � � " # � ? � @ � � " # � � E F

(� # � � = G ? � � & �

(� � � � 	 � � � � � � # � " #

/ � & 	 � # � � � � � � � � K � � � � � # � �

� M N N # � � � # � � � �

P � � � (� � Q S / 2 U V W Y Z � \ V U \

? � � & � _ / � K G " � � G � � &

3 # # 	 ' e e @ @ @ G / � K G " � � G � � & e � � & �

i � � � 	 3 � � j � k Z W � l Z U � Y \ m Z

n � � Q " 3 � 	 � � 	 � � � � � � �

� � - # @ � � � � � � � � � 	 & � #

q � � � � " � # � - ? � @ � � " # � � q 	 � i �

Y Z � Y k s � � � � � � Y W W Y

2 � " # � � � #

� �
i 3 � � � � � � - # 3 � " # � � Q � " # � � � 	 � � � � � 	 	 � � � � 3 � "

- � � � � � � � � 	 � � 3 � � 3 � � � 	 � � � � � � " " # � & "

� � � # @ � � Q " # 3 � # � � � � � � � � � � � � & 	 � " � �

� � # � - " � � " " # � & " S @ � # 3 	 � � � � � # � � � � � � 3 � � �

� � � G n � � � � � " � � � � � � � " " � � � � � � � � � � 	 & � #

	 � � � � 	 � � " � � # 3 � � � � # � � � � # � � " @ � # 3 � �

� � # 3 � � S � � 	 � � � � 	 � � � � � � 3 � # � � # � � � " # 3 � #

� � � � � � � 	 � � # � � � � � � � � # # � � � # � � � - � � � � � � � �

� 	 � � " � - � 	 � � " � � � � � " � - # @ � � � G

i 3 � " # � � Q � " � � " � � � � � � 	 � � � � � # - � � � � � �

P � � � 3 � � " � 2 M (2 � " / � 2 i � 	 � � � � � & : / � & �

	 � " � � � � � � � 3 � 2 " " � � � � � i � � " # @ � � # 3 � " �

� & " F S � � � � / � # � � � # ? k k W W j � W j � / � l W V W G

(� � � � � # n � � " � # � '

� 	 	 � � � � � � � � � � � � � � � # % & �) * , & .)) � # � . 	 � � � 	 & 5

? � @ � � " # � � S Y Z � Y k s � � Y W W Y

i � � " # � � i � � " # @ � � # 3 � � " "

� �

�
n � " � � Q # � � � � � � � 	 	 � � � � � # � � �

� � " # @ � � # 3 " " # � & " � � � # @ � � Q " G

�
i � � " # @ � � # 3 � � " " # 	 � � � � � � � � � � " " � "

" � � � � � # S � � � � � � � � � # S 3 � � 3 � � � � � � � � � � # S

� � � � � # � & � 	 � � - � � & � � � S � � # 3 � � � � � � #

� " � � � � � � & � � � � � � " # � � � � � � � " � # � � " G

�
2 " " � � � � � 	 � � � � � � " � � � � � � � � -

� � " # @ � � # 3 � � " " � � � � " # � � � " # � � " # G

�
N � � � � 	 � S # � � " # @ � � # 3 � � " " � " � � � � � �

� � � �
 � � � � � � � G

�
i � � " # � " @ 3 � # � � � � @ 3 � � � � � � #

Q � @ � � � # # � � S � � 3 � � � � � 3 � � � � G

i � � " # � � " � & � # 3 � � # 3 � # � " � #

� � " # @ � � # 3 � " - � � � 3 � � � S � �

� � & & � 	 � � � � G n � " � � Q # � � � � 3 � # � � # � � � � �

& � � & � � � @ 3 � # & � " # � � # � � " # @ � � # 3 G

? � @ � � " # � � S Y Z � Y k s � � Y W W Y

M � 	 � � # " � � � � (� � � � � # n � � � � # �

� �
N # � � � & � � 	 � � # " '

�
/ � & 	 � " � � � � � # M � � � " � # � �

�
/ � 2 i � (� � � � 	 � � "

�
(� � � � 	 � � � / � & 	 � " � � � � 2 � � 3 � # � � # � � � "

: � � � - # � 	 � � � � � " " F

�
q � � � � " � � � � # � � � # # � # 3 � q � � � � " � # � -

/ � � � - � � � � � # � � � Q � � � S � � � � � n � � � � � "

� � � � � � 	 � � 	 � � � � 	 � � � � � " � � " # � # � � � � � � " � "

� � � " � " � � " � � � � � � � � � � & � � � � � 3 � � Q � � S

@ � # 3 � " � � � � � � " � " � - � � � � � � " # � � � � # "

@ � # 3 � � � � � � � - & � � � � � � 	 � � � � 	 � � " G

i @ � 	 � 	 � � " � � � � 	 � � � � � " " S � � # 3 � � � � �

� � � / 3 � S � � � � n � � � � S � � � � � @ � � � G

? � @ � � " # � � S Y Z � Y k s � � Y W W Y

/ � & 	 � " � � � � � # M � � � " � # � �

� �

�
� � " # � � � � " # � � � & 	 � " � � � � � #

�
2 # # � � � � - � � � � � � � & 	 � " � � � � � #

�
(� � � � � � & � # � � & � � 3 � � " & " - � �

� 3 � � � � # � � " # @ � � # 3 � � " "

�
� 3 � � � � # � � " # @ � � # 3 � � " "

� � � � � " " # � & "

3 # # 	 ' e e @ @ @ G � " � G " � � G � � & e � � & � e

� 3 � # " j G 3 # & � : � � " � G 	 " S G 	 � - F

n � � � � � � " " � � & 	 � " � � � � � # � - 	 � � � � � � " S

� � � 3 � # � � # � � � � " � � " " # � & " � � " " # � & " S

" � - # @ � � � & � � � � � " S 	 � � # � � � � " S " # � # � �

� � � " � " # � � 3 � � � � " S � # � G

? � @ � � " # � � S Y Z � Y k s � � Y W W Y

� � " # � � � � " # � / � & 	 � " � � � � � #

� �

�
(� � 	 � � # � � " � � # " � � � � - " 	 � � � � � � # � �

�
(� � 	 � � # � � " � - � � & 	 � " � # � � : � & � � � � # F

�
� � � � � � � � � # � " " � � "

�
� � & � � " " � � "

? � @ � � " # � � S Y Z � Y k s � � Y W W Y

2 # # � � � � / � & 	 � " � � � � � #

� �

�
/ � � � � � # � " " e � � & 	 � � # � � " " � - " 	 � � " S � � � �

�
� # � # � � � " " � " " S " # � # � � � " � � � � � # S � �

�
M � � � " # � � 	 � � � � " # � � # � � � � "

�
M � � � " � � K � � � # # � # � � � � � � � � " � " # � �

: � � � � �
 � � � � �
 	 � � � � � � � � 2 	 � � � j U m m F

�
� 	 � � � # � � " " # � & " S 	 � � � � � & & � � � � � � � � � "

�
= � � � � � � 3 � # � � # � � � S " � - # @ � � � � � � � � � � � S

& � � � � � � � # S � � " # � � � # � � S # 	 � " S � # � G

? � @ � � " # � � S Y Z � Y k s � � Y W W Y

/ � 2 i � (� � � � 	 � � "

� �

�
(� � � � 	 � � "

�
/ 3 � � � � # � � � " # � � � � @ " � �

3 � � � � � � � � � � �

�
M � � � " � - - � � & � � � " &

�
/ � � � � # "

3 # # 	 ' e e @ @ @ G � " � G " � � G � � & e � � & � e

� 3 � # " Y G 3 # & � : � � " � G 	 " S G 	 � - F

? � @ � � " # � � S Y Z � Y k s � � Y W W Y

/ � 2 i � (� � � � 	 � � "

� �

�
� � � # � � � � � � 3 � � � � � � " � � � � � # 	 � � � � 	 � � " '

� � � � & � - & � � 3 � � " & S - � � � � " � - �

� � - � � � # " S � � & 	 � � # � & � � � � # � � S " � 	 � � � # � �

� - 	 � � � � � � � � S � � � " # 	 � � � � � � � � S � � � " # � � � & & �

& � � 3 � � " & S 	 " � 3 � � � � � � � � � � � � 	 # � � � � � # S

@ � � Q - � � # � � S # � & 	 � � 	 � � � - � � � � � � � � � -

� � & 	 � � & � " � "

? � @ � � " # � � S Y Z � Y k s � � Y W W Y

P � � � / � 2 i � (� � � � 	 � � "

� �

�
� # 3 � � � � � 3 � # � � # � � � 	 � � � � 	 � � " '

� � � � � � � 3 � # � � # � � � S & � � & � � � # � �

� - @ 3 � # & � " # � � # � � " # @ � � # 3 S � � " # � � � # � � S

� � � 	 " � � � # � � S � � � � � � e � � " # � � � � # � �

	 � � # � � # � � S � � � � " # � � 	 � � � � S � � � � � #

� � � � # � # � � S " � 	 � � � # � � � - 	 � � � � � �

& � � 3 � � " & S " � 	 � � � # � � � - � � � � " S " � 	 � � � # � �

� - � � & � � " S " � � � � � # 3 � # � � � # � � S " � � �

� � # 3 � � � � � # � � � � � � � � " " � � # � � � S

� � & � � " # � � # � � � � � # � � � � � � � � � # S

� � & 	 � � 3 � " � � � � � � � � # � � � � � #

? � @ � � " # � � S Y Z � Y k s � � Y W W Y

/ 3 � � � � # � � � " # � � s � � @ "

� �

� � & � � - # 3 � & � � # 	 � " � - � � @ " � � � � � � '

�
N � � # � � � � # � � � � � � # 3 � # � � � # � � S

� � # 3 � � � � � # � � S � � # � � � � � � # � � � �

� � � � � � # � � S � � � � � � # � � S � � � # � & �

� � � � � � # � � S � � " � " # � # � & � � S

� � � 	 " � � � # � � S � " � 3 � � � � " � � " � " # � � S

� # 3 � � # 	 � " � - � � � � � � � � � � "

? � @ � � " # � � S Y Z � Y k s � � Y W W Y

M � � � " � - s � � & � � � " &

� �

�
N & 	 � � � � � � � � � � � � & � # " S " 	 � � " S

� & 	 � � & � # � # � � � � " � " # � �

�
N � � # � - � � � � " � � � � � & 	 � � & � # � # � �

� � @ "

�
N � � � � " � � � � � � � � � � " " � � � � �

�
s � � & � � � " & � " � � " # � " � � " 	 � � � � � S

@ 3 � � � & � " # � � � � # � � � G

? � @ � � " # � � S Y Z � Y k s � � Y W W Y

/ � � � � # " � 2 	 	 � � � (� � � � 	 � � "

� �

�
(� � � � 	 � � " � � � � # � � " � � � # � � # 3 � 3 � � �

 � & � � � � " � � & � # � # � � " G

�
(� � � � 	 � � " & � � � � � � � � � # @ � # 3 � �

� � # 3 � � S � � & � � # � � � � & 	 � " � � � � G

�
i 3 � 	 � � � � 	 � � � - � " � & 	 � � � � # � � "

& � " � � � � � � G / � � � - � � � " # � � � # � � � �

� � � 3 � # � � # � � � " � � & � " Q � � & 	 � �
�

� # G

�
K � � � � � 	 # � & � � � # � � � " � � � � � � � " G

�
i 3 � � � � " � " � � " # � # � # � - � � 3 � & �

� # � � � � � � � � G �
�

	 � � � � � � S - � � � " � � 3 # G

? � @ � � " # � � S Y Z � Y k s � � Y W W Y

(� � � � 	 � � � / � & 	 � " � � � � 2 � � 3 � # � � # � � � "

� �

�
2 	 	 � � � � # � � � - # 3 � 	 � � � � 	 � � "

�
(� � � � 	 � � � � � � 3 � # � � # � � � "

�
N & 	 � � & � # � # � � � � � � & � � " # � � # � �

i 3 � @ � � Q � � � � � - # � " � #

3 # # 	 ' e e @ @ @ G � " � G " � � G � � & e � � & � e

	 � � � � # � e � 3 � # " \ G 3 # & � : � � " � G 	 " S G 	 � - F

s � � � � � � Q � " � - � � � � " � @ � � � � & � � # 3 � "

� � � � � � # 3 � � � � � � & � # " G

? � @ � � " # � � S Y Z � Y k s � � Y W W Y

2 � � 3 � # � � # � � � � / � � � 	 # "

� �

/ � # � � � � � � � � " � � � � # � � � � � � �

� (3 " � � � � � � � � # � �

� K � � � � � � � � # � � �

� i � � " #

� i � � " # @ � � # 3 � � " "

? � @ � � " # � � S Y Z � Y k s � � Y W W Y

q " � - � � 2 � � 3 � # � � # � � � � � # � � � # � � � "

� �

�
K � � � � � # � � " # � # � � " # @ � � # 3 � � " "

� G � S � " � P � � # � � "

�
� & 	 3 � " � " � # � � " # @ � � # 3 " � � � � � " S � "

� M � " 3 � � M � � � � � � " j U l W " � � � S

(� � � # � � � ? � � & � N � (K � � � 3 � # � � # � � �

� 	 	 � � � � � � � � # � 5 � � � � # % & �) * , & .)) �) # � � � � � 	 & 5

�
? � # @ � � Q " � " � � � Q 	 � � � "

: � � # � � @ � � � � - � # @ � � Q � � � � " Q " F

�
i � � " # @ � � # 3 � � " " � 3 � � � & � #

� 	 	 � � � � � � � � # � 5 � � � � # % & �) * , & .)) � # � . 	 � � � � 	 & 5

�
i � � " # � � � � � # � � � � S # � � " # � � 	 � # 3 "

�
/ � 	 # � � � � 	 3 � � � � # 3 � # � � � # � �

�
s � � � � � � � � � � � � # 3 � � � � � # � �

�
i � � � � � � � Q � � � � � # � � "

�
i � � " # @ � � # 3 � � � � � � " # � � � � # � �

�
2 � # � � � # � � � 3 � � � @ � � � � � " � " E

? � @ � � " # � � S Y Z � Y k s � � Y W W Y

� � & � � � � � � � " � � # ? � # � � � � � � / � � � � " � � " E

� �

�
(� � � � 	 � � � � � � � � � � & � # " S � � � 3 � # � � # � � � S

� � " � � S � & 	 � � & � # � # � � S � � � 	 � � � # � � � �

� # � � - � � � " � � � � � � � � # � � � � & 	 � � # � # G

�
i 3 � 	 � � 	 � � � � � � � � � # 3 � � � � � � � � � � # � � � � G

�
� � " � � � � � � & 	 � " � � � � 	 � � � � � � " S � � " � � " S

" � � " " # � & " � � � 3 � # � � # � � � " � � � � � � # �

3 � � � � & 	 � � � � & � # " � # � � " # @ � � # 3 � � " " G

�
n 3 � � � & 	 � �

�

� # � " � � � � � � � � � � S � # � �

� � & � � � � � @ � # 3 � � � � � � � 3 � # � � # � � � � �

	 � � � � 	 � � � " � - # @ � � � � � � � � � � � 	 � � � # � � � G

�
� � # # � � 3 � � � @ � � � & � " � & � # � & � " � � � � � � � G

�
� � 	 	 � � # # � � � " � � � 3 � � 	 - � � G � � � � � � � " � "

3 � " � � � & � � " � � � � # " S � " 	 � � � � � � - � � & � � G

�
� � � 3 � � � " " � � � � � � � � � " � � # � " �

� 	 � � � � � # � - 	 � � � � 	 � � � � � � � � � 	 & � # G

�
i � � " # � � @ 3 � # � " # � � " # @ � � # 3 G

�
s � � � " � � 3 # 3 � " � � � & � � " 	 � � � " G

? � @ � � " # � � S Y Z � Y k s � � Y W W Y

M � � � � � � � # � � 	 � � � � � � � � � " # � & "

� �

� � � � 	 	 � � � � 3 � - � � � 3 � # � � # � � � � � 	 � � � � 	 � � �

� � � � � � 	 & � # � " 	 � � # � � � � � � � � � � � � � # # � � 	 � �

" � � � � � " � - # @ � � � G N # � " � � � � � � " � � # � � # � � � � �

� � � � � � # � � � � � � � � � 	 & � # " G N # � " � � " � � 	 	 � � � � �

� � � # � 	 � � 	 � � � # � � " " # � & " S � � # � " 	 � � � � � �

� � " " � � Q � � # � � � � 	 	 � � � � S � � � � � " � � - � � & �

& � # & � # " # � � � � � � � � & 	 � # � � � � � # S � " # � # � �

� � � � � � � � � � � � & � � & � � � � # � & � # � & � � �

Q � # � � � � " # � � # # � � S � � � � � � � � " � " " # � � � � # �

� � � � � � � � � � � & � # " � � # 3 � � � � � # � � & � � � � �

� - � � " � � 	 � � � � " � - # @ � � � � � � � � � � � S � � � Q � -

� � � � � # � � S # � � � � � S � � - � � � " � � 3 # S � # � G

� 	 � � " � � � � � � � � � � " � # � # � � " � � � � � & � � �

# � � " # @ � � # 3 # 3 � 	 � � 	 � � � # � � � � � � S � � # 3 � "

� � � � # 	 � # � # � � � � @ � # 3 � � � � � � # � � � " � � 	 � � � S

@ � " � � & S � � � # # � # � � # � 	 � � � � 	 � � � � � � 3 � �

# � � # � � � � � � � � � � � 	 & � # G � & � � � # � � � � � �

� � � � � � # � � � � � � � # " � � � � � � � � � � � � � � � G

? � @ � � " # � � S Y Z � Y k s � � Y W W Y

Trusted Open-Source Operating Systems Research and Development
Mr. Richard Murphy, Mitretek Systems

Dr. Douglas Maughan, DARPA

U.S. Department of Defense (DoD) computer systems and networks are constantly under
attack. Such attacks make systems unusable, degrade performance, lead commanders to
make poor decisions due to faulty data, leak valuable secrets, and leave behind code that
could provide continuing back-door access or be activated on a predetermined event to take
obstructive action. DoD systems are vulnerable due to increased interconnection and
connection to the Internet. Additional vulnerabilities exist in common COTS products and
can be exploited by anyone in the world to attack DoD systems. The DoD needs to develop
focused technologies that support continued system operation in the presence of successful
attacks, particularly addressing vulnerabilities and issues expected to arise in DoD’s
emerging network-centric warfare vision.

During the last several years there has been an increased movement towards the acceptance
of community-produced, open-source software. This community-based development model
has also found its way into the operating systems development community. DARPA is
seeking to develop new security functionality for existing open source operating systems,
leveraging the many years of operating systems development, and to demonstrate the value of
useful security tools to the open source community. This will gain the cooperation and
support of the open source community to move toward a higher assurance open source
operating system framework, which can be embraced by the DoD and will be the foundation
for future secure products and services.

The U.S. Defense Advanced Research Projects Agency’s (DARPA) Composable High
Assurance Trusted Systems (CHATS) program addresses this need by supporting
development of high assurance open-source operating system technologies to protect DoD
systems from constant attack. These technologies will be developed in concert with the
unclassified Open Source research and development community to help foster the
development of Open Source system technologies that will help to meet the DoD need for a
high assurance operating system platform. Additionally, DARPA will engage the open-
source community in a consortium-based approach to create a “neutral”, secure operating
system architecture framework. This security architecture framework will then be used to
develop techniques for composing OS capabilities to support both servers and clients in the
increasingly network-centric communications fabric of the DoD. These technologies are
critical for defensive information warfare capabilities and are needed to ensure that DoD
systems of the future are protected from imminent attack.

The CHATS program supports Open Source Operating System development in four broad
areas: support for existing Open Source projects, such as file system development; support
for new open-source initiatives such as the Linux Security Module program; high assurance
cryptography support, such as device driver development; and assurance programs, such as
policy modeling and system documentation.

The CHATS research projects are designed to improve the state-of-the-art of Open Source
operating systems. There are projects designed to provide additional documentation of the
internals of BSD-based operating systems. Another project provides a way for the Open
Source community to rate the quality of submissions from software developers; this will help
to improve the quality of Open Source systems. Other projects seek to improve the security of
Open Source systems by providing support for different access control policies (such as role-

based, labeled security, and so forth), formal analysis of security policy enforcement, and by
use of static code analysis tools to search for flaws.

There are projects that enhance existing file systems to improve their security and reliability,
and to add additional cryptographic hardware support to Open Source systems. These
enhancements include additions to existing Open Source systems to provide auditing support.
These improvements are provided across several different operating system platforms in
order to help raise the assurance of each system, thus, improving the overall quality of fielded
systems.

This paper describes several projects that are part of the DARPA CHATS program, including
descriptions of the goals of the projects and the definition of the framework that allows these
projects to be combined to build an enhanced open-source operating system that will help to
meet the needs of the U.S. DOD and the greater open-source community for systems that
meet real security needs.

CHATS Program Areas

Support for existing Open Source projects
The CHATS program seeks to improve the assurance of Open Source systems by supporting
several existing Open Source initiatives. These projects are working on enhancements to
already existing technology that will provide critical support that other CHATS programs will
rely upon as a foundation. The CHATS program seeks to influence the goals of these
projects by encouraging them to consider enhanced security as an important design goal.

One of these existing projects is the Reiser4 file system for Linux. Reiser4 is a redesign of
the existing ReiserFS file system. The ReiserFS is a journaling file system, based on
balanced trees1, that provides high performance and quick recovery as well as higher space
efficiency. CHATS is sponsoring changes to ReiserFS to permit fine-grained security
controls to be implemented in the file system as a set of plug-ins that can either be used to
implement additional security policies (for example, encryption of file data) or to permit the
storage of extended file system metadata (for storage of access control lists). Some of the
other CHATS programs will rely upon such file system enhancements in order to implement
increased file security.

Another CHATS program is the New York University/Massachusetts Institute of Technology
Self-certifying File System (SFS). SFS will provide a secure means of distributing bulk data
over a network2. SFS provides security by allowing a server to certify (by use of public key
algorithms) the data that it supplies to a client. In addition to providing authentication of the
source of distributed data, it also provides privacy by encrypting the data and integrity
checking by the use of hash functions. SFS provides authentication of the server to the client
(so that the client knows that the source of the data is authentic) and allows authentication of
the client to the server (so the server can perform access control.) SFS also has a read-only
variant that can be used for high performance distribution of such things as software
installation kits.

1 Namesys, Three Reasons why ReiserFS is great for you, 2001. http://www.namesys.com/.
2 fs.net, Self-Certifying File System: Frequently Asked Questions, 2001. http://www.fs.net/sfs/

Support for new open-source initiatives
In addition to support for existing Open Source projects, the CHATS program has sponsored
some new initiatives that are intended to improve the assurance of Open Source systems.
Some of these will lead to new Open Source software, and others will support the Open
Source development process. These projects will provide critical components for the
CHATS architecture.

The CHATS program has sponsored the Security-Enhanced Bootstrap for Operating Systems
(SEBOS) project at the University of Maryland to help build a high-assurance framework for
initial operating system bootstrap. Working in conjunction with the LinuxBIOS project,
SEBOS will provide a high-integrity environment for operating system bootstrap by using
cryptographic integrity checking at several different points during the bootstrap process3.
SEBOS intends to support cryptographic hardware in order to provide a tamper-resistant,
authenticated bootstrap environment for Open Source systems. Support for a tamper-resistant
bootstrap process is critical for deployment of a high assurance system. Without such
support, there is ample opportunity for an attacker to interfere with the boot process of the
operating system to manipulate it so that it does not properly enforce its security policy and
can be used by the attacker in the future.

One argument for improvements to Open Source software is that wide availability of source
code improves the quality of a software project. The argument is made that “many eyes
make all bugs shallow”4 – that is, with many reviewers, more bugs will be found and fixed.
While this is generally correct, the CHATS program would like to see more secure software,
not just improved software quality (less bugs). One of the new initiatives in the CHATS
program is the Sardonix project at Wirex, Inc5. This project is attempting to improve the
security of Open Source software by improving the tools being used to build Open Source
software and by encouraging behavior that improves the security of Open Source software.
The project incorporates three new initiatives – a security auditing portal for measuring the
security “goodness” of programs, improvements in the C compiler, and a replacement for a
frequently exploited network service daemon.

The Sardonix Security Auditing Portal will be a web site that allows participants in the Open
Source community an opportunity to perform an audit of supplied source code. An auditor’s
identity is associated with the quality of the source that they have audited, allowing the
auditor to be rated. This rating scheme will encourage the portal participants to compete with
each other to find and fix security problems in the products that are submitted for review.
Finding and fixing problems raises an auditor’s “karma”; security holes found after an audit
lowers the auditor’s status. The use of the rating schemes is designed to encourage the
community to perform audits and to encourage the development community to submit code
for audit and corrections. The Sardonix system will record what software has been audited,
when it was audited, and who performed the audit. Lessons learned from successful and
failed audits can then be used to help grow the community of experienced code auditors.

Another way in which the Sardonix project hopes to improve the security of Open Source
systems is by making improvements to the GNU C Compiler (GCC). The vast majority of
Open Source software is built using this compiler – Linux and BSD systems both use the
GNU compiler and libraries. The Wirex Immunix project, previously funded by DARPA,

3 SEBOS, Security Enhanced Bootloader for Operating Systems. 2001.
http://www.missl.cs.umd.edu/sebos/main.html.
4 Eric S. Raymond, The Cathedral and the Bazaar: Musings on Open Source by an Accidental
Revolutionary.O’Reilly & Associates, 1999. http://www.oreilly.com/catalog/cb/.
5 Immunix, Sardonix: Criticality for Critical Systems, 2001. http://immunix.org/sardonix/

built a modification to GCC to make programs resistant to buffer overflow attacks. Since
buffer overflows are the most common form of security vulnerability, using this GCC
modification (called StackGuard) can eliminate several potential vulnerabilities. While
StackGuard continues to be maintained by the authors, users must obtain the StackGuard
patches for their system then rebuild both the compiler and operating system utilities in order
to be protected. Most deployed open-source systems are built from precompiled
“distributions” for the sake of convenience; those pre-built systems can’t benefit from the
StackGuard patches. Sardonix proposes to fix this by working with the GCC developers to
move the StackGuard changes into the main line of GCC development, so that any newly
built distribution can benefit from the StackGuard protections.

Another project at Wirex is the Linux Security Module project6, which is seeking to build a
framework for extensible security policy enforcement into the Linux kernel. This work is a
compromise solution for a long-standing conflict within the Linux community. Given the
popularity of the Linux kernel, there is a broad constituency that wants to influence the kernel
to meet their particular special interest. Often the various special interest groups are at odds
with each other – one group asking for changes that conflict with the needs and desires of
another group. Two such interests are the secure system community and the embedded
systems community. While the secure systems interests would like to see Linux grow into a
flexible, high assurance operating system, the embedded systems special interest groups
would like to see all security enforcement removed from the kernel in order to eliminate the
perceived overhead. Linus has been receptive to security enhancements in the past and has
permitted kernel changes to facilitate them. However, several different security projects have
expressed interest in using Linux as a delivery mechanism. This has led to multiple
competing demands ranging from completely removing security enforcement (as desired by
the embedded systems people) to those who would like multiple enforcement mechanisms to
be included with the kernel.

At the Linux 2.5 Kernel Summit, Linus Torvalds proposed a solution for these competing
demands 7. He proposed adding “hooks” to security enforcement functions in the kernel;
software that is interested in security enforcement could then utilize those hooks to influence
kernel security decisions8. The enforcement functions would be separated from the base
kernel and would not need to be maintained by the kernel development team. This separation
solves many of the problems noted before – the additional enforcement software is not part of
the base kernel, thus it does not add to the kernel maintenance burden. The kernel builder
can choose whether or not to include any additional policy enforcement software, which
allows embedded systems to eliminate the additional overhead. (As will be pointed out later,
there is some overhead added, but the design attempts to minimize this.)

The design of the kernel interface uses the existing Linux loadable module interface. The
loadable module interface allows a self-contained external module to be merged into the
kernel from an external module, or to be statically built into the kernel binary. The LSM
modifications allow the policy enforcement software to be built as a loadable module that can
be either installed at run-time or built into the kernel. This paper describes a project that is
implementing such an enforcement module interface for inclusion into the Linux kernel and
an extension that uses that interface

6 Crispin Cowan, Linux Security Module Interface, 2001. http://mail.wirex.com/pipermail/immunix-users/2001-
April/000063.html
7 Smalley, Stephen, Timothy Fraser, Chris Vance, Linux Security Modules: General Security Hooks for Linux,
2001. part of the Linux Security Module distribution.
8 Loscocco, Peter, Be Careful, Please, 2001. Message on the Linux Security Module mailing list, available from
http://mail.wirex.com/pipermail/linux-security-module/2001-April/000084.html.

The Linux Security Module (LSM) work is a joint effort between Wirex, NAI Labs, and
others in the open-source community that is working together to build the framework for
customizable security enforcement for Linux 2.4. The LSM changes should be released as
part of the Linux 2.5 kernel distribution. Several projects plan to take advantage of the LSM
work – Immunix, SELinux, SGI IRIX, and Janus9. The purpose of the project is to provide a
general framework in the kernel for supporting arbitrary access control modules. By itself,
the work does not provide any additional enforcement – it only provides the “hooks” that
allow an enforcement module to make access control decisions. The “hooks” insert function
calls at critical points in the kernel permission logic. The process of installing a security
module arranges things so that the kernel calls that module to assist in a policy decision. If no
module has been installed, the kernel calls a dummy module that does nothing – while this
installation adds some overhead (an additional function call to a function that immediately
returns success), this trade off is acceptable. In fact, the LSM patch removes some of the
existing policy code (the implementation of the POSIX capabilities logic), so there is a
potential for a net performance gain when no security module is installed. Preliminary
measurements made by the LSM team are encouraging; it appears that the LSM patch does
not impact kernel performance.

Many U.S. DOD programs require the use of systems that meet the Common Criteria (CC)
evaluation requirements. Specifically, there is a set of requirements for general-purpose
operating systems called the Controlled Access Protection Profile (CAPP). The CAPP
requirements are essentially the old Orange Book C2 requirements recast into Common
Criteria form. This requirement is significant as many government regulations require the
use of evaluated systems (i.e. ones that meet the CAPP requirements). Unfortunately, none
of the Open Source operating systems are currently able to meet the CAPP requirements.
While this is partially due to the lack of complete OS internals documentation, there are also
functional requirements that are not met. One significant functional problem with Open
Source operating systems is the lack of secure auditing capabilities. The CAPP requires the
system to have a Trusted Computing Base (TCB) that provides the ability to create, maintain,
and protect from modification or unauthorized access or destruction, an audit trail of accesses
to the objects it protects. One of the CHATS participant projects (at the SPAWAR Systems
Center in San Diego) has a goal to develop a kernel-level auditing package for Red Hat Linux
that is compliant with the CAPP requirements for security10. It will also provide key features
needed for the Defense Information Infrastructure Common Operating Environment
(DIICOE) certification. This auditing package will allow other CHATS components to meet
their information assurance goals, and it will be of immediate benefit to law enforcement in
computer forensics. Law enforcement relies on audit and transaction logs when investigating
computer crime. Current Open Source operating systems either lack auditing entirely, or log
using mechanisms that cannot be demonstrated to be tamperproof. By residing at the kernel
level, this auditing package will allow all processes to be monitored and logged in a way that
can be demonstrated to meet the assurance requirements of law enforcement. This project
will develop a system of kernel processes and system administrator utilities, which meet the
CC audit requirements. The implementation will provide assurance that the logs have not
been tampered with so that they can be admissible as evidence in a court of law. A final
aspect of this project will be a text reader for audit data that can support law enforcement in
forensics analysis work.

9 Cowan, Crispin, Linux Security Module Interface, e-mail announcement sent to the Bugtraq mailing list, April
2001.
10 SPAWAR Systems Center, Secure Auditing for Linux, 2001. http://secureaudit.sourceforge.net

The Monterey Security Enhanced Architecture (MYSEA) project at the Naval Postgraduate
School11 will construct a prototype demonstration of an open source high assurance
distributed operating environment for enforcing multi-domain security policies while
supporting popular office productivity applications without modification. MYSEA will
provide convenient use of popular computing environments and applications while securely
accessing multiple domains of information, and the cost savings resulting from the continued
use of legacy, proprietary, commercial clients (e.g., WinNT).

MYSEA will construct an innovative high assurance multi-domain distributed architecture
that integrates multi-domain support into the OpenBSD operating system. It will provide
local and remote trusted path services, single sign-on for access to multiple trusted servers,
and integration of security policy management with internal security services. This project
will result in new and improved security functionality for existing open source operating
systems, and will contribute significantly to the ability of distributed open source components
to interoperate securely.

The MYSEA project will implement file security attribute extensions for OpenBSD to
support equivalence-class domain assignments for both objects and active subjects. A rule
manager will be provided that can support a wide range of policies with respect to these
assignments. MYSEA will provide mechanisms to permit remote and local access to multi-
domain information at multiple session levels. Policy-aware protocol servers will provide an
environment that allows the use of a trusted path (a secured, authenticated connection for
security attribute negotiation) between networked systems. The system will provide for single
sign-on to the security domain.

High-assurance cryptography support
One of the widely recognized successes in the Open Source operating system arena is the
security advances that have been realized by the OpenBSD operating system. OpenBSD has
taken an initiative to build a highly secure operating system by performing multiple source
code audits of all components of the system. This audit work has led to the elimination of
several potentially exploitable bugs in the OpenBSD operating system. The Portable Open
Source Security Elements (POSSE) project, managed by the University of Pennsylvania12,
seeks to build upon this work by performing a similar audit of the widely used OpenSSL
(Secure Socket Layer) software. As part of this audit, the POSSE team will work on support
for higher assurance cryptographic hardware and software for use with BSD-based operating
systems. In addition, The POSSE project will work with the core teams from the OpenBSD,
OpenSSH, and OpenSSL development groups to try to build a community of developers to
help improve the security of OpenSSL, OpenBSD, and other BSD-based operating systems.
They will initially work by organizing audits of these systems, delivering an audited version
of OpenSSH, OpenSSL, and OpenBSD. The widely used OpenSSH and OpenSSL will be
portable immediately to a much wider Open Source system base than just OpenBSD. The
POSSE team will work with other system developers to insure that they are aware of any
bugs found during the OpenBSD audit so they can fix corresponding systems. Finally,
POSSE will work with the development community to help raise the security awareness of
the developers so that security bugs are not introduced in the first place.

The BBN Technologies High Assurance Open Source Security Certificate Management
System (CMS) will provide a set of components that can be used to implement a complete

11 Naval Postgraduate School, MYSEA – Monterey Security Enhanced Architecture, 2002.
http://cisr.nps.navy.mil/pages/research/mysea/.
12 The POSSE Project, The POSSE Project, 2001. http://www.cis.upenn.edu/~posse.

Public Key Infrastructure (PKI) certificate management system13. The CMS will be built
from an existing server that supports X.509 certificate management by adding smart card
support and by porting the software to an Open Source operating system (Linux). The
resulting CMS will provide a Certificate Server System that can support multiple Certificate
Authorities (CAs) and a Registration Agent (RA) that accepts and processes certificate
requests. The CMS relies upon the services of a trusted operating system such as those built
using the DARPA-sponsored Linux Security Module (LSM).

Assurance Programs
A key requirement for building high assurance software is the use of development
methodologies that lead to disciplined software development. While there is no shortage of
talented developers willing to work on projects, there has not been a way for new developers
to “learn the ropes”. This leads to the same mistakes being made over and over during the
development of software projects. Also, there is an experienced computer security research
community that could be an invaluable resource to the Open Source development community
if there was a way to foster interaction between the groups.

The Community-Based Open Source Security (CBOSS)14 effort will use the resources of the
security research community to develop and deploy a set of generalized security architectures
that are derived from current research results. These architectures will be developed in
conjunction with senior Open Source developers in order to foster a community that is
committed to making meaningful and lasting changes in the way the Open Source community
develops software. This community will be built with the participation of several of the Open
Source community's most influential members. By influencing these senior developers,
CBOSS hopes to build an environment where new developers are given the knowledge, tools,
and techniques to help them develop software that is sufficiently secure to support the DOD
mission.

This approach recognizes that past initiatives to improve the security of Open Source systems
have failed because they have been one-time attempts at fixing the problem. While these
short-lived attempts have been helpful in fixing individual problems, they have not addressed
the root cause of the problem – developers that don’t know how to avoid common coding
errors that lead to security problems. Each new developer is thus left to learn by making the
same mistakes. The CBOSS project proposes to build this community-based approach to
help improve the community’s development practices by initiatives that will support the
transfer of existing security knowledge and technology between the research community and
the Open Source developers. CBOSS will also foster technology for implementing kernel
security extensions as well as building new technology for high-security applications.

The CBOSS project does not claim that these initiatives will eliminate all the causes of
security problems in Open Source software. What CBOSS is intended to do is to eliminate
the most common and easiest to correct problems by a combination of education and
cooperation. The community fostered by this work will lay a foundation for longer-term
research on more comprehensive changes over time. Since the CBOSS project has enlisted
the help of many well-known members of the Open Source community, the wider Open
Source development community should accept the effort. Through this community-based
approach, the CBOSS effort seeks to prevent security problems by improved education of
developers, improve the quality of existing code, and foster the development of systems that
can be trusted for mission-critical applications.

13 BBN, Certificate Management System, 2001. http://www.bbn.com/infosec/cms.html
14 NAI Labs, Community-Based Open Source Security(CBOSS), 2001.
http://opensource.nailabs.com/initiatives/cboss/index.html

Another approach that the CHATS program will use to improve the quality of new and
existing Open Source programs is the Code Security Analysis Kit (CoSAK) project15. This
project will build a tool framework and define a methodology to help Open Source
developers produce code that is more robust and secure. The CoSAK tools will provide
support for auditing of software by performing an automated analysis of the code in order to
gain an understanding of the structure of a program so that routine “contracts” can be derived.
A contract is a specification of the invariants that define proper operation for a routine or
module; for example, the range of valid values for local variables, requirements on procedure
inputs and outputs, and other environmental details such as external variable values. The
CoSAK tools then assist in the enforcement of the contract terms. CoSAK will concentrate
on externally visible interfaces, as those are the places most prone to exploitation. For each
software system to be audited, tools are used to assist in the understanding of the program
code. The result of these analysis tools is a set of contract formulations that consist of the
conditions that must apply during the execution of the code (timing constraints, utilization of
certain system calls, size of the program stack frame, etc.). The CoSAK toolkit includes a
run-time environment that is responsible for enforcing the constraints imposed by those
contracts. This run-time environment is responsible for taking appropriate action if any of the
contract constraints are violated.

Another effort for making software more secure and robust is the Static Security Analysis for
Open Source Software project at Secure Software Solutions16. This project will build on past
experience with automated software analysis tools to build a set of automated program
analysis tools that can be used to search project source code for known security flaws. These
tools are intended to assist in the audit of Open Source project source code by helping to
quickly identify potential flaws so the auditor’s time can be more effectively used. The
analysis tools, which will be targeted toward C programs, will use a constraint-based static
analysis approach in combination with heuristic approaches to provide a highly automated
audit of source code. The Sardonix and CBOSS communities will be using these tools during
their auditing efforts.

Architectural guidance for the CHATS project comes from the Architectural Frameworks for
Composable Survivability and Security project at SRI17. The main goal of the work is to
provide sound architectural frameworks for composable high-assurance trustworthy
distributed systems and networks, explicitly stimulating the development of robust open-
source operating systems for applications with critical requirements. The project will
research the state of distributed and network system architectures with a view toward
building an architecture with high survivability and security, interoperability, composability,
and evolvability, with potentials for high assurance, while exploiting the open-source
paradigm. The project will provide guidance on how to build trustworthy systems from less
trustworthy components (composability), articulate important design principals, and provide
an architectural framework for secure, survivable systems. Additional work from this project
will be to provide consulting to other CHATS projects and to build tools for static analysis
and diagnosis of some types of security flaws.

Another way that CHATS seeks to improve the security of Open Source operating systems is
by the use of formal verification. A formal analysis can establish that a particular system

15 Drexel University SERG, Software Engineering Research Group, 2001.
http://serg.mcs.drexel.edu/cosak.html
16 Secure Software, Secure Software Solutions – Projects, 2001. http://www.securesw.com/Projects/CHATS’.
17 Peter Neumann, Architectural Frameworks for Composable Survivability and Security, 2001.
http://www.csl.sri.com/users/neumann/chats.html

enforces a set of security goals, but can be costly, time-consuming, and risky. The Analyzing
Security Policies for Security Enhanced Linux (SELinux) project18 will try to dramatically
reduce the level of effort necessary to formally verify that the SELinux system properly
enforces the defined security policy. The project will design methods and tools that can be
used to simplify the task of verifying complex security policies as defined using the SELinux
policy language. These tools are designed for use by the Open Source community to verify
that their policy definitions meet their objectives. The Security Policies for SELinux project
will begin with a small subset of the SELinux subjects, objects, and types and model the
behavior of the system. Initially, the project will use existing analysis tools to model this
minimal subset.

The goal of the verification work is to define a methodology that allows the verification tools
to be used by a wider audience – specifically designers without past experience in formal
model verification tools. The project hopes to improve the assurance of Open Source
systems by permitting more system designers to formally verify their designs and models.
The approach to be used to permit this is to build an easily understood verification
methodology that allows expression of the designer’s security goals into a form that can be
transformed into input for existing formal verification tools. While this work will begin with
the minimal subset policy, the intention is to extend the coverage to incorporate a wider range
of security policy goals.

CHATS Architecture

The mission of the CHATS program is to “focus on the development of the tools and
technology that enable the core systems and network services to protect themselves from the
introduction and execution of malicious code and other attack techniques and methods. These
tools and technologies will provide the high assurance trusted operating systems the security
services needed to achieve comprehensive secure highly distributed mission critical
information systems for the DoD. This program will fundamentally change the existing
approach to development and acquisition of high assurance trusted operating systems
technology by advancing the security functionality, security services, and the state of
assurance in current open-source operating systems and developing a long-term architectural
framework for future trusted operating systems.”19 The CHATS projects are designed to
support this mission by building a bottom-up set of tools and practices that meet the CHATS
goals.

At the bottom layer, there is a foundation of high assurance programs – projects that
contribute to the ability of the upper layers to depend upon the foundation to ensure that
systems work as they are expected to work. These architectural foundations include the
frameworks derived from the Architectural Frameworks task and the formal policy
verification work on the SELinux kernel.

Building upon this foundation are the security architectural documentation from the CBOSS
and POSSE projects and security analysis tools from the Static Security Analysis project and
CoSAK project. These provide assurance that software is using interfaces correctly, operates
as intended, and is free of obvious flaws. The Security-Enhanced Bootstrap from the SEBOS

18 Naval Research Lab, Analyzing Security Policies for SELinux, 2001.
http://chacs.nrl.navy.mil/projects/selinux/
19 DARPA Information Technology Office, Composable High Assurance Trusted Systems, 2001.
http://www.darpa.mil/ito/research/chats/

project provides additional assurance that the operating system can be trusted to enforce the
desired security policy.

This architectural foundation provides a basis for the other CHATS projects in the form of an
improved, more trustworthy operating system base. Some of the other projects are explicit in
their need for this trustworthy base – for example, the CHATS Certificate Management
System (CMS) depends upon the trust in the kernel gained by architectural work such as the
security policy analysis work. Other cryptographic projects rely upon this architectural layer
for proper operation. The POSSE work on OpenSSL and on crypto devices as well as the
CMS project both rely on the architectural underpinning. They also provide services to upper
layers of the CHATS architecture.

These foundation components provide a basis for additional trustable operating system
components. Examples of these components are the ReiserFS and Self-Certifying File
System, which provide the ability to provide more expressive local and remote file system
access policies.

At the top layer, the CHATS program has projects that are designed to encourage the Open
Source community to consider security during the development of their programs. These
projects are the Sardonix auditing portal, the CBOSS community, and the source code
auditing tools (CoSAK and the static security analysis projects.) Programs like Sardonix and
CBOSS are intended to reward developers that build secure software in the hopes that these
rewards will provide the incentives that result in more secure software being built.

Conclusion
The wide acceptance of Open Source systems as an alternative to proprietary systems has
provided an opportunity for the security research community to provide a positive influence
on the development of operating systems. The CHATS program is taking advantage of this
opportunity to nurture relationships between security researchers and Open Source
developers in order to make security an important consideration for Open Source systems.
We are working to ensure that these relationships cover a broad range of operating systems;
indeed, we hope to assist in the migration of effective security mechanisms between
operating systems. We believe that the CHATS programs will help to foster high impact,
short term improvements in security while encouraging the broader community to think about
security while building their systems, which will lead to a self-sustaining long-term
improvement in assurance over a broad range of Open Source systems.

Advantages of open source processes for reliability:

clarifying the issues

D. Bosio, B. Littlewood, L.Strigini
Centre for Software Reliability

M. J. Newby
Department of Actuarial Science and Statistics

City University, London, England

Abstract

Some authors maintain that open source software processes are
particularly well-suited for delivering good reliability. We discuss this
kind of statement, first clarifying the different measures of reliability
and of a process’s ability to deliver it that can be of interest, and then
proposing a way of addressing part of it via probabilistic modelling.
We present a model of the reliability improvement process that results
from the use of the software and the fixing of reported faults, which
takes account of the effect on this process of the variety of software use
patterns within the user community. We show preliminary, interest-
ing, non intuitive results concerning the conjecture that a more diverse
population of users engaged in reporting faults may give OSS processes
an advantage over conventional industrial processes, in terms of fast
reliability growth after release, and discuss further possible develop-
ments.

1 Introduction

Many claims have been made about the dependability of Open Source Soft-
ware (OSS), some of them contradicting each other (OSS is generally better
than Closed Source Software (CSS), or vice-versa), some of them presenting
a challenge to intuition (OSS is more secure because of the accessibility of
its source code to all, including would-be intruders). We find that these ar-
guments often fail to clarify the claims made and the reasoning supporting
them.

We propose to add some clarity to some of the issues. Specifically, we
wish: to separate different qualities of possible interest, corresponding to

Workshop on Open Source Software Development, Newcastle upon Tyne,
25-26 February 2002

Advantages of open source processes for reliability

different precisely defined measures related to reliability; then to give for-
mal expression to some of the conjectured laws which support the claims
made; to discuss to which extent these conjectures are consistent with the
common understanding of the processes that produce software reliability.
We do so via an example of probabilistic models of the effects on software
dependability of factors in the software production process. In this paper,
we use, as examples, models of a class which we developed earlier to weigh
claims about the merits of different testing methods [1, 2, 3].

1.1 Different aspects of reliability

One can identify many attributes of a product that are components of its
dependability (an umbrella word we will use for all the meanings of “relia-
bility” in its common, non-mathematical sense, to avoid confusion with the
specialist term “reliability”).

For instance, we can discriminate between the ability of a system to
deliver continuous correct service, described by “reliability” in its strict
technical sense, from its ability to provide a correct service at any given
moment. E.g., the probability of surviving a mission is a reliability mea-
sure while the average uptime is an availability measure. This distinction is
important because the two measures describe requirements whose relative
importance varies between users and circumstances; because a system can
exhibit a high level of availability without a high level of reliability; and
because the best system design for a given application (e.g. using static
redundancy vs rollback recovery) varies depending on which requirement is
most important.

Other important distinctions centre on the characteristics of the fail-
ures of interest, characterised by severity along a unidimensional scale, or in
terms of the level of specification that they violate (specifications internal to
the development process vs expectations of the users), or in terms of differ-
ences of kind: e.g. related to maintaining data integrity or privacy against
intentional attacks (two attributes of security) or to avoiding failures that
cause outcomes classified as hazards or as accidents (attributes of safety).
It is obvious that these distinctions also matter to a debate about OSS pro-
cesses, as exemplified by the debate over achieving security via openness vs
via obscurity of code or algorithms.

In this paper we choose to talk, for ease of exposition, about a single
reliability attribute, measured by the probability of a system completing a
demand (e.g. a user session for interactive software) without failures.

We also wish to point out two further important distinctions:

• reliability of a specific release of a product vs the evolution of reliabil-
ity during the lifetime of the product. One can have software that is
highly reliable at release but improves slowly (as an extreme example,

Advantages of open source processes for reliability

many safety-critical products will exhibit few failures but be subject to
exceedingly time-consuming procedures for any update), just as soft-
ware that is initially unreliable but improves quickly. From the users’
viewpoint, in many critical applications it is necessary to know that
software is sufficiently dependable when first deployed; in other ap-
plications, teething problems are tolerable, especially if the software
can be expected to improve rapidly, or to be exempt from reliabil-
ity deterioration in the long run. Some of the alleged advantages of
open processes, e.g. prompt response to problem reports, seem more
plausibly to aid fast reliability improvement than reliability at release
time;

• average reliability over all users, vs reliability seen by individual users
or groups of users. The manner of use of a product determines its
reliability; so, the failures affecting different users differ in kind and
frequency. Even software that performs well for most users may be
ruinously unreliable for some of them. These unfortunate users are
hidden in statistical averages, but the risk of becoming one of them
should weigh heavily on the mind of anyone planning a software pur-
chase. A software vendor is often interested in the average reliability
among all users (and possibly the number of users so wretched that
they might endanger the reputation of the vendor). A user is interested
in reliability for him/herself. For instance, this concern contributes to
the insistence of some military customers on being able to take over
maintenance of the products they buy.

Again, we see a plausible conjecture that some aspects of open pro-
cesses improve the lot of the least favoured users, e.g. the possibility
for minorities of users to modify the source code to fix their own spe-
cific problems, possibly leading to great advantages, from a buyer’s
viewpoint, even if the average reliability to be expected were less than
that obtainable from a competing, less open process.

Interestingly, this last conjecture is related to an assumption that seems
to underlie many of the claims for the usefulness of “open” processes: their
ability to exploit diversity among developers and among maintainers. For
instance, the saw “given enough eyes, all bugs are shallow” is obviously
wrong if all the eyes have blind spots for the same bugs. What matters is
that some eyes naturally see bugs that are hidden to other eyes. Diversity
between eyes is a common principle in all development processes: from the
use of independent V-and-V staff to “dual programming”. The issue is which
forms and extents of diversity work better, from the various viewpoints of
interest. We will outline some useful research questions and conjectures for
shedding light on possible advantages and disadvantages of open processes
in this area.

Advantages of open source processes for reliability

1.2 Probabilistic modelling

We wish to shed some light on the possible contributing factors to the
claimed greater (or lower) reliability of OSS. The questions of practical in-
terest we want to answer are of the form “Does factor X in the development
process tend to improve dependability measure Y”?

We choose here one aspect of statements like “the greater diversity be-
tween participants enjoyed by OSS processes causes better reliability in OSS
products”, often used either to argue that OSS processes favour dependabil-
ity or to explain the good dependability observed in some products of OSS
processes.

The first advantage of mathematical modelling is that it forces us to
explain what we mean by “diversity” and “greater degree of diversity”, to
express formally which results we wish to compare, etc. After being so
specific, we can often check whether it is plausible that the factor alleged
to improve dependability actually improves it, and under which additional
conditions we should observe this effect.

Some use of modelling is usually necessary for supporting a claimed
causal effect between aspects of the software production process and its
achieved results, even given some empirical evidence. What we do here
is to make the modelling formal and explicit. The only alternative would
be appealing to bare statistical evidence of correlation between the two.
This could prove to be prohibitively difficult. Checking empirically even a
simple statement like “OSS products are more reliable than the others, all
things being equal” is difficult in practice, for various reasons: paucity of
products with documented reliability, difficulty of choosing “equal” terms
of comparison, expected high variability of the effects so that it may be
exceedingly difficult to reach conclusions with any level of confidence.

We have started applying this approach to a specific scenario – we model
the reliability growth of software while in use after release – and initially
to a single conjecture of interest: that the diversity of users involved in
fault-reporting in an OSS environment may give it an advantage, from this
viewpoint, over comparable software that enjoys less of such diversity.

We do not inquire whether OSS products do improve faster than com-
parable non-OSS products (a worthwhile investigation if the investigator
overcomes the difficulties cited above), nor whether OSS products do in
general enjoy more diverse fault reporting. Instead we study how this kind
of diversity would affect software reliability growth if the plausible assump-
tions of our model were true. Essentially, we wish to produce conjectural
laws that link this kind of user diversity to reliability growth.

These laws are of interest to decision-makers, e.g. project managers
who can influence the make-up of the user community engaged in failure
reporting, or procurement managers who have to choose between products
with visibly different make-ups of this community. Using a mathematical

Advantages of open source processes for reliability

model also clarifies which statistical evidence would support or refute the
idea that these laws are at work in the real world, indicate confusing factors
that may affect the measurements, and so on. Even without experimental
support, a model that decision makers can recognise as consistent with their
experience will allow them to scrutinise the less formal, intuitively appealing
arguments proposed to them.

Our modelling is thus not framed in terms of OSS vs non-OSS processes:
it applies to comparing any processes whose differences can be described in
terms of its parameters.

2 A model of reliability growth during use

2.1 Description and basic assumptions

We start with an intuitive description of the process of finding faults in soft-
ware while using it, and of removing them. A program has well-identifiable
defects (“bugs”, “faults”), which may cause it to fail. There is a set of users
using the software. Some of them may actually be intentionally testing it,
some just using it normally. We do not need at this stage to discriminate
between the two sets. What matters is that they use the software, and
they may experience failures, as a random process due to their (different)
sequences of use of the software. If a failure occurs, the user may notice it
and report it. If it is reported, someone may attempt to identify and remove
the fault that caused it (and the attempt may succeed or fail).

We wish to describe the reliability growth patterns taking place as a
result of all these factors, from the viewpoint of any one user or group of
users.

We now go into more formal details of this model, as previously described
in [1, 2, 3].

For simplicity, we restrict ourselves to a demand-based model of program
execution. A program is given a demand, computes a result and terminates.
In other words, we characterise the “extent of exposure” of the program
to failure as a discrete variable represented by the number T of executions
of (i.e., demands applied to) the software. A demand is characterised by
the values of all the input parameters and machine state that determine
the behaviour of the program in one execution. This model is very general,
applying, for instance, even to interactive programs if we consider a “de-
mand” and a “result” to include the sequences of all user inputs and of all
the program’s outputs during a session (cf [2, 4]).

The collection of all the possible demands is called the demand space.
The demands which will cause the program to fail (failure points) form its
failure set, which we describe as composed of multiple, non-overlapping fail-
ure regions, each a collection of failure points corresponding to a specific
defect (or fault) in the code. If a failure point is found (through observing

Advantages of open source processes for reliability

a failure), and if an attempt is made to remove the fault that caused it,
then either the failure region to which it belongs is completely eliminated
(successful fix) or not at all (this is a simplistic description, commonly ac-
cepted in the literature; in reality, even the definition of what is “a fault”
is ambiguous, as two different people trying to eliminate the cause of the
same failure may well change different parts of the code; cf the discussion
in section 2.2, “So-Called Faults”, of [2]).

Users use the software in many different ways. The users’ ways of using
the software are described by their usage profiles. A user’s usage profile is
the set of the probabilities of each possible demand being chosen by that
user. It determines the different probabilities of the program failing1 for
that user due to each bug in the software (in a given number of demands by
that user), and thus also the reliability of the software for that user.

We also assume that the demands chosen on different executions (by the
same or different users) are statistically independent. Making this assump-
tion realistic requires a judicious choice of what is defined as “one demand”,
and excludes some kinds of testing from our model. These assumptions can
model “operational”, “statistical” or “stress” testing – each regime is mod-
elled by different usage profiles and different rates of bug reporting – but
not partition testing. We will not be modelling the reliability growth that
arises from early stages of testing by developers, which is of little present
interest to us.

Different users may use the software more or less frequently. Individual
users also differ in their probabilities of reporting the failures they observe.

2.2 Parameters of the model

The parameters in the model are

• qi,j, the probability of the fault i causing a failure for the user j on a
randomly selected demand,

• ri,j, the conditional probability of a failure caused by the fault i being
reported by user j if it occurs in an execution for that user,

• fi, the conditional probability of the fault i being successfully fixed
given it has been reported,

• Tj , the number of demands applied by user j by the moment in time
at which we study the achieved reliability of the software, and total
number of demands by all users T =

∑
j Tj .

1Note that we do not consider the consequence of a failure: the severity of a bug is only
given in terms of the probability of selection in operation of a demand from the failure
region associated to it.

Advantages of open source processes for reliability

All the probabilities just described, qi,j, ri,j and fi, are considered constant
over successive demands2. In other words, we are assuming that the number
of users, and their behaviour in terms of software execution and bug report-
ing, are constant over time. This constrains the generality of the model,
but not as severely as it may appear. For instance, we can describe users
recruited later as users who were always present but perform no executions
until a certain time. We can also describe a step change in a user’s us-
age profile in terms of two virtual users, one of which stops executing the
software when the other starts.

The qi,j parameters are determined by each user’s usage profile, and in
turn they determine both the effects of each fault on the reliability experi-
enced by that specific user, and the probability that that user will be able
to report the fault. For a given fault i, larger qi,js correspond to users with
higher probabilities of being affected by failures caused by fault i, thus users
who are better at finding that fault: if these users are intentionally testing
the software, they are better testers, and if they are using the software, they
are the less fortunate users.

The model parameters describe measures of practical interest in a debate
about software processes. About OSS processes, it is often stated that:

• their products tend to have better (or worse: opinions differ) initial
quality than with alternative processes. This can be modelled by sets
of qi,j parameters giving lower (conversely higher)

∑
i qi,js for the users

whose experienced reliability we consider.

• they enjoy better failure reporting: higher values of [some] ri,js.

• they offer more responsive bug-fixing for at least some faults: higher
fis.

2.3 Reliability improvement as a result of use

This model represents the fact that the reliability improvement process is
a stochastic process. The fixing of faults depends on when (and whether)
they are found during execution, and their being reported, and the report
prompting an action to fix the bug, and the fix actually removing the fault.
The model describes statistically how this process will evolve.

For instance, the initial reliability of the program as seen by user j cor-
responds to T = 0, i.e. after no executions of the software, and is described
by its probability of failure on demand (pfd) pfdj

pfdj =
∑

i∈{failure regions}
qi,j . (1)

2Note the underlying simplifying assumption that the probability of a user reporting a
fault does not depend on how many times that user has observed failures caused by that
fault before.

Advantages of open source processes for reliability

We now consider the case where multiple users have executed the soft-
ware, each user k having executed Tk demands. The probability of a fault
having being removed is the probability of the fault having been reported
(at least once) and fixed. The probability of the fault being reported at least
once is 1 − P (fault i not reported). The probability of the fault not being
reported by any user is given by

P (fault i not reported) =
∏

k∈{users}
(1 − ri,kqi,k)Tk , (2)

Recalling that fi is the probability of fixing bug i once it has been reported,
we have that the probability of the fault i being removed is

P (fault i removed) = fi(1 − P (fault i not reported)) .

Every user will experience an improvement in reliability as a result of the
faults fixed when revealed in this multi-user “testing” activity, but this im-
provement will be different for different users (as, indeed, would be their
initial perceived reliabilities before testing). The mean reliability as seen by
user j as a result of the multi-user testing, after a total number of executions
T =

∑
k Tk, depends on the usage profiles of the other users, in the following

way:

pfdj =
∑

i∈{failure regions}
qi,j

1 − fi(1 −

∏
k∈{users}

(1 − ri,kqi,k)Tk)

 . (3)

Thus, the associated expected increase in reliability for user j as a result of
exposure to the T tests will be

Ij =
∑

i∈{failure regions}
qi,jfi(1 −

∏
k∈{users}

(1 − ri,kqi,k)Tk)) . (4)

All the following factors will decrease pfdj (and hence increase Ij, the in-
crease in reliability of the software for user j): adding more users, perform-
ing more tests, increasing the value of any of the ri,k or qi,k, or fi parameters.
In other words, the more users executing (and thus testing) the software,
the greater the benefit for the community; the more likely each person is to
report any bug, the more bugs will be exposed, allowing for more bugs to be
corrected. The more likely the bug is to be removed if reported, the higher
the resulting reliability of the software.

We note that users for whom ri,j = 0 for all i are “free riders”: they
experience reliability improvement without reporting any bugs, and they
benefit from bugs being reported by and fixed for others.

All these are somewhat unsurprising properties, simply confirming that
the model captures “common-sense” understanding of how people interact

Advantages of open source processes for reliability

in fixing bugs. It is interesting to see how competing claims about OSS
processes can be represented in this model. In a CSS process, one would
expect there to be a small community of special users, the in-house testers,
who put in a big “lump” of executions early on in the life-cycle and after
major changes. These users have very high ri,j and aim to have high qi,j as
they often try to cause failures. Yet theory shows [1, 2, 3] that if their qi,j for
certain faults are lower than for “ordinary” users, the latter may see much
worse reliability than the in-house testers. There is anecdotal evidence that
this happens with many products. In an OSS process, this nucleus of heavy
duty testers may well be smaller. On the other hand, it is plausible that
“ordinary” users of OSS have ri,js that are often much higher than with
“ordinary” users of CSS, due to perceived higher chance of obtaining a fix;
visibility of the source code and higher number of potential “fixers” should
give higher fis than for many commercial products (at least after some time
from release).

2.4 Brief discussion of assumptions.

Of the assumptions of this model, the ones that seems most seriously un-
realistic are those of a constant rij for given i, j and of constant fi. I.e., a
user who observes a failure due to a certain fault more than once has the
same probability of reporting it each time; and the probability of a fault
being fixed depends only on whether it is ever reported. There are many
plausible factors that would suggest other behaviours. For instance, users
may be unlikely to report a failure that they recognise as similar to one
already reported, especially by themselves; however, this does not matter
as the model is only affected by a failure being reported at least once. For
certain failures, users who have not reported them previously may become
more willing to report them when they observe them again; but for others
(or other users for the same failures) they may be most likely to report the
failure at the first observation, and later discount it as a known nuisance.
Many such psychologically plausible assumptions are possible. They could
be represented in the model at the cost of added complexity, but this is pre-
mature during this first investigation. We will need later to examine under
which circumstances they would, if true, cause serious changes in the results
derived from the model.

We will not discuss here, for brevity, the other, more standard assump-
tions we made.

3 Diversity is useful

We now illustrate how models of this kind can be used to investigate the
plausibility of quite general hypotheses. The hypothesis we investigate here

Advantages of open source processes for reliability

is: “Diversity is a good thing: all things being equal, it is better for users
to have diverse demand profiles than for them to have the same profile.”

We want to compare a situation where users have many diverse profiles
with one in which all the users have the same profile (we will see below which
one), if the total number of executions of the software is the same in both
cases:

∑
Tk = T . Starting with the former situation, we define our “ideal

average equivalent user”, where “average” refers to the effectiveness in fault
reporting, measured by its effect on the potential reliability improvements
if all faults reported are fixed. For each bug i, it is a user who has the
average of all the considered profiles, weighted with their respective number
of executions. Mathematically this corresponds to a user with associated
parameters r′i,j and q′i,j such that

r′i,jq
′
i,j =

∑
k∈{users} Tkri,kqi,k∑

k Tk
. (5)

Let us then consider a situation in which all the users are “average” users:
all have identical parameters r′i,j and q′i,j satisfying equation (5) for all is.
The theorem of arithmetic and geometric means [5] (see appendix 5) now
tells us that, for each bug i, its probability of not being reported is smaller
in the case of diverse users than in the case of all users having this ideal
average profile

∏
k∈{users}

(1 − ri,kqi,k)Tk <
(
1 − r′i,jq

′
i,j

)∑
k

Tk
, (6)

unless all the products ri,kqi,k are equal, in which case equality occurs. Com-
bining the effect over all the failure regions i, we obtain

∑
i∈{failure regions}

qi,jfi

1 −

∏
k∈{users}

(1 − ri,kqi,k)Tk

 >

∑
i∈{failure regions}

qi,jfi

(
1 −

(
1 − r′i,jq

′
i,j

)∑
k

Tk
)

. (7)

What does this tell us? Any user (with profile qi,j, ri,j) would prefer the
previous exposure of the software to have been diverse rather than uniform,
because diversity gives them higher reliability. There are two conditions here
to represent “all things being equal” in our comparison of diverse-profile
testing with uniform-profile testing. They are (i) that the same number
of demands are executed in each case and, (ii) that the uniform profile is,
in an intuitively appealing way, the mean of the different profiles used in
the diverse-profile testing. Subject to all things being equal in this natural
way, we have thus shown that diverse-profile testing is superior to uniform-
profile testing, in the sense it can be expected to deliver greater reliability
improvement to every user (no matter what their profile is).

Advantages of open source processes for reliability

4 Discussion

4.1 Further implications of the model — conjectures

We consider here a few questions of clear interest, and speculate about
which answers the model would give to these questions. I.e., we formulate
mathematical conjectures; if in the future we manage to prove them to be
consequences of the model, they will gain the status of conjectures about the
actual evolution of software reliability. We rely heavily on our understanding
of similar models described in [1, 2, 3].

4.1.1 The individual user’s viewpoint

Studies in software reliability usually refer to the average reliability over
all users. In other words, they apply to predictions of the total number of
failures observed by the whole population of users. Of course, if users have
very diverse profiles, as is the case for many products, even a very good
average will not avoid very poor reliability for some users. In other words,
just because a product is known to be very reliable on average, I cannot
trust that it will be very reliable for me. Our model is a step in the right
direction for considering this issue: it refers to the reliability for each specific
user, and thus it will allow one to study distributions rather than averages.

In a practical situation, what would the model predict for an individual
user, or set of users, who benefit from the collective fault reporting and
fixing effort?

A simple (approximate) analogy with the previous work cited is that it is
“as though” there were two users, user 1 whose viewpoint we are taking, and
user 2 representing all the other users and executing many more demands,
T2 >> T1 (or T1 = 0, as when user 1 is deciding whether to adopt the
software). We can compare two scenarios with equal total fault-detecting
and reporting efficacies, i.e., two scenarios which, if one tried to estimate
the reliability of the program (averaged among all users) by looking at the
rate of generation of fault reports, would give identical estimates.

Suppose that user 1’s profile is very different from that of all others.
We can expect that after any amount of time and use, pfd1 will be better
than if user 1 were alone to report failures; yet much worse than if all users
had the same profile as user 1 (this is the standard argument in favour of
“operational” testing). Yet the situation is probably more complex. In [2]
it was found that if software is tested by user 2 with a constant profile,
there is a single profile that delivers the best reliability for user 1, among
all profiles that yield the same initial probability of failure per execution, in
other words under the constraint∑

i∈{failure regions}
qi,1 =

∑
i∈{failure regions}

qi,2 , (8)

Advantages of open source processes for reliability

This optimal profile that user 2 should apply for maximum benefit to user 1
actually depends on the amount of use/testing, T . Its parameters qi,2 satisfy
the following relation ([2], eq. 28):

qk,1 (1 − qk,2)
T−1 = ql,1 (1 − ql,2)

T−1 . (9)

for any two faults k and l, under the constraint (8).
What does our “diversity is good” result adds to this previous result?

If I (user 1) have to choose, for my software, among testing regimes with
constant profile (as though executed by the single other user 2), then equa-
tion (9) tells me how to choose this profile for maximum reliability. But on
top of that, if I then split my total number T of test cases among many
users, and give them more varied profiles, of which this optimal profile is
the average according to equation (5), I will get even better reliability for
myself. Software that has been used by a diverse community can reach me
with better reliability than software that has been used by “the best possi-
ble” (from my viewpoint) uniform community with comparable total usage
and fault reporting efficiency.

Other interesting questions deserve investigation, e.g.: under which con-
ditions could a user be aware of being too “special” to benefit greatly from
diversity in the user community? When is it that an apparently very good
fault finding process (large rs and qs) is less useful for me than a ”worse”
one (generally smaller rs and qs)?

And if “diversity is good”, is there a sense in which “more ” diversity is
better than “less”? We need to characterise what “more” means in terms of
the model’s parameters before we can ask whether differences between OSS
and other approaches matter in this respect. For instance, we may ask under
which conditions a law of diminishing returns would apply for diversity.

4.1.2 Evolution over time

All the results so far have been discussed in terms of reliability at a certain,
arbitrary moment in the history of use of the program. All results contain
parameters Tk, or their sum T =

∑
k Tk.

We are really interested in how the program’s reliability evolves over
time. We showed in [3] a phenomenon whereby testing with a profile similar
to one’s usage profile yields better reliability growth in the short term, but in
the long term different profiles, with some emphasis on the “less important”
bugs, are more beneficial (i.e., in the long run, the “important” bugs will
have been found and fixed no matter what; but the other ones are difficult
to get rid of).

In our model we can therefore conjecture two main contributing factors
to the reliability growth as observed by user j. In the short term, corre-
sponding to initial rapid reliability growth, it is affected mostly by those
users with similar profiles to user j’s own. In the long run, the profiles

Advantages of open source processes for reliability

which differ from user j’s will contribute more to improving reliability as
seen by j.

4.1.3 Predictability of results, dependability of process

We have so far referred to the average, or expected value of reliability mea-
sures for a given user. This acknowledges that reliability growth is a stochas-
tic process: for instance, a fault i with high qi,js is likely to be discovered
early on, but it may well (with low probability) go undetected for a long
time. The probabilities of different histories of reliability growth are deter-
mined by our model parameters. The averages that we have been discussing
are defined over all the possible histories of reliability growth. So, they are
useful indicators, but they may be misleading as they hide the potential
variation between different histories.

In reality, what matters in a project is the reliability growth history that
actually takes places. When I am stuck with an unreliable product, it does
not matter much that, if I consider all other possible histories, the average
of all the reliability levels that I could have obtained would be much better
than the one I actually see. So, in project decisions the probabilities of
“bad” reliability growth histories - thus, the probabilities of histories that
are “much worse” than average - matter.

In [3] we studied probability distributions of reliability growth histories,
accounting also for the fact that the initial set of faults is unknown. We
could show some counterintuitive examples of how comparatively bad failure
reporting rates, from usage with a user’s own usage profile, would be better
defences against the risk of very poor reliability growth than even much
higher reporting rates based on someone else’s, different profile.

We would like to explore how this translates into predictions, for a new
prospective user, of the risk of very bad reliability growth after adopting a
new product, and how the degree of “openness” of the process and diversity
of the user base should affect them.

4.2 Limits of this model and possible extensions

This model is not exhaustive: there are many aspects of OSS processes that
we have not described. Some of these could be studied through extensions
to the model, some require different methods. To give some examples:

• in OSS an individual user might make available to the other users
a fix which would work only in his particular profile, which is often
commercially unviable in CSS;

• having additional users reporting bugs may be generally useful as it
will increase the chances to improve the reliability in any case. How-
ever, in this model there is no explicit representation of any resource

Advantages of open source processes for reliability

bottleneck, like scarcity of bug fixing staff, or simply delays due to
the need to coordinate many fixes. As an example, consider the situ-
ation when bug fixing is a competing activity. Bug fixers may need to
abandon one bug for another, so that increasing the likelihood of user
k reporting bug i implies a higher probability of fixing bug i, but at
the expense of fixing bug l. Mathematically this can be described by
saying that increasing ri,k increases fi, which in turn decreases fl.

• the model lacks any notion of consequence of a failure, or failure “sever-
ity”, yet it seems likely that users will be influenced by this (as well
as their perception of its frequency) in deciding whether or not to re-
port it. It may well be that attitudes to failure severity are different
between OSS and commercial developments.

5 Conclusions

We started this work to clarify to ourselves some open issues about the re-
lationship between software processes and software dependability, using the
tools we know, i.e. a simple, formal, probabilistic approach. We were moti-
vated by interest in open source processes, but a reader may well say that
this paper is not about“open source”. Our considerations about depend-
ability attributes, and the model we propose, apply to any scenario in which
the important factors at work can be described by the model’s parameters.
It so happens that some of these parameters are plausibly influenced by
“openness” factors. E.g., if a development community appears responsive
to failure reports, we may well expect users to report failures more often than
they would otherwise. Such thorough reporting of failures might of course
be produced by appropriate management decisions or cultural factors even
without open source development.

So, we have not studied “open source” per se. Yet this way of modelling
does seem useful for decisions involving the choice between more or less
open project styles, both in managing development projects and in software
procurement. The model’s universe includes many of the factors that seem
important: the initial quality of the software, various factors affecting its
growth, the different reliability levels experienced by different users, etc.

In fact, we would argue that only questions of the kind we have chosen,
“how does factor X affect dependability attribute Y” are likely to produce
interesting general answers. Questions of the form “how reliable is open
source software?” may elicit highly specific, useful answers of the form
“product X achieved an average time between crashes of y days for user
community Z”, but no generalisation without the support of theories – i.e.,
of models.

As to useful answers that this model can give to our questions, we have
only proven a first theorem. This theorem does resolve an intuitively unclear

Advantages of open source processes for reliability

issue, but does not seem especially useful in the practical situations, in which
two processes are likely to differ in all the rijqij in arbitrary ways. However,
even this modest theorem has some practical implications. E.g., given a
community of similar users who are not likely to report all failures, it would
pay off to encourage different users to focus on reporting different kinds
of failures, provided their reporting frequencies, taken together, still satisfy
equation (5).

We will continue to interrogate this model, e.g. about the relationships
between reliabilities observed by different users, as outlined in the previous
sections.

We plan to obtain clarifications of what “one should believe” given plau-
sible assumptions, and thus about the consistency of various claims about
the differences between processes that differ in the extent of some aspect
of “openness”. We shall investigate which predictions can be checked em-
pirically to decide whether these models, however stylised, are useful ap-
proximations for important, dependability-related aspects of real, complex
processes.

We have chosen to study aspects of the software life-cycle for which our
modelling approach seems appropriate. We are sure that there are other
aspects for which it would be ineffective. For instance, some will argue that
a prestigious open source project will produce high initial dependability,
or long-term maintainability, simply because it will attract highly skilled
and dedicated contributors. In our model, this result would be represented
by low values of the sum in (1) for all js. The process it describes is not
represented in the model, nor would we expect any advantage from trying
to represent it. To investigate how this conjecture should affect one’s de-
cisions, e.g. in setting up an open-source project, one would need to use
knowledge from psychology, sociology or economics, and still would expect
rather imprecise answers. For someone intent on procuring a software prod-
uct, the conjecture is probably irrelevant, as what matters if whether that
specific product has been built by especially skilled individuals, and/or is
very reliable.

We expect our style of modelling to complement such other methods of
investigating software engineering problems, in terms of general laws or of
specific cases.

Acknowledgements

This work was supported in part by EPSRC, within the Interdisciplinary Re-
search Collaboration in Dependability of Computer-Based Systems, DIRC.

Advantages of open source processes for reliability

Appendix: theorem

In this appendix we describe the theorem of arithmetic and geometric means.
Let us consider two set of non-negative numbers a1, a2, . . . , an and p1, p2, . . . , pn.
We will call the ps weights. The weighted arithmetic means of the as is de-
fined as

A(a, p) =
∑n

k=1 pkak∑n
k=1 pk

,

whereas the weighted geometric means is defined as

G(a, p) =

(
n∏

k=1

apk
k

)1/
∑

k
pk

.

The theorem ([5], p.17) says that G(a, p) < A(a, p) unless all the as are equal.
Raising both sides to the power

∑
k pk the theorem gives the equation

n∏
k=1

apk
k <

(∑n
k=1 pkak∑n

k=1 pk

)∑
k

pk

. (10)

Replacing ak with (1 − ri,kqi,k) and the weights pk with the number of
executions Tk in equation (10) yields equation (6). Indeed, we find

n∏
k=1

(1 − ri,kqi,k)Tk <

(∑n
k=1 Tk (1 − ri,kqi,k)∑n

k=1 Tk

)∑
k

Tk

.

In the right hand side term we can recognise our definition of the “ideal
average user”. Indeed, by the definition of “ideal average user”(5), we have

(∑n
k=1 Tk (1 − ri,kqi,k)∑n

k=1 Tk

)
= 1 −

∑n
k=1 Tkri,kqi,k∑n

k=1 Tk
= 1 − r′i,jq

′
i,j .

References

[1] P. Frankl, D. Hamlet, B. Littlewood, and L. Strigini. Choosing a testing
method to deliver reliability. In Proceedings 19th International Confer-
ence on Software Engineering ICSE’97, pages 68–78, Boston, USA, 1997.
IEEE Computer Society Press.

[2] P. Frankl, D. Hamlet, B. Littlewood, and L. Strigini. Evaluating test-
ing methods by delivered reliability. IEEE Transactions on Software
Engineering, SE-24(8):586–601, 1999.

Advantages of open source processes for reliability

[3] M. Pizza and L. Strigini. Comparing the effectiveness of testing methods
in improving programs: the effect of variations in program quality. In
Proceedings 9th International Symposium on Software Reliability Engi-
neering, ISSRE ’98, pages 144–153, Paderborn, Germany, 1998. IEEE
Computer Society Press.

[4] L. Strigini. On testing process control software for reliability assessment:
the effects of correlation between successive failures. Software Testing
Verification and Reliability, 6(1):36–48, 1996.

[5] G. Hardy, J.E. Littlewood, and G. Polya. Inequalities. Cambridge Uni-
versity Press, 1952.

A Business Case Study of Open Source Software

Carolyn A. Kenwood

The MITRE Corporation

(kenwood@mitre.org)

Abstract

Based on The MITRE Corporation research project “Open Source Software in Military
Systems,”1 this paper analyzes the business case of open source software. It is intended to

help Program Managers evaluate whether open source software and development
methodologies are applicable to their technology programs. The paper explains open

source, describes its significance, compares open source to traditional commercial off-the-
shelf (COTS) products, presents the military business case, shows the applicability of Linux
to the military business case, analyzes the use of Linux, discusses anomalies, and provides

considerations for military Program Managers. This paper was prepared for the 2002 Open
Source Software Development Workshop (Newcastle, UK) and highlights the importance of

reliability and availability to the military business case.

What Is Open Source?

Open source, by definition, means that the source code is available. Open source
software (OSS) is software with its source code available that may be used, copied, and
distributed with or without modifications, and that may be offered either with or without a
fee. If the end-user makes any alterations to the software, he can either choose to keep those

1 The MITRE Corporation is a not-for-profit corporation working in the public interest. MITRE addresses
issues of critical national importance, combining systems engineering and information technology to
develop innovative solutions that make a difference. MITRE received a Leadership Award from the non-
profit Potomac Forum for investigating the technology and economics of open source software in its
research project “Open Source Software in Military Systems.”

changes private or return them to the community so that they can potentially be added to
future releases2. An open source license is certified by the Open Source Initiative (OSI), an
unincorporated nonprofit research and educational association with the mission to own and
defend the open source trademark and advance the cause of OSS. The open source
community consists of individuals or groups of individuals who contribute to a particular
open source product or technology. The open source process refers to the approach for
developing and maintaining open source products and technologies, including software,
computers, devices, technical formats, and computer languages.

Although OSS has recently become a hot topic in the press, it has actually been in
existence since the 1960s and has shown a successful track record to-date. Examples of
popular open source products include Emacs, GNU toolset, Apache, Sendmail, and Linux.
The development of Perl is an example of the open source process.

Emacs was one of the first open source products. It is a text editor that is widely used for
software development. As a software tool, many developers (including defense contractors)
use Emacs to develop their (non-open source) applications.3 The success of Emacs led to the
GNU program. GNU stands for “Gnu’s not Unix.” The GNU project consists of an
operating system kernel and associated Unix tools. The GNU tools have been ported to a
wide variety of platforms, including Windows NT. Again, they are widely used by software
developers to produce both open source and proprietary software.4

The Apache web server is a freely available web server distributed under an open source
license. Apache developers form a voting committee, and votes from this committee set the
direction for the project. The Apache Software Foundation provides organizational, legal,
and financial support for Apache projects. Apache web servers are known for their
functionality and reliability. They form the backbone infrastructure running the Internet.
Today, Apache comprises over 60 percent of the web server market and continues to grow.5

2 There are several licensing models for Open Source. Some require that all changes made to the source must
be freely distributed with the modified product. Other licenses permit an organization to make changes and
keep the changes private.

3 For more information on Emacs, see http://www.gnu.org/software/emacs/emacs.html.

4 For further information on GNU, visit the GNU Project web server at http://www.gnu.org/.

5 O’Reilly, Tim, Linux eSeminar Series, 1999. For more information on Apache, refer to the Apache Software
Foundation at http://www.apache.org/.

Sendmail is a platform for moving mail from one machine to another. The Sendmail
Consortium, a nonprofit organization, runs the open source program and maintains a website
to serve as a resource. Sendmail is estimated to carry nearly 90 percent of e-mail traffic.6

Linux is an open source Unix-like operating system (OS). The kernel is maintained by
the Linux community, led by Linus Torvalds, the creator of Linux.7 Torvalds has appointed
delegates who are responsible for managing certain areas of the project and, in turn, these
delegates have a team of coordinators. Linux has multiple uses; it can be used as an OS for a
server, desktop, or embedded environment. There are over ten million Linux users
worldwide. According to an InformationWeek survey, Linux comprises about 4 percent of
all operating systems, and that number is expected to rise to 15 percent in two years.8 Linux
is the fastest growing server operating environment, increasing from 16 percent of the market
in 1998 to 25 percent in 1999.9 In the embedded market, Linux is also expected to play a
significant role. 10 (An embedded device is a piece of microprocessor-based computing
hardware, usually on single circuit board, which has been built to run a specific software
application. The term embedded refers to the fact that these devices were originally used as
building blocks in larger systems.)

While Emacs, GNU toolset, Apache, Sendmail, and Linux are examples of open source
products, the Practical Extraction and Reporting Language (Perl) is an example of an open
source process. Perl is a system administration and computer-programming language widely
used throughout the Internet. It is the standard scripting language for all Apache web
servers, and is commonly used on Unix. Perl is managed on a rotating basis by the ten to
twenty most active programmers. Each takes turns managing different parts of the project.
There are an estimated one million Perl users today.11

6 O’Reilly, Tim, and Ether Dyson, “Open Mind, Open Source.” For more information on Sendmail, see
http://www.sendmail.org/.

7 Linus Torvalds’ homepage can be found at http://www.cs.Helsinki.FI/u/torvalds/.

8 Ricadela, Aaron, “Linux Comes Alive,” InformationWeek, January 24, 2000.

9 “The Future of Linux,” CNet 2000, cites IDC data, no date provided.

10 For further information on Linux, visit The Linux Home Page http://www.linux.org/, Linux International
http://www.li.org/, and MITRE Linux Resources Page http://w030nt.mitre.org/users/terry/pub/linux/.

11 For more information on Perl, visit http://www.perl.com/pub.

Significance of Open Source

The open source development process differs sharply from the traditional commercial
off-the-shelf (COTS) model. In the corporate or traditional COTS model, whereby a
corporation produces and sells proprietary software, COTS products tend to be driven by
time-to-market considerations. Development is done under the aegis of the COTS vendor,
who views the source code as valuable intellectual property, and controls when versions of
the software are released. Eric Raymond likens this corporate model to a cathedral and the
open source model to a bazaar.12 In the corporate model, Raymond depicts individuals or
small groups of individuals quietly and reverently develop software in isolation, without
releasing a beta version before it is deemed ready. In contrast, the open source model relies
on a network of “volunteer” programmers, with differing styles and agendas, who develop
and debug the code in parallel. From the submitted modifications, the delegated leader
chooses whether or not to accept one of the modifications. If the leader thinks the
modification will benefit many users, he will choose the best code from all of the submittals
and incorporate it into the OSS updates. The software is released early and often.

Benefits and Risks of Open Source Software Compared to Traditional

COTS

Due to the different development models, Program Managers can achieve many benefits
over traditional COTS by using OSS. Popular open source products have access to extensive
technical expertise, and this enables the software to achieve a high level of efficiency, using
less lines of code than its COTS counterparts. The rapid release rate of OSS distributes fixes
and patches quickly, potentially an order of magnitude faster than those of commercial
software. OSS is relatively easy to manage because it often incorporates elements such as
central administration and remote management. Because the source code is publicly
available, Program Managers can have the code tailored to meet their specific needs and
tightly control system resources. Moreover, Program Managers can re-use code written by
others for similar tasks or purposes. This enables Program Managers to concentrate on
developing the features unique to their current task, instead of spending their effort on re-
thinking and re-writing code that has already been developed by others. Code re-use reduces
development time and provides predictable results. With access to the source code, the
lifetime of OSS systems and their upgrades can be extended indefinitely. In contrast, the
lifetime of traditional COTS systems and their upgrades cannot be extended if the vendor
does not share its code and either goes out of business, raises its prices prohibitively, or
reduces the quality of the software prohibitively. While traditional COTS typically depends
on monopoly support with one company providing support and “holding all the cards” (i.e.,
access to the code) for a piece of software, the publicly available source code for OSS

12 Raymond, Eric, “The Cathedral and the Bazaar,” O’Reilly Associates, 1999.

enables many vendors to learn the platform and provide support. Because OSS vendors
compete against one another to provide support, the quality of support is potentially
increased while the end-user cost of receiving the support is decreased. Open source can
create support that lasts as long as there is demand, even if one support vendor goes out of
business. For government acquisition purposes, OSS adds potential as a second-source
“bargaining chip” to improve COTS support.

OSS can be a long-term viable solution with significant benefits, but there are issues and
risks to Program Managers. Poor code often results if the open source project is too small or
fails to attract the interest of enough skilled developers; thus, Program Managers should
make sure that the OSS community is large, talented, and well-organized to offer a viable
alternative to COTS. Highly technical, skilled developers tend to focus on the technical user
at the expense of the non-technical user. As a result, OSS tends to have a relatively weak
graphical user interface (GUI) and fewer compatible applications, making it more difficult to
use and less practical, in particular, for desktop applications (although some OSS products
are greatly improving in this area). Version control can become an issue if the OSS system
requires integration and development. As new versions of the OSS are released, Program
Managers need to make sure that the versions to be integrated are compatible, ensure that all
developers are working with the proper version, and keep track of changes made to the
software. Without a formal corporate structure, OSS faces a risk of fragmentation of the
code base, or code forking, which transpires when multiple, inconsistent versions of the
project’s code base evolve. This can occur when developers try to create alternative means
for their code to play a more significant role than achieved in the base product. Sometimes
fragmentation occurs for good reasons (e.g., if the maintainer is doing a poor job) and
sometimes it occurs for bad reasons (e.g., a personality conflict between lead developers).
The Linux kernel code has not yet forked, and this can be attributed to its accepted leadership
structure, open membership and long-term contribution potential, GNU General Public
License (GPL) licensing eliminating the economic motivations for fragmentation, and the
subsequent threat of a fragmented pool of developers. The small amount of fragmentation
between different Linux distributions is good because it allows them to cater to different
segments. Users benefit by choosing a Linux distribution that best meets their needs.
Finally, there is a risk of companies developing competitive strategies specifically focused
against OSS.

When comparing long-term economic costs and benefits of open source usage and
maintenance to traditional COTS, the winner varies according to each specific use and set of
circumstances. Typically, open source compares favorably in many cases for server and
embedded system implementations that may require some customization, but fares no better
than COTS for typical desktop applications. Indeed, some literature sources generalize that
open source products are no worse than closed source, but our findings indicate that the scale
measuring the value derived from open versus closed source software can be heavily tipped

in one direction or the other depending on the specific requirements and runtime
environment of the software.

A decision between OSS and traditional COTS is based on three factors: (1) costs – both
direct (e.g., price of software) and indirect (e.g., end-user downtime); (2) benefits (i.e.,
performance); and, (3) other, more intangible criteria (e.g., quality of peer support). Direct
costs are largely understood and have traditionally comprised most of the total lifecycle costs
of a system. However, indirect costs as well as operational and performance benefits (e.g.,
scalability, reliability, and functionality) play a most influential economic role in today’s
more mature software market. Other, more intangible criteria are difficult to quantify, but
can also impact the effectiveness of open and closed source software. Because indirect costs
and operational and performance benefits play a much larger role in OSS compared to
traditional COTS products, traditional lifecycle cost models and other COTS software tools
can no longer be relied on for optimal mission-oriented and IT investment decision-making
involving a choice of OSS.

To understand how indirect costs should be incorporated into the analysis, Program
Managers must understand what these costs mean to their programs. Since the salary and
other labor costs associated with an employee are direct costs, only the labor costs that are
“wasted” and could be used in more productive ways should be included as indirect costs. In
other words, although there is no additional direct cost to the organization, not as much
output was received from the employee due to inefficiencies in the process or system. To a
profit-making organization it would be hoped that this improved productivity increases
profits. For example, time wasted could be spent bringing in more business. Within a
Department of Defense (DOD) organization, the concepts of bringing in more business and
increasing profits do not apply, and these lost productivity costs could be viewed as
justification for force structure cuts. If, for example, an organization migrates to a new
solution and experiences improved productivity, the organization could perform the same job
with fewer people.) Data collection efforts to understand these metrics are viewed negatively
by employees for this reason. Unless a direct cause-and-effect link can be established, it may
be that some indirect influences are best viewed as relative costs rather than as absolute costs
in support of IT investment analyses.

Program Managers need a complete taxonomy of lifecycle costs, benefits, and other,
more intangible criteria to account for hidden costs and benefits that they might otherwise
have overlooked. With this taxonomy, Program Managers can make software-purchasing
decisions being fully aware of their economic, performance, and mission implications. The
following table represents a cost element taxonomy for OSS developed by this research
investigation.

Table 1. OSS Cost Element Taxonomy13

Direct Costs
Software and Hardware

Software
Purchase price
Upgrades and additions
Intellectual property/licensing fees

Hardware
Purchase price
Upgrades and additions

Support Costs
Internal

Installation and set-up
Maintenance
Troubleshooting
Support tools (e.g., books, publications)

External
Installation and set-up
Maintenance
Troubleshooting

Staffing Costs
Project management
Systems engineering/development
Systems administration

Vendor management
Other administration

Purchasing
Other

Training

De-installation and Disposal

Indirect Costs
Support Costs

Peer support
Casual learning
Formal training
Application development
Futz factor

Downtime

13 Futz factor is included by GartnerGroup as an indirect cost. GartnerGroup describes this term as the labor
expense when the end-user exploits corporate computing assets for his own personal use during productive
work hours.

In addition to a taxonomy of lifecycle costs, Program Managers also need a taxonomy of
benefits and risks along with an example rating scale to compare the costs, benefits, and
other, more intangible criteria of OSS and traditional COTS software. This research
developed a taxonomy of benefits and risks for OSS and an example rating scale, and these
are presented in Table 2 below.

Table 2. OSS Taxonomy of Benefits and Risks

Qualitative Attributes
Ability to customize
Availability/reliability
Interoperability
Scalability
Design flexibility
Lifetime
Performance
Quality of service and support
Security
Level of difficulty/ease of management
Risk of fragmentation
Availability of applications

Very Strong

Strong

Neutral

Weak

Very Weak

Example Rating Scale

The above taxonomy comprises a list of qualitative attributes. For each attribute,
Program Managers should compare the relative strength or weakness for OSS versus
traditional COTS products. A relative strength would indicate a benefit, and a relative
weakness would indicate a risk. An example rating scale is shown above for comparing the
relative value of OSS versus traditional COTS. This example scale presents five ratings –
very strong, strong, neutral, weak, and very weak. Since the ratings will differ depending on
the specific use and environment of the software, Program Managers should customize their
ratings according to their particular circumstances.

Compared to traditional COTS products, OSS provides more options to Program
Managers for life-cycle supportability. The maintenance burden of OSS can be similar to

pure COTS (“buy”), custom code (“build”), or lie somewhere in between. Unmodified OSS
can be considered similar to pure COTS. Thoroughly modified and owner-maintained OSS
is comparable to custom code. “Modifiable COTS,” or OSS that relies on short-term
modifications yet attempts to re-merge with newly released OSS updates, takes advantage of
the benefits of both pure COTS and custom code. The following diagram illustrates this
spectrum and points out differences between the above scenarios.

Pure COTS
or unmodified OSS

Custom Code
or thoroughly
modified OSS
(owner-maintained)

“Modifiable COTS”
or OSS that relies on short-term
modifications, yet attempts
to re-merge with newly
released OSS updates

•Cheaper to acquire
•Need to determine suitability/functionality
•Subject to licensing restrictions
•May require modification
•Subject to maintenance schedule
•May have more known security holes
•Authors maintain control

•Cheaper to acquire
•Need to determine suitability/functionality
•Subject to licensing restrictions
•May require modification
•Subject to maintenance schedule
•May have more known security holes
•Authors maintain control

•More expensive to acquire
•Function according to
specification
•May have more bugs
•Need more labor
•Sometimes difficult to support

•More expensive to acquire
•Function according to
specification
•May have more bugs
•Need more labor
•Sometimes difficult to support

•Take advantage of custom code & leverage
economies of scale of COTS
•Can modify in-house or outsource to vendor
•May increase interoperability of systems
•May need to evaluate impact on nat’l security

•Take advantage of custom code & leverage
economies of scale of COTS
•Can modify in-house or outsource to vendor
•May increase interoperability of systems
•May need to evaluate impact on nat’l security

BUY BUILD

Figure 1. OSS Provides Several Maintenance and Support Options

Program Managers should evaluate the relative advantages and disadvantages of the pure
COTS, “modifiable COTS,” and custom code maintenance models for their specific use and
set of circumstances. Pure COTS is advantageous because it is cheaper to acquire.
However, Program Managers need to assess the suitability and functionality of the software
to their specific needs. The software may require modification, and Program Managers are
subject to licensing restrictions and set maintenance schedules. Pure COTS may have more
known security holes, and control is maintained by the authors of the software. “Modifiable
COTS” takes advantage of customer code while leveraging the economies of scale achieved
by COTS products. The software can be modified in-house or by a vendor. The
interoperability of systems may be increased with “modifiable COTS.” The impact on
national security may need to be evaluated. Custom code is more expensive to acquire,
functions according to specification, may have more bugs, requires more labor, and is
sometimes difficult to support.

Open source will benefit the government by improving interoperability, long-term access
to data, and ability to incorporate new technology. Interoperability increases because open
source enables the same code, documentation, and data formats to be used in every system
component. (However, the downside risk of exposure should be evaluated; if the security of
an open source system is compromised, interoperability could also be compromised.) Long-
term access to data gives the user full access to its own systems. It is possible to contract out
maintenance development work to support vendors, who have the same information as the
original supplier. Open source can allow the government to more easily adopt new
technology because it reduces the cost and risk of change. Open source projects tend to be
evolutionary and less disruptive to operations.

The Military Business Case

The military has different software needs than the commercial sector because of its
unique mission and environment. Software attributes most important to the commercial
sector include application choice, ease of use, service and support, price, reliability, and
performance. Most operationally significant attributes for software used in the military
include reliability, long-term supportability, security, and scalability. Additional attributes of
highest programmatic significance to the military include cost or price, availability or
multiple distribution sources, and popularity or brand/reputation.

While both the commercial and government sectors are concerned about price and
reliability, certain commercial customers generally have less stringent requirements for
security, availability, and long-term supportability. However, these features are becoming
more important in the private sector. E-commerce companies must have high levels of
security to protect personal financial information and transactions. Availability of software
from multiple sources increases competition, resulting in higher quality at low prices. Long-
term supportability is important to businesses needing to access legacy data. If a commercial
product or process, such as open source, is deemed suitable and offers the required
functionality, the military can take advantage of these to achieve significant cost savings.
There are other potential benefits to leveraging commercial products or processes, including
faster deployment time, improved quality and reliability, reduced development risks, and a
support system already in place.

Applicability of Linux to the Military Business Case

Linux has attracted a large group of highly trained developers, and “given enough
eyeballs, all bugs are shallow.”14 Over 120,000 programmers contribute to Linux,

14 Raymond, Eric, “The Cathedral and the Bazaar,” O’Reilly Associates, 1999.

volunteering about 2 billion dollars worth of labor.15 This massive amount of technical
expertise could not be afforded by providers of traditional COTS products. As a result of the
open source process, highly reliable and stable software is produced.

Reliability and availability are essential to the military. Reliability refers to the ability to
produce the same acceptable result on successive trials, and availability is the readiness of
the system for immediate use. In the case of Linux vs. Windows, reliability is a primary
objective of the Linux community and one of the greatest weaknesses of Windows. Since so
many programmers work to improve the Linux code, bugs are more likely to be discovered
and fixed to improve the software’s stability. Also, the Linux kernel uses a virtual memory
management system that shares memory across all active programs. It gives each program a
separate virtual address space, reducing the effect of one program on another. This
management system also prevents programs from overwriting critical areas of memory (i.e.,
areas where Linux kernel is stored). GNet reports that the computer usually must be
restarted when Windows NT incurs reconfiguration or software loading problems; this is
usually not necessary for Linux. Benchmarking studies agree that Linux is more reliable
than Windows. The Bloor Research benchmarking study measured the uptime/downtime of
Linux and Windows NT over the period of one year. Over that time, the Linux machine in
the study crashed once because of hardware fault (disk problems), and it took four hours to
fix. Windows NT crashed 68 times due to hardware problems, memory, file management,
and a number of miscellaneous problems, all of which took 65 hours to fix. Thus, the
availability of Linux was 99.95 percent and the availability of NT 99.26 percent. In a similar
benchmarking study, Giga Information Group determined the availability of Unix as 99.8
percent and the availability of Windows NT as 99.2 percent.16

This comparative advantage in reliability and availability, along with its perceived low
price, enables Linux to attract a large user base worldwide. The following graph compares
user ratings of Linux, NT, and Unix.17 While Linux is used because of its perceived low
price and reliability, NT is preferred for its choice of applications and ease of use. Users
select Unix for its performance, availability, quality, security, management, scalability,
brand/reputation, and service and support.

15 Orzech, Dan, “Linux and the Saga of Open Source Software,” Datamation, February 1999 and
Dan Kaminsky, “Core Competencies: Why Open Source is the Optimum Economic Paradigm for
Software,” March 2, 1999.

16 DiDio, Laura, cited by Derek Slater, "Deciding Factors - Operating Systems," CIO Magazine,
February 1, 2000 and Frans Godden, “How do Linux and Windows NT Measure Up in Real Life?” GNet,
January 2000.

17 US Linux user ratings by server OS from Michelle Bailey, Vernon Turner, Jean Bozman, and
Janet Waxman, “Linux Servers: What’s the Hype, and What’s the Reality,” IDC, March 2000.

1

2

3

4

5

Pric
e

Reli
ab

ilit
y

Per
fo

rm
an

ce

Ava
ila

bil
ity

Qua
lity

Sec
ur

ity

In
te

ro
pe

ra
bil

ity

M
an

ag
em

en
t

Sca
lab

ilit
y

Bra
nd

/re
pu

tat
ion

Ser
vic

e
an

d
su

pp
or

t

App
lic

at
ion

 ch
oic

e

Eas
e

of
us

e

U
se

r
R

at
in

g
s

1=
P

o
o

r
5=

E
xc

el
le

n
t

Linux

NT

Unix

Most
operationally
significant to
military

Other very
significant
attributes to
military Program
Managers

Source: US Linux user ratings by server OS from Michelle Bailey, Vernon Turner, Jean Bozman, and Janet
Waxman, “Linux Servers: What’s the Hype, and What’s the Reality,” IDC, March 2000.

Figure 2. Military and Commercial User Benefits of Linux

Use of Linux

The number of Linux users worldwide has grown from 1 user (Linus Torvalds) in 1991
to an estimated 12 million users in 1999. The following graph plots the number of Linux
users worldwide against the number of Internet hosts worldwide, and shows that the number
of Linux users has been growing with the number of Internet hosts. As the Internet expands,
the number and productivity of open source development teams increase and attract more
users.18

18 Linux estimates derived from GartnerGroup, IDC, and Red Hat market research. Internet estimates based on
research from Bruce L. Egan, 1996. Data based on year-end estimates.

0

5

10

15

20

25

30

35

1991 1993 1994 1995 1996 1997 1998 1999

Year

N
u

m
b

er
 (

in
 M

ill
io

n
s)

Linux
Users
Internet
Hosts

Source: Linux estimates derived from GartnerGroup, IDC, and Red Hat market research. Internet estimates
based on research from Bruce L. Egan, 1996. Data based on year-end estimates.

Figure 3. Worldwide Success of Linux in the Marketplace

More Linux installations are expected in the server market than the client OS market.
Significant investments in areas such as ease of use and configuration are needed for Linux
to achieve success on desktops. The following pie charts shows the Linux market share for
the server and client OS market in 1998 and 1999.19

19 “The Future of Linux,” CNet, 2000 cites IDC, no date provided.

Windows (3.x,
95, 98, NT)

89%

Mac OS
5%

Other (DOS,
Unix, OS/2)

2%

Linux
4%Unix

3.7%

Mac OS
4.2%

Windows (3.x,
95, 98, NT)

87.3%

DOS
3.7%

Linux
0.4%

OS/2
0.7%

Windows NT
38%

Other
4%

Linux
16%

Netware
23%

Unix
19%

Windows NT
38%

Unix
15%

Netware
19%

Linux
25%

Other
3%

1998 1999

Server OS

Client OS

Source: “The Future of Linux,” CNet, 2000 cites IDC.

Figure 4. Server and Client OS Market Share in 1998 and 1999

Although Linux deployments are widening, they are not deep. Between 1998 and 1999,
the Linux server OS market share grew from 16 percent to 25 percent and the Linux client
OS market share grew from 0.4 percent to 4 percent. It appears that most of this growth
came from Unix users who switched to Linux.

Discussion: Windows/NT, Unix, and Linux

Although the open source development process offers many benefits over traditional
COTS, Microsoft Windows continues to dominate the server and desktop markets. There are
several reasons for this. First, Microsoft has invested significantly in marketing Windows to
developers. Second, the NT platform enables servers from different vendors to work on NT.
In fact, there are over 100 NT server vendors.20 Third, users often choose Windows because
of the large choice of compatible applications and its ease of use. There is an affinity
between the desktop and server environments when Microsoft products are used. Fourth,
Windows NT systems have historically had a much lower initial cost of entry compared to

20 Deate Hohmann, GartnerGroup, phone conversation, December 2000.

Unix systems. Hardware and software costs are lower when using NT because the system
runs on commodity components and standard chipset and storage devices. For the above
reasons, Windows is perceived as a less risky choice by IT management. Industry analysts
further add that “no one ever got fired for buying Microsoft.”21

Despite these pro-Microsoft observations, GartnerGroup has concluded that one cannot
generalize whether NT or Unix offers the least expensive long-term support. Instead, the
least expensive choice depends on the specific application, environment, and current skill
base of the organization.22 It should also be noted that Windows does not scale as well as
Unix, and this can turn the tables on the relative total costs of Windows versus Unix. NT is
not as powerful as Unix and, according to GartnerGroup tests, NT can only support up to
1,000 concurrent users.23 Smaller organizations that grow into larger ones must
correspondingly add more boxes to support its larger user base. In some instances, five-
times as many boxes of NT may be required to get the same performance as a Unix box.
Organizations that do not plan for growth often choose Windows for its low initial cost of
entry, while organizations that plan for aggressive growth upfront may choose Unix.
Therefore, the optimal choice of Windows versus Unix depends on the number of users the
system supports. As the number of users increase to over 1,000, Unix becomes the most
effective platform, or optimal platform choice.

Since the recent surge in online use that has helped to fuel the maturation of Linux, there
have been small migrations to Linux. Some users of Unix have shifted to Linux, a Unix-like
OS. In addition, some start-up businesses with little capital choose Linux because it runs
nicely on older computers. If more Program Managers compared OSS to traditional COTS
for their specific business case, it is likely that there would be many more users of OSS
today.

Considerations for Military Program Managers

OSS provides more options than traditional COTS for life-cycle supportability,
particularly for long-lived systems. It can be used in the form of pure COTS, “modifiable
COTS,” or custom code. Program Managers’ requirements for operating systems differ
considerably depending on their particular environmental and mission requirements.

Command and Control (C2) Program Managers are operationally-driven. For these
managers, the cost of failure is very high. Reliability and performance are essential. C2

21 Garvey, Martin J., “The Hidden Cost of NT,” InformationWeek, July 1998.

22 Hohmann, Deate, GartnerGroup, phone conversation, December 2000.

23 Hohmann, Deate, GartnerGroup, phone conversation, December 2000.

Program Managers use traditional COTS unless the system requires more customization, and
system upgrades tend to be frequent. C2 Program Managers should consider using Linux
because it provides the highest level of reliability with good performance. The Windows
family is weakest for both of these metrics.

Information System (IS) Program Managers are driven by costs, quality of support, and
application choice. Systems are generally replaced every five to seven years. If application
choice is important, IS Program Managers should consider NT. Otherwise, Program
Managers may find more service and support options with Unix and Linux. Tapping into the
“modifiable COTS” option with Linux could provide very valuable additional features
without the added maintenance burden associated with them.

Embedded/Weapon System Program Managers are driven by portability, ruggedness, and
hard real-time requirements. System upgrades are typically expensive endeavors.
Embedded/Weapon System Program Managers will likely find Linux most appealing. Its
design flexibility enables the kernel to be either pared down to eliminate unnecessary
features or expanded to include additional features. Linux is portable to many central
processing units (CPUs) and hardware platforms. It is stable and scalable over a wide range
of capabilities and easy to use for development. The software can dynamically reconfigure
itself without rebooting. Linux can isolate faults and processes. Processes can load and
remove kernel modules, device drivers, and custom modules based on available resources
and dynamic application needs. The applications are also modular with well-defined
interfaces. Furthermore, hard real-time capabilities are available from the Linux kernel
extension RTLinux.

Conclusion

OSS is a viable long-term solution that merits careful consideration because of the
potential for significant cost, reliability, and support advantages. However, these potential
benefits must also be carefully balanced with a number of risks associated with OSS
approaches and products. The optimal choice of OSS versus traditional COTS varies
according to the specific requirements and runtime environment of the software. OSS is
often a good option for products relevant and interesting to a large community with highly
skilled developers. It typically compares favorably for server and embedded system
implementations that may require some customization, but fares no better than traditional
COTS for typical desktop applications. When making a decision about whether to use OSS
or traditional COTS, it is recommended that Program Managers follow the five steps
presented below.

1. Assess the supporting OSS developer community (e.g., Linux, Apache). Look for
communities that are large, talented, and well organized.

2. Examine the market. Is there a strong and increasing demand for the specific OSS
product? To what extent have vendors and service providers emerged in the commercial

marketplace to provide complementary services and support not available from the
community?

3. Conduct a specific analysis of benefits and risks. The MITRE effort has developed a
taxonomy of OSS benefits and risks (see Table 2) that can be used to compare candidate
OSS products to your specific economic, performance, and mission objectives.

4. Compare the long-term costs. Use the MITRE-developed OSS Cost Element
Taxonomy (see Table 1) to compare the long-term costs associated with usage and
maintenance of OSS versus traditional COTS relative to your specific objectives.

5. Choose and execute your strategy. Following the previous four steps will provide
enough information and detail to choose and then execute the most effective option
combination of OSS, traditional COTS, and proprietary development to support
objectives.

In conclusion, open source methods and products are well worth considering seriously in
a wide range of government applications, particularly if they are applied with care and a solid
understanding of the risks they entail. OSS encourages significant software development and
code re-use, can provide important economic benefits, and has the potential for especially
large direct and indirect cost savings for military systems that require large deployments of
costly software products.

List of References

1. Bailey, Michelle, Vernon Turner, Jean Bozman, and Janet Waxman, “Linux Servers:
What’s the Hype, and What’s the Reality?” IDC, March 2000.

2. Be, www.be.com. (Note that Be was sold recently to Palm.)

3. Bryar, Jack, “How Much Does Free Cost?” The Andover News Network, March
15, 2000.

4. Caldera, www.caldera.com.

5. Clark, Tim, “Network Associates Adds Linux Product,” CNET News,
February 8, 1999.

6. Chime-Net; Medzilla, 1999; and Wageweb, 2000.

7. CoolLogic, www.coollogic.com.

8. Corel, www.corel.com.

9. Covey, Jeff, “A New Business Plan for Free Software,” Freshmeat, January 22, 2000.

10. Datapro, February 1999.

11. Debian, www.debian.org.

12. D. H. Brown Associates, “Linux: How Good Is It?” 1999.

13. Embedded Linux Consortium, www.embedded-linux.org.

14. Epplin, Jerry, “Linux as an Embedded Operating System,” October 1997,
wysiwyg://4/http://www.embedded.com/97/fe39710.htm.

15. “French Ministry Adopts Open-Source Culture, Linux,” InfoWorld.com,
February 8, 2000,
http://www.infoworld.com/articles/ec/xml/00/02/08/000208eclinparis.xml.

16. “The Future of Linux,” CNet, 2000.

17. “Getting to Know Linux,” Colorado Business, July 2000.

18. Gillen, Al, and Dan Kusnetzky, “Linux Overview: Understanding the Linux Market
Model,” IDC, February 2000.

19. Gutfraind, Alexander, “Introductory into the World of Linux,” The Linux World,
http://www.tht.net/~gutfrnd/linux/intro/linworld.htm, 1998.

20. Harmon, Paul, “Linux and Architecture,” Cutter Consortium, Feb. 9, 2000.

21. Hohmann, Deate, GartnerGroup, phone conversation, December 2000.

22. Hontañón, Ramón J., UUNET, “Building a Robust Linux Security Solution, Network
Magazine, 2000.

23. “Join the Freeware Revolution?” CIO, March 19, 1999.

24. Jordan, Peter, “Nibbling Away at UNIX,” VARBusiness, January 14, 2000.

25. Kaminsky, Dan, “Core Competencies: Why Open Source is the Optimum Economic
Paradigm for Software,” March 2, 1999.

26. Kirch, John, “Microsoft Windows NT Server 4.0 Versus UNIX,” August 7, 1999.

27. Lauriston, Robert, “The Un-Microsoft Office,” ComputerCurrents.com,
March 23, 1999.

28. Lerner, Josh and Jean Tirole, “The Simple Economics of Open Source,” National
Bureau of Economic Research, March 2000.

29. LinuxDevices, http://www.linuxdevices.com.

30. “Linux Is Biggest Focus Shift Since TCP/IP, Says IBM,” Network News,
August 30, 2000.

31. “National Security Agency Selects Secure Computing to Provide Type Enforcement on
Linux OS,” January 14, 2000.

32. “Open Source Code and the Security of Federal Systems,” Report of the Ad Hoc
Working Group, DARPA, GSA, NIST, and NSA, prepared for the National
Coordinator for Security, Infrastructure Protection, ,and Counter-Terrorism, June 1999.

33. O’Reilly, Tim and Ether Dyson, “Open Mind, Open Source.”

34. O’Reilly, Tim, Linux eSeminar Series, 1999.

35. Orzech, Dan, “Linux and the Saga of Open Source Software,” Datamation,
February 1999.

36. “PC DOS,” IBM, http://www-3.ibm.com/software/os/dos/.

37. Quinlan, Daniel, “The Past and Future of Linux Standards,” Linux Journal, June 1999.

38. Raymond, Eric, “The Cathedral and the Bazaar,” O’Reilly Associates, 1999.

39. Raymond, Eric, http://www.opensource.org.

40. Ready, Jim and Bill Weinberg, “Leveraging Linux for Embedded Applications,”
LinuxDevices.com.

41. RedHat, http://www.redhat.com.

42. Ricadela, Aaron, “Linux Comes Alive,” InformationWeek, January 24, 2000.

43. Schmidt, Jürgen, “Mixed Double,” c’t (German technical computer magazine), 1999.

44. Secure Computing Corporation, “Reconsidering Assurance for Open Source Software,”
November 30, 1999.

45. Seiferth, C. Justin, Major US Air Force, Deputy Chief, Global Air Traffic Operations
Division, “Opening the Military to Open Source,” COTS Journal,
November/December 1999.

46. Seiferth, C. Justin, Major, US Air Force, Deputy Chief, Global Air Traffic Operations
Division, “Adoption of Open Licensing,” COTS Journal, November/December 1999.

47. Seiferth, C. Justin, Major, US Air Force, “Open Source and the United States,” Air
Command and Staff College, Air University, June 11, 1999,
http://ceu.fi.udc.es/GPUL/articulos/varios/US_DoD_and_OSS.txt.

48. Slackware, www.slackware.com.

49. Slater, Derek, “Deciding Factors - Operating Systems,” CIO Magazine,
February 1, 2000.

50. Stoltz, Mitch, “The Case for Government Promotion of Open Source Software,” A
NetAction White Paper, 1999.

51. SuSE, www.suse.com.

52. United States Air Force Scientific Advisory Board, “Ensuring Successful
Implementation of Commercial Items in Air Force Systems,” SAB-TR-99-03,
April 2000.

53. Valloppillil, Vinod, Microsoft, “Open Source Software,” edited by Eric Raymond as
Halloween I, 1998.

54. Valloppillil, Vinod, and Josh Cohen, Microsoft, “Open Source Software,” edited by
Eric Raymond as Halloween II, 1998.

55. Vaughn-Nichols, Steven J., “TripWire Delivers Open Source DDoS and Security
Answer,” Sm@rt Reseller, March 1, 2000.

56. Weiner, Bruce, Mindcraft, “Open Benchmark: Windows NT Server 4.0 and Linux,”
Mindcraft, June 30, 1999.

57. Weiss, G., “The Competitive Impact of IBM’s Linux Announcement,” GartnerGroup,
February 8, 2000.

58. Weiss, G., “The GartnerGroup Server Operating System Forecast,” GartnerGroup,
March 26, 2000.

59. Weiss, G., “How the Open Source Movement Will Affect Users,” GartnerGroup,
January 26, 1999.

60. Weiss, G., “Linux Adoption Best Practices: A 10-Point Program,” GartnerGroup,
February 8, 2000.

61. Weiss, G., “Updated OS Evaluation: Linux vs. Unix and Windows 2000,”
GartnerGroup, July 25, 2000.

62. White, Walker, “Observations, Considerations, and Directions,” Oracle, May 8, 2000
cites Frederick Brooks in “The Mythical Man Month.”

63. Williams, Tom, “Linux Catches the Embedded Wave,” February 2000,
http://www.embeddedsystems.com.

Interdisciplinary Insights on Open Source

Cristina Gacek, Tony Lawrie, and Budi Arief
Centre for Software Reliability

Department of Computing Science
University of Newcastle

Newcastle upon Tyne NE1 7RU
United Kingdom

{Cristina.Gacek, A.T.Lawrie, L.B.Arief}@ncl.ac.uk

Abstract
The term “open source” is widely applied to describe some software development
methodologies. This paper does not provide a judgment on the open source approach,
but exposes the fact that simply stating that a project is open source does not provide a
precise description of the approach used to support the project. By taking a multi-
disciplinary point of view, we propose a collection of characteristics that are common,
as well as some that vary among open source projects. The set of open source
characteristics we found can be used as a tick-list both for analysing and for setting up
open source projects. Our tick-list also provides a starting point for understanding the
many meanings of the term open source.

1 Introduction
We started looking into Open Source to try to determine how using this approach
actually impacts the dependability of the software systems being developed. Our
intention was to spend some minor effort to understand what is meant by the term
“open source”, and from there perform various studies and experiments to support or
to oppose dependability claims in the area. Much to our surprise, understanding what
open source is turned out to be a much more complex task. The term “open source”
has been widely used to describe a software development process that relies on the
contribution of its geographically dispersed developers by the means of the Internet.
Amongst other criteria, one basic requirement of open source projects is the
availability of its source code [1], without which the development or evolution of the
software is very difficult if not impossible. But apart from these characteristics, there
seems to be some confusion on what actually makes a project an open source project.

The aim of this paper is therefore to provide a clearer description on what is
meant by “open source”. To achieve this aim, we investigated several well-known
open source projects such as Linux [2], Apache [3] and Mozilla [4]. We also did
literature studies on published materials about open source, notably The Cathedral
and the Bazaar [5], Rebel Code [6], Open Sources [7] as well as work by other people
interested on open source (for example, [8-12]). We have also used several on-line
resources dedicated to various open source projects [13, 14] and interviewed both
individuals working on open source projects at their free time and individuals
involved with open source as part of their job in large corporations. From there, we
tried to dissect open source further by determining the characteristics that open source
projects should or usually have. We determined a set of characteristics that are almost
always present and others that vary among open source projects, and this serves as the
core of this work.

The rest of this paper is structured as follows: Section 2 presents a brief history
of open source, which is important for understanding its motives and directions;
Section 3 describes some open source characteristics that can be used in determining
whether a project is or not open source; Section 4 provides some initial conclusions of
our work; and Section 5 outlines areas that can be researched further.

2 A Brief History of Open Source

2.1 How it started
The idea of building software within a cooperating community, where the source code
was made available so that everyone could modify and redistribute it began with the
GNU project at MIT in the early 1980s. The intention was to provide freedom relating
to software systems. In 1985 the Free Software Foundation (FSF) was pioneered by
Richard Stallman to generate some income for the free software movement, not
restricting itself to GNU.

Free software, as defined by the FSF, is a program that grants various
freedoms to its users. A free software program provides its users with [15]:

• Freedom to run the program for any purpose
• Freedom to study and adapt the code for personal use
• Freedom to redistribute copies of the program, either gratis or for a fee
• Freedom to distribute improved or modified versions of the program to the

public

The discourse used by the FSF tends to be confrontational and against

proprietary (closed) software, since they view anyone producing this kind of software
as big obstacles to the four basic freedoms mentioned above. This is reflected in the
restrictive viral nature of some of their licenses (see section 3.3).

2.2 Free Software and Open Source Movements
In the early 1998, the term Open Source was coined as a response to the
announcement made by Netscape on its plan to give away the source code of its web
browser. The new term came out of a strategy meeting in which people present
realised that:

“…it was time to dump the confrontational attitude that has been
associated with ‘free software’ in the past and sell the idea strictly on the
same pragmatic, business-case grounds that motivated Netscape.” [16]

Immediately afterwards, the Open Source Initiative (OSI) was set up to

manage and promote the Open Source Definition (OSD). The OSD was composed as a
guideline to determine whether a particular software distribution can be called open
source or not. OSD asserts nine criteria that open source software must follow; the
main three are:

• The ability to distribute the software freely
• The availability of the source code, and
• The right to create derived works through modification.

The rest of the criteria deals with the licensing issues and spell out the “no
discrimination” stance that must be followed [1]. They are:

• The integrity of the author’s source code must be preserved, making the source
of changes clear to the community

• No discrimination against persons or groups both for providing contributions
and for using the software

• No restriction on the purpose of usage of the software, providing no
discrimination against fields of endeavour

• The rights attached to the software apply to all recipients of its (re)distribution
• The license must not be specific to a product, but apply to all sub-parts within

the licensed product
• The license must not contaminate other software, permitting the distribution of

other non-open source software along with open source one

The Open Source and Free Software movements can be compared to two
political parties within a community. While two political parties agree on the basic
principles but disagree on practical issues, the Open Source and Free Software do
exactly the opposite. They disagree on the basic principles (commercialism, licensing,
etc.), but agree on (most of) practical recommendations (availability of source code,
ability to modify the code, etc.). They even work together on many specific projects to
achieve the same goal: to provide software that is free (in terms of liberty) for all [17].

2.3 Commercialisation of Open Source
Open source is often seen as a marketing ploy to make Free Software more attractive
to business users since it allows greater liberties with its licenses (see section 3.3).
This means that the open source licenses are more accommodating to people or
companies to make profit from the software, as long as the source code remains
available and can be modified freely.

The most prominent way of commercialising open source is by providing
service and distribution packages for software developed in an open source fashion.
This is due to the fact that open source software is usually more difficult to install
since it was originally aimed for the hacker community. Another way of making
money out of open source is by using the relevant open source as a platform, upon
which commercial (often proprietary) application software can be built.

More and more computing corporations turn their attention to open source as a
business opportunity. What they are looking for in this new development method is
innovation, and sharing source code is perceived to be a good way for facilitating
creativity. Commercial organizations are also attracted to contributing to open source
projects as they see a strategic opportunity to undermine (more powerful/dominating)
competitors. On the down side, they are afraid that maintaining control of an active
open source project can be difficult. They are particularly concerned with the risk of
code forking – the evolution of two (or more) separate strands of work from the
original code base, which threatens compatibility. This fear prevents some individuals
and many companies from active participation in open source developments [7].

Although this code forking risk is always present, it is usually overcome by the
novel attitude that the open source community has. Instead of basing their reputation
on “what they have”, they measure it against “what they give”. This “gift-culture”
encourages people to contribute more and binds people together in the same strand of
work. More information on the “gift-culture” is available from Eric Raymond’s paper,
Homesteading the Noosphere [18].

2.4 The Open Source Approach compared with Others
To provide a clearer picture on where open source (free) software stands in relation to
other software, we provide some comparisons (mostly in licensing and distribution
terms) among several categories of software. For simplicity, we could say that the two
main categories are the “free” software (meaning open source as well) and the
“proprietary” software.

There are two kinds of software within the “free” category: non-copylefted free
software and copylefted software. Non-copylefted free software comes from the
author with permission to modify and redistribute, and in a legal term it means “not
copyrighted”. On top of that, it is allowed to add more restrictions to the modified
version, which means that some copies (modified versions) may not be free at all.
Anyone can compile the program and redistribute the binary as proprietary software.
Public domain software is a special case of non-copylefted free software. On the other
hand, with copylefted software, it is not allowed to have additional restrictions to be
added when someone redistributes or modifies the software. As a consequence, every
copy of copylefted software, even after modification, must be a free software. The
most prominent distribution terms for copylefted software are covered in the GNU
GPL (General Public License).

Proprietary software is closed software in that the source code is not available
to the public. It has very restrictive terms on its condition of use, and its redistribution
or modification is prohibited. There are two special cases within this group of
software: shareware and freeware. Both allow people to download, use and
redistribute the software for free, but modification is (almost) impossible because they
are usually released in executable (binary) format only. The difference is on the limit
of usage, if someone wants to keep using a shareware, he/she must pay a license fee.
One important note is that freeware must not be confused with free software,
especially because modification of a freeware is not possible (since the source code is
not available).

Non−copylefted
free software

Free Download

Free Software

GPL’ed

Open Source

Freeware Shareware

Closed

Proprietary

Copylefted

Public domain

Figure 1: Categories of software

The classification of software in the manner above can be seen diagrammatically as
Figure 1, which was adapted from the software categories based on the Free Software
Foundation view [19]. Table 1 below summarises the main comparisons between the
characteristics of those software categories.

There are subtle differences between open source and free software, in particular
around licensing issues. For example, open source software may use proprietary
library (e.g. the KDE project [20] was using a proprietary library called Qt until
September 2000), which is unacceptable in free software. Further investigation
surrounding these differences could provide better understanding, as highlighted in
section 5.

Table 1: Comparisons of different kinds of software

 Open Source (Free) Software Proprietary Software
 Non-copylefted Copylefted Closed Shareware Freeware
Availability of source code Y Y N N N
Permission to

• redistribute
• modify
• add restriction

Y
Y
Y

Y
Y
N

N
-
N

Y
-
N

Y
-
N

Modified version always free N Y - - -
Free Download Y Y N Y Y
Time Limit in usage N N N Y N
Possibility of making money Y Y Y Y N

3 Characteristics of Open Source
By exposing the characteristics that open source projects usually have, we hope to be
able to develop a clearer picture on what it really means for a particular project or
software development to be an open source project1 or not. The idea is to have a “ tick-
list” of open source characteristics, against which the characteristics of the project in
question can be compared. Additionally, these characteristics highlight the fact that
just stating that a project is open source does not necessarily provide a precise
definition.

3.1 Disciplines to consider
In the spirit of DIRC2, a research project that we are working on, it is important to
highlight that software development is a very complex process that draws upon
knowledge/expertise from many scientific disciplines. Therefore, to understand it
better, it is necessary to emphasise its interdisciplinary nature. It appears that open
source software development is no exception, and in order to determine the relevant
open source characteristics, there are several disciplines that we would like to
consider:

• Computing Science
Covering the technical aspects that need to be considered to engage in an open
source project.

• Management Issues
Dealing with managerial issues and how they relate to open source projects.

• Social Sciences

1 The term ‘project’ is used loosely in this paper, as it is doubtful whether OSS projects fulfil the more
generic management definition of a unique/novel activity with explicit/finite timescales. Should the use
of this term create conflicts of definition, for readers, they can interpret the term ‘project’ as
‘undertakings’ or ‘ initiatives’ .
2 DIRC is a UK EPSRC project based on a Dependable Interdisciplinary Research Collaboration
(DIRC) on computer-based systems (see http://www.dirc.org.uk/).

Addressing areas related to the communities involved in open source projects
and their behaviour.

• Psychology
Accounting for the characteristics of the individuals involved in open source
projects.

• Organisational Aspects
Dealing with aspects such as organisational structures.

• Economics
Looking into economic models that underlie open source projects and/or
corporations with respect to their involvement in open source projects.

• Law
Focusing on legal issues.

Clearly, the OSI definition for the term open source does address legal issues

extensively, and encompasses some economic aspects. On the other hand, it hardly
touches on computing science areas; it also completely ignores the areas of
management, psychology, social sciences and organizational aspects. Furthermore,
there is no guarantee that a given project, by simply adhering to the OSI definition of
the term open source, benefits from the positive effects that are usually related to the
term open source (e.g. being reviewed by many people). The open source software
characteristics proposed by Wang and Wang [11] address some technical aspects, and
in less depth, legal and managerial aspects.

In our attempt to understand open source, we determined a set of
characteristics that occur under that umbrella term, while considering the various
disciplines mentioned above. Some characteristics are common to all efforts we were
able to investigate, whereas others vary between projects. The set of characteristics we
deem relevant for discussing open source are described below, section 3.2 covering
those that are common throughout open source projects and section 3.3 addressing
those that vary between projects.

3.2 Common characteristics
Open source projects have many common characteristics. All items listed under the
OSI definition of open source, OSD (see section 2.2), are the basic requirements for
projects to qualify as open source. Moreover, active open source projects rely upon
several other characteristics. We have identified six characteristics that are present in
successful open source projects, these are addressed below.

Community
All active open source projects have a well-defined community with common interests
that are either involved in continuously evolving its related products and/or in using
its results. Anecdotally, the community, in its vast majority, is composed by men.
Communications tend to be constructive, at times becoming confrontational.

Motivation
The biggest question surrounding the open source phenomena is why do people do it?
What is the explanation behind having people providing contributions for free? The
answer to these questions is not as straightforward as one might have thought. There
are different types of contributors, individuals and corporations. Individuals usually

contribute for personal satisfaction; some have really strong philosophical beliefs
others do not care as much about such issues. Corporations usually get involved with
the aim to gain market share, undermine their competitors, or simply rely on products
generated by open source without having to build a fully equivalent product from
scratch.

Peer recognition also plays a role on motivating contributions. By having their
contributions recognized as appropriate and of good quality by the community
involved, both individuals and corporations have their status raised within the given
project. Consequently, their opinions are considered more carefully with respect to
project related decisions and their reputation may even improve outside the project
boundaries.

Developers’ profile
The set of people that contribute code to specific open source projects is always
composed of those that are also users of the code produced. This means that open
source developers are a subset of the open source user community, i.e. all open source
developers are users, but not all users are developers (Figure 3).

This characteristic explains the fact that there are normally no precise
specifications or requirements documents clarifying what is to be achieved in the
project. It also highlights that it is quite unrealistic to expect the open source
community to start developing arbitrary kinds of software. Software developers are
usually not expert users of medical systems, nuclear plant control systems, or air
traffic control systems.

Process of accepting submissions
An open source project evolves by receiving submissions from various sources to
address various aspects of the project. The most common submissions are those of
bug reports and source code, others include documentation and test cases.
Furthermore, open source projects often post the areas in which they are interested in
receiving submissions. As a consequence, multiple concurrent submissions may be
received addressing the exact same area. Therefore, open source projects have in place
processes for accepting various types of submissions, also making it clear on how to
handle multiple concurrent submissions.
 The process of accepting submissions is composed of two main parts: the
decision making process and the process of disseminating information on
submissions. How these two parts get implemented varies from one open source
project to another (see section 3.3).

Development improvement cycles
Product improvement in the open source software development process can manifest
in both breakthrough and continuous improvement modes. Breakthrough
improvement involves dramatic and relatively impromptu changes [21]. Evidence of
this form of product improvement in open source development was provided by
Raymond [5] in the development of Fetchmail. He notes that:

“The real turning point in the project was when Harry Hochheiser sent me his
scratch code for forwarding mail to the client machine’s SMTP port…this
SMTP-forwarding concept was the biggest single payoff I got…The Cruftiest

parts of the driver vanished. Configuration got radically simpler…the only
way to lose mail vanished…and performance improved.” (p. 47-50)

Continuous improvement involves an increased frequency of change but in smaller
and more incrementally consolidating stages [21]. This philosophy of product
development recognises that small improvements build up to larger improvement
overtime, but with the added advantage of being far easier to implement. Incremental
product improvement through bug finding and fixing is a development hallmark of the
open source paradigm and is embodied in Eric Raymond’s original characterisation
“ release early, release often” [5] The idea is to get quick feedback, which can then be
incorporated back into the product.

More recently such anecdotal claims have been further reinforced by the
research findings of Aoki et al. with the open source Jun project [22]. They tracked
the evolution of the software over 360 versions and identified both incremental
improvements within single version updates followed by significant functionality
increases requiring major modification to the existing architecture. Both of these
forms of product improvement are generically shown in Figure 2 below.

Product
Improvement

Breakthrough

Continuous

Time

Figure 2: Open source product improvement over time.

Modularity
The benefits of modular design are well established in all engineering disciplines, as it
supports increased understanding during design and concurrent allocation of work
during implementation [23]. However, due to the globally distributed nature of open
source development, well-defined interfaces and modularised source-code are a
prerequisite for effective remote collaboration [24].

3.3 Variable characteristics
The areas in which open source projects vary are much more numerous than those that
they have in common. Below is a discussion of some of those.

Choice of work area
As previously mentioned, open source projects often request contributions to the areas
in which they are interested in receiving submissions. Some open source projects will

process both solicited and spontaneous contributions, whereas other open source
projects may be prone to ignoring spontaneous contributions.

Balance of centralisation and decentralisation
The communities within various open source projects are organised differently. Some
have a very strict hierarchy differentiating among various levels of developers (see
Figure 3), whereas others have a much looser structure. The strict hierarchies bring
with them a more centralised power structure, for example, the core developers have
more power than ordinary (co-) developers in making executive decisions. In some
open source projects (e.g. Apache), it is even possible to have more than two levels of
developers. But not all open source projects have multi-level developer groups.
Looser organisational structures have all their developers on the same level, which
implies decentralisation of decisions, at times being based on full consensus for
approving decisions.

Meritocratic culture
The basic model underlying open source projects is that knowledge shown by means
of contributions increases the perception of merit, which in turn leads to power.
Exactly how this transition takes place varies from project to project in terms of
timing and the obstacles that must be overcome, and depends on the actual
organisational structure of the project. For example, Figure 3 shows the possible
transition from passive to active users when they start contributing to the project. If
they could then show their ability (or they could gain respect from the community),
they might be invited into the developer group, where they would have greater rights
over the code (e.g. to incorporate their own modifications into the code base). In some
projects, there is also a possibility of promotion from the co-developer to the core
developer group. The transitions can also go the other way, e.g. a core developer
might wish to resign and become a co-developer instead (or even leave the project
completely) due to other commitments or personality clash.

Business model
Depending on the domain that an open source project addresses, different business
models may motivate the involvement of commercial corporations, researchers,
individual developers and end-users. The business models we have identified so far
are: own use, packaging and selling, and platform/foundation for commercial or
research software development.

Decision making process
The decision making process relies on four dimensions that vary from open source
project to project. These are the quality goals, the acceptance criteria enacted, the
cognitive abilities of the decision group, and the social structure within the project.
Quality goals vary widely from one open source project to another; this can be
observed even in the same application area (e.g. one focusing on performance and
another on portability). The acceptance criteria used also vary among open source
projects. It can be the best solution out of the first n submissions, some form of
aggregation of multiple submissions (even by requesting that someone changes their
solution to add some other aspect seen elsewhere), some memory of previous
submissions by the same person, the first submission received, etc. Additionally, the

ability to recognise better solutions is highly dependent on the cognitive abilities of
the decision group. This implies that the decision making process on accepting
submissions varies among projects and potentially within projects as well, unless the
same people are involved in all decisions.

The social structure inherent to an open source project may be a defined
hierarchy where different groups of people get to evaluate different submissions (e.g.
by focus area) and/or some people exercise greater power, or a monolithic group
composed of all developers. The social structure impacts directly on the decision
making process. If the group is monolithic then the acceptance of submissions may be
achieved by consensus or majority voting. If there is some other form of social
structure, the same consensus or majority voting may apply, at times with the votes of
some of the members counting more than others.

Users

Active users (Contributors)

Transition

Transition

Non−developers Developers

Co−developers Core developers

Passive users

Reporting bugs Suggesting new features Reviewing code Modifying code Making decisions

Implementing new featuresFixing bugs

Transition

Figure 3: The classification of open source users and developers

Submission information dissemination process
The information on submissions and their acceptance may be passively disseminated
by the means of newsgroups or comments in the code itself, it may be actively
disseminated by using emails and mailing lists, or there may be some dedicated web
space for statistical information.

Project starting points
Open source software projects may start from scratch or from existing closed source
software systems, either commercial or research. From the various projects that we
studied we could only find examples of projects that transitioned the full package
from closed to open source at once. Nevertheless, one can envision some closed
source software making a gradual transition to open source, one part (e.g. a
subsystem) at a time.

Visibility of software architecture
The software architecture of a computing system depicts its structure(s) and comprises
its software components, the externally visible properties of those components, and
the relationships among them [25]. The architecture of an open source software
system may be itself open or closed. The “closedness” may occur intentionally or
accidentally. Having an intentionally closed software architecture means that the core
group will consciously not reveal the structure to the general public. An
unintentionally closed software architecture suggests that the structure exists in some
people’s minds only.

Documentation and testing
Documentation and testing are important aspects of the software development process.
Good documentation allows people to use – and more specifically in open source
projects, to understand and modify – the software. Thorough testing enables the users
(and the developers) to have confidence that the software they are using (or
developing) is going to function as expected.

These two areas are often overlooked or vary widely in the open source
development process. Open source contributors tend to be more interested in coding
than documenting or testing. This is probably due to the nature of open source that
tries to replace the formal testing process with “many eyeballs” effect in eliminating
the bugs. Also, adding comments in the source code is often perceived as sufficient for
documentation. There has been some effort in addressing the problem of lack of
documentation (e.g. the Linux Documentation Project [26] and Mozilla Developer
Documentation web page [27]), but this is still a rarity for smaller open source
projects. We have yet to find some sort of testing strategies for open source projects.
They might exist, but implicitly and not open to the outside the project.

Licensing
The basic freedoms of open source software and how they differ from other software
distributions were discussed in section 2.1 and 2.4 earlier. Here we consider the main
varying features of OSD and FSF qualifying licenses3. Whether the software is viral or
can become closed (proprietary) reflects the two main varying features of free and
open source software.
 Table 2 illustrates this with some of the more popular public licenses
conforming to the OSD/FSF definitions. Viral licenses ensure that if any of the
software code is used in other software developments then this will cause all of the
software to come under the terms of that original license. The other varying feature

3 The term ‘qualifying’ refers to the four fundamental freedoms that both the OSD and FSF agree on.

Table 2: Varying characteristics of open source licenses

Licenses Is it viral? Can it be closed?
GPL Yes No
LGPL No No
BSD No Yes
Q Public No No
IBM No Yes
Netscape (i.e. Mozilla) No Yes

concerns whether the license allows any of the original source code to be distributed
in binary form only in future derived software products.

Operational support
In order to facilitate concurrent software development and fast controlled evolution,
all open source projects implement some form of configuration management. This is
enacted by using CVS, other tools, or even an ad-hoc solution using some web-based
support.

The communication within communities related to specific open source
projects is done almost exclusively by electronic means, which are also used to
organise their work. The electronic means most commonly used are dedicated mailing
lists, newsgroups, and web site. The exact structure and usage of web sites, mailing
lists and newsgroups vary among open source projects.

Size
Size is not a distinctive measure in open source projects. Both involved-community
and code base sizes vary widely from project to project.

4 Conclusion
The term open source is being used within the computing science community at large
in a vague manner, consequently creating confusion and misunderstandings. In our
efforts to understand open source we have done an extensive literature review,
explored several web sites related to the topic, and interviewed some individuals and

OSD Community

Motivation Developers’ profile

Process of accepting submissions

Development improvement cycles

Modularity

Choice of work area

Balance of centralisation and decentralisation

Meritocratic culture

Business model

Decision making pro cess

Submission dissemination information process

Starting points

Visibility of software architecture

Doc. and testing

Size

Operational support

Licensing

COMMON

VARIABLE

Figure 4: Open source characteristics – common and variable

corporations involved with open source. Our work was performed bearing multiple
disciplines in mind.

We have determined many project characteristics that are relevant for open
source. Some of these characteristics are common to all efforts, whereas others vary
among open source projects (Figure 4).

How the various characteristics relate to the disciplines discussed in section
3.1 is highlighted in Table 3.

The set of open source characteristics we found can be used as a tick-list both
for analysing and for setting up open source projects. We understand that there is no
way that an absolute tick-list can ever be generated due to the variations that exist
from one open source project to another, so additional variable characteristics may
exist. Our proposed tick-list provides a starting point for understanding open source
and its many meanings.

Table 3: Open source characteristics and disciplines considered

 Computing
Science

Management
Issues

Social
Sciences

Psychology Organizational
Aspects

Economics Law

OSD √ √ √
Community √ √
Motivation √ √ √ √
Developers’
profile

√ √ √

Process of
accepting
submissions

√ √ √

Development
improvement
cycles

√ √ √

Modularity √ √ √
Choice of work
area

√ √ √

Balance of
centralisation
and
decentralisation

 √ √

Meritocratic
culture

 √ √

Business model √
Decision
making process

√ √ √ √

Submission
information
dissemination
process

 √ √

Project starting
points

√ √ √

Visibility of
software
architecture

√ √ √ √ √

Documentation
and testing

√ √ √

Licensing √ √
Operational
support

√ √ √ √

Size √ √ √ √

Our work has led us to understand that it would be unreasonable to try to
discuss open source software in general. There are as many differences among open
source software projects as among non-open source software projects. Furthermore,
many of the characteristics present in open source software projects are not restricted
to open source software environments, they may also be found in some proprietary
environments. Simply using the term open source is not enough, just as using the term
proprietary software does not suffice.

Consequently, discussions comparing software project processes and
approaches ought to occur at a lower level of granularity, at the individual
characteristics level, in order to be fruitful. Whether projects are more or less
successful, or exhibit a lower or higher expected quality, depends on the
characteristics of the development and maintenance environment that they are in.

5 Future Work
There are many issues still left to be investigated with respect to understanding and
exploiting the open source approach. Future work should further clarify the exact
differences between open source and free software, as well as generate a table relating
various existing open source and free software projects to the characteristics we set
forth, while describing how each of these projects implement the variable parts.

There are also dependability issues that need to be addressed. We shall be
looking into statistical information, such as bug density, fixing time, hacking
incidents, etc., regarding open source software, free software, and proprietary
software. This shall be done by grouping software packages according to their
individual characteristics, rather than by grouping them under the labels that we have
just used above (open source, free and proprietary software), with the aim of
determining which openness characteristics foster more dependable systems or not.

6 Acknowledgements
This paper has been funded by the UK EPSRC project on Dependable
Interdisciplinary Research Collaboration (DIRC – http://www.dirc.org.uk/). We would
like to thank the volunteers – in particular, Julian Coleman, Stuart Wheater, and Mike
Ellison – that spent their time while sharing their experiences with us. We would also
like to thank our colleagues from the DIRC project involved in the Open Source
activity for various fruitful discussions contributing towards this paper.

7 References
[1] “The Open Source Initiative: Open Source Definition” ,

http://www.opensource.org/docs/definition.html.
[2] “The Linux Home Page at Linux Online” , http://www.linux.org/.
[3] “The Apache Software Foundation” , http://www.apache.org.
[4] “mozilla.org” , http://www.mozilla.org/.
[5] E. S. Raymond, The Cathedral and the Bazaar: Musings on Linux and Open

Source by an Accidental Revolutionary, O'Reilly & Associates, 1999.
[6] G. Moody, Rebel Code: Linux and the Open Source Revolution, The Penguin

Press, 2001.
[7] C. Dibona, M. Stone, and S. Ockman, Open Sources: Voices from the Open

Source Revolution, O'Reilly & Associates, 1999.

[8] A. Mockus, R. T. Fielding, and J. Herbsleb, “A Case Study of Open Source
Software Development: The Apache Server,” Proceedings of ICSE 2000, pp.
263-272, 2000.

[9] M. W. Godfrey and Q. Tu, “Evolution in Open Source Software: A Case
Study,” Proceedings of International Conference on Software Maintenance
(ICSM'00), 2000.

[10] B. J. Dempsey, D. Weiss, P. Jones, and J. Greenberg, “A Quantitative Profile
of a Community of Open Source Linux Developers” , SILS TR-1999-05, 1999.

[11] H. Wang and C. Wang, “Open Source Software Adoption: A Status Report,”
IEEE Software, March/April, pp. 90-95, 2001.

[12] J. Feller and B. Fitzgerald, “A framework analysis of the open source software
development paradigm,” Proceedings of 21st International Conference on
Information Systems, pp. 58-69, 2000.

[13] “SourceForge” , http://sourceforge.net/.
[14] “Geocrawler” , http://www.geocrawler.org/.
[15] “The Free Software Definition - GNU Project - Free Software Foundation

(FSF)” , http://www.fsf.org/philosophy/free-sw.html.
[16] “The Open Source Initiatiative: History of the OSI” ,

http://opensource.org/docs/history.html.
[17] “Why Free Software is better than Open Source” ,

http://gnu.metagensoft.com/philosophy/free-software-for-freedom.html.
[18] E. S. Raymond, “Homesteading the Noosphere” ,

http://tuxedo.org/~esr/writings/homesteading/homesteading/.
[19] “Categories of Free and Non-Free Software” ,

http://www.gnu.org/philosophy/categories.html.
[20] “K Desktop Environment Home” , http://www.kde.org/.
[21] N. Slack, S. Chambers, C. Harland, A. Harrison, and R. Johnston, Operations

Management, 2nd ed, Financial Times Pitman Publishing Series, 1998.
[22] A. Aoki, K. Hayashi, K. Kishida, K. Nakakoji, Y. Nishinaka, B. Reeves,

A.Takashima, and Y. Yamamoto, “A Case Study of the Evolution of Jun: an
Object-Oriented Open-Source 3D Multimedia Library,” Proceedings of 23rd
ICSE Conference, Toronto, Canada, pp. 524-532, 2001.

[23] R. N. Britcher, The Limits of Software: People, Projects, and Perspectives,
Addison Wesley, 1999.

[24] T. Bollinger, R. Nelson, K. M. Self, and S. J. Turnbull, “Open-Source
Methods: Peering Through the Clutter,” IEEE Software, July/August, pp. 8-11,
1999.

[25] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
Addison Wesley, 1998.

[26] “Linux Documentation Project” , http://www.linuxdoc.org.
[27] “Mozilla Developer Documentation” , http://www.mozilla.org/docs/.

Rebel Code? The open source ’code’ of work.

Adrian Mackenzie1, Phillipe Rouchy2 and Mark Rouncefield1

1Department of Computing, Lancaster University
2Blekinge Institute of Technology

Abstract:
This paper is concerned with understanding the character of open source (OSS) project work. Using data
from interviews, email communications and the code itself we describe how the orderliness of such projects
is achieved in contrast, perhaps, to stereotypical views of ’hacker’ projects. We use this data to explicate the
ways in which OSS projects are accomplished and the ways in which the various participants observably,
reportably, accountably orient their actions, their contributions to the project as a whole. The contrast we
draw is not with idealised views on software projects but with ethnographic and ethnomethodological
studies of software production that emphasise the project as a practical, ongoing achievement. The paper
moves beyond idealised versions of the open source project towards understanding OSS as a practical
sociological phenomenon.

Introduction:

As society s dependence on computer-based systems increases, the systems themselves
become ever more complex and achieving dependability in these systems, and
demonstrating this achievement in a rigorous and convincing manner, is of crucial
importance. One of the attractions of Open Source Software Development (OSSD)
approaches, at least as suggested by its advocates, comes in terms of the improvements in
reliability dependability, and flexibility for the process of software development and the
quality of the end product:

 "Open source promotes software reliability and quality by supporting independent peer review
and rapid evolution of source code Mature open-source code is as bulletproof as software ever
gets." (1)*

The OSS approach, characterised as massively diverse human scrutiny , or peer-
reviewed software, extends the idea of review and introduces a way of confirming final
decisions about the inclusion of changes to a system. Examples of open source (e.g.
operating systems, development tools, web and mail servers) indicate that a community
can be built which can create software that is highly reliable.

However, even studies that might be regarded as broadly supportive of OSS development
have pointed to the scarcity of what might be regarded as conventional attributes of
orderly software development. Mockus et al (2) for example, use email archives to
develop quantitative measures of dependability attributes such as defect density and
problem resolution but suggest that "there is no project plan, schedule, or list of
deliverables" and that OSS "lacks many of the traditional mechanisms used to coordinate
software development, such as plans, system level design, schedules, and defined
processes". This links with popular, if fanciful, conceptions of open source software
development as the product of ’hacking.’ Even when ’hacking’ is distinguished from

’cracking’ (attempting to breach the security of computer systems), it still often implies
unplanned, improvised work. The great attention open source software has attracted in
technical and mainstream press fosters that view. It has focused on relatively small bands
of highly motivated, even visionary, programmers working in geographical isolation.
They seem to be engaged in a brilliantly productive yet free-wheeling production of new
software artifacts. Elaborate operating systems and major pieces of software
infrastructure (e.g. Apache) seem to flow from their fingertips.

Background

1.Software engineering vs hacking

How different is open source software produced through hacking from the software
produced by software engineers? Answering this question decisively is difficult.
Therefore, most accounts actually stress differences in engineering process rather than
differences in the software itself as a outcome of the process. From the perspective of
software engineering, [Vixie, 1999] argues:

"Open Source developers often succeed for years before the difference between programming and
software engineering finally catches up to them, simply because Open Source projects take longer
to suffer from the lack of engineering rigor".

Vixie bases his conclusions on a comparison between the formal textbook methods of
software engineering (e.g. [Sommerville, 2001]) and what he labels, somewhat
derogatively, programming’. If professional software engineers are eager to point out
the lack of rigor of open source programming, open source programmers have been
even quicker to distance themselves from conventional software engineering. The famous
hacker, Eric Raymond, writes:

"What I saw around me was a community which had evolved the most effective software-
development method ever and didn’t know it! That is, an effective practice had evolved as a set of
customs, transmitted by imitation and example, without the theory or language to explain why the
practice worked" [Raymond, 1999]

The contrast with Vixie s position could not be greater. Instead of an absence of
method, Raymond is suggesting that the development practices involved in open source
software was so radically new that there was no way to explain it.

We propose that much shared ground runs between these two diametrically opposed
positions. However, this shared ground is not highly visible. Instead of a deficiency in
methodical rigor (Vixie) or an effectiveness almost too novel to be explained (Raymond),
we would like to describe a habitually ignored middle-ground between the highly
formalized vision of software engineering and the myth of collective improvisation.
There are important continuities between the two types of activity which neither account
recognise. A scarcely visible infrastructure of practices and contrivances is woven
through both open source and professional software engineering. The analysis of a
significant case study, the Cocoon project (http://xml.apache.org/cocoon), will allow us
to show how open source projects are grafted onto practices developed in software
engineering.

2.Making things orderly

Following Button & Sharrock (1996), we suggest that the continuities and some
important differences between OSS and conventional software projects consist in the
ordering practices commonly found in open source software projects.

".. much effort is expanded on contriving devices which will provide ’orderliness’ in the
conduct of work and in ensuring that such devices can be implemented and enforced.
These devices are meant to enable the achievement of orderly work where it requires the
collaborative participation of many individuals, and may, crudely, be characterised as
devices which are designed to create and support teamwork". (1996: 373)

These practices are intricate and fine-grained, and, as we will show in the case of the
Cocoon project, criss-cross every level of project work, ranging from end-user documents
down to source coding. Button and Sharrock also highlight the importance of the
project :

It is commonplace to refer to engineering projects and the easy way in which this term is
used can detract from the recognition that the project is a prominent way in which
engineering work is socially organised so as to confront the sorts of contingencies that
face software engineering that we have alluded to such as the threatened curtailment
because of, for example, drastic slippage, or such as the pressures to abandon good
practice.” (Button & Sharrock, 1996, 372)

While the contingencies may be different, the notion of the project retains strong
relevance to open source software. They too involve social and technical organisation,
albeit now directed towards the contingencies of geographical dispersion, fluctuating
teams of participants, and open-ended timelines.

1.Method - studying Cocoon as geographically dispersed, fluctuating

and open-ended project

Our research focuses on an OSS project, ’Cocoon,’ which itself is related to the much
larger and more well-known Apache OSS project. Cocoon is described by its originator
as:

" .. a software project that I started to "ease" the task of writing documentation, creating tools that
allowed publishing to be easier and more specific for their needs." (email from Steffano
Mazzochi)

but describes itself as:
 ".. a 100% pure Java publishing framework that relies on new W3C technologies (such as XML
and XSL) to provide web content. The Cocoon project aims to change the way web information is
created, rendered and delivered. This new paradigm is based on the fact that document content,
style and logic are often created by different individuals or working groups. Cocoon aims to a
complete separation of the three layers, allowing the three layers to be independently designed,
created and managed, reducing management overhead, increasing work reuse and reducing time to
market."(Cocoon website)

The goal that Cocoon is setting itself is to refine the management of web pages at every
stage ranging from creation to maintenance. It is a device that seeks to co-ordinate the
collaborative work involved in web-sites. As a mode of ordering a certain kind of
documentary work, Cocoon conforms to what Button and Sharrock describe as an
ordering device. Cocoon as a device is designed to create and support teamwork in the
domain of the creation of web pages. It focuses on ordering the conduct of work so that
’management overhead’ is reduced.

Our observations are drawn from interview, source code and email archive data. We use
this data to explicate the ways in which OSS projects are accomplished and the ways in
which the various participants observably, reportably, accountably orient their actions,
their contributions, their emails to the project and to notions concerning ’good’ or ’elegant’
code, ideas about ’ownership’ and so on. Much in the way that Wieder (8) describes the
’convict code’ - as a resource that is drawn upon to account for and understand action
rather than a simple normative stipulation and explanation for behaviour - so the OSS
Cocoon community uses sets of ideas about coding, about participating in an OSS project
and so on as resources for their accounting practices in the course of contributing to the
project itself.

 Our interest is primarily in understanding the character of the OSS project as a ’project’ -
how it actually ’gets done’. The contrast we draw is not with idealised views on software
projects or open source development but with ethnographic and ethnomethodological
studies of ’realworld, real time’ software production (Button and Sharrock 1996). These
emphasise the project as a practical, ongoing achievement and concentrate on the
everyday, mundane aspects of keeping a project going. We place particular emphasis on
various kinds of ’ordering work’ that occurs at a number of levels throughout the project
and draw attention to the set-up of the website, coding, email correspondence and the
project archive. As an instantiation of ’virtual teamwork’ Cocoon as a project necessarily
needs to attach considerable importance to issues of distributed coordination; plans and
procedures; and developing an ’awareness of work’. The concept of the ’virtual team’
(Zimmerman, 1997; Siebel 1998) is intended to denote an organisational form consisting
of networks of workers and organisational units, linked by information and
communication technologies, that flexibly co-ordinates activities, skills and resources to
achieve common goals without traditional hierarchical modes of central direction or
supervision. Such teamwork, less fettered by the constraints of traditional hierarchies
and spheres of responsibility, engenders a heightened sense of empowerment,
commitment and collective responsibility (Casey, 1995: 45). Whilst with conventional
software projects understanding the organisational context is vital - "software engineering
is often carried out within an organisational environment which threatens to overwhelm
the project"(Button and Sharrock, 1996) - with OSS the position is more complicated.
While the OSS may be likened to a ’virtual organisation’ there are manifestly real
problems both connected to the organisation within which the code contributor ordinarily
works (for example in time constraints), and within the virtual team itself to do with
communication and awareness.

2.Achieving the orderly character of OSS project work

In their salutary paper on the organisation of collaborative design and development in
software engineering, Button and Sharrock (1996) point to ’the project’ as a formatted
organisational arrangement within which software engineers typically coordinate their
design and development work and make their work mutually and organisationally

accountable. They carefully document how engineers achieve the formatted arrangements
of the project and how they display an orientation to these arrangements in the way they
order and accomplish their work. In project work the organisation of the work itself can
be a source of troubles that is accommodated through the organisation and re-
organisation of work. Ordering work as a project does not in itself ensure the orderliness
of work or provide remedies for all contingencies, instead the project structure and plan is
an achievement of everyday work and a response to and recognition of the contingent
nature of such work. In these circumstances a number of devices are noticeable for
ensuring the orderly character of work. ’Phasing’ ensures that necessary tasks are
adequately completed and provides for the interdependence of activities and the
recognition of uncompleted stages. The ’methodic handling of tasks’ provides for some
kind of system in the confrontation and elimination of problems. ’Orienting to the project
as a totality’ provides a method for project teams to keep each other’s progress in view
and make it visible to others. ’Measured progression’ refers to procedures and devices -
organisational metrics - for documenting how much of the project has been done and
what remains; checking work against schedules and so on. Finally they note how ’making
sure the documentation gets done’ is regarded as ’dirty work’ not an integral part of job
and superfluous to engineers practical needs.

1.The website as an ordering device.

Quite clearly the Cocoon website can be viewed as an ordering device orienting both
’newbies’ and established project members to features of the project through devices such
as the menu-bar(Fig.1), the ’to do list, requests for help (Fig 2.), advice for contributors
(Fig 3) and so on. The advice on making a contribution for example describes a number
of stages through which a ’typical contribution’ may go and how any contribution is
treated once submitted. The ’to do’ list prioritises requirements for code, documentation,
samples and design from ’high’ (Fig 4) - "upgrade Turbine-pool" - to low and a ’wish’ list.
The list also assigns particular tasks to named individuals.

 Fig 1. Fig 2.

 One way of understanding the working of the website, as effectively the ’desktop’ or
’front-office’ of the project, is in terms of ’affordances’ of knowledge (Anderson and
Sharrock (1993). The website provides for project members knowledge of the state of the
project, where they are up to what needs to be done etc - and it was evidently designed
with this possibility in mind. The website is both the public focus for work and a visible,
a publicly available, record of work that has been done or remains to be done. In other
words, what these representations do, among other things, is make the work visible
so that it can be taken note of , reviewed , queried , and so on, by others
involved. They put the work on display so that others may be aware of it.

 Fig 3. Fig 4.

Our interest is how the different features of the website are constructed so as to ’afford
knowledge’ as to the working division of labour by which the various tasks on Cocoon
are performed. The notion of affordance used here treats perception as resolutely
embedded in particular cultural practices. Just being fully enculturated members of the
Cocoon project means being able to use website and associated email system, to see
unproblematically what needs to be done urgently, what is less important, what the next
phase of the project is and what progress they are making. The website (and the email
system) provides the project team with the means to see at a glance, and recognise
immediately what is going on in the project. The website thereby also acts as a
’technology of accountability’ (Suchman 1994; Bowers, Button and Sharrock 1995)
enabling members to see, at a glance, the status of the project and calculate whereabouts
they might be in the organisational and temporal cycle of events.

2.Order by email: Finding order in the archive

Examination of the email archive is also instructive of the various ways by which order is
accomplished in an open source project. Although the richness (and occasional
vehemence) of the exchanges is difficult to adequately captured here what is evident is
the way in which email communication provides for the administration, voting and
scheduling of the project as well as orienting to the project as a whole. Despite the
opinion that ""scheduling" is ultimately impossible: we are talking about volunteers that
spend their free time. How can you tell when you’ll finish planting your garden? or when
you’ll finish your WW2 tank model? When you do it. Period" (email correspondence) it is
clear that a lot of communication through email is about the scheduling of activity. Thus:

" Okay, how about this for a schedule: (too formal, I know!) If anyone wants to change it, better
make it quick!

* I’ll commit what I’ve done so far on the FAQ tomorrow (Saturday), plus some other minor
changes. ..

* Feature freeze 00:00 GMT (not BST) Monday - i.e. no new features, only minor bugfixes and
doc improvements

* Around the same time I’ll send emails to cocoon-users and cocoon-dev asking for testers to
download from CVS and test, and report back what configuration they have and whether there
were any problems."

Scheduling is also affected by the ’lazy consensus’ system of voting as the following
email makes clear:
"Are we all agreed to implement content aggregation in the way specified by Stefano in his RT? I’ve been
pondering it for the last few weeks and playing some thought experiments, and I’m definitely +1. How
about the rest of you?"
What also comes over is an orientation to the Cocoon project as a whole both in terms of
the management and administration of the project as well as some notion of a ’code’ or
orientation to the ethos of open source in general. For example the following email:

"I got alittle issue here. I voted -1 on the engine synch. patch since I thoughtthat we shouldn’t put
in a patch that messes around with cocoon that deeply shortly before a new major release.
according to the terms of the asf project constitution: my veto is binding unless you convince me
otherwise".

Brought this response:
"So, for the sake of the "dignity" of the Cocoon project overall, including myself, I’d like to get it
in a more shipshape condition. Now you may say that’s about image and PR and marketing etc.
which we are things we should stop getting hung up about - but it’s not just image, it’s about code
quality (and quality of the docs).

While I can see the sense in being cautious just before a release, as a general principle - if I were a
complete outsider I expect I’d _still_ think that leaving these known simple bugs in was... odd, for
an open source project".

What becomes apparent in these discussions is a clear orientation to the project as a
whole rather than a collection of tasks. The email system has become a way of keeping
each other’s progress in view and making their own progress visible to others through
activities such as involving themselves in others activities and tasks through talking them
through; and knowing where their worked impacted on others and informing them.

3.The open source ’code ’ of work.

Finally, the development and orientation to some notion of an open source code regularly
appears in the email discussions on ’good’ or ’elegant’ code, design philosophy and the
principles of open source. Perhaps the best example came in the various responses to the
following upset contributor:

"> removed that unportable (and useless) ASCII art along with (slow) system out (logs >/are there
for a reason) and clean up messy code..

I’m sorry that you think my coding is messy, and I would prefer that you tell me first, being its my
code..

I would appreciate you all to refer to the author of the code first before spreading bullshit.."

That brought the following reply (amongst many):
"I think it is important to recognise that we are working on an open source project. I know that
there are "code ownership" political issues in many companies, but I would sincerely hope that
those attitudes would not bleed into this project. Once the code has been committed, it is no longer
’your code’ it is ’our code’, and we are all committed to making that code as good as possible. It’s
one of the strengths of open source."

Without necessarily following Edwards (2000) suggestion of ’epistemic communities’
what comes over in this email exchange - too lengthy to fully document here - is the
outline of some idea of a ’code’ that ’governs’ open source. This is depicted in even more
detail in accounts of the ’hacker ethic’ and is used to provide some kind of explanatory
account - ’why hackers do it’. In these approaches compliance to the ’code’ explains
behaviour. The open source community seen as governed by set of rules. Our argument
is rather different since we are not interested in offering explanatory or motivational
accounts of open source but of understanding how these projects ’get done’. We are
interested in examining how the OSS community both construct and make use of the
code in the course of their mundane interactions where the code is used by parties to the
interaction as displays, or accounts of what those actions are. Orienting to the code in an
email can be used for changing topic, defending or defeating a proposed course of action
and for accounting for one’s actions in an acceptable way. As Wieder comments (on a
very different kind of code):

"The code then, is much more a method of moral persuasion and justification than it is a
substantive account of an organized way of life.’ Wieder: 175.

3.Working the ’code’
4.Ordering devices at work in the source code

Can we find ordering devices embedded in the source code itself? The availability of the
source code is one of the most salient attributes of the open source phenomena, yet in
some ways it is also the most difficult kind of observational data that an ethnographic
study has to deal with. The reasons for this are complex. While as ethnographers, we
can read the source code for open source projects (something that is more difficult to
negotiate in conventional industry software projects), by virtue of its formality and rule-
governed nature, source code tends to hide the traces of its own development. Similarly,
because open source projects are de-centralised and nearly always involve multiple sites,
tracking the interactions between different kinds of reading and writing the code can be
difficult.

Presumably the code itself should bear the marks of the ordering devices since they
afford orderliness in the conduct of work. They allow a project to take place, even if its
documents, its ‘deliverables’ and the relations between developers and users looks quite
different to that envisaged by accounts of fully-equipped software engineering projects.
The practices and ordering devices surrounding open source code are concerned with
regulating how it is read, and channeling how it is written and re-written. Open source
programmers are often encouraged to read the code, as well as reading the documentation
that accompanies the code. In this domain, we expect to find ordering devices concerned
with reading and writing code.

Some source code for a part of the Cocoon system is shown below. This code defines a
part of the system that manages the caching of web-pages processed by the Cocoon
framework. It helps the system decide whether a particular item (such as a web page, or
an xml file) should be kept in system memory ready for another page request, or shunted
back onto secondary storage, such as a hard disk, because it is not being frequently
requested.

package org.apache.cocoon.store;

import java.io.*;
import java.util.*;
import org.apache.cocoon.framework.*;

/**
 * This class implements a memory-managed hashtable wrapper that uses
 * a weighted mix of LRU and LFU to keep track of object importance.
 *
 * NOTE: this class is _HIGHLY_ un-optimized and this class is _CRITICAL_
 * for a fast performance of the whole system. So, if you find any better
 * way to implement this class (clever data models, smart update algorithms,
 * etc...), please, consider patching this implementation or
 * sending a note about a method to do it.
 *
 * @author Stefano Mazzocchi
 * @author Michel Lehon
 * @version $Revision: 1.12 $ $Date: 2000/05/16 21:11:51 $
 */

public class MemoryStore implements Store, Status, Configurable, Runnable {
 /**
 * Indicates how much memory should be left free in the JVM for
 * normal operation.
 */
 private int freememory;

 /**
 * Indicates how big the heap size can grow to before the cleanup thread kicks in.
 * The default value is based on the default maximum heap size of 64Mb.
 */
 private int heapsize;

…

 class Container {
 public Object object;
 public long time = 0;
 public int count = 0;

 public Container(Object object) {
 this.object = object;

Some of the ordering devices present in this code are common in software engineering
today. Some are somewhat specific to open source style projects. A combination
rderings are present in this example. This particular code shows evidence of being
ordered for at least two distinct kinds of readers.

Firstly, it affords reading by programmers and developers. Their ‘ reading’ is associated
with modifying the program. What is known to programmers as ‘code style’ - the
restricted line lengths, the use of nested indentation to represent something about the flow
of execution of the program, and the use of blank space to show separations between
different components of the code – allows people reading the program on screen to begin
to interpret the code as a set of operations and structures. For such readers, particular
zones of the text are marked out for different modes of reading. Any line beginning with
an asterisk will attract attention as a comment, something programmers particularly
addresses to other people or themselves. This may be an explanation, an apology or a
request (e.g. “So, if you find any better way to implement this class (clever data models,

smart update algorithms,etc...), please, consider patching this implementation or sending
a note about a method to do it.”). More than half of the source code text in this example
consists of comments. By contrast, any line that begins with a keyword like ‘class’ ,
‘public’ or ‘private’ will stand out to a programmer since it signals an important
boundary in the organisation of the program. Reading these lines involves separating out
keywords, operators and syntax marks from the proper names that the programmer(s)
have used to designate elements of the program. Words such as ‘ freememory’ or
‘getStatus’ describe designate places where an important values is stored, or places where
significant operations will be specified. On these lines, the reader is alerted that they must
read the code as naming something specific to this program.

Secondly the source code affords processing by other programs such as compilers,
document generators (e.g. javadoc will read certain lines), and configuration management
systems (e.g. Concurrent Versioning System, CVS). Programming languages constitute
large scale and complex ordering device for people to working with information systems.
This is both a trivial and significant point. Programmers assume that by virtue of such
things as the termination of lines by semicolons, the use of brackets of various kinds - {},
[], and (), - and the presence of keywords such as ‘public’ and ‘class’ , the compiler will
be able to parse the source code file into an executable file containing instructions that
can for the Java Virtual Machine. Programmers compile source code so frequently that it
becomes just a routine habit. Yet source code is a formal representation (governed by
rules operating on a ‘vocabulary’ of written characters) that can be directly processed by
other programs and by programmers. The trivial point that programs are read/written by
programmers and read by compilers covers the crucial point that the programmer and the
compiler must share the same set of rules. (By contrast, other types of computer files
such as an MPEG video file will only ever be ‘ read’ by programs.) OSSD, as a collective
activity, only makes sense because of this shared set of rules.

Do these ways of ordering source code indicate anything specific about OSSD? The
formatting of the code, the use of Java, and the method of documenting the source (using
javadoc) are all textbook academic or industry standard. Almost identically formatted and
commented code can be found on any Java-related industry web-site, or in any Java
programming textbook. At the level of the reading and writing practices carried out by
programmers using text editors or integrated development environments, the ruling
conventions in this open source project come from well beyond the domain of open
source software projects. There is no evidence of a specific style of coding.

Some minor differences show that this code belongs to an open source project, although
even these are somewhat ambiguous data. Firstly, there is a request to anonymous readers
to contribute a better algorithm or data structure for part of the system that is said to be
‘_CRITICAL for a fast performance of the whole system. … please consider patching
this implementation.’ It is unlikely that a critical component of a professional software
system would publicly acknowledge that it is ‘_HIGHLY un-optimized.’ The source code
itself, as well as the API documents, solicit contributions and involvement in developing
the software. Secondly, the authors’ email addresses are provided suggesting the
possibility of responding to the source code itself. Again, making source code available
for reading is linked to providing an address for responses arising from that reading. The

Cocoon project keeps going only so long as it manages to enroll contributors who are
prepared to read and amend the source code and other documents.

In any case, the real significance of the source code lies elsewhere. The theme running
through our study has been the clustering of ordering devices around OSS projects. Our
argument has been that as ordering devices, none of them are entirely novel. It would
very strange if the source code was an exception to this. On the contrary, perhaps we
could regard the very familiarity and readability of the source code as an important
affordance in OSS.

5.Where are the differences between OSS and professional software
development?

One final ordering device confirms this point. Almost every open source software
development project currently active, including Cocoon, makes use of a single important
ordering device, a program called ‘cvs’ , Concurrent Versioning System. This device is
profoundly enabling for open source development in several respects. Itself the product
of an open source project (http://www.cvshome.org), the CVS program makes it possible
forl arge number of people to access, read and write copies of the same source code files,
and amalgamate the results. CVS’s developers claim both that “ its client-server access
method lets developers access the latest code from anywhere there's an Internet
connection” and that “ its unreserved check-out model to version control avoids artificial
conflicts common with the exclusive check-out model.” It is so crucial that certain
institutions in the open source arena, such as SourceForge (www.sourceforge.net), a large
website that hosts thousands of open source projects, can basically be interpreted as a
public interface or ‘ frontend’ to a vast CVS repository.

In the source code quoted above, revision numbers show on how many occasions a
source code file has been modified. For instance, revision 1.12 implies that this file has
been edited at least 12 times, although it may have been read many times before. The
symbols shown in a line we have already cited are relevant here: * @version $Revision:
1.12 $ $Date: 2000/05/16 21:11:51 $. The $ characters are put there by another reading
and writing device, the versioning system, in this case CVS.

Talk about the status of the CVS repository is a major feature of the email
communication amongst developers. Many email messages describe events in the CVS
repository. For instance, in describing a milestone release of Cocoon, the developer
responsible writes to the developer list:

On Wed, 6 Jun 2001 22:23:06 +0200 (CEST), giacomo <giacomo@apache.org>
wrote:

> > > Now the CVS stuff:

> > > - I tagged the beta with cocoon_20_b1

> > > - I checked in the build.xml with the new version 2.1-dev

> > > - I made a branch of cocoon_20_b1 with the name cocoon_20

> > > - I checked in the build.xml with the new version 2.0b1-dev under

> > > the branch cocoon_20_branch.

> > > So the HEAD is the 2.1 version and the 2.0 is a branch.

The developer describes in detail the operations that had to be carried out so that the
software source was named in an orderly way, and accessible to other readers and writers

of the code. The developer s descriptions of their actions within CVS render the
contents of the archive manageable for other developers. If for instance, a particular

build or version of the project does not have a commonly agreed upon name, then
the team of developers cannot reliably synchronize their editing of the source code.
Agreeing on what the name of the version will be is sometimes not enough. It may still
leave open the question of where in the CVS repository further changes will take place.
Another developer replies to the preceding message:

> > Yes, that good. I assume all the new development will happen only on

> > the HEAD and bug fixes will be applied to both HEAD and 2.0b1-dev

> branch. Is this the common understanding?
Again, negotiations around how source code will be named, stored and retrieved are
taking place here, but in this case about future changes to the code. Without these
negotiations about how to name the place where changed code is to be stored, the project
would start to fragment. Rather than look for some OSS specificity in the code itself, we
can regard the practices of open source as taking existing coding practices and
configuration management techniques into a different form of organization.

Open Source and ’Epistemic Communities’ - " IF ANYONE THINKS MY CODE
SUCKS...TELL ME IT SUCKS...BUT TELL ME WHY".

This paper uses a study of the Cocoon Open Source project to explicate some of the ways
in which Open Source projects are accomplished and how participants observably,
reportably, accountably orient to the project as a whole. Of particular interest is an
examination of how some sense of the Open Source ’community’ manifests itself in and
through the project. This requires moving beyond idealised versions of Open Source - as
exemplified in the “Hacker Ethic” (Himanen 2001) or “Rebel Code” (Moody 2001) -
towards understanding open source development as a sociological phenomenon. Our
analysis suggests we transcend the simplistic motivational or economic approaches that
characterise much of the debate and move toward a praxiological understanding of open
source. Such an approach focuses on some of the practical ways in which a project is
developed and sustained and 'codes of practice' are routinely displayed, achieved and
maintained as features of everyday work.

In particular we are interested in the notion of the Open Source community as an
'epistemic community' (Edwards 2001). Edwards (2001) argues that the notion of
epistemic communities provides an understanding of how open source software develops
under difficult circumstances; and that the four characteristics of an epistemic
community; shared normative and causal beliefs, notions of validity and common policy
enterprise; provide some insight into their working. It is evident that the development and

orientation to some philosophy or notion of an open source ’code’ regularly appears in
Open Source discussions on ’good’ or ’elegant’ code, design philosophy and the principles
of open source. This is depicted in detail in sociological accounts of the ’hacker ethic’
where compliance to the ’code’ is often used to provide some kind of explanatory account
of behaviour. The Open Source community is seen as being governed by a publicly
available and documented set of norms.

Edwards (2001) suggests that OSS can be characterised as an ’epistemic community’,
consisting of participants from various disciplines with various previous experience, but
having "the following four characteristics:

A shared set of normative and principled beliefs, providing a value based rationale for
the social action of community members;

Shared causal beliefs, which are derived from their analysis of practices leading or
contributing to a central set of problems in their domain and serving as the basis for
elucidating the multiple linkages between possible policy actions and desired
outcomes;

Shared notions of validity – that is, intersubjective, internally defined criteria for
weighing and validating knowledge in the domain of their expertise;

•A common policy enterprise – that is, a set of common practices associated with a set of
problems to which their competence is directed, presumably out of the conviction that
human welfare will be enhanced as a consequence."

Outline of the 'code' that 'governs' OSS - depicted in even more detail in accounts of the
'hacker ethic' etc are used to provide some kind of explanatory account in that behavious
is explained by compliance to the code. The OSS community seen as governed by set of
normative rules and values. Analysis of the email archive facilitates an examination of
some aspects of the OS 'epistemic community'. From numerous examples one will suffice
- , a series of emails outline some aspects of the Open Source 'code' relating to what is
'good' code and 'ownership' of code within open source projects. As Edwards suggests
this is a central value within the OSS community: " The open source software community
in general (not just speaking for a single project) shares a strong disbelief in software
patents and closed source software as mechanisms, which restrict the freedom of the
users. Closed source software is perceived as barriers that hinder people’s free choice and
ability to improve software. It is very explicit in the community that sharing code is
positive and that contributing code to a project is a way of getting status within the
community."
The first email is a comment from a commiter relating what changes have been
implemented:

Simplified Extract 1.
 Modified: src/org/apache/cocoon Tag: xml-cocoon2 Notification.java
 Notifier.java
 Log:
 removed that unportable (and useless) ASCII art along with (slow) system.out (logs \ are there
for a reason) and cleanup the messy code

This evoked the following, hurt, (with appropriate emoticons) response:

Simplified Extract 2.
I’m sorry that you think my coding is messy, and I would prefer that you tell
me first, being it my code, if it’s not too much of a fuss >:-(
Anyway, why is it messy? Would you like it if I go round saying _your_
code is messy? Don’t think you are perfect, we _all_ have to learn.
It is important that I get feedback on my code.
I think these remarks are _unfair_. :-(
The " unportable (and useless) ASCII art " was there to make errors more
evident and not pass unnoticed. No problem if it annoys you, I don’t care
if you take it away, but it was not put there just for fun.
The "(slow) system.out" is rather important to me and to many other
programmers IMO, and if it’s slow who cares, it should not fire if all
is ok. "(logs are there for a reason)"... yes, I KNOW, I already said
I knew logging had to be kicked in, and the "(slow) system.out" is there
just till C2 gets finished. Alpha 2a? Get real.

I would appreciate you all refer to the author of the code first before
spreading _bullshit_ because:
1. nobody is perfect, this is for the users and the coders.
2. if you didn’t write the code maybe you don’t understand it. Some things
that seem stupid to you have been thought of.
3. if the author doesn’t get notified he cannot improve.
4. it’s not nice to refer to other’s people code as sloppy, you are not perfect.
5. if the code is not ok, who wrote it is the first one who has to make it ok.

I am astonished by this lack of sensibility.
I hope it will not happen again.
Nobody would like to contribute if this is done behind their backs.
If you don’t trust me, tell me.
If you don’t like my code tell me.
If you don’t think I’m good enough, don’t accept my work.

But please, don’t make fun of me.

The response that followed contains a number of pointers as to the nature of the ’code’
that governed the OS community:

Simplified Extract 3.
I was rather surprised to see a response like this to a simple code change.

>I’m sorry that you think my coding is messy, and I would prefer that you tell me first, being it
‘>my code, >if it’s not too much of a fuss >:-(
I think it is important to recognize that we are working on an open-source project. I know there
are "code ownership" political issues in many companies, but I would sincerely hope that those
attitudes would not bleed into this project. Once the code has been committed, it is no longer
your code...it is *our* code, and we all are committed to making that code as good as possible.
It’s one of the strengths of open source.
>I would appreciate you all refer to the author of the code first before spreading _bullshit_
>because:
>1. nobody is perfect, this is for the users and the coders.
The users want high-quality code. The coders want to be able to change it. A "code ownership"
attitude prevents both.
>3. if the author doesn’t get notified he cannot improve.

You have been notified. You got CVS commit mailings just like everyone else, and instead of
taking the opportunity to improve or make inquiries into how to improve or why improvement was
necessary, you took offense to it.
>4. it’s not nice to refer to other’s people code as sloppy, you are not perfect.
We could play a touchy-feely dance where we try and get the words right so we don’t offend
anyone at all, or we can call it like we see it. Personally, I’d rather know that someone thought my
code was sloppy instead of never finding out because they don’t know how to tell me without
offending me. Since the issue has been brought up, I’d like to state the following to all Cocoon
developers:
IF ANYONE THINKS MY CODE SUCKS...TELL ME IT SUCKS...BUT TELL ME WHY.
>5. if the code is not ok, who wrote it is the first one who has to make it
ok.
I completely disagree with this statement. Whoever wrote it, released it to an open-source
project. Anyone can (and will) make it ok. I can’t make this point strongly enough...there is NO
PLACE for code-ownership on an open-source project.

The final email in the series attempted to summarize the lessons learned for the project as
a whole. In so doing it indicates and reinforces some of the central working norms of the
OS community.

Simplified Extract 6.
Now that testosteron storms are cleared, I would like you to know that Nicola and I talked a lot on
the phone and he apologized for what he now considers a misbehavior.
I would like to repeat to all of you what I told him:
1) nothing to apologize for: everyone of us makes mistakes, sometimes technical, sometimes
human. I like people that make mistakes more than people that don’t: the first have something to
learn, they have a much more interesting life to live.
2) development is done by committing first and asking later. This is about release early and often
since code is a thousands time more expressive than words. CVS is there *exactly* to know who
did what, why and to be able to rollback at any time.
4) open source is about working under the eyes of hundreds of the best developers in the world.
There is no place where the quality of you work is judged more strictly than in an open source
environment, but code is never important, the community is much more.

In Edwards’ view the notion of epistemic community and the normative values that bind
them together are assumed to explain the whys and wherefores of the actions of the
community. The norms, the ’code’ is both a descriptive and an explanatory device,
providing simple ways of interpreting actions. Our argument is rather different and
subtler since we are not interested in offering explanatory or motivational accounts of
open source but instead of understanding how these projects ’get done’. Drawing on
Wieder’s (1974) account of the ’convict code’, we are interested in examining how the OS
community construct and make use of ’the code’ as a resource in the course of their
mundane interactions. Here ’the code’ is used as displays, or accounts of actions. There
is, as Wieder (1974) suggests, another way of understanding the ’code’ - not as somehow
external to the setting but constitutive of some of the ways in which people act within the
setting - ", part of the seamless fabric of action which make up the activities". In this
view ’telling the code’ - as outlined in the extracts above, is not simply reciting rules but
sharing joint actions. This approach is not concerned with producing sociological explanation of
behaviour in terms of compliance with code. Instead it is more interested in examining how OSS
community both construct and make use of the code in the course of their interaction. The idea of
some OSS code that is invoked in the various e-mail discussions is one that enables the OSS
community to define and perform actions by making reference to the code. This includes

accounting for their own actions in terms of conformity to the code, and as such it is used by
parties to the interaction as displays, accounts of what those actions are. The code can thereby be
used for stopping a conversation, defending or defeating a proposed course of action and for
accounting for one’s actions in an acceptable way. As Wieder writes of the ’convict code’: "The
code then, is much more a method of moral persuasion and justification than it is a substantive
account of an organized way of life.’ Wieder: (1974: 175). Thus the phrase " Once the code has
been committed, it is no longer *your*code...it is *our* code" formulates what has just
happened; provides an account of and a motive for what is said and attempts to direct the email
’conversation’ along familiar lines - that there is no place for code-ownership issues in OSS.. As
Heritage (1984) argues, this analysis, "vividly demonstrates that where sociological research
encounters institutional domains in which values, rules or maxims of conduct are overtly invoked,
the identification of these latter will not provide an explanatory terminus for the investigation.
Rather their identification will constitute the first step of a study directed at discovering how they
are perceivedly exemplified, used, appealed to and contested."

4.Conclusion: Many-eyed bugs: co-ordination amongst the team of
readers and writers

Eric Raymond’s notorious ‘The Cathedral and the Bazaar’ argues passionately that open
source development substitutes a potentially huge crowd of people for the small number
of expert debugging engineers found in conventional modes of software development:

"No quiet, reverent cathedral-building here -- rather, the Linux community seemed to
resemble a great babbling bazaar of differing agendas and approaches (aptly symbolized
by the Linux archive sites, who’d take submissions from anyone) out of which a coherent
and stable system could seemingly emerge only by a succession of miracles". (Raymond,
2000)

This is a very commonly cited difference between professional software engineering and
open source development. This contrast is framed in terms of the difference between the
monumental ‘cathedral’ style of software construction associated with traditional
software engineering and the buzzing hive of ‘bazaar’ style of activity out of which open
source software emerges. What is less often emphasized is how this contrast could
actually work. How has a great babbling bazaar of potential readers and writers of the
source code been drawn together? This paper suggests that the ‘bazaar’ takes place along
very specific lines and highly organized lines. It is an achievement that requires a good
deal of communication, and the implementation of contrivances that afford certain kinds
of reading and writing centred on source code, but also circulating through emails,
websites, configuration management systems and release/configuration documents.

In this paper we moved beyond idealised versions of the OSS project - as exemplified in
the "Hacker Ethic' or 'Rebel Code' - towards understanding OSS as a sociological
phenomenon. Our analysis suggests we transcend the simplistic motivational or
incredible economic approaches that characterise much of the debate on OSS. Instead we
offer a understanding of OSS in terms of the everyday practicalities of software projects.
Standing outside debates about motivation allows us to concentrate on understanding

exactly how and in what ways an open source project is accomplished as practical work
in which participants pressures are usually egological - "what do I do next" - rather
than motivational - "what’s my motivation here". Such an approach sees OSS less in
terms of a lifestyle choice, though this may well be individually important, but instead
focuses on some of the practical ways in which a project is developed and sustained and
’codes of practice’ are displayed, achieved and maintained as features of everyday work.

5.Acknowledgement
This work is funded by the EPSRC/ESRC Dependability Interdisciplinary Research
Collaboration (DIRC).

6.References

Anderson, R and Sharrock, W. (1993) ’Can Organisations Afford Knowledge?’ in
Computer Supposted Cooperative Work. Vol1. No. 3. Pp 143-162.

•Button, G and Sharrock, W. (1996) Project Work: The Organisation of Collaborative
Design and Development in Software Engineering Computer Supported
Cooperative Work: The Journal of Collaborative Computing 5: pp 369-386,

•Edwards, K. (2001) ’Epistemic Communities, Situated Learning and Open Source
Software Development’ paper prepared for the ’Epistemic Cultures and the Practice of
Interdisciplinarity’ Trondheim. Avaliable at http://www.opencontent.org/openpub/

Himanen, P. (2001) The Hacker Ethic and the Spirit of the Information Age. Random
House.

•Mockus, A., Fielding, R, and Herbsleb, J. (2000) ’A case Study of Open Source
Software Development: The Apache Server.’ in Proceedings of ICSE 2000, Limerick,
Ireland.

Moody, G. (2001) Rebel Code: Linux and the open source revolution. London.
Penguin.

Raymond, E. S. (1999), The Revenge of the Hackers , eds. Chris DiBona, Sam
Ockman & Mark Stone, Open Sources: Voices from the Open Source Revolution,
O Reilly Books, 1st Edition January 1999

Raymond, E. S. (2000) The Cathedral and the Bazaar
http://tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/

•Vixie, P. (1999) Software Engineering eds. Chris DiBona, Sam Ockman & Mark
Stone, Open Sources: Voices from the Open Source Revolution, O Reilly Books, 1st
Edition January 1999

Wieder, D.L. (1974) Language and Social Reality, The Hague, Mouton.,

What is in a Bazaar?
A Model of Individual Participation

in an Open Source† Community

Haggen So, Nigel Thomas and Hossein Zadeh

School of Business Information Technology

RMIT Business

Royal Melbourne Institute of Technology

239 Bourke Street

Melbourne 3000

Australia

haggen@seven.bf.rmit.edu.au, hossein@bf.rmit.edu.au, nigelt@rmit.edu.au

Abstract

The "Open Source approach", which is usually portrayed using the Bazaar metaphor,

was criticised as being too simplistic. The model presented here as a contribution

designed to represent the relationship between individual developers and an Open

Source/Free Software community more completely. This model includes a four-layer

(4C) model of the Open Source/Free Software community, the motivations and barriers

when a developer decides to join an Open Source/Free Software community, the

positive and negative results which occur after interaction with an Open Source/Free

Software community. The advantages and disadvantage of the model are examined and

its relevancy to the research of dependability is also discussed.

Introduction

The practice of making the source code freely available exists nearly as long as the

invention of the computer itself and turning source code into proprietary software and

distributing only the compiled binary is a relatively recent concept (Levy, 1984). There

were written accounts on the some of the most open systems in history, such as ITS, the

Incompatible Time-sharing System (Levy, 1984; Turkle, 1984), but the software

development process associated was seldom investigated in depth. Therefore, when

† The term "Open Source" in this context actually means Open Source/Free Software. The term "Open Source/Free

Software" is used throughout this particular paper except at instances referring to a specific movement in order to

show that the authors here maintains a political view that is neutral to both movements in this paper.

Linux started to gain popularity, people searched for words to explain this phenomenon.

One of the most highly acclaimed attempts was made by Eric Raymond with his

metaphor of the Cathedral and the Bazaar (Raymond, 2000). This metaphor then

became the most frequently used explanation for Open Source/Free Software and it had

an influential impact on the decision of Netscape to open up the source code of its

browser (Moody, 2001; Hamerly, Paquin & Walton, 1999) and started one of the most

famous commercial Open Source project, Mozilla.

In Raymond’s article of the Cathedral and the Bazaar (Raymond, 2000), he explained

how a collective effort of co-developers over the Internet could possibly produce

quality software with better reliability and more useful features in a shorter time.

However, critics on the Bazaar metaphor suggested that the model provided "too few

data points" to construct a picture of the approach (Eunice, 1998a) and extended

interpretations to fill the gaps for the cathedral metaphor can sometimes be found in

literature. Examples of those are "The Cathedral represents a monolithic, highly

planned, top-down style of software development" (Eunice, 1998b), "All alternative

models (considered to be one and called the "Cathedral model")" (Bezroukov, 1999a)

and "The paper essentially ignored contemporary techniques in software engineering,

using the Cathedral as a pseudonym for the waterfall lifecycle of the 1970s (Royce,

1970)" (Johnson, 1999). On the other hand, for the bazaar metaphor, most

interpretations did not go beyond the boundary of Raymond’s article but terms such as

"somehow results in high quality software" (Pavlicek, 2000, p. 11) and "for some

mysterious reason" (Bezroukov, 1999a) could be found in literature. This implied a

yearning for more detail explanation in the exact mechanism of the software

development process in Open Source/Free Software.

After the conceptualisation of the metaphor, different researches were done to explain

the mechanics of Open Source/Free Software further by employing certain social or

economic theories (Kelty, 2000; Kuwabara, 2000; Edwards, 2001), obtaining statistics

from Open Source/Free Software archives and mailing lists (Dempsey, et al., 1999;

Ghosh & Prakash, 2000; Moon & Sproull, 2000; Yamauchi, et al., 2000; Kienzle, 2001)

and describing the detail processes from a software engineering viewpoint (Fogel, 1999;

Vixie, 1999). The model presented in this paper is developed from yet another

direction which would possibly introduce another viewpoint to the understanding Open

Source/Free Software.

Relevant areas of interest to the topic of Open Source/Free
Software

Before introducing a new model to explain Open Source/Free Software, it is useful to

understand the relevant areas of interest to the topic of Open Source/Free Software. It

can be proposed that there were three areas of interest that are related to Open

Source/Free Software, namely, the contextual, technological and socio-economical

aspects. The three aspects proposed are not mutually exclusive and they all overlap

with each other (figure 1).

Figure 1: Three areas of interest on Open Source/Free Software

First of all, the Open Source/Free Software movements emerged from its own context.

Though the term "Open Source" was coined on the 3rd February, 1998 (Open Source

Initiative, 2000), the historical context of the movement includes the history of Unix

operating system (Salus, 1995; Hauben & Hauben, 1997), the Internet (Licklider &

Taylor, 1968; Hauben & Hauben, 1997), and the hacker culture (Levy, 1984; Turkle,

1984; Raymond, 1999a). The Free Software Foundation and the GNU project were

also very significant (FSF). The contemporary context of Open Source/Free Software

includes business interest in Open Source (Raymond, 1999b; Sun, 2000; Apple, 2000)

such as how Linux was employed as a weapon against Microsoft (Bezroukov, 2000).

Open Source/Free Software communities were mostly made up of volunteers from

technical background (Bentson, 2000) and thus technology is another indispensable

aspects. The technological architecture (such as microkernel vs monolithic debate

(DiBona, Ockman & Stone, 1999)) and features (such as technical supremacy of Linux

over Microsoft (The Unix vs NT Organization, 2001)) of software were always

important focuses in the communities. As mentioned above, software engineering is

also one of the several approaches which are used to investigate Open Source/Free

Software.

Open Source/Free Software communities also consist of a socio-economical aspect and

relevant topics includes virtual communities (Rheingold, 1993; Romm, Pliskin &

Clarke, 1997; Wellman & Gulia, 1999), current state of hacker culture (Raymond, 1998;

Raymond, 2000), information economy (Ghosh, 1998a; Clarke, 1999; Kollock, 1999)

and the socio-political effects of Open Source/Free Software (Newman, 1999; Yee,

1999; Forge, 2000).

The model presented in this paper is developed from theories on virtual communities

and Computer-Supported Co-operative Work (CSCW). The definition of CSCW is

"concerned with the ways in which people work together and with the ways in which

computer systems can be designed to support the collaborative aspects of work."

(Rosenberg & Hutchison, 1994, p. 1) and it is related in the technical as well as

socio-psychological aspects of a system. Since software is developed in a collaborative

fashion by communication through computer systems in an Open Source/Free Software

community, theories in CSCW is also relevant to the examination of Open Source/Free

Software (Yamauchi, et al., 2000). Therefore, the model is mainly based on both

technical and socio-economical aspects of Open Source/Free Software.

Open Source/Free Software Community, a definition

Before introducing a model to represent an Open Source/Free Software community, a

definition of an Open Source/Free Software community is presented. According to

Romm, Pliskin and Clarke (1997) on their comment of the three phase model on virtual

communities, although virtual communities are not as ’robust’ as face-to-face

communities, there are four criteria to judge whether a certain online group can be

regarded as a community, namely "shared goal and ideals; some degree of stability;

growth; and loyalty and commitment by their members" (Romm, Pliskin and Clarke,

1997, p. 262). Therefore, an Open Source/Free Software community can be regards as

a group of people who are committed to develop and deploy certain Free Software/

Open Source software and the group also has to satisfy the four criteria stated above.

Within the Open Source/Free Software movements, there are different sub-cultures.

Raymond (1998) stated that there are different ideologies within members who support

the idea of Open Source. Two most prominent factions are Open Source Initiative vs

Free Software Foundation. The difference between the two communities was nicely

summarised by (Kelty, 2000, p. 312) as "Whereas FSF would sell freedom if they could,

opensource.org sells a better mousetrap, or perhaps ’bug-trap’ is the better metaphor."

While the Free Software Foundation was hardline in taking closed-source software as

morally wrong, Open Source Initiative is marketing the Open Source software

development process as the definite method for software projects. It is not uncommon

to find discussions on the differences and resolutions of the two communities can be

found in popular Open Source/Free Software online forums such as Advogato

(Advogato, 2000; Advogato, 2001). Therefore, according to one the four criteria stated

on a virtual community, "shared goal and ideals" (Romm, Pliskin and Clarke, 1997, p.

262), it is more reasonable to say there are a number of communities within the Open

Source/Free Software movements with different ideals rather than thinking that

everyone in the movement adhere to exactly the same values.

A Framework on Computer-Supported Co-operative Work (CSCW)
and Analysis of an Open Source/Free Software Community

In order to categorise and analyse what happens in an Open Source/Free Software

Community, a framework on Computer-Supported Co-operative Work (CSCW) was

considered. The framework is shown in figure 2 (Dix, 1994, p. 17). In the diagram, the

circles with a ’P’ denoted persons involved and the circle with an ’A’ denotes the

artefact(s) involved in CSCW. The persons involved can directly control the artefact

and feedback is received from such maneuver. It is also possible to obtain information

about how another person is controlling the artefact through the feedback process. This

event is called feedthrough and it is denote by a line connecting the two persons via the

artefact. In a CSCW system, the persons involved usually are provided a

communication media to exchange ideas. The line ’direct communication’ denotes this

kind of communication. The dotted line deixis represented the content in the direct

communication that referred to the artefact. Moreover, the persons involved may also

communicate on concepts of a higher level such as the goal of the co-operation. The

line ’understanding’ denotes this kind of communication.

+

Figure 2: A Framework on CSCW

From this framework, important aspects of an Open Source/Free Software community

can be identified. First of all, an Open Source/Free Software community is based on a

communication media. As most of the important artefacts in an Open Source/Free

Software community are information in digital format, these artefacts can also be

contained in the communication media. The next important aspect is the artefacts,

which is the contributions from the community members. On top of the artefacts, the

communication on how to manage the artefacts is also very important. The

understanding of co-operation in CSCW is analogous to the culture of an Open

Source/Free Software community, which embodied understanding of high level

concepts such as the goal and the nature of the community.

Four-Layer Model on an Open Source/Free Software Community

Based on the four important aspects in an Open Source/Free Software community

identified, a model of an Open Source/Free Software community is built and shown in

figure 3. The model is presented in a four-layer (4C) model.

Figure 3: 4C Model of an Open Source/Free Software Community

The four layers represented in the model in figure 3 are communication, contributions,

co-ordination and culture respectively. The communication media is the basic

infrastructure for any interaction. Contributions referred to the different pieces of

assistance given by individual developers via the communication media. Co-ordination

is the process of organising fragments of contributions into usable products and the

culture of the community in turn governs the rules in co-ordination.

An important enabling factor for Open Source/Free Software communities to exist is a

media for communication. In the history of the practice of making source code freely

available, the media could be just a roll of paper tape with a program on it in the case of

the spacewar program (Levy, 1984). The media could also be a multi-user computer

system that allowed every users to access absolute any source code and data in the

system in the case of ITS, the Incompatible Time-sharing System (Levy, 1984).

Nowadays, the Internet is the most frequently used communication media for Open

Source/Free Software communities. Many (Bezroukov, 2000; Moon & Sproull, 2000;

Raymond, 2000) recognized that the Internet as an important factor for the Linux

project to start. Kollock (1999) suggested that the Internet lower the cost of

collaboration. On the other hand, Ghosh (1998a) used a cooking-pot as a metaphor to

describe collaboration on the Internet. In the case of a physical cooking-pot, when

everyone put in some ingredients to boil a tasty broth, one can only take a small portion

of the broth, more or less the same as what one has put in. In the case of the Internet, the

digital cooking-pot, which is an efficient cloning machine, everyone who contributes

can also get complete copies what others have contributed.

An Open Source/Free Software project is built upon contributions from individual

developers. These contributions included source code, suggested features (wish list),

comments on project, bug reports and patches and also documentations. Source code is

the basis of any program and thus any project. When a project starts, the existence of a

runnable program with source code attracts more developers to participate (Fogel, 1999;

Raymond, 2000). After using the program, developers or users may have suggestions

on new features to add to the program. Comments may also be made on the direction of

the project as well as the details of the source code. Zawinski (1999) pointed out that

contributing quality comments could even worth more than source code. Bug reports

and patches with source code are also welcomed to improve the stability of the program.

Finally, a program cannot be used and a project cannot be maintained without

documentations, and thus contributions to documentation are also important. With a

communication media, all these contributions can be collected.

Co-ordination is required to package all these different contributions collected via the

communication media into a piece of stable software. One of the most important

management issues at the beginning of the project is promotion (Fogel, 1999; Raymond,

2000). It is important to build a community of developers and users for the project to

proceed. Licensing, which legislates what kind of freedom is placed on the distribution

of the source code, is another significant management issue at the start. Then a

mechanism to judge which piece of contribution to be accepted or rejected has to be

established. If the benevolent dictator (Raymond, 1998; Fogel, 1999) system is

adopted, a maintainer has to be appointed to make final judgements on decisions of the

project. A maintainer of a project can be transferred or taken over (forking) later on

(Raymond, 1998; Fogel, 1999). If an autocratic (Raymond, 1998; Fogel, 1999) system

is adopted, a membership system has to be setup and it may also involve a voting

system for decision making. When the time comes to produce a stable version from an

evolving project, a release procedure may be introduced (Fogel, 1999). This procedure

will ’freeze’ normal development on the project and concentrate group effort on making

the program stable. The ’freeze’ measure will be lifted after the release and normal

development procedures will resume.

The culture of an Open Source/Free Software community shapes the rules in

co-ordination of Open Source/Free Software projects. Culture is defined as "the

collective programming of the mind which distinguishes the members of one group

or category of people from another." (Hofstede, 1997, p. 5) and the community of Free

Software and Open Source movements can be argued to have enough affinity to be

called a culture. First of all, most of the members in the community are technical

people (Bentson, 2000), that value technical correctness (Pavlicek, 2000) and virtuosity

(hack) other than formal authorities (Levy, 1984). Secondly, Linus Torvalds, the

original author of Linux, released the source code of the system on the USENET

because the culture encourages sharing (Ghosh, 1998b). Thirdly, Raymond (1998) also

observed cultural rules in Open Source/Free Software communities in the transfer of

maintainership and giving credits. Fourthly, formed mostly by volunteers, the culture

endorses loose charter over complicated legalisations when the community tries to put

management rules in writing, as volunteers tend to cooperate and reach consensus

rather than exploiting the loopholes in the system (Fogel, 1999). The above is a general

view of the culture and each Open Source/Free Software community also has its own

variation.

Model on individual participation in an Open Source/Free Software
Community

After introducing a model to an Open Source/Free Software community, one can

consider the relationship of individual participants to the community. The model built

to explain this relationship is shown in figure 4. The model includes the mentioned 4C

model, the motivations and barriers when a developer decides to join an Open

Source/Free Software community, the positive and negative results after interaction

with an Open Source/Free Software community.

Figure 4: A Model on individual participation in an Open Source/Free Software Community

There are a number of motivations for a developer to join an Open Source/Free

Software community. A developer may see that joining an Open Source/Free Software

community as a good solution to solve his or her need on a piece of software (Fogel,

1999; Kuwabara, 2000; Raymond, 2000; Evers, 2001). Moreover, social factors such

as reciprocal behaviour (Wellman & Gulia, 1997; Kollock, 1999), reputation (Ghosh,

1998a; Raymond, 1998; Fogel, 1999; Kollock, 1999; Kuwabara, 2000) and attraction to

community (Foster, 1998; Kollock, 1999) may play a part. Lastly, altruism or idealism

(Kollock, 1999) may also motivate developers to contribute.

Although there are a number of motivations for developers to join an Open Source/Free

Software community, barriers also exist to deter them, as in any virtual communities

(Romm, Pliskin & Clarke, 1997). Technically, Open Source/Free Software

communities only accept developers who attain a high degree of competence

(Raymond, 2000). The complexity of source code also created a barrier for

contribution (Zawinski, 1999). On the other hand, software with poor design and

inadequate documentation may deter contribution (mettw, 2000). The original

developer also may not be willing to share his or her own code. Cultural barriers also

exist. Firstly, language can be a barrier because person from certain backgrounds in

some part of the world may find it hard to join an Open Source/Free Software

community with English as the common language of communication (Fogel, 1999).

Cultural mysteries also exist and they have to be solved before a member could be

accepted by certain Open Source/Free Software communities (Raymond, 1998). The

last but obvious reason is that a developer cannot or cease to involve in an Open

Source/Free Software community because the developer can afford the time no more

(Bezroukov, 1999a).

There are several positive outcomes as a result of joining an Open Source/Free

Software community. A developer may have one own itch scratched (Raymond, 2000)

and enjoyed programming in collaboration (Raymond, 1998; Fogel, 1999). He or she

may learn more skills (Fogel, 1999) and build up one’s reputation (Ghosh, 1998a;

Raymond, 1998; Fogel, 1999; Kollock, 1999; Kuwabara, 2000) in the community as

well.

Negative results from participation in an Open Source/Free Software community

include lack of interest on one’s project (Fogel, 1999; Raymond, 2000), rejection from

others (Maclachlan, 1999; Pennington, n.d.), hurts in management issues (Raymond,

1998; Hacker, 1999) and burn-out (Bezroukov, 1999a; Bezroukov, 1999b).

Discussion on the Construction of the Model

Kelty (2000; 2001) pointed out that "the Cathedral and Bazaar" described the process of

how to run an Open Source/Free Software project as a replica of Linux. This focus

unfortunately reduces the phenomenon of Open Source/Free Software into a technical

process. This is, however, not to say that Raymond did not know about culture. On the

contrary, he was the complier of "The New Hacker’s Dictionary" (Raymond, 2001).

Moreover, in the "Homesteading the Noosphere" (Raymond, 1998), the next essay after

"The Cathedral and Bazaar", he mentioned various aspects of the different sub-cultures

within Open Source. Unfortunately, probably in the process of marketing Free

Software and by de-politicisation and renaming it to "Open Source" (Kelty, 2000), the

complexity of the phenomenon was reduced. To conclude, the metaphor of the

Cathedral and Bazaar is useful as an introductory, first estimate to the phenomenon of

Open Source/Free Software but more is needed to explain the phenomenon. The model

presented in this paper is one of the many attempts to contribute towards a more

comprehensive and complex explanation, which covers both technical and social

aspects.

The model presented in paper is an attempt to identify the important concepts of an

Open Source/Free Software community and aspects when an individual participates in

an Open Source/Free Software community, namely, communication, contributions,

co-ordination, culture, motivation, barriers, positive and negative results. The model is

designed not to be over-specific as Open Source/Free Software is still an evolving

phenomenon (Fogel, 1999). However, the advantage and disadvantage with the model

is its flexibility. Arguably, the model is flexible enough even to include other non-Open

Source/Free Software community. For example, the model can be used to examine

communities that chosen to use a closed-source license in a commercial environment.

Moreover, by substituting contributions, co-ordination and culture by information,

channel of communication and pedagogy, the model can be changed to analyse a virtual

learning community. By looking at the model as the descendent of the three phase

model on virtual communities (Romm, Pliskin and Clarke, 1997) and the framework on

CSCW (Dix, 1994), it is not surprising that this model on Open Source/Free Software

community could be expanded to explain many different systems as its parent models

are general models on information systems. One obvious limitation is that there need to

be collective agreement on the philosophy of how information should be managed

within the system, which is called culture in the model, in order for the model to

produce a useful analysis. The advantage of this flexibility is that an Open Source/Free

Software community can be compared with other information systems by a similar

framework under this model. The disadvantage is that the model may disappoint those

who want to pin down what Open Source/Free Software really is. However, it seems

that from the above analysis that Open Source/Free Software actually includes a

collection of different practices rather than a few distinct methods. Therefore, it will be

useful to identify the different parameters and practices in future research.

According to the three phase model on virtual communities (Romm, Pliskin & Clarke,

1997), a virtual community may cause changes to its immediate environment and also

transform the society. There are evidences that an Open Source/Free Software

community also causes some of those changes. For example, one of the changes to the

immediate environment is linguistic, which means changes in the use of language. In

the case of the Open Source/Free Software communities, the Jargon File (Raymond,

2001), which is a dictionary with a collection of 2321 entries on hacker vocabulary, is a

good piece evidence in this aspect. However, some of the impacts of the Open

Source/Free Software communities, such as its impact to the software industry and its

contribution to the debate of information freedom, are yet to be examined. The

possibility of building an extended model therefore can be explored.

Implication to Study of Open Source/Free Software and
Dependability

Dependability is defined as "system properties that allows us to rely on a system

functioning as required. Dependability encompasses, among other attributes,

reliability, safety, security, and availability." (Littewood & Strigini, 2000, p.1).

According to Littlewood and Strigini (2000), Open Source/Free Software projects can

serve as an archive for dependability research. By analysing the Open Source/Free

Software by the model presented, several relevant research directions can be found.

As mentioned above, the model presented is suitable for the study of dependability

because it covers both technical and social aspects of an Open Source/Free Software

community. This coincides with the nature of the study of dependability that a

multi-disciplinary approach is required (Interdisciplinary Research Collaboration in

Dependability of Computer-Based Systems, 2001).

From the analysis of the model presented, there is no "the Open Source community" but

different sub-cultures and practices in different Open Source/Free Software

communities. The implication for using Open Source/Free Software as an archive for

research is that it is useful to first identify the different possible parameters in running

an Open Source/Free Software project and view the archive as a collection of different

approaches to software project management. Then researches can be done on

discovering the relationships of these different parameters with dependability. One

example is that the BSD community stressed on action (for example, submission of

code) over discussion (Yamauchi, et al., 2000) while 17% of projects on a prominent

Open Source/Free Software hosting site, SourceForge, are in planning stage (Kienzle,

2001). The topic of diversity can also be investigated from the archive of forking or

rivalry projects such as Emacs/XEmacs, OpenBSD/FreeBSD/NetBSD and KDE vs

GNOME. One may able to investigate relationship between the dependability of

software and the situation that different teams are writing software that is similar.

Conclusion

The model presented in this paper covers both technical and social aspects of Open

Source/Free Software with flexibility to include the different practices. This model

includes a four-layer (4C) model of the Open Source/Free Software community, the

motivations and barriers when a developer decides to join an Open Source/Free

Software community, the positive and negative results which occur after interaction

with an Open Source/Free Software community. Open Source/Free Software is found

to be an archive of various software practices possibility useful in dependability

research. Rivalry projects also exist which may benefit research in diversity.

List of References

Advogato 2000, ’Fallible Hacker Figureheads’,

<http://www.advogato.org/article/123.html> (Accessed 1 Feb. 02).

Advogato 2001, ’On Holy Wars and a Plea for Peace #2’,

<http://www.advogato.org/article/396.html> (Accessed 1 Feb. 02).

Apple 2000, ’Apple - Public Source’, <http://www.publicsource.apple.com/> (Accessed

7 Jun. 00).

Bentson, R. 2000, ’The Proper Image for Linux’,

<http://www2.linuxjournal.com/lj-issues/issue57/2931.html> (Accessed 29 Dec. 00).

Bezroukov, N. 1999a, ’Open Source Software Development as a Special Type of

Academic Research (Critique of Vulgar Raymondism)’, First Monday, vol. 4, no. 10,

Oct, 1999, <http://firstmonday.org/issues/issue4_10/bezroukov/index.html> (Accessed

2 Jun. 99).

Bezroukov, N. 1999b, ’A Second Look at the Cathedral and Bazaar’, First Monday, vol.

4, no. 12, Dec, 1999, <http://firstmonday.org/issues/issue4_12/bezroukov/index.html>

(Accessed 2 Jun. 99).

Bezroukov, N. 2000,’ 4.1. Linus and Linux; Linus Torvalds’ Short Unauthorized

Biography’,

<http://www.softpanorama.org/People/Torvalds/Linus_Torvalds_biography.shtml>,

(Accessed 3 Nov. 00).

Clarke, R. 1999, ’The Willingness of Net-Consumers to Pay: A Lack-of-Progress

Report’, Proc. 12th International Bled EC Conf., Slovenia, June,

<http://www.anu.edu.au/people/Roger.Clarke/EC/WillPay.html> (Accessed 22 Apr.

00).

Dempsey, B. et al. 1999, ’A quantitative profile of a community of open source Linux

developers’, <http://metalab.unc.edu/osrt/develpro.html> (Accessed 5 Oct. 00).

DiBona, C. Ockman S. & Stone M. (Eds) 1999, ’ Appendix A: The

Tanenbaum-Torvalds Debate’, In Chris DiBona, Sam Ockman and Mark Stone (Eds),

Open Sources: Voices from the Open Source Revolution, CA, Sebastopol: O’Reilly &

Associates, <http://www.oreilly.com/catalog/opensources/book/appa.html> (Accessed

11 Jul. 00).

Dix, A. 1994, ’Computer Supported Cooperative Work: A Framework’, In Rosenberg, D.

& Hutchison, C. (Eds.), Design Issues in CSCW, London: Springer-Verlag, pp. 9-26.

Edwards, K. 2001, ’Towards a Theory for Understanding the Open Source Software

Phenomenon’, <http://www.its.dtu.dk/ansat/ke/towards.pdf> (Accessed 8 Jun. 01).

Eunice, J. 1998a, ’Beyond the Cathedral, Beyond the Bazaar’,

<http://www.illuminata.com/public/content/cathedral/cathedral5.htm> (Accessed 19

Oct. 01).

Eunice, J. 1998b, ’Beyond the Cathedral, Beyond the Bazaar’,

<http://www.illuminata.com/public/content/cathedral/intro.htm> (Accessed 19 Oct.

01).

Evers, J. 2001, ’Users order StarOffice, protest Microsoft licensing scheme’, IDG News

Service, 16 Jul., <http://www.nwfusion.com/news/2001/0716staroffice.html>

(Accessed 13 Aug. 01).

Fogel, K. 1999, Open Source Development with CVS, Arizona:Coriolis.

Forge, S. 2000, ’Open Source: The Economics of Giving Away Stuff, and Software as a

Political Statement’, Info, vol. 2, no. 1, February, Camord Publishing.

Foster, E. 1998, ’1997 Product of the Year: Best Technical Support Award: Linux User

Community’, InfoWorld,

<http://www.infoworld.com/cgi-bin/displayTC.pl?/97poy.supp.htm>, (Accessed 27

Nov. 00).

Ghosh, R. A & Prakash, V. V. 2000, ’The Orbiten Free Software Survey’, First Monday,

volume 5, number 7, Jul, 2000,

<http://firstmonday.org/issues/issue5_7/ghosh/index.html> (Accessed 29 Aug. 00).

Ghosh, R. A. 1998a, ’Cooking pot markets: an economic model for the trade in free

goods and services on the Internet’, First Monday, vol. 3, no. 3, Mar, 1998,

<http://www.firstmonday.dk/issues/issue3_3/ghosh/index.html > (Accessed on 2 Jun.

00).

Ghosh, R. A. 1998b, ’FM Interview with Linux Torvalds: What motivates free software

developers’, First Monday, vol. 3, no. 3, Mar, 1998,

<http://www.firstmonday.org/issues/issue3_3/torvalds/index.html>

Hacker, J. Q. 1999, ’Feature: Conflicting Open Source Developers’

<http://slashdot.org/features/99/07/12/1639202.shtml> (Accessed 26 Nov. 00).

Hamerly, J. & Paquin, T. 1999, ’Freeing the Source: The Story of Mozilla’, In Chris

DiBona, Sam Ockman and Mark Stone (Eds), Open Sources: Voices from the Open

Source Revolution, CA, Sebastopol: O’Reilly & Associates,

<http://www.oreilly.com/catalog/opensources/book/netrev.html> (Accessed 11 Jul.

00).

Hauben, M. & Hauben, R. 1997 The Netizens and the Wonderful World of the Net: An

Anthology, <http://studentweb.tulane.edu/~rwoods/netbook/contents.html>, (Accessed

22 May 00).

Hofstede, G. H. 1997, Cultures and Organizations, Berkshire, England, McGraw-Hill.

Interdisciplinary Research Collaboration in Dependability of Computer-Based Systems

2001, ’Aims and Objectives’, <http://www.dirc.org.uk/aims/index.html> (Accessed 01

Feb. 02).

Johnson, K. 1999, ’Open-Source Software Development’,

<http://www.cpsc.ucalgary.ca/~johnsonk/SENG/SENG691/open.htm> (Accessed 22

Dec. 00)

Kelty, C. M. 2000, Scale and Convention: Programmed Languages in a Regulated

America, Ph.D Dissertation, Mass. Institute of Technology.

Kelty, C. M. 2001, ’Hau to do things with words’, Knowledge and Society, vol. 13, JAI

Press, <http://www.kelty.org/or/papers/hauto.kelty.pdf> (Accessed 29 Jan 02).

Kienzle, R. 2001, ’Sourceforge Preliminary Project Analysis’,

<http://www.osstrategy.com/sfreport/> (Accessed 23 Jan. 02).

Kollock, P. 1999, ’The economies of online cooperation: gifts and public goods in

cyberspace’, In Smith, M. A. & Kollock, P., Communities in Cyberspace, Routledge,

London, pp.220-242.

Kuwabara, K. 2000,’Linux: A Bazaar at the Edge of Chaos’, First Monday, volume 5,

number 3, Mar, 2000, <http://firstmonday.org/issues/issue5_3/kuwabara/index.html>,

(Accessed 31 Jul. 00).

Levy, S. 1984, Hackers: Heroes of The Computer Revolution, Garden City, N.Y. :

Anchor Press/Doubleday, 1984.

Licklider, J.C.R. & Taylor, R. 1968 ’The Computer as a Communication Device’ In In

Memoriam: J.C.R. Licklider 1915-1990, Aug. 7, 1990, p. 40, reprinted by permission

from Digital Research Center; originally published as ’The Computer as a

Communication Device,’ in Science and Technology, April, 1968, pg. 40.

Littlewood, B. & Strigini, L. 2000, ’Software reliability and dependability: a roadmap’,

In A. Finkelstein, 22nd Int. Conf. on Software Engineering, ACM Press, Limerick, pp.

177-188, June 2000, <http://www.dirc.org.uk/publications/papers/11.pdf> (Accessed

21 Jan. 02).

Maclachlan, M. 1999, ’Panelists Describe Open Source Dictatorships’,

<http://www.techweb.com/news/story/TWB19990812S0003> (Accessed 26 Nov. 00).

mettw 2000, ’Contribution balance’, In response to lalo, ’Ask the Advogatos: why do

Free Software projects fail?’, <http://www.advogato.org/article/128.html> (Accessed

19 Oct. 00).

Moody, G. 2001, Rebel Code: The Inside Story of Linux and the Open Source

Revolution, Perseus, Cambridge, Massachusetts.

Moon, J. Y. & Sproull, L. 2000, ’Essence of Distributed Work: The Case of the Linux

Kernel’, First Monday, volume 5, number 11, Nov, 2000,

<http://firstmonday.org/issues/issue5_11/moon/index.html> (Accessed 15 Nov. 00).

Newman, N. 1999 ’The Origins and Future of Open Source Software: A NetAction

White Paper ’, http://www.netaction.org/opensrc/future/oss-whole.html (Accessed 28

Jul. 00).

Open Source Initiative 2000, ’History of the Open Source Initiative’,

<http://www.opensource.org/history.html> (Accessed 18 Jun. 00).

Pavlicek, R. C. 2000, Embracing Insanity: Open Source Software Development, SAMS,

Indianapolis, Indiana.

Pennington n.d., ’Working on Free Software’,

<http://www106.pair.com/rhp/hacking.html>, (25 Nov. 00).

Raymond, E. S. 1998, ’Homesteading the Noosphere’,

<http://www.tuxedo.org/~esr/writings/homesteading/> (Accessed 30 May 00).

Raymond, E. S. 1999a, ’A Brief History of Hackerdom’, In Chris DiBona, Sam Ockman

and Mark Stone (Eds), Open Sources: Voices from the Open Source Revolution,

O’Reilly & Associates, Sebastopol, CA, 1999,

<http://www.oreilly.com/catalog/opensources/book/raymond.html> (Accessed 11 Jul.

00).

Raymond, E. S. 1999b, ’The Magic Cauldron’,

<http://www.tuxedo.org/~esr/writings/magic-cauldron/> (Accessed 30 May 00).

Raymond, E. S. 2000, ’The Cathedral and the Bazaar’,

<http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar.html>

(Accessed 30 May 00).

Raymond, E. S. (Ed.) 2001, ’Jargon File Resources’, Version 4.3.1, 29 Jun.,

<http://www.tuxedo.org/~esr/jargon/jargon.html> (Accessed 28 Aug. 2001).

Rheingold, H. 1993, The Virtual Community, Reading, Massachusetts:

Addison-Wesley.

Romm, C., Pliskin, N. & Clarke, R. 1997, ’Virtual Communities and Society: Toward

an Integrative Three Phase Model’, International Journal of Information Management,

Great Britian, vol. 17, no. 4, pp. 261-270.

Rosenberg, D. & Hutchison, C. 1994, ’Introduction’, In Rosenberg, D. & Hutchison, C.

(Eds.), Design Issues in CSCW, London: Springer-Verlag, pp. 1-8.

Royce, W. W. 1970, Managing the Development of Large Software Systems: Concepts

and Techniques, WESCON Technical Papers, Vol. 14.

Salus, P. H. 1995, A Quarter Century of Unix, Reading, Massachusetts:

Addison-Wesley.

Sun 2000, ’Sun Community Source Licensing’,

<http://www.sun.com/software/communitysource/> (Accessed 7 Jun. 00).

The Unix vs NT Organisation 2001, ’The Unix vs NT Organisation’,

<http://www.unix-vs-nt.org/> (Accessed 14 Sep. 01).

Turkle, S. 1984, ’Hackers: Loving the Machine for Itself’, In Turkle, S., The Second Self:

Computers and the Human Spirit, NY: Simon & Schuster, Chapter 6, pp.196-238.

Vixie, P. 1999, ’Software Engineering’, In Chris DiBona, Sam Ockman and Mark Stone

(Eds), Open Sources: Voices from the Open Source Revolution, O’Reilly & Associates,

Sebastopol, CA, 1999, <http://www.oreilly.com/catalog/opensources/book/vixie.html>

(Accessed 11 Jul. 00).

Wellman, B. & Gulia, M 1999, ’Net Surfers Don’t Ride Alone: Virtual Communities as

Communities’, In Wellman, B. (Ed.), Networks in the global village: life in

contemporary communities, Westview Press, Boulder, CO, pp. 331-366.

Yamauchi, Y. et al. 2000, ’ Collaboration with Lean Media: How Open-Source Software

Succeeds’, ACM Conference on Computer Supported Cooperative Work (CSCW2000),

Philadelphia, PA <http://www.bol.ucla.edu/~yutaka/papers/yamauchi_cscw2000.pdf >

(Accessed 18 Jun. 01).

Yee, D. 1999, ’Development, Ethical Trading, and Free Software’,

<http://danny.oz.au/freedom/ip/aidfs.html> (Accessed 11 Sep. 00).

Zawinski, J. 1999, ’resignation and postmortem.’,

<http://www.jwz.org/gruntle/nomo.html> (Accessed 22 Jun. 2000).

On the Pareto distribution of Sourceforge projects
Francis Hunt1 and Paul Johnson2

1 Centre for Technology Management, Cambridge University Engineering Department, Mill Lane, Cambridge CB2 1RX

2 Marconi Labs, Gates Building, J J Thomson Avenue, Cambridge CB3 0FD

Abstract
Open source software has risen to prominence within the last decade, largely due to the success of well known projects
such as the GNU/Linux operating system and the Apache web server, amongst others. Their significant commercial
impact, with GNU/Linux reportedly running on 25% of server machines and Apache on 60% of web servers, has
prompted many companies who use and who develop software to reassess their traditional modes of functioning. A
number of companies such as IBM, HP and Sun have invested significantly in developing open source software. Much
early written work on open source software development aimed at raising awareness and advocating its uptake. More
recently the interest has been in quantifying and qualifying the advantages, disadvantages and other features of open
source software. This paper aims to contribute in this second area.

Most work on open source implicitly treats all projects as equivalent, for want of ways of classifying them. Benefits of
‘typical’ projects are claimed, with little attention to what constitutes a ‘typical’ project. In this paper we look at data
available on SourceForge, a web site hosting upward of 30,000 open source projects and characterise the distribution of
projects. Considering the number of downloads per week of the software, we show that for the most part the data
follows a Pareto type distribution i.e. there are a small number of exceptionally popular projects, most projects being
much less popular, and the number of projects with more than a given number of downloads tails off exponentially. We
offer explanations for this distribution and for the places where the actual distribution deviates from the model and
propose ways that these explanations could be tested. In particular there seem to be fewer than expected projects with a
small number of weekly downloads. Likely explanations for this would seem to be either that projects with a small
number of downloads per week do not tend to use SourceForge, or that this small number of downloads indicates a low
level of interest in the project and such projects are inherently unstable (either they die or become more popular).

Two practical applications of this work are: it is useful for people or companies starting an Open Source project to have
an idea of what a ‘typical’ project might entail; secondly, it enables analysis of best practice and benefits to be tied to
some sort of classification of projects and allows questions such as how benefits scale with project size to be examined
in detail.

Introduction
Open source software has risen to prominence within the last decade, largely due to the
success of well known projects such as the GNU/Linux operating system and Apache
web server, amongst others. Their significant commercial impact, with GNU/Linux
reportedly running on 25% of server machines and Apache on 60% of web servers,
has prompted many companies who use and who develop software to reassess their
traditional modes of functioning. A number of companies such as IBM, HP and Sun
have invested significantly in developing open source software. Much early written
work on open source software development was aimed at raising awareness and
advocating its uptake, the most famous example being Eric Raymond’s “The Cathedral
and the Bazaar” essay (1999). More recently the interest has been in quantifying and
qualifying the advantages, disadvantages and other features of open source software.
This paper aims to contribute in this second area.

This paper analyses and draws conclusions from statistics on the Sourceforge website,
a site hosting over 30,000 open source software projects. This site was set up in
November 1999, providing freely available infrastructure for running open source
software projects. It is the premier site for hosting open source projects, and
conclusions about open source development drawn from the Sourceforge site are likely
to be relevant to a broad range of open source projects. In this paper we analyse the
distribution of projects according to the frequency that their software is downloaded.

Quantitative studies of open source software development are relatively rare. Notable
exceptions include studies of the Apache project (Mockus, Fielding et al. 2000), the
Gnome project (Koch and Schneider 2000) and of Linux e.g.(Wheeler 2001). Rene

Kienzle (2001) has also investigated the statistics on Sourceforge, in particular the
number of developers associated with different projects. His results do not overlap
those of this paper and can be considered complementary.

The rest of this paper is structured as follows: first we discuss the data used in the
analysis; then we examine the distribution of projects according to the frequency of
project downloads; finally we draw conclusions and suggest avenues of further
research.

Data
Sourceforge hosts over 30,000 open source development projects. It provides free of
charge infrastructure for running such projects, including version control, space for a
project website, bug tracking and mailing lists. Significantly (for this paper) it also
collects and displays statistics on the various projects, such as the number of times a
piece of software has been downloaded on each of the last 30 days, the number of
times its web pages have been viewed and the number of times software has been
checked in to the version control system. These are all measures of project activity;
other such measures which are not displayed on the statistics page include activity on
the project mailing lists, bugs reported and new official releases of code. A number of
measures are combined into an overall measure of project activity1, and the most
active projects are listed.

Having originally obtained permission to study their website in February 2001, we
collected the statistics from all the projects listed on the most active project list on 22nd

October and again on the 22nd November, providing two contiguous sets of 30 days2.
The statistics collected for each day and project were the number of downloads, the
number of webpage views and the number of CVS commits.

A natural first question is how reliable are these data. The statistics collection and
processing routines on Sourceforge are known to contain bugs (there are open bug
reports #462957 from the 19th September on download statistics; #455161 from 24th

August on CVS statistics; and #451204 from 15th August on the pageview statistics).
However we believe that the download statistics are in general reliable, but care is
needed in making generalisations from outliers. In terms of the reliablity of the data
capture operation from the Sourceforge site, a visual check was made between the data
as displayed on Sourceforge and the data as recorded in our database on five of the
projects and we are moderately confident that there were no systematic errors in
transcribing the data.

The second question is how representative are these data. This question splits into:
how representative the data are of active projects on Sourceforge; and how
representative the data are of open source projects in general. The data is
representative of active projects on Sourceforge since it contains all active projects.
Sourceforge is also the premier site for hosting open source projects, so it is plausible
that the data are representative of open source software development as a whole. Some
very well known projects do not use Sourceforge e.g. Linux, Apache, Mozilla. There is

1 The actual metric used is in the source code is (Scholl 2001):
log(3*forum_msgs)+log(4*project_taks)+log(3*bugs)+ log(10*patches)
+log(5*supports) +log(cvs_commits) + log(5*developers) +log(5*filereleases)
+log(0.3*downloads)) * servey_rating_agregate.

2 This data is available for download from http://www-mmd.eng.cam.ac.uk/people/fhh10/fhh10.htm.
Although the two sets of 30 days are contiguous, data for 27th October is missing for unknown reasons.

also a cluster of GNU projects that are hosted elsewhere and a recently formed
competitor to Sourceforge called Savannah3. There are also a number of open source
projects that are hosted by companies. Nonetheless, it seems safe to assume that the
majority of active open source projects in the world are hosted on Sourceforge and
hence studying the Sourceforge data tells us something about open source
development.

Analysis
We investigate 3 issues in this paper:

� time series of total sourceforge downloads

� cross sectional distribution of projects at a moment in time

� differential behaviour of segments of the cross section

Time series of total sourceforge downloads

Summing the downloads on all the active projects and plotting the time series of the
total downloads in figure 1 immediately highlights a number of interesting points.
Firstly the initial six weeks indicate a general increase in download activity, though it is
possible that this increase is in fact an a return to normality after terrorist attacks in

3 Savannah was set up by people who thought it ethically unacceptable that VA, the company which own
Sourceforge, should produce an enhanced closed source version of the Sourceforge software.

Timeseries of Sourceforge downloads

0

50000

100000

150000

200000

250000

300000

350000

21
/0

9/
20

01

28
/0

9/
20

01

05
/1

0/
20

01

12
/1

0/
20

01

19
/1

0/
20

01

26
/1

0/
20

01

02
/1

1/
20

01

09
/1

1/
20

01

16
/1

1/
20

01

Date

To
ta

l d
ow

nl
oa

ds

Figure 1: Total downloads from Sourceforge site

the US on September 11. Secondly, something peculiar happens in mid November, in
particular on Tuesday 13th and Saturday 17th November. We do not use this data in
our subsequent analysis, because of this unexplained turbulence. Thirdly there is a
noticeable weekly cycle. The first day plotted is Friday 21st September and the troughs
of the weekly cycle occur at weekends. This is perhaps slightly surprising and
suggestive of commercial use of software on Sourceforge, or at least use of commercial
resources to download the software.

Cross sectional distribution

If we examine the distribution of projects according to the total number of downloads
they received in the 30 days from September 21st, plotting in figure 2 the projects as a
histogram with bins width 10, we obtain a very heavily skewed distribution with a tail
that extends out to more than 600,000 downloads. The median number of monthly
downloads is 70 i.e. half the active projects have between 0 and 70 downloads whilst
the other half have between 70 and 600,000 downloads. Such heavily skewed
distributions, though not as common as the omnipresent normal distribution, do occur
in a wide range of phenomena such as the distribution of incomes (Pareto 1896),
earthquake severities (Richter 1958), forest fire sizes, word usage frequencies (Zipf
1949) and web site popularities (Adamic and Huberman 2000). Of particular interest
in all the examples just mentioned is that the distribution tails off exponentially e.g. in
the case of incomes, this means the ratio of the number of people who earn more than
you to the number of people who earn 10 times more than you is the same regardless
of your income. Distributions with this property are variously called Pareto, Zipf or
power law distributions. Plotting the logarithm of the frequency of an event against the
logarithm of its ‘size’ yields a straight line graph for the tail of such a distribution.

In figure 3 we plot the number of projects with a given number of downloads. We see
that the distribution does have the characteristic Pareto tail. There are a number of
proposed explanations for such distributions e.g (Bak 1997), but most relevant here is
likely to be the winner-takes-all nature of project popularity: as a project grows in
popularity it becomes more attractive since there is more likely to be good
documentation, knowledgeable people to provide support, further development work,
software tools that work with it, …etc.

Project distribution according to downloads

0
100
200
300
400
500
600
700

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

Total downloads in 30 days from Sept 21st

Nu
m

be
r o

f p
ro

je
ct

s

Figure 2: Sourceforge project distribution

Looking more closely at the number of project downloads in figure 4 using reduced bin
sizes we see that there are fewer than expected projects with a low number of
downloads. Having checked our data collection, this does not seem to be due to an
error in the data collection, or to be an artefact of the sampling strategy. Thus projects
with low numbers of downloads are relatively uncommon on Sourceforge. Two
competing explanations for this are that either projects with low numbers of

Project distribution according to downloads

0
0.5

1
1.5

2
2.5

3
3.5

2.2 2.7 3.2 3.7 4.2 4.7 5.2 5.7

log(downloads)

lo
g(

nu
m

be
r o

f p
ro

je
ct

s)

Figure 3: Log-log plot of download frequencies exhibiting a power law over three
orders of magnitude

Project distribution according to downloads

0

100

200

300

400

500

0 6 16 26 36 46 56 66 76 86

Total downloads in 30 days from Sept 21st

N
um

be
r o

f p
ro

je
ct

s

Figure 4: Distribution of projects with few total downloads

downloads do not use Sourceforge, or that such projects are inherently unstable i.e
either they rapidly grow or they rapidly die off. We investigate whether this is the case
in the next section.

Differential behaviours of segments of the cross-section

In this section we examine firstly the relative growth in downloads for projects with
various numbers of downloads. Are projects with low numbers of downloads more
likely to grow or to shrink than other projects? To measure the relative growth of each
project, we divided the slope of the best fit line through the downloads of 30 days from
September 21st, by the mean number of downloads in these 30 days. Averaging these
relative growth figures over bins of ~200 projects and plotting this relative growth
against the log of the mean number of downloads, we see clearly in figure 5 that low
download projects grow faster than high download projects. (This does not seem to be
a quantization effect i.e. due to number of downloads being an integer, since such an
effect should not bias the direction of growth.)

It is worth noting that although the relative growth of projects was stronger for
projects with few downloads, the overall trend in total downloads in the period
observed is upwards. It may be that the correct conclusion is that overall trend in
downloads over all projects is amplified in the projects with few downloads. To test
this, we would need data for a period when the overall number of downloads from
Sourceforge was declining4.

The second issue we consider in this section is whether projects with low numbers of
downloads are more unstable. Figure 5 has shown that projects with low numbers of
downloads on average grow more strongly than those with high numbers. Is this true
of all such projects, or does this average disguise a wide variety of outcomes?
Intuitively, it is to be expected that a project with a low number of downloads is more
easily influenced by external events. In figure 6 we plot the standard deviation of the

4 If such a period does not exist, then the hypothesis could still be tested by looking at periods of differing
overall growth in downloads from Sourceforge.

Downloads growth profile

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5

log(downloads)

pe
rc

en
t d

ai
ly

 g
ro

w
th

 in

do
w

nl
oa

ds

Figure 5: Growth profile of projects with differing numbers of downloads

number of downloads over the 30 days from September 21, normalised by the mean
number of downloads. As expected this show that projects with low numbers of
downloads are subject to greater variations in downloads.

Conclusions and further work
In this paper we have characterised the distribution of projects according to the
number of downloads they receive. The open source projects most frequently studied
(such as Linux, Apache, Mozilla) lie at the extreme end of a highly skewed
distribution. Although studying these may be a fruitful approach in identifying ‘best
practice’, it is potentially misleading since the problems and solutions found in the
running of these projects may be inappropriate for most projects. Studying instead the
median projects may prove useful.

In setting up a site to host open source projects, it is reasonable to assume that the
resource requirements of the various projects will also be distributed according to a
Pareto distribution. This is helpful in planning support for these projects.

The questions considered and answered in this paper bear further study, particularly
against different samples of Sourceforge data. Given the richness of the data set there
are also many unasked questions – readers are invited to download the dataset from
the CTM website and experiment.

References

Adamic, L. A. and Huberman, B. A. (2000). “The nature of markets in the World
Wide Web.” Quarterly Journal of Electronic Commerce 1(1): 5-12.

Project download 'volatility'

0
0.5

1
1.5

2
2.5

3
3.5

0 1 2 3 4 5

log(downloads)

st
an

da
rd

 d
ev

ia
tio

n
of

do

w
nl

oa
ds

/ a
ve

ra
ge

 d
ai

ly

do
w

nl
oa

ds

Figure 6: Profile of project download ‘volatility’

Bak, P. (1997). How nature works : the science of self-organized criticality. Oxford,
Oxford University Press.

Kienzle, R. (2001). “Sourceforge preliminary project analysis.” available online at
http://www.osstrategy.com/sfreport

Koch, S. and Schneider, G. (2000). “Results from software engineering research into
open source development projects using public data.” available online at
http://opensource.mit.edu/papers/koch-ossoftwareengineering.pdf

Mockus, A., Fielding, T., et al. (2000). "A case study of open source development: the
Apache server". 22nd International Conference on Software Engineering,
Limerick, Ireland.

Pareto, V. (1896). Course of Political Economy. Lausanne.

Raymond, E. S. (1999). "The cathedral and the bazaar" in The cathedral and the
bazaar : musings on Linux and open source by an accidental revolutionary.
Sebastopol, CA ; Beijing, O'Reilly.

Richter, C. F. (1958). Elementary seismology. San Francisco ; London, W. H. Freeman.

Scholl, K.-U. (2001). “RE: How are statistics calculated?” posting to discussion forum
available online at http://sourceforge.net/forum/message.php?msg_id=222302

Wheeler, D. A. (2001). “More than a gigabuck: estimating GNU/Linux's size.”
available online at http://www.dwheeler.com/sloc/redhat71-
v1/redhat71sloc.html

Zipf, G. K. (1949). Human behaviour and the principle of least effort : an introduction
to human ecology. Cambridge, Mass., Addison-Wesley Press.

Goal-Diversity in the
Design of Dependable Computer-Based Systems

A. T. Lawrie and C. B. Jones

Department of Computing Science
University of Newcastle University NE1 7RU

February 2002

Abstract

This paper sets out an argument for experimenting with some aspects of the “Open
Source” development style in the creation of “Computer-Based Systems” . The particular
objective is to find ways of increasing the “Dependability” of systems. The most
interesting facet of Open Source development in this connection is the use of multiple
developers to introduce diversity into the design process. In addition to relying on the fact
that no two developers are identical, the suggestion here is that asking each developer to
emphasize different goals might result in solutions whose comparison and combination
could increase dependability.

Keywords
COMPUTER-BASED SYSTEM, DEPENDABILITY, DESIGN PROCESS, DIVERSITY, FUNCTIONAL

GOALS, GOAL-DIVERSITY, HUMAN-DIVERSITY, HUMAN-REDUNDANCY, NON-FUNCTIONAL

GOALS, OPEN-SOURCE SOFTWARE PROCESS, REDUNDANCY.

1. Pre-Prologue

In the spirit of the proposed approach to development, the two authors (ATL, CBJ) have

discussed many ways of presenting the ideas in this paper. In the end, two rather different

styles are given below: in the Section titled “Prologue” (CBJ), an outline argument is

presented; Sections 3 – 6 (ATL) expand on this argument and provide definitions of

terms etc.

2. Prologue

• The systems of interest are referred to as “Computer-Based Systems” to reflect

the key role of people in the overall system.

• The aim is the creation of systems that are dependable.

• Dependability is often achieved by careful use of redundancy.

• Systems are created by (groups of) humans.

• The interest then is to use redundancy in the design and development process.

• Such redundancy is present in projects described as “Open Source” developments.

• Humans inevitably introduce an element of diversity into any task.

• Setting different secondary goals for designs can enhance diversity.

• Careful comparison and combination of diverse solutions could result in

dependable systems.

• The whole discussion can be related to standard dependability notions such as the

distinction between faults, errors and failures.

3. The Design Process of Computer-Based Systems

The phrase “Computer-Based System” (CBS) is used in a socio-technical sense that

extends the chosen view of systems to include both humans and computers. This is

illustrated in Fig 3.1.

Figure 3.1 Two-Subsystem CBS Definition

This definition has ramifications since it interprets the human subsystem mainly in terms

of the user-domain and emphasises the need to balance and consider the influences of

both technology and social issues in their development [Mason & Willcocks, 1994].

Although this is critically important, it ignores the other key human role in the subsystem

that concerns the design and development of the computer system.

Human

Subsystem

Computer
Subsystem

Computer-Based System

To clarify this point, it is possible to illustrate how the view of a CBS could be extended

to include three subsystems:1 1) the design-process, 2) the computer system, and 3) the

user-domain. This view is illustrated in Fig 3.2.

Figure 3.2. Three Subsystem CBS Definition

When viewed in this way, a number of important considerations can be discussed

regarding the design and use of CBS.

1. The two human subsystems can be considered as natural-systems and the

computer-system can be considered as an artificial system

o Natural systems can set and change their goals whereas artificial systems

are designed by humans to fulfil human needs and therefore have their

goals designed into their function2.

2. Here then, we can appreciate the important dominating relationship between the

design process and the computer-system. The design process generates the

computer-system (see [Jones, 2002]).

3. The goals of the design-process will therefore have an overriding influence upon

the eventual computer-system produced. Any errors or shortcomings that arise in

the design process can manifest themselves as defects or deficiencies in the

computer-system (see Section 4)

1 It should be noted that the terms for design process and end-user domain include both their primary
secondary environments (see: [Cooke & Slacke, 1991]). Additionally, the term computer-system includes
both hardware and software components.
2 Whether natural or artificial, most systems are goal-directed i.e. their behaviour is purposive towards
achieving and maintaining some desired state [Heylighen, 2001].

Uses

Generates
Design
Process

Computer
System

User
Domain

Specification

Requirements

4. The design specification represents a formal interpretation of the user-domains

requirements, in terms of goals of the computer-system: misunderstandings or

omissions will result in a computer-system that does not fully satisfy this purpose.

5. Over time, the user-domain may change its goals. Unless the design-process can

change the computer system’s “designed-in” goals accordingly, the computer-

system will no longer fully satisfy the user-domains goals.3

3.1 Section Summary

The key point from this Section is that the design process is a key (socio-technical)

subsystem in a CBS. Its players are responsible for the interpretation, creation, and

evolution of the user-domains goals and expectations – via computer system

development. Unfortunately, the existing CBS definition, at best, makes its inclusion

implicit.

4. Dependability of Computer-Based Systems

The stance taken by the dependability community is to accept that, in any non-trivial

software system, it is almost certain residual design faults will remain in the CBS

[Randall, 2000]. Therefore, dependability is concerned with how such systems can be

designed and developed to provide an acceptable continuity of service in the event of

such faults giving rise to errors that may affect the expected delivery of service (see

Section 4.1).

In order to help achieve this goal, a large body of theoretical knowledge and technical

application has been combined into a conceptual framework. At the highest level, this

framework identifies three principal factors influencing dependability.4

4.1. Impairments to Achieving Dependability

The impairments of dependability are concerned with the nature of problems in complex

systems. These are faults, errors, and failures:

3 Software evolution and maintenance is problematic and extremely costly. It may consume 80% of a
software system’s total life-cycle costs. Legacy systems represent computer-systems that can no longer
fully satisfy the user-domains goals [Sommerville, 2001].
4 Unless otherwise cited, Sections 4.1 through to 4.3 is with direct reference to [Laprie, 1992].

• Faults: are the hypothesized cause(s) of a system error. A fault becomes active

when it produces an error

• Errors: are any part(s) of the system state that is liable to lead to a subsequent

system failure. During system execution, the presence of active faults can only be

determined by the detection of errors.

• Failures: occur whenever the delivered service no longer complies with the

specification - this being an agreed description of the system’s expected function

and/or service.

4.2. Means to Achieving Dependability

There exists a collection of methods and techniques to promote the ability to deliver a

service on which reliance can be placed, and to establish confidence in the system’s

ability to help accomplish this:

• Fault prevention: how to prevent fault occurrence or introduction into the CBS

system.

• Fault removal: how to reduce the presence (number, or seriousness) of faults;

• Fault tolerance: how to provide a service complying with the specification in

spite of faults;

• Fault forecasting: how to estimate the present number, the future incidence, and

the consequences of faults.

4.3. Attributes to Achieving Dependability

System properties can be identified that help reveal certain desirable attributes of

dependability. However, depending upon the users and application domain, such

properties may be more (or less) emphasized. The main attributes are [Laprie, 1995]. :

• Availability: readiness for usage;

• Confidentiality: non-occurrence of unauthorized disclosure of information

• Integrity: non-occurrence of improper alterations of information

• Maintainability: the ability to undergo repairs and evolution

• Reliability: continuity of service;

• Safety: non-occurrence of catastrophic consequences on the environment

Furthermore, some of these may be compound attributes generated from other ones. For

example, Security is seen as being the combination of attributes Integrity, Availability,

and Confidentiality.

4.4. A CBS View of Achieving Dependability

By mapping these means and impairments to an extended version of the three subsystem

CBS definition (cf. Fig 4.1), the dependability factors documented above can be

illustrated to reveal the generic strategies available to achieving greater dependability of

CBS during their design and development.

Figure 4.1 Main CBS Dependability Strategies

Firstly, as already highlighted in Section 3, Fig. 4.1 shows the dominating influence of

the design process. Any human errors or oversights in the design process can quickly

result in generating design faults in the software artefact5, which then, during execution,

5 The software artefact represents a “white-box” compositional view of the system…whereas the
computational behaviour represents a “black-box” dynamic execution view of the system (cf. [Jones,
2002]). Of particular interest is that, since the user can only judge the provision of service from a black-box
view of the CBS, perceptions of service failure may vary from one user to another. Equally, while faults
and errors (in an absolute technical sense i.e. a fault manifests into an error which then affects the
computational behaviour) may occur at the white-box and black box levels, it is only considered (i.e.
judged) a failure if it becomes undesirably perceptible to the user’s view of required service delivery.

Software
Artifact

Computation
Behaviour

Delivered
Service

Human
Error

Fault

Error

Failure

Fault
Prevention

Fault
Removal

Fault
Tolerance

Design
Process

Generates

Generates

Generates

Main
Dependability

Strategies

White-Box View

Black-Box View

User-View

become activated into errors and result in service delivery failures later during

operational use. Secondly, the main dependability strategies employed are also shown, in

terms of fault prevention in the design process, fault removal in the software artefact, and

fault tolerance to intervene and limit errors causing service failure during operational

usage.

Fault prevention, although an important means to achieving dependability, is seen as a

‘general’ system and software engineering responsibility. While fault-tolerance is seen as

a specialist area concerned directly with dependability. Fault removal may be employed

by both fields – either at the process level (i.e. testing) or system level (i.e. fault-masking)

(see: [Laprie, 1992], [Randall, 2000]).

Fault forecasting is not shown in Fig. 4.1 as it is not easily illustrated and is concerned

with techniques (i.e. fault-injection) to ensure a representational “coverage” of the

systems intended operational usage. Nevertheless, this means of achieving increased

dependability of CBS is vital in terms of generating and verifying fault assumptions to

determine the right fault-tolerant mechanisms to apply [Randall, 2000].

4.5 The Complexity Involved in Achieving Dependable CBS

Dependability is an inclusive concept but all of its aspects can have very subtle interactions and

interpretations in any specific context. It can also be seen that the dependability attributes relate

not to “what” functionality is delivered, but “how” that functionality is delivered. They therefore

relate to the desirable non-functional qualities that promote CBS dependability (see:

[Lamsweerde, 2001], [Jackson, 2001]). For example:

• Reliability of CBS is where the system behaviour provides (and only provides) that

functionality needed for service delivery

• Availability of CBS is where authorised access to the required functionality can be

provided whenever service delivery is needed.

Therefore, a failure in the CBS can occur without a failure in the service (but not vice versa – hence the
‘generates’ relationship in diagram 4.1)

• Safety of CBS is where the required functionality does not result in service delivery that

can result in damage to the user or wider environment

• Security of CBS is where the required functionality does not result in service delivery

that can be mitigated by unauthorized accidental or malicious access by others.

• Maintainability of CBS is where required service delivery changes, over time - by the

user-domain, can be satisfied by equivalent functionality changes in the computer system.

• Performability of CBS is where the required functionality can be provided at a time

needed to provide the delivered service. 6

However, not only may these non-functional qualities vary from one specific application to

another, but also, as [Bell, 2000] notes, in any design or development context the relationship

between these non-functional attributes can be either complementary or conflicting (these

relationships may however vary also between specific applications). A simplified and generic

view is shown in Fig. 4.2:

Figure 4.2: Complementary and Conflicting Goals in CBS Design

Here, we can see that while reliability and maintainability may often complement each other

during design and development, trying to achieve increased performance, also, may well conflict

with, and militate against fulfilment of, the other two design goals7.

6 The “close proximity” of non-functional considerations relating to timeliness of functionality provision
and the actual functionality provided in designing and developing real-time applications is highly visible
and usually made explicit.
7 The pursuit of increased structural flexibility offered by low data coupling, information hiding, and high
cohesion to achieve maintainability goals will often also complement the achievement of reliability goals
through increased faults and errors control and containment offered by program scope localisation.
However, the pursuit of performance goals using such structures as inline-functions (c.f. Prata, 1995) and
fast complex algorithms can often reduce program comprehension and produce unanticipated and

Reliability

Maintainability

Performability

Source:
[Bell, 2000: p 17]

4.6 Redundancy and Diversity

One key general weapon to achieve Dependability is Redundancy. In many engineering

applications, one can “over engineer” by, for example, introducing more strength than is

required in materials or leaving more than minimum time. In situations where random

failure or decay is the enemies of dependability, the use of multiple instances of a

component (as in “Triple Modular Redundancy”) can increase dependability. But design

errors are not random and the execution of three copies of a flawed algorithm will do

nothing to remove their inherent undependability. Redundancy can be utilised in software

systems but it must be weeded to a way of achieving diverse solutions.

4.7 Section Summary

The key point from this Section is that, in complex CBS, residual design faults from the

design process are almost inevitable. Awareness of this has given rise to a range of

dependability strategies to prevent, remove, tolerate, and forecast faults, errors, and

failures that may occur. To aid this goal, dependability employs a range of mechanisms

that leverage redundancy and diversity in fault tolerant strategies. However despite the

dominating role of the design process, concepts of redundancy and diversity are little

used to facilitate the other dependability strategies or overcome the inherent difficulties

of promoting the desirable attributes that embody dependable CBS.

5. Human Redundancy and Human Diversity

5.1 Human Redundancy

It has been argued in Section 4 that redundancy is fundamental to improving the

dependability of engineered systems. In particular, it is a core feature of the many fault-

tolerant strategies that have been applied to improve CBS dependability. What is less

well understood is how forms of human-redundancy can be applied to the other

dependability strategies of fault-prevention, fault-removal and correction, fault-coverage

– involving the design process. Furthermore, it is legitimate to consider how human

redundancy may also help promote the integration of important non-functional attributes

that reinforce the dependability of CBS.

undesirable side-effects – that can result in faults, errors, and failures later. Therefore undermining
potentially both maintainability and/or reliability goals.

5.2. Human Redundancy and Open Source

The emergence of open-source software development is a recent example of how human-

redundancy can be employed in a highly decentralized way [Raymond, 1999]. Factors

common (see [Gacek et al., 2001] for a discussion of different Open Source attributes)

too many Open Source projects include development through geographically remote

collaboration across the Internet. The main form of communication and coordination is

usually via email, website domains, and central source-code repositories. Such products

as the Linux operating system, the Kde desktop, and the Apache web-server have become

highly successful with both industrial and domestic users and advocates.

The voluntary and indirectly subsidized nature of open-source development [Meyer,

2000] allows the potential for a level of duplication of development effort that could be

rarely (if ever) matched and supported in traditional software development projects.

Successful open-source projects can be supported by hundreds, and sometimes thousands,

of contributing developers. Furthermore, [Yamouchi et al., 2000] indicates that a

combination of voluntary effort and self-appointed work allocation supports the potential

for duplication of effort and overlapping development. Such human-redundancy

characteristics are often found in high reliability organisations where dedicated

duplication and overlapping responsibilities are employed for crosschecking and

verification [Viller et al., 1997]. This is, however, in stark contrast to traditional software

engineering practice where economic constraints view human resources are economically

limited and any duplication could result in increased costs and reduced commercial

competitiveness. Traditional software development has increasingly been managed along

concurrent engineering lines where project schedules are expedited by ensuring that the

work is divided up and allocated on an individual task basis. [Weinberg, 1971] argued

that this inhibits the ability to judge the quality of programs, as no source exists for

generating comparative criteria.

5.3. Human Diversity

As noted in Section 4.6, software redundancy also requires diversity. Therefore, implicit

in the discussion in Sections 5.1 and 5.2, is the fact that human redundancy is valuable

because humans have a degree of differentiation. For example, humans have different

intellectual abilities, experiences, knowledge, and personalities [Westerman et al., 1997].

If this were not the case, human redundancy – in terms of task duplication and

responsibility overlapping, would be of no value since the redundant human resources

would always reach the same view and make the same mistakes. Despite this, the levels

of diversity required in developing software systems are very high and even with

attempts to ‘ force’ diversity within the task environment [Popov et al., 1999] humans are

still prone to common-mode-failure8. However, this paper is not concerned with such

issues9, but instead, focuses upon how human resources could be reorganized within the

design process to employ human redundancy and diversity to increase the potential of the

other existing means of dependability such as fault prevention, fault-removal, fault-

coverage, and design for dependability. Three areas are explored in Sections 5.3.1 to

5.3.3, which also draws upon the open-source development process where appropriate.

5.3.1 Increased Fault-Removal and Correction

One of the most visible benefits of the open-source development process is its increased

bug finding ability through massive peer reviews of submitted source-code. This was

characterised by [Raymond, 1999] in his seminal paper on evaluating the open-source

software development approach as:

“Given enough eyeballs, all bugs are shallow.” (p. 41)

This informal approach to using human diversity for bug finding was, however,

exemplified much earlier by [Weinberg, 1971] in his “egoless programming” philosophy.

8 This is where two (or more) developers make the same human error during system development resulting
in multiple version failure under the same functionality demands (cf. [Knight & Leveson, 1986]).
9 Although we do not wish to imply that design and cognitive diversity for minimizing common-mode-
failure is unimportant.

To return to the main strategies of achieving dependability in CBS (see Fig. 4.1), this

example demonstrates how the design process can improve the dependability of CBS

through leveraging existing cognitive diversity [Westerman et al., 1997] for increased

fault detection, removal, and correction before deployment.

5.3.2 Increased Fault-Coverage

A much less visible characteristic of open-source development is the belief that, because

of the voluntary nature of open-source, developers naturally “gravitate” to software

development work they are naturally interested and/or already knowledgeable in

performing [Lang, 2000]. This, combined with the reality that open-source developers are

also users of the software they develop [Gacek et al., 2001] reveals that open-source

developers have an intrinsically enhanced understanding and knowledge of the user-

domain in which the software will be deployed. Consequently, this improves the

particular developer’s ability to anticipate potential usage exceptions, and likely faults,

errors, and failures that the system may be susceptible too once in operational use

[Randall, 2000].

On a less positive note, the open-source development approach appears only to develop

software where there are well-established existing systems to clone/improve upon or

where the development knowledge required is well exposed [Meyer, 2000]. This seems to

limit major interest to the development of such systems as commercial-of-the-shelf

applications (e.g. desktops, word-processors, office-applications, RDMS etc) or systems

and systems development type software (e.g. compilers, operating systems, programming

IDEs etc). Therefore, while it is possible that the open-source software development

approach may be capable of developing such systems more dependably, it highlights that

the open-source software process may be unworkable for development of software

systems for specific application domains like business applications, process control

software, or medical information system [Gacek et al., 2001]. It appears that, in contrast

to traditional development approaches, open-source development is not subject to the

additional requirements engineering challenges with which traditional software

engineering is often faced.

However, influenced by the open-source phenomenon, [Anderson, 1999] carried out an

experiment in massive parallel requirements engineering to derive a security specification

for a (notional) national lottery system. He reported positively on how human diversity

can be used to increase the reliability of computer-based systems through enhanced

specification completeness and consistency checking. His findings are consistent with

social constructivist views that different confirming observations that support each other

increase the reliability of what is perceived [Heylighen, 2001].

While the open-source process indicates that greater fault-coverage can only be achieved

though human redundancy and diversity in known or well-established user-domains,

[Anderson, 1999]’s example possibly indicates otherwise. It suggests that such an

approach could be utilized as a fault-prevention approach to decrease the risks of design

faults by ignoring or omitting important user-domain details in deriving CBS

specifications.

5.3.3 Increased Problem-Solving and Solution Finding

A much more ambiguous possibility, in open-source development, is the increased

potential for problem solving and solution finding through massive forms of human

redundancy and diversity. In his review of formal and informal design philosophies

[McPhee, 1997] noted that the benefits of the informal route was the increased learning

and specific knowledge acquisition that an explorative and iterative approach to design

offered. Such views are reinforced by the experiences of [Raymond, 1999] when he

designed the open source product “Fetchmail” . During the project he became convinced

that having many developers scrutinize source-code designs can result in someone

helping you reframe the problem and simplify the design solution. He noted that:

“…It is not only debugging that is parallelizable; development and (to a perhaps

surprising extent) exploration of design space is, too…at a higher level of design,

it can be very valuable to have the thinking of many co-developers random-

walking through the design-space near your product…exploration essentially by

diffusion…This works very well. ” (p. 47-52).

Software design and development has long been recognized as one of the most complex

tasks imaginable [Brooks, 1995], [Glass, 1998]. This is because a designer is often faced

with a multiplicity of design goals to accomplish [Weinberg, 1971]. In such situations,

studies have shown that, as a result of this complexity, developers will focus on the most

prioritized goals through treating other important system attributes as “free-variables” to

be traded-off in their achievement [Weinberg and Schulman, 1974]. However, it is

suggested here that the open-source software process is ‘geared’ towards openly

resolving such technical conflicts. A justification for such a view is that open-source

software development is driven by, and relies upon, good developers having ongoing

“self-interest” to continue supporting the product [Sanders, 1998]. To achieve this, the

open-source approach must be focused upon searching and finding appropriate design

solutions to resolve such conflicts in order to accommodate the interests of the majority10.

A good example of this is discussed in [Pettit et al., 2001]. They argue that the reason

why the Linux kernel was designed to support dynamically linked modules was through a

very large group of people pursuing their own individual interests of wanting to add or

remove large sections of functionality in a convenient manner to suite their own personal

and technical needs. In short, they believed the stimulus for such a solution was because:

“Linux was made by a very large group of people with a very diverse set of

objectives.” (p. 40).

Although this is a much less certain attribute of open-source software development, there

are indications that a combination of massive human-redundancy and diversity of

individual development goals helps to overcome the inherent complexity of software

development by supporting increased problem reframing and solution finding. This is

10 The Apache “shared-leadership” project is a good example of how design is the result of accommodating
and resolving design solutions through majority consensus [Fielding, 1999]. Furthermore, it is suggested
that the inability to resolve technical design conflicts can often result in “code-forking” of one project into
two different design directions (cf. [Moody, 2001]).

achieved not only through increased design ideas generated, but also through greater

visibility11 of the many design conflicts and trade-offs regarding important system

attributes that developers make during software development. To return to the theme of

Section 4, concerning the important desirable dependability attributes that promote

dependability of CBS, it is suggested that leveraging human redundancy and diversity in

a similar way may improve the integration of such qualities in CBS design.

5.4. Section Summary

The key point of this section was to explore how human forms of redundancy and

diversity may be employed within the design process to promote the other dependability

strategies of fault prevention, removal, coverage, and design for dependability. It has

been identified that human forms of redundancy are relevant for CBS design as they are

inherently differentiated and therefore bring a level of diversity required for software

development. As examples, we have identified human redundancy and diversity issues

raised by the recent phenomenon of Open Source Software development. The Open

Source approach begins to suggest that human redundancy and diversity can be utilised

favourably for all three dependability strategies. Furthermore, there are indications that

human redundancy and diversity increase problem solving and solution finding through

the leveraging of others design views/ideas and conflict resolution of self-orientated

development goals.

6. Goal-Diversity

6.1 Engineering Human Diversity

As discussed in Section 3, the design process is a natural system that sets and changes its

own goals. Furthermore, it has a dominant affect on the computer systems it creates.

Since a CBS is an artificial system that has its goals designed-in, the goals pursued by the

developers will have an overriding influence on the eventual system produced. Any

omissions, conflicts, or mismatches are likely to result in defects and deficiencies in the

system it eventually generates. Therefore, one way to improve control and help reduce

11 See also [Lamsweerde, 2001]: the review of “goal-orientated requirements” and the potential for goals to
making requirements and design conflicts more identifiable.

such problems is to influence the goals of the developers through careful goal setting12 of

required design goals to be achieved and maintained throughout the development of CBS.

Taking the lead from existing approaches of “forced” diversity [Popov et al., 1999],

cognitive-engineering [Westerman et al., 1997], along with goal-setting in management

theory [Latham & Locke, 1979], diversity can be engineered through goal-diversity to

achieve purposive design behaviour that deliberately predisposing individual developers

to pursue and maintain different goals that promote the needed functionality of the

system along with the desirable non-functional attributes that promote dependability of

CBS.

The following Section from 6.2 to 6.4 discuss the specific benefits that may be derived

from such an approach – along with initial ideas of how it could be implemented.

6.2. Goal-Promotion

Non-functional attributes of the system are more likely to be fulfilled when they possess a

close proximity to the required functionality. For instance, system performance, in terms

of its timeliness of functionality, is so closely linked to required functionality in ‘ real-

time’ systems that this non-functional attribute will be explicitly promoted as an

important development goal to be achieved during the design process. However,

maintainability of the CBS is often so remote from present required functionality that it is

more likely to remain and implicit user-domain expectation of the system in the future.

When this happens achievement of the non-functional goal is ultimately left to the

responsibility of the particular developer(s) involved – with regards to their discretion,

skill, and professionalism. As we have seen, the complexity and multiplicity of the

software design task will often result in such implicit goals being traded-off for more

explicitly demanded ones. Consequently, the integrity of the CBS, in terms of its

maintainability attribute, may well be compromised and will not become an issue until

12 The value of goal setting has been long recognized for its ability to create purposive goal-directed
behaviour and attitudes in both individuals and groups see: [Latham & Locke, 1979] i.e. management by
objectives, [Demarco & Lister, 1987] i.e. goal alignment in teams, [Covey, 1992] i.e. personal
improvement.

years later when the user-domain requires the system functionality to be changed,

corrected, or enhanced. Therefore, if one wants a CBS to possess the desirable non-

functional attributes that support dependability, such attributes must be explicitly

promoted as desired non-functional goals of the system.13

The idea of goal promotion is to achieve both increased diversity and coverage of

important non-functional attributes of CBS by utilising human redundancy to implement

the same functional specification as a primary goal, during development, while

deliberately predisposing individual developers of the contributing group to take

responsibility and ownership of an important non-functional attribute as their own

secondary goal during implementation. This not only reduces the complexity of the task,

in terms of removing the multiplicity of goals an individual developer must consider, but

also ensures sufficient coverage of important desirable attributes of the CBS.

6.3. Iterative Design Phases

The notion of goal-promotion from Section 6.2 is an important prerequisite for this phase

to work correctly - as it relies upon continued goal-ownership of secondary non-

functional goals throughout the iterative stages of design review and goal relationship

identification (see: Sections 6.3.1 – 6.3.2). This ensures that individual developers

continue to defend their own secondary goals and critically evaluate and question the

other developer’s secondary goal design decisions throughout the design and

development of the system. As already discussed in Section 5.3.3, it is proposed here that

a number of iterative design and refinement phases (see Sections 6.3.1 – 6.3.2) will

promote increased learning and problem domain understanding. This is necessary with

such an approach as it was already noted in Section 4.5 how the non-functional attributes

of dependability have subtle interactions and emphasis given any specific application.

Therefore, because of this novelty, it will be necessary for the developers to acquire a

deeper understanding before a specific set of evaluation criteria will emerge that will

allow the developers to be able to judge the design rationales to assess more accurately

13 It appears from Bill Gates recent email (see: [Boutin, 2002]) that Microsoft are placing an increased
value and priority on such non-functional dependability attributes of Availability and Security in the future
in order to achieve and realise their design goal(s) of “Trustworthy Computing” for .NET.

whether a particular non-functional goal has been achieved or not (or to what degree it

has been achieved or not).

It is also suggested here that a deeper understanding of the problem domain will also

support dependability strategies of increased fault-prevention and fault-coverage through

the increased sensitivity of developers to other developers design decisions and fault,

error, failure assumptions. This will allow them the increased ability to anticipate

potential defects and deficiencies of the CBS in advance of its deployment.

6.3.1 Peer-Review

The benefits of peer review inspections of program design have already been discussed in

the context of human redundancy and diversity and the open-source approach. The

“many eyes” affect not only supports fault detection and removal strategies of

dependability but, (as noted in Section 6.3 above) in the context of this approach, it also

increases the visibility of the overall development through stimulating greater insight

through reviewing diverse approaches to the design problem by other contributing

developers.

As an initial attempt at envisaging how it should be undertaken, it is suggested that the

beginning of the design phase should be undertaken by developers working in complete

isolation from each other until they have a deeper overall knowledge of the design

problem.14 After an initial attempt at the design each developer then reviews all of the

other developers’ diverse attempts at the design problem. Along with promoting fault

detection and removal strategies the purpose of the review will be to identify important

goal relationships that exist between the diverse designs. This is explored further in

Section 6.3.2 below.

14 The justification for this isolation is to preclude interruptions and negative group affects that may squash
ideas and innovative approaches to the problem. Once all of the developers have a thorough understanding
of the problem it is hypothesised that such influences will have little effect.

6.3.2 Goal Relationship Identification

One of the benefits of a goal-orientated approach is that it quickly allows identification of

relationships that exist between goals [Lamsweerde, 2001]. As we seen from Section 4.5,

non-functional goals can be related as being either complementary or conflicting.

However, it is also suggested here, that in some cases, two goals – while not being

complementary, may also not necessarily be conflicting either. In such circumstances, the

two goals represent a different interpretation and emphasis during their implementation,

and could be made compatible when these concrete specifics are reworked or re-factored.

As discussed in Section 6.3.1, during the review stages an important consideration for

developers will be to recognise the important relationships that may exist between diverse

versions. Where the individual developer believes that another developers non-functional

goal is complementary or compatible to theirs they should redesign their program to

implement it. However, where the developer believes that another developer’s non-

functional goal is conflicting with their own they should document their reasons why they

think it cannot be integrated into their program. After redesign, by each developer, to

integrate complementary and compatible non-functional goals of the other developers the

design review process begins again - only this time with the redesigned and reintegrated

programs. The benefit of such an approach is that it allows a synthesis of non-functional

goals to be iteratively integrated and reviewed. More importantly, however, it also begins

to unearth particular conflicting aspects of the design problem - where concentration of

the contributing developers should be focused. However, such technical conflict

shouldn’ t be viewed negatively, as the discussion of open-source suggests in Section

5.3.3, it can stimulate the search and identification of higher-level design solutions.

6.4. Conflict Resolution

It is inevitable, however, that even with iterative stages of review and redesign to find

solutions to outstanding non-functional goal conflicts, some goal-conflicts will remain

intractable and unresolved. In such situations the prioritization of one goal over another

will need to take place. Goal-orientated approaches are highly valuable in such situations

as they facilitate the evaluation of goals with regards to their priority status [Lamsweerde,

2001]. Furthermore, since the emphasis upon certain desirable attributes of dependability

is reliant upon the specific user and application domain, it will be necessary to get the

input from the user-domain to explicitly decide which dependability attributes are more

important than others. Here, also, goal-orientated approaches are useful as they permit an

interface for discussion between the technical aspects of the design process and the

business/user/management aspects of the user-domain15 [Lamsweerde, 2001].

The important point to this is that the user-domain has a direct and explicit input into the

prioritisation of what dependability attributes are considered more (or less) important.

This makes non-functional prioritisation an explicit user-domain consideration – rather

than an implicit, and often unfulfilled expectation, which is often determined discretely

by a single developer during system development. Therefore, such an approach has the

additional advantage of making the dimensions and attributes of CBS dependability (and

potentially undependability) known to the user-domain.

6.5 Section Summary

The key point of this section is that we can engineer diversity by predisposing developers

to pursue certain desirable goals. This is vitally important since the goals of the process

have an overriding influence on the eventual dependability of the CBS. Goal promotion

not only helps reduce the complexity of the task faced by developers, but also ensures

sufficient diversity and coverage of the important attributes that support dependability of

CBS. However, because different attributes are important in different user and

application domains’ it is important to apply an iterative approach that allows progressive

problem understanding, synthesis, integration, and evaluation criteria of important non-

functional attributes to emerge. Finally, it is vitally important that irreconcilable goal

conflicts are explicitly prioritised within the user-domain in which the CBS will operate.

This allows the limits of the CBS dependability dimensions to be known.

15 Although outside the scope of this paper, in real-life application, this goal-oriented approach to design-
diversity, would probably require an equivalent goal-orientated approach to requirements engineering [cf.
Lamsweerde, 2001].

7. Future Research

The ideas presented by the authors are explorative, in nature, and a number of

experimental and empirical possibilities have been discussed. It should first be noted that,

due to the inherent range of programming abilities and non-linear nature of complexity

scaling in software engineering, experiments in software design are inherently difficult to

control and generalise from. However, the interdisciplinary research project (i.e. DIRC

see acknowledgements in Section 9) in which this research will be carried out has

resources and facilities that will be useful for conducting such research. Secondly, a

number of possible approaches include:

• A pilot experiment into the benefits of increasing human redundancy in fault

detection. It is conjectured that a law of diminishing returns will be experienced.

• A pilot experiment into “goal-diversity” using students initially and later attempts

to confirm any results through observations within an industrial setting. It is

thought that the initial experiment would utilise two groups attempting the same

design problem and giving them different (non-functional) goals to pursue (i.e.

performance vs. maintainability). Eventual solutions would then be exchanged,

discussed, and then merged. Depending upon the outcome of such an experiment,

it may be repeated later using three such groups and objectives. With regards to a

later industrial investigation, it has been suggested that a study should observe

how they manage non-functional goals within the design/development process, in

terms of which goals are achieved, maintained, and or compromised.

8. Conclusions

This paper has argued that redundancy and diversity are important ways to achieve

dependability in CBS. However, despite the fact that the design process is mostly

responsible for the residual design faults that are to be expected (and ultimately tolerated)

in any non-trivial CBS. There has not been the same exploitation of redundancy and/or

diversity principles, at the process level, that has been practiced and pursued by fault-

tolerant strategies at the computer-system level. Nevertheless, the nature of the Open-

Source Software development process begins to suggest that massive forms of human

redundancy and diversity can help improve the dependability of CBS through leveraging

them for other dependability strategies such as fault prevention, removal and coverage.

There are also indications from the Open Source approach that human redundancy and

diversity can promote increased problem solving and solution finding via multiple

views/ideas and the resolution of self-orientated goal-conflict. In recognition of these

Open Source influences, and the important influence of design process goals, the notion

of goal-diversity was discussed. It has been suggested that such an approach may

improve the dependability of CBS through a process of deliberately predisposing

developers to pursue diverse design goals. It is suggested that this may lead to greater

levels of design diversity, coverage, synthesis, solution finding, and integration of desired

non-functional attributes that promote the dependability and trustworthiness of CBS.

9. Acknowledgements

The research of both authors is supported by the EPSRC grant to the Interdisciplinary

Research Collaboration on Dependability of Computer-Based Systems; that of ATL is

also funded by an EPSRC PhD studentship. Both authors are grateful to many colleagues

in “DIRC” for fruitful discussions but would like to single out Denis Besnard and Carles

Sala-Oliveras for particularly intensive interchanges on the subjects reported here.

10. References

Anderson, R., (1999) “How to Cheat at the Lottery (or, Massively Parallel Requirements
Engineering),” in Proc. Computer Security Applications Conference, Phoenix,
AZ,

Bell, D. (2000). Software engineering: A programming approach. 3rd edition. Addison-
Wesley, U.K.

Boutin, P., (2002) Bill Gates Email on Trustworthy Computing. Online at URL:

http://paulboutin.weblogger.com/stories/storyReader$155

Brooks, F. P. (1995). The mythical man month: Essays on software engineering.

Anniversary Edition. Addison-Wesley, New York, NY.

Cooke, S. & Slack, N. (1991). Making management decisions. Prentice-Hall, UK.

Covey, S. R., (1992) The Seven Habits of Highly Effective People: Powerful Lessons in

Personal Change. Simon & Schuster Ltd. London. UK.

Demarco, T., Lister, T., (1987) Peopleware: Productive Projects and Teams. Dorset
House Publishing. New York. USA.

Fielding, R. T., (1999) Shared Leadership in the Apache Project. Communications of the
ACM. Vol. 42, No. 4. April 1999. pp-42-43.

Gacek, C., Lawrie, T., Arief, B. (2001) The Many Meanings of Open Source. Department
of Computing Science, University of Newcastle-upon-Tyne, Technical Report
CS-TR-737

Glass, R.L., (1998) Software Runaways; Lessons Learned from Massive Software Project

Failures. Prentice Hall New Jersey, USA.

Heylighen, F.H., (2001) Cybernetics and Second-Order Cybernetics :in: R.A. Meyers
(ed.) Encyclopedia of Physical Science & Technology (3rd ed), 2001. Academic
Press, New York. USA.

Jackson, M., (2001) Problem Frames: Analyzing and structuring software development
problems. Addison-Wesley Publishers. Harlow. UK.

Jones, C.B., (2002) Providing a formal basis for dependability notions. Department of
Computer Science. University of Newcastle. UK. (to be published)

Knight, J.C., Leveson, N.G. (1986) An Experimental Evaluation of the Assumption of
Independence in Multiversion Programming. IEEE Transactions on Software
Engineering. Vol. 12. No. 1. January., pp 96-109.

Lamsweerde, A. V., (2001) Goal-Orientated Requirements Engineering: A Guided Tour.
Proceedings of Requirements Engineering 2001, 5th IEEE International
Symposium on Requirements Engineering, Toronto, August 2001. pp 249-263.

Lang. R. (2000) Open Source Software: Issues and Implications. News @ SEI. Vol. 3.
No. 1. Winter 2000., pp. 6-7. Online at URL: http://www.sei.edu

Laprie, J. C., (1995) “Dependable Computing: Concepts, Limits, Challenges,” in 25th
IEEE International Symposium on Fault-Tolerant Computing - Special Issue, pp.
42-54, Pasadena, California, USA, IEEE.

Laprie, J.C., (1992) (Ed.). Dependability: Basic concepts and terminology — in English,
French, German, Italian and Japanese, Dependable Computing and Fault
Tolerance. Vienna, Austria, Springer-Verlag

Latham, G.P., Locke, E.A., (1979) Goal-Setting – A Motivational Technique That
Works. Organizational Dynamics, Vol. 8. No 2. pp 68-80.

Mason, D., Willcocks, L., (1994) Systems Analysis, Systems Design. Alfred Waller
Publishing, Oxfordshire, UK.

McPhee, K., (1997) Design Theory and Software Design, Technical Report TR 96-26
(October 1996 : - Revised May, 1997) Department of Computer Science,
University of Alberta, Edmonton, Alberta Canada.

Meyer, B., (2000) The Ethics of Free Software. Software Development Magazine. Online
at URL: http://www.sdmagazine.com/articles/2000/0003/0003d/0003d.htm

Moody, G., (2001) Rebel Code: Linux and The Open Source Revolution. Allen Lane

Penguin Press. Hammondsworth Middlesex. UK.

Pettit, K., Chen, S., Coffing, C., Ho, T., Brockmeier, J., Harris, A., (2000) Suse Linux:
Install, Configure, and Customize. Prima Publishing, California. USA.

Popov, P., Strigini, L., Romanovsky, A., (1999) Choosing Effective Methods for Design
Diversity – how to progress from intuition to science. Lecture Notes in Computer
Science, Vol. 1698.

Prata, S., (1995) C++ Primer Plus (2nd Edition). Waite Group Press. California. USA

Randell, B. (2000). Turing Memorial Lecture: Facing up to faults. The Computer

Journal, Vol. 43. No. 2. pp 95-106.

Raymond, E.S. (1999). The Cathedral and the Bazaar: Musings on Linux and Open

Source by an Accidental Revolutionary. O’Rielly & Associates, Inc. USA

Sanders, J., (1998) Linux, Open Source, and Software’s Future. IEEE Software.
September/October 1998. pp 88-91.

Sommerville, I., (2001) Software Engineering (6th Edition). Addison-Wesley Publishers.
Essex. UK.

Viller, S., Bowers, J., Rodden, T., (1997) Human Factors in Requirements Engineering:
A Survey of Human Sciences Literature Relevant to the Improvement of
Dependable Systems Development Processes. Technical Report CSEG/8/1997.
Computing Department. Lancaster University. UK.

Weinberg, G. M. (1971). The psychology of computer programming. Van Nostrand

Reinhold, London.

Weinberg, G.M., Schulman, E.L., (1974) Goals and Performance in Computer

Programming. Human Factors. Vol. 16. No. 1.pp 70-77.

Westerman, S. J., Shryane, N. M., Crawshaw, C. M. & Hockey, G. R. J. (1997).

Engineering cognitive diversity. in F. Redmill & T. Anderson (Eds). Safer
Systems. Proceedings of the 5th Safety-critical Systems Symposium, Brighton, UK
(pp. 111-120).

Yamouchi, Y., Yokozawa, M., Shinohara, T., Ishida. T. (2000). Collaboration with Lean
Media: How Open-Source Software Succeeds. Conference Paper Presented at
Computer Supported Cooperative Work Conference 2nd to 6th December 2000.
Philadelphia., pp 329-338.

� � � � � 	 � � 	 � � � � � � � � � � � � � � 	 ! # � � � ') � � , # � � � �

1 # �) # � � � 	 � � 6 � � 	 � ! � � 	 � �) # � 	 # � < < 	 � �

A � 	 � � � C E G E , J ,

L M N O Q R T V W M R Y Z N Q \] ^ V ` T Y b d e e Q N h V O Y k e Q m n Q O o V O q

r Q s N d V N Z u u] v w w v

x y { | } � � � � � � � } � � � y � � y � � � �

� � � � � � � �
� � � � � � � � ¡ ¢ � £ � ¥ � £ � § ¨ ¢ � ¡ � � ª ¥ « ª £ � � ¢ £ ¥ � � ª � � ¡ ® � � � � � � � ¡ ¢ � � � °

§ £ � � � ¢ � ± £ � £ � � � ¨ � � � ¡ ¢ « � � ® ¡ � ¡ § � � � � � ¢ ³ ° ´ � ± ¶ ¢ � ¨ � � � � � ± ¡ � ª ¡ ¢ � � � ¡ ¨ � �
 � £ ¨ � ¡ ¢ � £ � º � » º � ª £ � � � � � � § £ � � � ¢ £ � § ¶ ¢ � ¨ � � � ¼ ½ � � ¿ À Á À Â Ã Â ¶ ¢ � Ä � ¨ �
¡ £ ® � � � ¡ ª ª ¢ � � � � � ® � � � � � � � � ¨ � � £ ¨ ¡ » £ � � � � £ � º � » º � ª ¥ « ¶ ¢ � º £ ª £ � § ¡ � � � � °

 ¡ ¢ � � « � � � ® � � � ¶ ¶ � ¢ � ª £ � � ¢ £ ¥ � � ª ª � º � » � ¶ ® � � � ¼ Ç � � � � � � � ¶ ¡ ¢ � � � � � � �
� « � � � ® £ » » ¥ � ³ � � � ¡ � Ç Â É Ê Ë ± ¡ ¢ � ¶ � � £ � � ¢ « � � ¢ ® ¡ � ¡ § £ � § ª £ � � ¢ £ ¥ � � ª
¡ ¢ � � � ¡ ¨ � � ¼ Ê ¢ � � � ¡ ¨ � � ¨ ¡ � ¥ � ¶ ¢ � ¨ � � � ® � ª � » � ± � � � � ¡ ¢ � ¨ � ® ¶ � � � � � � ± ª � � £ § �
ª � ¨ ® � � � � ± � ¢ ¡ � « � � � � ¢ ³ £ � ª � � � � � £ � « ¡ � � � ¨ £ ¡ � � ª £ � � � � � � � � � ¡ ¢ � � � °

§ £ � � � ¢ £ � § ¶ ¢ � ¨ � � � ¼ Ç Â É Ê Ë £ » » ¥ � ª � � £ § � � ª ¡ � ¡ » £ § � � ° � £ § � � ª £ � � ¢ £ ¥ � � ª
� « � � � ® ± ® ¡ � ¡ § £ � § � � � � � � ¢ ¡ § � ¡ � ª ¡ ¨ ¨ � � � � � ¡ ª £ � � ¢ £ ¥ � � ª ¢ � ¶ � � £ � � ¢ « � �
¡ ¢ � � � ¡ ¨ � � ¼

½ � £ � ¶ ¡ ¶ � ¢ ¶ ¢ � � � � � � ¡ � ª ª £ � ¨ � � � � � � � ¢ � Ô £ ¢ � ® � � � � � � ¢ Ç Â É Ê Ë ± ¡ � ª
� § § � � � � ¡ ¶ � � � £ ¥ » � ¡ ¢ ¨ � £ � � ¨ � ¢ � � � ¢ ¡ � � � � ¡ ¢ � � « � � � ® � £ ¨ � £ » » ® � � �
� � � � � ¢ � Ô £ ¢ � ® � � � � ¼ Ç Â É Ê Ë £ » » ¥ � ¡ ¢ � » £ ¡ ¥ » � ¡ � ª » £ § � � ° � £ § � � ª £ � � ¢ £ ¥ � � ª
� « � � � ® ± ® ¡ � ¡ § £ � § ¥ � � � ¡ ¢ � � � ¡ ¨ � � ¡ � ª ® � � ¡ ° ª ¡ � ¡ ¨ � ¢ ¢ � � ¶ � � ª £ � § � � � � � ¡ ¢ � � °
� ¡ ¨ � � ¼ Ö � � ¢ � � � Ç Â É Ê Ë £ » » ¥ � ¡ ¥ » � � � ¡ ¨ ¨ � � � � � � ª £ � � ¢ £ ¥ � � ª ¢ � ¶ � � £ � � ¢ «
� � ¢ � § � ¡ » � ¨ ¡ » £ � � � ¢ � ¡ ¨ � ± � £ � § � � � � � ¡ ¢ ¨ � £ � § ¡ � ª £ � ª � × £ � § ¨ ¡ ¶ ¡ ¥ £ » £ � £ � �
� � � � � � « � � � ® � � » � ¨ ¡ � � ¡ � ª ¢ � � ¢ £ � º � ¨ � ® ¶ � � � � � � ¼ Ç Â É Ê Ë ® � � ¥ � ¡ ¥ » �

� � � � � ¢ � ¡ � ª ¢ � � ¢ £ � º � ¥ � � � ¡ ¢ � � � ¡ ¨ � � ¡ � ª ® � � ¡ ° ª ¡ � ¡ � Ù ¨ £ � � � » « ¼ Ã � ® � � ¥ �
¶ � � � £ ¥ » � � � ¢ Ç Â É Ê Ë � � £ � � � ¢ ° � ¶ � ¢ ¡ � � £ � � � × £ � � £ � § ¡ ¢ � � � ¡ ¨ � ® ¡ � ¡ § � ® � � �
� « � � � ® � Û � ¨ � ¡ � É Ü Â Ý ¡ � ª � � ¨ � » » � ¨ � ® � � ¢ £ ¨ � ¡ ¥ � � � � � ¨ � � � � � � � � � ¡ � ª
¡ ¨ ¨ � � � � � � � � � � ¢ � ¶ � � £ � � ¢ « ¼

½ � � � � × � � � ¡ § � £ � � � � ¿ À Á À Â Ã Â ¶ ¢ � Ä � ¨ � £ � � � ¨ � ® ¶ » � � � � � � ¢ � Ô £ ¢ � °
® � � � � � � ¢ � � � � � » � � � � � � � « � � � ® Û £ � ¡ ª ª £ � £ � � � � � � � Ç Â É Ê Ë � ¥ ° � « � � � ® Ý
¡ � ª � � � � � � ª � � £ § � � � � � � � � ¡ ¢ � ¼ ½ � � � � � � ¡ ¢ � £ » » £ � £ � £ ¡ » » « ¥ � ª � º � » � ¶ � ª
£ � ¡ � ¢ ¡ ª £ � £ � � ¡ » ¨ » � � � ª ° � � ¢ ¨ � � ¡ � � £ � � � � £ » � � � Þ ¢ � � ¢ � » � ¡ � � £ � Þ � £ � � � ª ¼ Ê � °
� � ¢ � � � Þ ¢ � � ¢ � » � ¡ � � ± � � � ¿ À Á À Â Ã Â � � � � ¡ ¢ � £ » » ¥ � ¨ � ® � � ¶ � � � � ¢ ¨ � ± ¡ � ª
 £ » » ¥ � ª � º � » � ¶ � ª ¡ ¨ ¨ � ¢ ª £ � § » « ¼

ß à á â ã ä å æ ç â è ä á

é ê ë ì í î ï ð ñ ï ð í ñ ì ï ò í ó ê ï ô ó í ñ õ ö ð ë ø ù ò ñ ø ú û ï ô û ö ü ï ê ñ ë ì ï ê ë ì í î ï ð ñ ø ñ ý ñ þ ë ö õ ñ ô í
ö ð ë ò ñ ê ê î ü ó ò ü ó ê ô ë í þ ó õ ó í ñ ø í ë ï ò í ù ï þ ê ë ì í î ï ð ñ ò ë ø ñ ú ù í ó ô ò þ ù ø ñ ð ñ ÿ ù ó ð ñ õ ñ ô í ê �

ø ñ ê ó � ô � ÿ ù ï þ ó í û ï ê ê ù ð ï ô ò ñ ï ô ø õ ï ó ô í ñ ô ï ô ò ñ ó ô ì ë ð õ ï í ó ë ô � � ë ô ê ñ ÿ ù ñ ô í þ û í ü ñ õ ï ô �
ï � ñ õ ñ ô í ë ì ê ë ì í î ï ð ñ ï ð í ñ ì ï ò í ê ó ê ø ó 	 ñ ð ñ ô í í ë í ü ï í ë ì ê ë ì í î ï ð ñ ò ë ø ñ ï ô ø ò ü ï ô � ñ ê

õ ù ê í ú ñ õ ï ø ñ í ë í ü ñ � � � � � � � � � � � � � � � � � # í ë ð ñ $ ñ ò í í ü ó ê �
' ô ö ï ð í ó ò ù þ ï ð ê ë ì í î ï ð ñ ï ð í ñ ì ï ò í ê ó ô ü ñ ð ó í ò ü ï ð ï ò í ñ ð ó ê í ó ò ê ì ð ë õ (

* + ü ñ ê ë ì í î ï ð ñ ö ð ë ò ñ ê ê í ü ï í ò ð ñ ï í ñ ø í ü ñ õ �

* - ð ñ ò ñ ø ó ô � ý ñ ð ê ó ë ô ê ë ì í ü ñ ï ð í ñ ì ï ò í ï ô ø ë ú ý ó ë ù ê þ û ö ð ñ ò ñ ø ó ô � ý ñ ð ê ó ë ô ê ë ì í ü ñ

ê ë ì í î ï ð ñ ö ð ë ò ñ ê ê �

* + ü ñ ø ñ ö ñ ô ø ñ ô ò ó ñ ê ñ ï ò ü ï ð í ñ ì ï ò í ü ï ê ù ö ë ô ë í ü ñ ð ï ð í ñ ì ï ò í ê ï ô ø

* + ü ñ . 0 � � � � 2 î ü ñ í ü ñ ð ü ù õ ï ô ë ð õ ï ò ü ó ô ñ 4 î ü ë ï ð ñ ð ñ ê ö ë ô ê ó ú þ ñ ì ë ð í ü ñ ï ð í ñ �
ì ï ò í �

+ ð ï ø ó í ó ë ô ï þ ê ë ì í î ï ð ñ ð ñ ö ë ê ó í ë ð ó ñ ê ï ð ñ � ñ ô ñ ð ï þ þ û ö ï ê ê ó ý ñ ø ï í ï ê í ë ð ñ ê ø ñ ê ó � ô ñ ø í ë

ê ù ö ö ë ð í ê í ð ù ò í ù ð ñ ø ï ò ò ñ ê ê í ë ó ô ì ë ð õ ï í ó ë ô ú û í ë ë þ ê ï ô ø ñ 7 í ñ ð ô ï þ ê û ê í ñ õ ê � 8 : � é =
ó í ê ñ þ ì õ ù ê í ê ù ö ö ë ð í ï õ ë ð ñ ï î ï ð ñ ï ö ö ð ë ï ò ü í ë ï ð í ñ ì ï ò í õ ï ô ï � ñ õ ñ ô í í ü ð ë ù � ü í ü ñ

ô ë í ó ë ô ë ì > ï ò í ó ý ñ ? ê ë ì í î ï ð ñ ï ð í ñ ì ï ò í ê í ü ï í ï ð ñ ï î ï ð ñ ë ì í ü ñ ó ð ë î ô ñ ý ë þ ù í ó ë ô ï ô ø

ö ð ñ ê ñ ô í ð ñ þ ï í ñ ø ó ô ì ë ð õ ï í ó ë ô ù ö ë ô ñ 7 ï õ ó ô ï í ó ë ô ú û ê û ê í ñ õ ò þ ó ñ ô í ê �
: ó ô ò ñ @ B C B : ' : ó ê ï ö ð ë ò ñ ê ê � ï î ï ð ñ ê ë ì í î ï ð ñ ñ ô � ó ô ñ ñ ð ó ô � ñ ô ý ó ð ë ô õ ñ ô í � í ü ñ

ï ð í ñ ì ï ò í õ ï ô ï � ñ õ ñ ô í ê û ê í ñ õ õ ù ê í ê ù ö ö ë ð í ö ð ë ò ñ ê ê ò ë ô í ð ë þ ê ë ì í î ï ð ñ � + ü ñ @ B C �
B : ' : ê û ê í ñ õ ð ñ ÿ ù ó ð ñ ê í ü ï í ó í ó ê I � I K � I � � M � � O � î ü ñ ô ø ñ ö þ ë û ñ ø î ó í ü ó ô ï ô ë ð � ï ô ó ê ï �

í ó ë ô � � ë ô ê ñ ÿ ù ñ ô í þ û í ü ñ ê ù ö ö ë ð í ë 	 ñ ð ñ ø ú û @ B C B : ' : õ ù ê í ô ë í ì ë ð ò ñ ö ï ð í ó ò ó ö ï �
í ó ë ô ì ð ë õ í ü ñ ù ê ñ ð ê � ó ô ê í ñ ï ø í ü ñ ê û ê í ñ õ õ ù ê í õ ë ô ó í ë ð ù ê ñ ð ï ò í ó ý ó í ó ñ ê ï ô ø ï þ í ñ ð ó í ê

ú ñ ü ï ý ó ë ù ð ï ò ò ë ð ø ó ô � þ û � + ë ï ê ê ù ð ñ í ü ñ ô ë ô � ó ô í ð ù ê ó ý ó í û ë ì í ü ñ R ô ó ê ü ñ ø ê û ê í ñ õ ï ô ø

í ë ê ï í ó ê ì û í ü ñ ï ø ø ó í ó ë ô ï þ ð ñ ÿ ù ó ð ñ õ ñ ô í ê ó õ ö ë ê ñ ø ú û í ü ñ ñ ý ñ ô í ù ï þ ð ñ þ ñ ï ê ñ ë ì í ü ñ

@ B C B : ' : ê û ê í ñ õ ï ê 8 ö ñ ô : ë ù ð ò ñ : ë ì í î ï ð ñ 2 8 : : 4 8 : � é = õ ù ê í ñ õ ö þ ë û ê ù ö �
ö ë ð í ñ ø ë ö ñ ô ê í ï ô ø ï ð ø ê � + ü ó ê ö ñ ð ü ï ö ê ê ñ ñ õ ê ï ì ï ó í ï ò ò ë õ ö þ ó V ï ì í ñ ð ï þ þ ð ñ þ ñ ï ê ó ô �
@ B C B : ' : ï ê 8 ö ñ ô : ë ù ð ò ñ î ó þ þ ñ 	 ñ ò í ó ý ñ þ û ö ð ë ø ù ò ñ ï ô ñ î ë ö ñ ô > ê í ï ô ø ï ð ø ? � + ü ó ê

ï ö ö ð ë ï ò ü ó � ô ë ð ñ ê í ü ñ ï ø ý ï ô í ï � ñ ê í ü ï í ò ï ô ú ñ � ï ó ô ñ ø ú û ú ë í ü ï ø ø ó ô � > î ñ ó � ü í ?
í ë ñ 7 ó ê í ó ô � ê í ï ô ø ï ð ø ê ï ô ø ð ñ � ù ê ó ô � ö ð ñ � î ð ó í í ñ ô 8 ö ñ ô : ë ù ð ò ñ ò ë õ ö ë ô ñ ô í ê � 8 ö ñ ô

ê í ï ô ø ï ð ø ê ï þ ê ë ë 	 ñ ð ð ñ þ ï í ñ ø ú ñ ô ñ R í ê Z = ï û õ ë ô ø � � [[[\ (

* B 7 ó ê í ó ô � ø ñ ý ñ þ ë ö õ ñ ô í ò ë õ õ ù ô ó í û �

* B ï ê ñ ë ì ø ñ ö þ ë û õ ñ ô í �

* B ï ê ñ ë ì ñ 7 í ñ ô ê ó ë ô ï ô ø

* B ï ê ñ ë ì ï ò ò ñ ê ê ó ú ó þ ó í û �

+ ü ó ê ö ï ö ñ ð ñ 7 ï õ ó ô ñ ê í ü ñ ð ñ ÿ ù ó ð ñ õ ñ ô í ê ì ë ð í ü ñ 8 : � é = ê ù ú ê û ê í ñ õ î ó í ü ó ô

@ B C B : ' : � + ü ñ ö ï ö ñ ð ó ê ë ð � ï ô ó ê ñ ø ï ê ì ë þ þ ë î ê (

^ _ ` b c d f g i g ø ó ê ò ù ê ê ñ ê î ë ð l ð ñ þ ï í ñ ø í ë í ü ñ @ B C B : ' : ö ð ë o ñ ò í ï ô ø 8 : � é = ó ô

ö ï ð í ó ò ù þ ï ð �

^ _ ` b c d f p ø ñ ê ò ð ó ú ñ ê í ü ñ ð ñ ÿ ù ó ð ñ õ ñ ô í ê ë ì í ü ñ ø ë õ ï ó ô í ü ï í 8 : � é = ë ö ñ ð ï í ñ ê ó ô

^ _ ` b c d f s ø ñ ê ò ð ó ú ñ ê ï ê ï õ ö þ ñ ù ê ñ ò ï ê ñ ì ë ð 8 : � é = �

^ _ ` b c d f u ø ñ ê ò ð ó ú ñ ê í ü ñ ü ó � ü � þ ñ ý ñ þ ð ñ ÿ ù ó ð ñ õ ñ ô í ê ë ì í ü ñ 8 : � é = ê ù ú ê û ê í ñ õ �

^ _ ` b c d f � ø ñ ê ò ð ó ú ñ ê ï ö ð ë ö ë ê ñ ø ï ð ò ü ó í ñ ò í ù ð ñ ì ë ð 8 : � é = ï ô ø ê ù � � ñ ê í ê ê ë õ ñ

ø ñ ê ó � ô ì ñ ï í ù ð ñ ê ë ì 8 : � é = �

^ _ ` b c d f � ø ñ ê ò ð ó ú ñ ê ï ô ë ô í ë þ ë � û ë ì ï ð í ñ ì ï ò í ê ì ë ð í ü ñ 8 : � é = ê ù ú ê û ê í ñ õ �

^ _ ` b c d f � ë ù í þ ó ô ñ ê í ü ñ ø ñ ý ñ þ ë ö õ ñ ô í ï ô ø ñ 7 ö þ ë ó í ï í ó ë ô ê í ð ï í ñ � û ì ë ð 8 : � é = � � ó �
ô ï þ þ û �

^ _ ` b c d f � ê ù õ õ ï ð ó ê ñ ê í ü ñ ö ð ñ ý ó ë ù ê ê ñ ò í ó ë ô

� 	 � � � � � � � � � �

- ï ð í ó ï þ ê ë þ ù í ó ë ô ê ì ë ð ê ë ì í î ï ð ñ ï ð í ñ ì ï ò í õ ï ô ï � ñ õ ñ ô í ñ 7 ó ê í � î ü ñ ð ñ ó í ñ õ ê ö ð ë ø ù ò ñ ø

ó ô í ü ñ ê ë ì í î ï ð ñ ö ð ë ò ñ ê ê ï ð ñ í ð ñ ï í ñ ø ï ê õ ë ð ñ í ü ï ô õ ñ ð ñ ý ñ ð ê ó ë ô � ò ë ô í ð ë þ þ ñ ø R þ ñ ê �

+ ü ñ ö ð ë ø ù ò í ê ó ô í ü ó ê ï ð ñ ï ï ð ñ ë ì í ü ð ñ ñ õ ï o ë ð í û ö ñ ê (ò ë õ õ ñ ð ò ó ï þ ê ë ì í î ï ð ñ � 8 ö ñ ô

: ë ù ð ò ñ ë ð � ð ñ ñ ê ë ì í î ï ð ñ ï ô ø ð ñ ê ñ ï ð ò ü ö ð ë í ë í û ö ñ ê � ' ô ï ø ø ó í ó ë ô � í ü ñ ê ñ ö ï ò l ï � ñ ê

ï ð ñ ö ð ó õ ï ð ó þ û ì ë ò ù ê ñ ø ë ô ë í ü ñ ð ø ë õ ï ó ô ê 2 ê ù ò ü ï ê ò ë þ þ ï ú ë ð ï í ó ý ñ î ë ð l ó ô � 4 í ü ï ô

ï ð í ñ ì ï ò í õ ï ô ï � ñ õ ñ ô í ú ù í ö ë ê ê ñ ê ê ï ø ø ó í ó ë ô ï þ ï ð í ñ ì ï ò í õ ï ô ï � ñ õ ñ ô í ò ï ö ï ú ó þ ó í ó ñ ê �
8 ì í ü ñ ò ë õ õ ñ ð ò ó ï þ ö ï ò l ï � ñ ê � ï ø ý ï ô ò ñ ø : ë ì í î ï ð ñ � ë ô R � ù ð ï í ó ë ô ï ô ï � ñ õ ñ ô í

2 : � 4 ñ ô ý ó ð ë ô õ ñ ô í ê ê ù ò ü ï ê : í ï ð ú ï ê ñ ï ô ø � þ ñ ï ð ò ï ê ñ ö ð ë ý ó ø ñ í ü ñ ò þ ë ê ñ ê í ì ù ô ò �
í ó ë ô ï þ ó í û í ë í ð ù ñ : ë ì í î ï ð ñ é ð í ñ ì ï ò í ï ô ï � ñ õ ñ ô í ê û ê í ñ õ ê Z $ ñ ú þ ï ô � � � [[% \ � é ê ó ø ñ

ì ð ë õ ï ô ñ ô ð ó ò ü ñ ø R þ ñ � ê û ê í ñ õ í ü ï í ö ð ë ý ó ø ñ ê ï � þ ë ú ï þ ô ï õ ñ � ê ö ï ò ñ î ü ó ò ü ï ð í ñ ì ï ò í ê

ó ô ü ï ú ó í � ê ù ò ü ê û ê í ñ õ ê ï þ ê ë ü ï ý ñ ö ð ë ò ñ ê ê ê ù ö ö ë ð í ó ô í ü ñ ê í û þ ñ ë ì í ð ï ø ó í ó ë ô ï þ î ë ð l �
$ ë î ê û ê í ñ õ ê �

: ù ò ü ê û ê í ñ õ ê ï ð ñ ò ü ï ð ï ò í ñ ð ó ê ñ ø ú û í ü ñ ó ð ü ñ ï ý û î ñ ó � ü í ï ö ö ð ë ï ò ü 2 ö ð ë ò ñ ê ê �
ò ñ ô í ð ó ò 4 í ë ê ë ì í î ï ð ñ ø ñ ý ñ þ ë ö õ ñ ô í ï ô ø ò ñ ô í ð ï þ ó ê ñ ø ï ð ò ü ó í ñ ò í ù ð ñ � � ë ð ö ð ë o ñ ò í ê ü ñ ï ý �

ó þ û ø ó ê í ð ó ú ù í ñ ø ó ô ú ë í ü í ó õ ñ ï ô ø ê ö ï ò ñ ï ô ø î ó í ü ë ù í ï ò ò ñ ê ê í ë ü ó � ü � ï ý ï ó þ ï ú ó þ ó í û

ê ñ ð ý ó ò ñ ê ï í ï þ þ ö ë ó ô í ê � ê ù ò ü ï ô ï ð ò ü ó í ñ ò í ù ð ñ ó ê ú ë í ü ø ó ' ò ù þ í í ë ó õ ö þ ñ õ ñ ô í � ù ô í ð ù ê í �
î ë ð í ü û ï ô ø ö ë í ñ ô í ó ï þ þ û ü ï ð õ ì ù þ í ë ñ 7 ó ê í ó ô � ê ù ò ò ñ ê ê ì ù þ ë ð � ï ô ó ê ï í ó ë ô ï þ ö ð ë ò ñ ê ê ñ ê

Z : ï ò ü ê � � [[) \ � � ï ð ñ ì ù þ ó ø ñ ô í ó R ò ï í ó ë ô ë ì ð ñ ÿ ù ó ð ñ õ ñ ô í ê ï ô ø ø ñ ê ó � ô Z : ñ þ ý ó ô � � [[[\
î ó þ þ ö ð ë ø ù ò ñ ï ê û ê í ñ õ í ü ï í ì ï ò ó þ ó í ï í ñ ê ñ 7 ó ê í ó ô � ë ð � ï ô ó ê ï í ó ë ô ï þ ö ð ë ò ñ ê ê ñ ê ð ï í ü ñ ð

í ü ï ô ö ð ñ ê ò ð ó ú ó ô � ô ñ î ë ô ñ ê Z � þ ë ð ñ ê ñ í ï þ � � � [+ + \ �
8 ö ñ ô : ë ù ð ò ñ ï ô ø ð ñ ê ñ ï ð ò ü ê û ê í ñ õ ê ï ð ñ � ñ ô ñ ð ï þ þ û õ ë ð ñ þ ó � ü í î ñ ó � ü í ï ô ø ê ö ñ �

ò ó ï þ ó ê ñ ø ó ô í ü ñ ó ð ï ö ö ð ë ï ò ü � ì ë ò ù ê ó ô � ë ô ë ô ñ ï ê ö ñ ò í ë ì í ü ñ ø ë õ ï ó ô ê ù ò ü ï ê ý ñ ð �
ê ó ë ô ò ë ô í ð ë þ � ö ð ë ò ñ ê ê ò ë ô í ð ë þ � ò ë þ þ ï ú ë ð ï í ó ý ñ î ë ð l ó ô � í ü ð ë ù � ü ü û ö ñ ð õ ñ ø ó ï ï ô ø

ê ë ì ë ð í ü � B 7 ï õ ö þ ñ ê ó ô ò þ ù ø ñ í ü ñ 8 - ï ô ø 8 - / ñ ú 2 ø ñ ê ò ð ó ú ñ ø ó ô Z 1 ï ó ê ñ ð � � [[+ \ �

Z @ ï ó þ B � 1 ï ó ê ñ ð ï ô ø 2 ï ô � � � [[4 \ ï ô ø Z 6 ó ï ô � ñ í ï þ � � � [[4 \ 4 ñ ô ý ó ð ë ô õ ñ ô í ê � 8 ï ï l ñ

Z 8 ï ï l ñ � � [[[\ õ ï ø ñ ï ò ë õ ö ñ þ þ ó ô � ò ï ê ñ ì ë ð í ü ó ê þ ó � ü í î ñ ó � ü í ï ö ö ð ë ï ò ü � ï ð � ù ó ô � í ü ï í

$ ñ 7 ó ú ó þ ó í û ë ì î ë ð l ó ô � ö ð ï ò í ó ò ñ ó ì ô ë í ö ð ë ò ñ ê ê î ï ê õ ë ð ñ ú ñ ô ñ R ò ó ï þ í ü ï ô ñ ô ì ë ð ò ó ô �
ï ö ð ñ ê ò ð ó ö í ó ý ñ ì ë ò ù ê í ü ð ë ù � ü � : � / í ë ë þ ê � 1 ù l l ë ô ñ ô ü ï ê ö ð ë ø ù ò ñ ø î ë ð l ó ô ï

ê ó õ ó þ ï ð ý ñ ó ô � Z 8 ó ô ï ê � 1 ù l l ë ô ñ ô ï ô ø = ë ê ê ó � � [[[\

; < ä = ? è á

+ ü ñ 8 : � é = í ë ë þ î ó þ þ ú ñ ê ó í ù ï í ñ ø ó ô í ü ñ ø ë õ ï ó ô ë ì ø ó ê í ð ó ú ù í ñ ø ê ë ì í î ï ð ñ ñ ô � ó �
ô ñ ñ ð ó ô � � 8 ô ñ ë ì í ü ñ l ñ û ò ü ï ð ï ò í ñ ð ó ê í ó ò ê ë ì í ü ó ê ø ë õ ï ó ô ó ê í ü ï í í ü ñ ù ê ñ ð ê ë ì í ü ñ

í ë ë þ 2 ö ð ë � ð ï õ õ ñ ð ê � ò ë ô R � ù ð ï í ó ë ô õ ï ô ï � ñ ð ê � ð ñ ÿ ù ó ð ñ õ ñ ô í ê ñ ô � ó ô ñ ñ ð ê � � � 0 A 4 ï ð ñ

ø ó ê í ð ó ú ù í ñ ø � + ü ï í ó ê � ù ê ñ ð ê ï ð ñ ô ë í ô ñ ò ñ ê ê ï ð ó þ û ï þ þ þ ë ò ï í ñ ø ï í ë ô ñ ö ü û ê ó ò ï þ ê ó í ñ �

+ ü ù ê 8 : � é = õ ù ê í ú ñ ï ú þ ñ í ë õ ï ô ï � ñ í ü ñ ô ñ ò ñ ê ê ï ð û ø ó ê í ð ó ú ù í ó ë ô ë ì ï ð í ñ ì ï ò í ê

í ë ù ê ñ ð ê ï ê ð ñ ÿ ù ó ð ñ ø V ó í ó ê ô ë í ö ë ê ê ó ú þ ñ í ë ï ê ê ù õ ñ í ü ï í ñ ï ò ü ù ê ñ ð î ó þ þ ü ï ý ñ þ ë ò ï þ

ï ò ò ñ ê ê í ë í ü ñ ð ñ ö ë ê ó í ë ð û �
B ô í ó í ó ñ ê ó ô í ü ñ ø ë õ ï ó ô ï ð ñ (

� ` b d � � ' ô � ñ ô ñ ð ï þ � ï ù ê ñ ð ó ê ï ê ë ì í î ï ð ñ ñ ô � ó ô ñ ñ ð ë ì ê ë õ ñ l ó ô ø 2 ð ñ ÿ ù ó ð ñ õ ñ ô í ê

ñ ô � ó ô ñ ñ ð � ê ë ì í î ï ð ñ ø ñ ê ó � ô ñ ð � í ñ ê í ñ ð � � � 0 A 4 � ï ö ñ ð ê ë ô î ó í ü õ ï ô ï � ñ ð ó ï þ ð ñ �
ê ö ë ô ê ó ú ó þ ó í û ì ë ð í ü ñ ê ë ì í î ï ð ñ ö ð ë ò ñ ê ê ë ð ó ô ø ñ ñ ø ï ê ë ì í î ï ð ñ ï � ñ ô í ï ò í ó ô � ë ô

ú ñ ü ï þ ì ë ì í ü ñ ê ñ ë í ü ñ ð é ò í ë ð ê �

� � b _ � � ` b � é ð í ñ ì ï ò í ê ï ð ñ ê í ë ð ñ ø ó ô í ü ñ ð ñ ö ë ê ó í ë ð û � é ô ï ð í ó ì ï ò í ò ï ô ú ñ ï ô û í ü ó ô �
î ü ó ò ü ò ï ô ú ñ ê í ë ð ñ ø ï ê ï R þ ñ ë ô ï ò ë õ ö ù í ñ ð ê û ê í ñ õ � ê ù ò ü ï ê ö ð ë ò ñ ê ê õ ë ø ñ þ ê �

ê ë ì í î ï ð ñ ø ñ ê ó � ô ø ë ò ù õ ñ ô í ê � ê ë ù ð ò ñ ò ë ø ñ � ñ 7 ñ ò ù í ï ú þ ñ ê � í ñ ê í ó ô � ê ù ó í ñ ê � � � 0 A �
é ø ø ó í ó ë ô ï þ þ û í ü ñ ï ð í ñ ì ï ò í ó ô ò þ ù ø ñ ê � � � � K � � � î ü ó ò ü ò ü ï ð ï ò í ñ ð ó ê ñ ê ó í ì ë ð í ü ñ

ö ù ð ö ë ê ñ ê ë ì ê ñ ï ð ò ü ï ô ø ð ñ í ð ó ñ ý ï þ �

� _ b � d � � � é ê í ü ñ 8 : � é = í ë ë þ õ ù ê í ë ö ñ ð ï í ñ ó ô ê ù ö ö ë ð í ë ì ø ó ê í ð ó ú ù í ñ ø í ñ ï õ ê �

ó í ô ñ ñ ø í ë ï þ þ ë î ï ô ø ê ù ö ö ë ð í ò ë õ õ ù ô ó ò ï í ó ë ô �

' í ó ê í ü ñ í ï ê l ë ì í ü ñ 8 : � é = í ë ë þ í ë õ ï ô ï � ñ ï ð í ñ ì ï ò í ê � � ê ñ ð ê î ó þ þ ó ô í ñ ð ï ò í

î ó í ü í ü ñ í ë ë þ í ë (

* : í ë ð ñ ï ð í ñ ì ï ò í ê �

* = ñ í ð ó ñ ý ñ ï ð í ñ ì ï ò í ê �

* � ö ø ï í ñ ï ð í ñ ì ï ò í ê ï ô ø

* : ñ ï ð ò ü ì ë ð ï ð í ñ ì ï ò í ê î ü ó ò ü õ ï í ò ü í ü ñ ù ê ñ ð � ê ô ñ ñ ø ê 2 ì ë ð ñ 7 ï õ ö þ ñ � í ë R ô ø ï

ê ë ì í î ï ð ñ ò ë õ ö ë ô ñ ô í î ü ó ò ü ó õ ö þ ñ õ ñ ô í ê ï ö ï ð í ó ò ù þ ï ð í ï ê l 4 �

é ê ï ô ñ 7 ï õ ö þ ñ � í ü ñ õ ñ í ï � ø ï í ï ì ë ð ï ô ï ð í ñ ì ï ò í ò ë ù þ ø ú ñ (
C ï õ ñ � ï þ ù ñ

é ð í ñ ì ï ò í ô ï õ ñ + ñ 7 í ñ ô í ð û î ó ø � ñ í

� ð ñ ï í ó ë ô ø ï í ñ x) í ü � ñ ò ñ õ ú ñ ð x � � �
� ð ñ ï í ë ð é : õ ó í ü

� ð ñ ï í ë ð 6 � þ ë � � ê

 ë ø ó R ò ï í ó ë ô ø ï í ñ � % í ü 6 ï ô ù ï ð û x � � x
 ë ø ó R ò ï í ó ë ô ò ë õ õ ñ ô í ê � ó 7 ñ ø ö ë ê ê ó ú þ ñ ú ù 	 ñ ð � ë ý ñ ð $ ë î

 ë ø ó R ò ï í ó ë ô ø ï í ñ x " í ü 6 ï ô ù ï ð û x � � x
 ë ø ó R ò ï í ó ë ô ò ë õ õ ñ ô í ê C ë î õ ï í ò ü ñ ê þ ë ë l � ï ô ø � ì ñ ñ þ õ ë ø ñ þ ì ë ð ö ð ë o ñ ò í

$ % ? = ') + - / + 2 4 ? / +

' ô í ü ó ê ê ñ ò í ó ë ô � ï ê ó õ ö þ ñ ù ê ñ ò ï ê ñ Z 6 ï ò ë ú ê ë ô ñ í ï þ � � � [[[\ ì ë ð í ü ñ 8 : � é = í ë ë þ ó ê

ë ù í þ ó ô ñ ø ï ô ø ñ 7 ï õ ó ô ñ ø � + ü ñ ù ê ñ ò ï ê ñ ó ô ý ë þ ý ñ ê ï ù ê ñ ð ë ì í ü ñ ê û ê í ñ õ 2 ï ê ë ì í î ï ð ñ

ø ñ ý ñ þ ë ö ñ ð 4 ð ñ í ð ó ñ ý ó ô � ï ò ë õ ö ë ô ñ ô í ì ð ë õ í ü ñ 8 : � é = ð ñ ö ë ê ó í ë ð û � ' ô í ü ó ê ñ 7 ï õ ö þ ñ �

í ü ñ ø ñ ý ñ þ ë ö ñ ð 2 î ü ë ó ê í ü ñ ï ò í ë ð 4 ö ð ë ý ó ø ñ ê ï í ñ õ ö þ ï í ñ ì ë ð í ü ñ ï ð í ñ ì ï ò í ê î ü ó ò ü ü ñ ë ð

ê ü ñ ó ê þ ë ë l ó ô � ì ë ð � + ü ó ê í ñ õ ö þ ï í ñ ó ê í ü ñ ô � ó ý ñ ô í ë í ü ñ þ ë ò ï þ ò þ ó ñ ô í í ë í ü ñ 8 : � é =
ê û ê í ñ õ î ü ó ò ü ð ñ í ð ó ñ ý ñ ê õ ï í ò ü ó ô � ï ð í ñ ì ï ò í ê ì ð ë õ í ü ñ 2 ø ó ê í ð ó ú ù í ñ ø 4 ð ñ ö ë ê ó í ë ð û �

+ ü ñ í ñ õ ö þ ï í ñ ò ï ô � ì ë ð ñ 7 ï õ ö þ ñ � ú ñ ï ê ó õ ö þ ñ ê ñ í ë ì l ñ û î ë ð ø ê � ó ô î ü ó ò ü ò ï ê ñ í ü ñ

ê ñ ï ð ò ü ó ê ê ó õ ó þ ï ð í ë í ü ï í ñ 7 ñ ò ù í ñ ø ú û î ñ ú ê ñ ï ð ò ü ñ ô � ó ô ñ ê �

� 	 � � � � � � � � �
 � � � � � � � � � � � � � � � � � � � � �

é ê ï ô ë ù í þ ó ô ñ � í ü ñ ê ñ ÿ ù ñ ô ò ñ ë ì ñ ý ñ ô í ê ì ë ð í ü ó ê ù ê ñ ò ï ê ñ ï ð ñ ï ê ì ë þ þ ë î ê (

� � + ü ñ � ñ ý ñ þ ë ö ñ ð ó ø ñ ô í ó R ñ ê ü ó õ � ü ñ ð ê ñ þ ì í ë í ü ñ ê û ê í ñ õ �

x � + ü ñ � ñ ý ñ þ ë ö ñ ð ò ë ô ê í ð ù ò í ê ï + ñ õ ö þ ï í ñ ì ë ð í ü ñ l ó ô ø ë ì ï ð í ñ ì ï ò í í ü ï í í ü ñ û

ï ð ñ ó ô í ñ ð ñ ê í ñ ø ó ô �

C � + ü ñ � ñ ý ñ þ ë ö ñ ð ê ù ö ö þ ó ñ ê í ü ñ + ñ õ ö þ ï í ñ í ë í ü ñ þ ë ò ï þ ò þ ó ñ ô í ë ì í ü ñ 8 : � é =
ê û ê í ñ õ �

% � + ü ñ þ ë ò ï þ ò þ ó ñ ô í ê ñ ï ð ò ü ñ ê í ü ñ ð ñ ö ë ê ó í ë ð û ì ë ð ï ð í ñ ì ï ò í ê î ü ó ò ü õ ï í ò ü �

) � + ü ñ þ ë ò ï þ ò þ ó ñ ô í ö ð ñ ê ñ ô í ê í ü ñ ð ñ ê ù þ í ê � ð ï ô l ó ô � í ü ñ õ ó ô ë ð ø ñ ð ë ì ð ñ þ ñ ý ï ô ò ñ í ë

í ü ñ í ñ õ ö þ ï í ñ � í ë í ü ñ ù ê ñ ð �

" � + ü ñ � ñ ý ñ þ ë ö ñ ð ê ñ þ ñ ò í ê ï õ ï í ò ü ó ô � ï ð í ñ ì ï ò í ì ð ë õ í ü ë ê ñ ö ð ñ ê ñ ô í ñ ø í ë ü ó õ ë ð

ü ñ ð �

4 � + ü ñ þ ë ò ï þ ò þ ó ñ ô í ð ñ í ð ó ñ ý ñ ê í ü ñ ï ð í ñ ì ï ò í ï ô ø ø ñ þ ó ý ñ ð ê ó í í ë í ü ñ ù ê ñ ð �

@ ó ý ñ ô í ü ï í 8 : � é = ó ê ï ø ó ê í ð ó ú ù í ñ ø ð ñ ö ë ê ó í ë ð û ê û ê í ñ õ � ê í ñ ö % î ó þ þ ó ô ý ë þ ý ñ

í ü ñ ì ë þ þ ë î ó ô � (

* + ü ñ þ ë ò ï þ ò þ ó ñ ô í ö ñ ð ì ë ð õ ê ï ê ñ ï ð ò ü ë ô í ü ñ ï þ þ í ü ñ õ ñ í ï � ø ï í ï ï ý ï ó þ ï ú þ ñ ï ú ë ù í

ï ð í ñ ì ï ò í ê ó ô í ü ñ ø ó ê í ð ó ú ù í ñ ø ð ñ ö ë ê ó í ë ð û � � ë ð ñ 7 ï õ ö þ ñ � ó ì í ü ñ ð ñ ó ê ï ê ó ô � þ ñ ò ñ ô �
í ð ï þ ó ê ñ ø ê í ë ð ñ ë ì ï þ þ í ü ñ õ ñ í ï � ø ï í ï � í ü ñ þ ë ò ï þ ò þ ó ñ ô í î ó þ þ ÿ ù ñ ð û í ü ó ê ê í ë ð ñ � ' ì

í ü ñ õ ñ í ï � ø ï í ï ó ê ø ó ê í ð ó ú ù í ñ ø í ü ð ë ù � ü ë ù í í ü ñ ô ñ í î ë ð l � ñ ï ò ü 8 : � é = ð ñ ö ë ê �
ó í ë ð û î ó þ þ ú ñ ê ñ ï ð ò ü ñ ø �

* + ü ñ õ ñ í ï � ø ï í ï ð ñ ö ë ê ó í ë ð û ë ð ð ñ ö ë ê ó í ë ð ó ñ ê ê ñ ï ð ò ü ì ë ð ó í ñ õ ê ë ì õ ñ í ï � ø ï í ï

î ü ó ò ü õ ï í ò ü í ü ñ í ñ õ ö þ ï í ñ �

* + ü ñ õ ñ í ï � ø ï í ï ð ñ ö ë ê ó í ë ð û ë ð ð ñ ö ë ê ó í ë ð ó ñ ê ð ñ í ù ð ô í ü ñ õ ï í ò ü ó ô � õ ñ í ï � ø ï í ï �

: í ñ ö 4 ò ï ô ú ñ ú ð ë l ñ ô ø ë î ô ó ô í ë í ü ñ ì ë þ þ ë î ó ô � ê í ñ ö ê (

* + ü ñ � ñ ý ñ þ ë ö ñ ð ï ê l ê í ü ñ þ ë ò ï þ ò þ ó ñ ô í í ë ì ñ í ò ü ï ö ï ð í ó ò ù þ ï ð ï ð í ñ ì ï ò í �

* + ü ñ þ ë ò ï þ ò þ ó ñ ô í ø ñ í ñ ð õ ó ô ñ ê î ü ó ò ü ë ì í ü ñ ø ó ê í ð ó ú ù í ñ ø 8 : � é = ê ñ ð ý ñ ð ê ü ë þ ø ê

í ü ñ ï ð í ñ ì ï ò í ó ô ÿ ù ñ ê í ó ë ô �

* + ü ñ þ ë ò ï þ ò þ ó ñ ô í ð ñ ÿ ù ñ ê í ê í ü ï í í ü ñ ö ï ð í ó ò ù þ ï ð ê ñ ð ý ñ ð ð ñ í ù ð ô ê í ü ñ ï ð í ñ ì ï ò í �

* + ü ñ ê ñ ð ý ñ ð í ð ï ô ê õ ó í ê í ü ñ ï ð í ñ ì ï ò í í ë í ü ñ þ ë ò ï þ ò þ ó ñ ô í �

+ ü ñ ð ñ ï ð ñ í î ë ï þ í ñ ð ô ï í ó ý ñ õ ë ø ñ þ ê õ ñ ô í ó ë ô ñ ø ï ú ë ý ñ 2 ò ñ ô í ð ï þ ó ê ñ ø ë ð ø ó ê í ð ó ú ù í ñ ø

õ ñ í ï � ø ï í ï ê ñ ð ý ó ò ñ ê 4 � � ó � ù ð ñ � ê ü ë î ê í ü ñ ô ñ í î ë ð l ó ô � ò ë ô ô ñ ò í ó ë ô ê ð ñ ÿ ù ó ð ñ ø ì ë ð ï

þ ë ò ï þ ò þ ó ñ ô í î ó í ü ï ò ñ ô í ð ï þ õ ñ í ï � ø ï í ï ê ñ ð ý ñ ð � � ê ó ô � ï ò ñ ô í ð ï þ ê ñ ð ý ñ ð ó ô í ð ë ø ù ò ñ ê ï

ê ó ô � þ ñ ö ë ó ô í ë ì ì ï ó þ ù ð ñ ó ô í ë í ü ñ ê û ê í ñ õ � ú ù í ó í ï ý ë ó ø ê í ü ñ ö ð ë ú þ ñ õ ë ì ø ó ê í ð ó ú ù í ó ô �
õ ñ í ï � ø ï í ï í ü ð ë ù � ü ë ù í í ü ñ ê û ê í ñ õ ï ô ø õ ï ó ô í ï ó ô ó ô � ò ë ô ê ó ê í ñ ô ò û � + ü ó ê ó ê ï í ð ï ø ñ �
ë 	 î ü ó ò ü î ó þ þ ü ï ý ñ í ë ú ñ ñ 7 ï õ ó ô ñ ø õ ë ð ñ ò ï ð ñ ì ù þ þ û ú ñ ì ë ð ñ ï ø ñ ò ó ê ó ë ô ò ï ô ú ñ

õ ï ø ñ � ' ô R � ù ð ñ � � í ü ñ ï ð ò þ ï ú ñ þ þ ñ ø � ê ñ ï ð ò ü � ò ë ð ð ñ ê ö ë ô ø ê í ë í ü ñ ò ë ô ô ñ ò í ó ë ô õ ï ø ñ

ú û í ü ñ ò þ ó ñ ô í í ë í ü ñ ð ñ ö ë ê ó í ë ð û ø ù ð ó ô � í ü ñ ê ñ ï ð ò ü ë ô í ü ñ õ ñ í ï � ø ï í ï � î ü ó þ ñ í ü ñ ï ð ò

þ ï ú ñ þ þ ñ ø � ð ñ í ð ó ñ ý ñ � ò ë ð ð ñ ê ö ë ô ø ê í ë í ü ñ ò ë ô ô ñ ò í ó ë ô õ ï ø ñ ú û í ü ñ þ ë ò ï þ ò þ ó ñ ô í í ë í ü ñ

ï ð í ó ì ï ò í ð ñ ö ë ê ó í ë ð û î ü ó ò ü ò ë ô í ï ó ô ê í ü ñ ö ï ð í ó ò ù þ ï ð ï ð í ñ ì ï ò í î ü ó ò ü í ü ñ ø ñ ý ñ þ ë ö ñ ð

ü ï ê ð ñ ÿ ù ñ ê í ñ ø �

Local Client
Repository

Repository Repository

Server
Meta−Data

Developer

search

Network

retrieve

� ó � ù ð ñ � (: ñ ï ð ò ü ó ô � ì ë ð ï ô ø = ñ í ð ó ñ ý ó ô � ï ô é ð í ñ ì ï ò í

� � + � æ è ã + = + á â /

� 	 � � � � � � � � � � � � 	
 � � � � � �

8 : � é = õ ù ê í ö ð ñ ê ñ ô í í ü ñ ø ï í ï ó í ò ë ô í ï ó ô ê ó ô ï õ ñ ï ô ó ô � ì ù þ õ ï ô ô ñ ð í ë ò þ ó ñ ô í ê

î ü ó ò ü õ ï û ú ñ ü ù õ ï ô � õ ï ò ü ó ô ñ ë ð ï õ ó 7 í ù ð ñ ë ì í ü ñ í î ë V ì ë ð ñ 7 ï õ ö þ ñ ï > � ù ï ð ø ó ï ô

ï � ñ ô í ? ï ö ö ð ë ï ò ü î ü ñ ð ñ ó ô í ñ þ þ ó � ñ ô í ê ë ì í î ï ð ñ õ ñ ø ó ï í ñ ê í ü ñ ü ù õ ï ô � ê ó ô í ñ ð ï ò í ó ë ô

î ó í ü í ü ñ ó ô ì ë ð õ ï í ó ë ô � � ë ô ê ñ ÿ ù ñ ô í þ û í ü ñ ì ë þ þ ë î ó ô � ê ë ì í î ï ð ñ ð ñ ÿ ù ó ð ñ õ ñ ô í ê (

� � ' ô í ñ þ þ ó � ñ ô í ø ï í ï í ð ï ô ê ì ë ð õ ï í ó ë ô � / ü ó þ ñ 8 : � é = î ó þ þ ü ï ý ñ ï ò ë õ õ ë ô ø ï í ï

ì ë ð õ ï í � ò þ ó ñ ô í ê ï ô ø ë í ü ñ ð ñ 7 í ñ ð ô ï þ ê ë ù ð ò ñ ê î ó þ þ ü ï ý ñ í ü ñ ó ð ë î ô ø ï í ï í ü ï í

î ó þ þ ô ñ ñ ø í ð ï ô ê þ ï í ó ô � ú ñ ì ë ð ñ ó í ó ê õ ñ ï ô ó ô � ì ù þ � ì ë ð ú ë í ü ì ë ð ó ô ö ù í ï ô ø ë ù í ö ù í

î ó í ü 8 : � é = �

é ø ø ó í ó ë ô ï þ þ û í ü ñ õ ï ô ô ñ ð ó ô î ü ó ò ü ø ï í ï ó ê ö ð ñ ê ñ ô í ñ ø î ó þ þ ò ü ï ô � ñ î ü ñ ô

í ü ñ í ï ê l í ü ñ ò þ ó ñ ô í ó ê ö ñ ð ì ë ð õ ó ô � ò ü ï ô � ñ ê � ï ô ø ì ë ð ü ù õ ï ô ù ê ñ ð ê î ó í ü í ü ñ

ñ 7 ö ñ ð ó ñ ô ò ñ þ ñ ý ñ þ ë ì í ü ñ ó ô ø ó ý ó ø ù ï þ ù ê ñ ð �

x � - ð ñ ê ñ ô í ï í ó ë ô ë ì ø ñ ö ñ ô ø ñ ô ò ó ñ ê ú ñ í î ñ ñ ô ï ð í ñ ì ï ò í ê � + ë ì ï ò ó þ ó í ï í ñ í ï ê l ê ê ù ò ü ï ê

ó õ ö ï ò í ï ô ï þ û ê ó ê í ü ñ ø ñ ö ñ ô ø ñ ô ò ó ñ ê ú ñ í î ñ ñ ô ï ð í ñ ì ï ò í ê ë ì ó ô í ñ ð ñ ê í ó ô 8 : � é =
õ ù ê í ú ñ ö ð ñ ê ñ ô í ñ ø í ë ò þ ó ñ ô í ê ï ê ê ù ö ö þ ñ õ ñ ô í ï þ ó ô ì ë ð õ ï í ó ë ô ø ù ð ó ô � ó ô í ñ ð �
ï ò í ó ë ô � + ü ó ê î ó þ þ ï ê ê ó ê í ó ô ï þ þ ñ ý ó ï í ó ô � í ü ñ ö ð ë ú þ ñ õ ê ò ï ù ê ñ ø ú û ò ü ï ô � ó ô �
ê ù ö ñ ð R ò ó ï þ þ û ù ô ð ñ þ ï í ñ ø ó í ñ õ ê �

C � - ð ñ ê ñ ô í ï í ó ë ô ë ì ê ñ ï ð ò ü ð ñ ê ù þ í ê � ' ô ì ë ð õ ï í ó ë ô � ñ ô ñ ð ï í ñ ø ú û ê ñ ï ð ò ü o ë ú ê õ ù ê í

ú ñ í ð ï ô ê ì ë ð õ ñ ø ó ô í ë ï ô ï ö ö ð ë ö ð ó ï í ñ ì ë ð õ ì ë ð í ü ñ ò þ ó ñ ô í ê � / ü ó þ ñ ï ö ð ó ô í ñ ø

ð ñ ö ë ð í õ ï û ú ñ R ô ñ ì ë ð ï ü ù õ ï ô í ü ñ û î ë ù þ ø ú ñ þ ñ ê ê ù ê ñ ì ù þ í ë ï í ë ë þ þ ë ë l ó ô �
ì ë ð ê ë ì í î ï ð ñ ò ë õ ö ë ô ñ ô í ê í ë ò ë õ ö ë ê ñ �

% � - ð ñ ê ñ ô ò ñ ï î ï ð ñ ô ñ ê ê � $ ó l ñ ø ñ ö ñ ô ø ñ ô ò û ö ð ñ ê ñ ô í ï í ó ë ô � í ü ñ ï ò í ó ý ó í ó ñ ê ë ì ë í ü ñ ð

ù ê ñ ð ê ê ü ë ù þ ø ú ñ ó ô ø ó ò ï í ñ ø ø ù ð ó ô � ó ô í ñ ð ï ò í ó ë ô í ë ì ï ò ó þ ó í ï í ñ ò ë þ þ ï ú ë ð ï í ó ë ô �

é � ï ó ô � í ü ñ õ ñ ï ô ê ë ì ó ô ø ó ò ï í ó ë ô õ ù ê í ý ï ð û ï ò ò ë ð ø ó ô � í ë í ü ñ ò ü ï ð ï ò í ñ ð ó ê í ó ò ê

ë ì ñ ï ò ü ò þ ó ñ ô í �

� 	 � � � � � � � � � 	
 � � � � � �

8 : � é = õ ù ê í ó ô ø ñ 7 ó í ê ò ë ô í ñ ô í ê í ë ï þ þ ë î ð ó ò ü ù ê ñ ð ÿ ù ñ ð ó ñ ê � � ù ñ ð ó ñ ê ï ð ñ � ñ ô ñ ð ï þ þ û

ï ð ñ ó ô í ñ ô ø ñ ø í ë õ ï í ò ü ï ö ö ð ë ö ð ó ï í ñ ï ð í ñ ì ï ò í ê í ë ð ñ í ð ó ñ ý ñ ì ð ë õ 8 : � é = ï ô ø ï þ ê ë

í ë ê ò ë ð ñ í ü ñ õ ï í í ü ñ ò þ ó ñ ô í í ë ö ð ñ ê ñ ô í í ü ñ ú ñ ê í ö ë ê ê ó ú þ ñ õ ï í ò ü �

) � � ù - - û � ê ó õ ó þ ï ð ó í û ú ï ê ñ ø ê ñ ï ð ò ü ó ô � � = ï í ü ñ ð í ü ï ô o ù ê í ï ê ó õ ö þ ñ ú ë ë þ ñ ï ô

ê ñ ï ð ò ü þ ó l ñ í ü ï í ì ë ù ô ø ó ô õ ï ô û ê ë ì í î ï ð ñ ö ð ë ø ù ò í ê � í ü ñ ô ï í ù ð ñ ë ì 8 : � é =
ï ô ø í ü ñ ø ï í ï ò ë ô í ï ó ô ñ ø î ó í ü ó ô ó í ð ñ ÿ ù ó ð ñ ê ï õ ë ð ñ ê ë ö ü ó ê í ó ò ï í ñ ø õ ñ í ü ë ø

ë ì ê ñ þ ñ ò í ó ô � ê ñ ï ð ò ü ð ñ ê ù þ í ê � + ü ñ í û ö ñ ë ì ê ñ ï ð ò ü ñ ô ý ó ê ó ë ô ñ ø ó ê ò ë ô ò ñ ö í ù ï þ þ û

ê ó õ ó þ ï ð í ë í ü ï í ë ù í þ ó ô ñ ø ú û $ ï ó Z $ ï ó ï ô ø + ï ó í � � [[+ \ í ü ï í õ ó õ ó ò ê í ü ñ ê ñ ï ð ò ü

í ñ ò ü ô ó ÿ ù ñ ê ë ì ü ù õ ï ô ê þ ë ë l ó ô � ì ë ð ó õ ï � ñ ê �

" � = ó ò ü � ñ 7 í ñ ô ê ó ú þ ñ õ ñ í ï � ø ï í ï õ ë ø ñ þ í ë ø ñ ê ò ð ó ú ñ 8 : � é = � ê ò ë ô í ñ ô í ê � : ù ò ü

ï õ ë ø ñ þ ó ê ô ñ ò ñ ê ê ï ð û í ë ê ù ö ö ë ð í í ü ñ ê ë ö ü ó ê í ó ò ï í ñ ø ê ñ ï ð ò ü ó ô � ï ô ø ó ô ø ñ 7 ó ô �
8 : � é = ð ñ ÿ ù ó ð ñ ê �

4 � = ñ ï ê ë ô ï ú þ ñ ð ñ ê ö ë ô ê ñ í ó õ ñ � é ê í ü ñ ê û ê í ñ õ ó ê ö ë í ñ ô í ó ï þ þ û ü ó � ü þ û ø ó ê í ð ó ú ù í ñ ø �

ê ñ ï ð ò ü ñ ê õ ù ê í ð ñ í ù ð ô ï ð ñ ï ê ë ô ï ú þ ñ ê ñ í ë ì õ ï í ò ü ñ ê ó ô ï ð ñ ï ê ë ô ï ú þ ñ 	 í ó õ ñ í ë

ñ ô ê ù ð ñ í ü ï í ï ê ñ ï ð ò ü ø ë ñ ê ô ë í í ï l ñ ê ë þ ë ô � í ë ò ë õ ö þ ñ í ñ í ü ï í ó í ó õ ö ï ó ð ê í ü ñ

ö ñ ð ì ë ð õ ï ô ò ñ ë ì í ü ñ ð ñ ê í ë ì í ü ñ ê û ê í ñ õ

+ � + ð ï ô ê ö ï ð ñ ô í ø ó ê í ð ó ú ù í ñ ø ê ñ ï ð ò ü � / ü ñ í ü ñ ð ï ô ï ð í ñ ì ï ò í 2 ë ð ó í ê ø ñ ê ò ð ó ö í ó ý ñ

õ ñ í ï � ø ï í ï 4 ó ê ü ñ þ ø þ ë ò ï þ þ û ë ð ñ þ ê ñ î ü ñ ð ñ ó ô í ü ñ ê û ê í ñ õ í ü ñ ê ñ ï ð ò ü ï ô ø ê ù ú �
ê ñ ÿ ù ñ ô í ð ñ í ð ó ñ ý ï þ ë ì ï ð í ñ ì ï ò í ê ê ü ë ù þ ø ú ñ ñ 7 ï ò í þ û í ü ñ ê ï õ ñ �

� 	 � � � � � � � 	
 � � � � � �

/ ü ñ ô ù ê ñ ð ê ó ô í ñ ð ï ò í î ó í ü 8 : � é = î ü ñ í ü ñ ð ø ó ð ñ ò í þ û ë ð ì ð ë õ ñ þ ê ñ î ü ñ ð ñ ó ô í ü ñ

@ B C B : ' : ñ ô ý ó ð ë ô õ ñ ô í í ü ñ ó ð ï ò í ó ë ô ê ô ï í ù ð ï þ þ û ï 	 ñ ò í í ü ñ ñ ô ý ó ð ë ô õ ñ ô í � é ð ñ ò ë ð ø

ë ì í ü ñ ê ñ ï ò í ó ý ó í ó ñ ê ï ô ø í ü ñ ó ð ò ë ô ê ñ ÿ ù ñ ô ò ñ ê ö ð ë ý ó ø ñ ê ï ô ó ô ê ó � ü í ó ô í ë í ü ñ î ë ð l �
ó ô � ö ð ï ò í ó ò ñ ê ë ì í ü ñ ý ó ð í ù ï þ ë ð � ï ô ó ê ï í ó ë ô ú ù ó þ í ï ð ë ù ô ø 8 : � é = ï ô ø @ B C B : ' : �

� ë ô ê ñ ÿ ù ñ ô í þ û ï õ ñ í ð ó ò ê ê û ê í ñ õ ï ô ø ñ 7 í ñ ô ê ó ú þ ñ ó ô ê í ð ù õ ñ ô í ï í ó ë ô ö ï ò l ï � ñ õ ù ê í

ú ñ ó ô í ñ � ð ï í ñ ø î ó í ü 8 : � é = í ë ú ù ó þ ø í ü ó ê ð ñ ò ë ð ø � + ü ñ ð ñ ÿ ù ó ð ñ õ ñ ô í ê ì ë ð í ü ó ê

ê ù ú ê û ê í ñ õ ï ð ñ ï ê ì ë þ þ ë î ê (

[� + ð ï ô ê ö ï ð ñ ô í ò ë þ þ ñ ò í ó ë ô ï ô ø ò ï þ ò ù þ ï í ó ë ô ë ì õ ñ í ð ó ò ê � + ë ê ù ö ö ë ð í í ü ñ ð ñ ÿ ù ó ð ñ �
õ ñ ô í ì ë ð ô ë ô � ó ô í ð ù ê ó ý ñ ú ñ ü ï ý ó ë ù ð ó ô @ B C B : ' : í ü ñ õ ñ í ð ó ò ê õ ë ø ù þ ñ ê ü ë ù þ ø

ô ë í ð ñ ÿ ù ó ð ñ õ ï ô ø ï í ë ð û ë ö ñ ð ï í ó ë ô ë ô í ü ñ ö ï ð í ë ì í ü ñ ù ê ñ ð ì ë ð ò ë ð ð ñ ò í ë ö ñ ð �
ï í ó ë ô �

� � � : ù ö ö þ ñ õ ñ ô í ó ô � ï ð í ñ ì ï ò í õ ñ í ï � ø ï í ï î ó í ü ó ô ì ë ð õ ï í ó ë ô ø ñ ð ó ý ñ ø ì ð ë õ í ü ñ õ ñ í �
ð ó ò ê � + ü ñ ð ñ ì ë ð ñ í ü ñ ü ó ê í ë ð û ï ô ø ò ü ï ð ï ò í ñ ð ó ê í ó ò ê ë ì í ü ñ ï ò í ó ý ó í ó ñ ê ù ê ó ô � ï ô

ï ð í ñ ì ï ò í ê ü ë ù þ ø > ê ù ð ð ë ù ô ø ? ó í î ü ñ ô ö ð ñ ê ñ ô í ñ ø í ë í ü ñ ù ê ñ ð ï ô ø ö ð ë ý ó ø ñ ï ø �
ø ó í ó ë ô ï þ ö ð ë ö ñ ð í ó ñ ê í ë ê ñ ï ð ò ü �

� � � � � � � � � � � � � " � $ � � " � & () � * � � � (- � . / � � (� 0 () � � � � - *) 2

� � � � ë þ þ ï í ó ë ô ë ì ò ñ ð í ï ó ô õ ñ í ð ó ò ê ó ô í ë ï ø ø ó í ó ë ô ï þ ø ë ò ù õ ñ ô í ï í ó ë ô ó í ñ õ ê � + ü ñ ó ô �
ì ë ð õ ï í ó ë ô � ñ ô ñ ð ï í ñ ø ú û ê ë õ ñ ï ð í ñ ì ï ò í ê õ ï û ô ë í ú ñ ù ê ñ ì ù þ î ü ñ ô ø ó ð ñ ò í þ û ï ê �

ê ë ò ó ï í ñ ø î ó í ü í ü ñ ï ð í ñ ì ï ò í ê í ü ñ õ ê ñ þ ý ñ ê � ' ô ê í ñ ï ø ï ý ó ð í ù ï þ ø ë ò ù õ ñ ô í ê ü ë ù þ ø

ú ñ ö ð ë ø ù ò ñ ø ò ë ô í ï ó ô ó ô � í ü ñ ó ô ì ë ð õ ï í ó ë ô ï ô ø ï ê ê ë ò ó ï í ñ ø î ó í ü í ü ñ ï ð í ñ ì ï ò í �

+ ü ó ê ï ö ö ð ë ï ò ü ó ê ó ô í ñ ô ø ñ ø í ë ð ñ ø ù ò ñ ó ô ì ë ð õ ï í ó ë ô ë ý ñ ð þ ë ï ø ë ô ü ù õ ï ô ù ê ñ ð ê �

� x � 8 ö í ó ë ô ï þ þ û ñ 7 í ñ ô ê ó ú þ ñ ú û ù ê ñ ð ê � ' ì ï ù ê ñ ð ü ï ê ï ð ñ ÿ ù ó ð ñ õ ñ ô í ì ë ð ï õ ñ í ð ó ò

ô ë í ó ô ò þ ù ø ñ ø ó ô í ü ñ ê í ï ô ø ï ð ø ó ô ê í ð ù õ ñ ô í ï í ó ë ô ö ï ò l ï � ñ � ï ø ø ó ô � í ü ñ õ ñ í ð ó ò

ê ü ë ù þ ø ú ñ ê ó õ ö þ ñ �

� 	 � � � � � � � � � � � � 	
 � � � � � �

+ ü ñ @ B C B : ' : ê û ê í ñ õ ê í ë ð ñ ê í î ë l ó ô ø ê ë ì ø ï í ï ì ë ð ñ ï ò ü ï ð í ñ ì ï ò í � í ü ñ � � � � K � � �
ï ô ø � � � � � � 0 � � � � � + ï ú þ ñ � ó ô ø ó ò ï í ñ ê í ü ñ ò ü ï ð ï ò í ñ ð ó ê í ó ò ê ë ì ñ ï ò ü ë ì í ü ñ ê ñ í û ö ñ ê (

� _ b � � � � b � � � b _ � � ` b � � b �

: ó - ñ : õ ï þ þ � ð ñ þ ï í ó ý ñ þ û ò ë ô ê í ï ô í é ô û ê ó - ñ � ý ï ð ó ï ú þ ñ

: í ð ù ò í ù ð ñ 8 ó � ü þ û ê í ð ù ò í ù ð ñ ø - ï ð í ó ï þ þ û ê í ð ù ò í ù ð ñ ø

8 ö ñ ð ï í ó ë ô ê ï ó ô þ û � ù ñ ð û � = ñ ï ø = ñ ï ø � / ð ó í ñ ú ï þ ï ô ò ñ ø

� ë ð õ ï í - þ ï ó ô í ñ 7 í � ó ô ï ð û ï ô ø ö þ ï ó ô í ñ 7 í

� ñ ö ñ ô ø ñ ô ò ó ñ ê C ë ô ñ 8 í ü ñ ð ï ð í ñ ì ï ò í ø ï í ï

$ ó ô l ê 8 í ü ñ ð õ ñ í ï � ø ï í ï 2 ë ö í ó ë ô ï þ 4 � ï í ï ê ë ù ð ò ñ

+ ï ú þ ñ � (� ï í ï � ü ï ð ï ò í ñ ð ó ê í ó ò ê

+ ü ñ ê í ë ð ï � ñ ð ñ ÿ ù ó ð ñ õ ñ ô í ê ì ë ð í ü ñ ê ñ í î ë í û ö ñ ê ë ì ø ï í ï ø ó 	 ñ ð ê ó � ô ó R ò ï ô í þ û (

� _ b � � � � b � * � ï ê í í ë ê ñ ï ð ò ü 2 ê ë ð í ñ ø ø ï í ï 4

* $ ë í ê ë ì ð ñ þ ï í ó ë ô ï þ ó ô ì ë ð õ ï í ó ë ô

* - ë î ñ ð ì ù þ ÿ ù ñ ð û � ñ ø ó í ê û ê í ñ õ

� � b _ � � ` b � � b � * B ' ò ó ñ ô í ê í ë ð ï � ñ 2 þ ó í í þ ñ î ï ê í ñ ø ê ö ï ò ñ ë ð � - � í ó õ ñ 4

* � ï ê í í ë ï ò ò ñ ê ê 2 ô ë ô ñ ñ ø í ë ÿ ù ñ ð û ï ê ö ñ ò ó ï þ ó ê ñ ø ö ð ë � ð ï õ þ ó l ñ ï � � :
í ë ð ñ í ð ó ñ ý ñ ø ï í ï

* B ð ð ë ð ð ñ ê ó ê í ï ô í 2 ý ñ ð ê ó ë ô ó ô � � ú ï ò l ë 	 ñ í ò 4

+ ü ó ê ó ô ø ó ò ï í ñ ê í ü ñ ì ë þ þ ë î ó ô � ê ë ì í î ï ð ñ ð ñ ÿ ù ó ð ñ õ ñ ô í ê (

� C � é ê ñ ö ï ð ï í ñ ì ï ê í ï ô ø ê í ð ù ò í ù ð ñ ø ê í ë ð ñ ì ë ð õ ñ í ï � ø ï í ï � ê ù ö ö ë ð í ó ô � ï ê ë ö ü ó ê �
í ó ò ï í ñ ø ÿ ù ñ ð û þ ï ô � ù ï � ñ �

� % � é ê ö ï ò ñ ñ ' ò ó ñ ô í ê í ë ð ñ ì ë ð ï ð í ñ ì ï ò í ø ï í ï � ò ë ô í ï ó ô ó ô � ï ú ï ò l ù ö ë ì ï ô û ò ü ï ô � ñ ê

í ë õ ñ í ï � ø ï í ï �

�) � é ø ó ê í ð ó ú ù í ó ë ô õ ë ø ñ þ í ü ï í ï þ þ ë î ê ë ö í ó ë ô ï þ ø ó ê í ð ó ú ù í ó ë ô ë ì ú ë í ü ø ï í ï ê í ë ð ñ ê

ó ô ï � � � � � � I � � � K � � � 0 � î ü ó þ ñ ê í ó þ þ ð ñ í ï ó ô ó ô � í ü ñ ñ ð ð ë ð ð ñ ê ó ê í ï ô ò ñ ï ô ø ð ñ ò ë ý �
ñ ð û ö ð ë ö ñ ð í ó ñ ê ë ì ñ ï ò ü �

� 	 � � � � � �
 � � � � � � � � � � � � � � � � � � 	
 � � � � � �

+ ü ñ R ô ï þ ê ñ í ë ì ð ñ ÿ ù ó ð ñ õ ñ ô í ê ï ð ñ í ü ë ê ñ í ü ï í ï ð ñ ô ë í ø ó ð ñ ò í þ û ð ñ þ ï í ñ ø í ë 8 : � é = � ê

ì ù ô ò í ó ë ô ï þ ó í û ë ð ï ð ñ ó ô ü ñ ð ó í ñ ø ì ð ë õ í ü ë ê ñ ë ì í ü ñ î ó ø ñ ð @ B C B : ' : ñ ô ý ó ð ë ô õ ñ ô í �

+ ü ë ù � ü í ü ñ û ï ð ñ ô ë í ñ 7 ö þ ó ò ó í þ û ö ï ð í ë ì 8 : � é = í ü ñ û î ó þ þ ê í ó þ þ ï 	 ñ ò í í ü ñ ø ñ ê ó � ô

ë ì í ü ñ ê û ê í ñ õ (

� " � + ü ñ l ñ û ð ñ ÿ ù ó ð ñ õ ñ ô í ó ê í ü ï í í ü ñ @ B C B : ' : í ë ë þ õ ù ê í ú ñ ô ë ô � ó ô í ð ù ê ó ý ñ �

@ B C B : ' : ï ô ø ò ë ô ê ñ ÿ ù ñ ô í þ û 8 : � é = õ ù ê í ô ë í � ð ï í ù ó í ë ù ê þ û ï 	 ñ ò í í ü ñ ñ 7 �
ó ê í ó ô � ë ð � ï ô ó ê ï í ó ë ô ï þ ö ð ë ò ñ ê ê ñ ê �

� 4 � é ü ó � ü ø ñ � ð ñ ñ ë ì ø ñ ö ñ ô ø ï ú ó þ ó í û ó ê ô ñ ò ñ ê ê ï ð û ì ë ð 8 : � é = í ë ú ñ ï ò ò ñ ö í ñ ø

ï ô ø í ð ù ê í ñ ø î ó í ü ï ð í ñ ì ï ò í ê �

� + � + ü ñ ð ñ ÿ ù ó ð ñ õ ñ ô í ì ë ð ø ó ê í ð ó ú ù í ó ë ô ö ð ë ý ó ø ñ ê ú ë í ü ø ñ ö ñ ô ø ï ú ó þ ó í û ú ñ ô ñ R í ê 2 ð ñ �
ø ù ô ø ï ô ò û 4 ï ô ø ò ü ï þ þ ñ ô � ñ ê 2 ê û ô ò ü ð ë ô ó ê ï í ó ë ô ï ô ø ò ü ï ô � ñ ò ë ô í ð ë þ 4 � + ü ñ ø ó ê �

í ð ó ú ù í ó ë ô õ ë ø ñ þ ê ê ñ þ ñ ò í ñ ø ê ü ï þ þ í ï l ñ ú ë í ü ó ô í ë ï ò ò ë ù ô í �

� [� + ë ì ï ò ó þ ó í ï í ñ í ü ñ ð ñ ÿ ù ó ð ñ õ ñ ô í ì ë ð ï ô ë ô � ó ô ý ï ê ó ý ñ ñ ô ý ó ð ë ô õ ñ ô í � @ B C B : ' :

ï ô ø 8 : � é = õ ù ê í ú ñ ë ö ñ ô ï ô ø ó ô í ñ ð ë ö ñ ð ï ú þ ñ î ó í ü ñ 7 ó ê í ó ô � ê û ê í ñ õ ê �

� � ã ä ' ä / + å 	 ã ç � è â + ç â æ ã +

+ ü ñ ê ï õ ö þ ñ ù ê ñ ò ï ê ñ ì ë ð 8 : � é = ö ð ë ý ó ø ñ ø ñ ï ð þ ó ñ ð ó ô í ü ñ ö ï ö ñ ð ó þ þ ù ê í ð ï í ñ ê í ü ñ

ì ë ù ð ï ê ö ñ ò í ê ë ì í ü ñ ï ð í ñ ì ï ò í õ ï ô ï � ñ õ ñ ô í ê û ê í ñ õ (

 � _ � _ f b � b c d f 8 : � é = ê ü ï þ þ ú ñ ð ñ ê ö ë ô ê ó ú þ ñ ì ë ð í ï l ó ô � í ü ñ ê í ë ð ñ ø ò ë ô í ñ ô í ï ô ø

ø ñ þ ó ý ñ ð ó ô � ó í í ë í ü ñ ù ê ñ ð ï � ñ ô í ê ó ô í ü ñ ï ö ö ð ë ö ð ó ï í ñ ì ë ð õ ï í � : ë õ ñ í ð ï ô ê ì ë ð �
õ ï í ó ë ô ë ð ð ñ ö ï ò l ï � ó ô � ë ì ø ï í ï ó ê ñ 7 ö ñ ò í ñ ø ü ñ ð ñ � ' ô ï ø ø ó í ó ë ô í ü ó ê þ ï û ñ ð ê ü ï þ þ

ó õ ö þ ñ õ ñ ô í í ü ñ ê ñ ò ù ð ó í û 2 þ ï ð � ñ þ û ï ò ò ñ ê ê ò ë ô í ð ë þ 4 ï ô ø õ ï ó ô í ñ ô ï ô ò ñ 2 ñ 7 ö ó ð ó ô �
ï ô ø ò ë õ ö ð ñ ê ê ó ô � ë þ ø ø ï í ï 4 ì ñ ï í ù ð ñ ê í ü ñ ð ñ ö ë ê ó í ë ð û ð ñ ÿ ù ó ð ñ ê �

� f � _ � c f � + ü ñ ó ô ø ñ 7 ó ô � ê û ê í ñ õ ê ü ï þ þ ö ð ë ý ó ø ñ ï õ ñ í ü ë ø ë ì ê ñ ï ð ò ü ó ô � ï ô ø ô ï ý �
ó � ï í ó ô � í ü ñ ï ð í ñ ì ï ò í ð ñ ö ë ê ó í ë ð û � ê ê í ë ð ñ ø õ ñ í ï � ø ï í ï � + ü ñ ó ô ì ë ð õ ï í ó ë ô ö ð ë �
ý ó ø ñ ø ú û í ü ó ê þ ï û ñ ð ì ë ð õ ê í ü ñ ú ï ê ó ê ë ì í ü ñ ë ö ñ ð ï í ó ë ô ê ë 	 ñ ð ñ ø ú û í ü ñ ö ð ñ �
ê ñ ô í ï í ó ë ô þ ï û ñ ð î ü ó ò ü ê ü ï þ þ í ü ñ ô ï ò í ë ô í ü ñ ï ð í ñ ì ï ò í ê í ü ñ õ ê ñ þ ý ñ ê �

� _ b � c ` � + ü ñ ú ñ ü ï ý ó ë ù ð ë ì í ü ñ ê û ê í ñ õ õ ù ê í ú ñ ò ï ö í ù ð ñ ø ì ë ð þ ï í ñ ð ê í ù ø û ì ë ð ö ù ð �
ö ë ê ñ ê ë ì ÿ ù ï þ ó í û ï ê ê ù ð ï ô ò ñ � ê ù ö ö þ ñ õ ñ ô í ó ô � í ü ñ ï ð í ñ ì ï ò í õ ñ í ï � ø ï í ï � ì ù ð í ü ñ ð

ù ê ñ ð � ô ñ ñ ø ê ï ô ï þ û ê ó ê ï ô ø ð ñ ê ñ ï ð ò ü � + ü ñ õ ñ í ð ó ò ê ñ ô � ó ô ñ î ó þ þ ö ñ ð ì ë ð õ í ü ó ê

í ï ê l

^ b d � � � _ $ ï ð � ñ ý ë þ ù õ ñ ê ë ì ø ï í ï õ ù ê í ú ñ ê í ë ð ñ ø ñ ' ò ó ñ ô í þ û ú û í ü ñ ê û ê í ñ õ � + ü ñ

ì ë ð õ ï í ë ì í ü ó ê ø ï í ï õ ù ê í ú ñ ò ü ë ê ñ ô í ë ì ï ò ó þ ó í ï í ñ í ü ñ ì ë þ þ ë î ó ô � (

* : ö ñ ñ ø ï ô ø ñ ï ê ñ ë ì í ð ï ô ê ì ë ð õ ï í ó ë ô ï í í ü ñ ö ð ñ ê ñ ô í ï í ó ë ô þ ï û ñ ð

* : ö ñ ñ ø ï ô ø ñ ï ê ñ ë ì ó ô ø ñ 7 ó ô � í ü ñ ø ï í ï ì ë ð ð ñ í ð ó ñ ý ï þ

= ï î ê ó - ñ ó ê ô ë í ï ö ð ë ú þ ñ õ ï ê þ ï ð � ñ ï ð í ñ ì ï ò í ê õ ï û ú ñ ø ó ê í ð ó ú ù í ñ ø ï ð ë ù ô ø

í ü ñ @ B C B : ' : ð ñ ö ë ê ó í ë ð û ô ñ í î ë ð l ï ê ô ñ ò ñ ê ê ï ð û � � ë ô ê ñ ÿ ù ñ ô í þ û ï ü ó � ü þ û

ê í ð ù ò í ù ð ñ ø ï ô ø ñ 7 í ñ ô ê ó ú þ ñ ø ï í ï ì ë ð õ ï í ë ð ê ñ í ë ì ø ï í ï ì ë ð õ ï í ê ó ê ô ñ ò ñ ê ê ï ð û �

+ î ë í û ö ñ ê ë ì ø ï í ï ê ü ï þ þ ú ñ ê í ë ð ñ ø � � � � K � � � ï ô ø . � � � � � 0 � � � � � � + ü ñ ê ñ

õ ï û ú ñ ê í ë ð ñ ø í ë � ñ í ü ñ ð ë ð ï ö ï ð í í ü ë ù � ü ó ì ê í ë ð ñ ø ï ö ï ð í í ü ñ û õ ù ê í ú ñ þ ó ô l ñ ø

ó ô ê ë õ ñ î ï û �

' ô R � ù ð ñ x í ü ñ í î ë ø ï í ï ê í ë ð ñ ê ï ð ñ ê ü ë î ô ê ñ ö ï ð ï í ñ þ û ï ê õ ë ê í ó ô ø ñ 7 ó ô �
ë ö ñ ð ï í ó ë ô ê ê ü ï þ þ ú ñ ö ñ ð ì ë ð õ ñ ø ù ê ó ô � õ ñ í ï � ø ï í ï ë ô þ û ì ë ð ê ö ñ ñ ø �

+ ü ñ ê í ë ð ï � ñ ð ñ ÿ ù ó ð ñ õ ñ ô í ê ë ì õ ñ í ï � ø ï í ï ê ù � � ñ ê í í ü ï í ï � � : õ ó � ü í ú ñ ï ö �
ö ð ë ö ð ó ï í ñ � = ñ þ ï í ó ë ô ê ú ñ í î ñ ñ ô ï ð í ñ ì ï ò í ê 2 þ ó ô l ó ô � ï ô ø ø ñ ö ñ ô ø ñ ô ò ó ñ ê 4 õ ï û ú ñ ñ ô �
ò ë ø ñ ø ï ê ö ï ð í ë ì í ü ñ ê í ë ð ñ ø õ ñ í ï � ø ï í ï ó ô í ü ñ � � : ï ô ø ó ô ï ø ø ó í ó ë ô í ü ñ � � : � ê

ê í ð ù ò í ù ð ñ ø ÿ ù ñ ð û þ ï ô � ù ï � ñ ö ð ë ý ó ø ñ ê í ü ñ R ô ñ � � ð ï ó ô ñ ø ÿ ù ñ ð û ï ô ø ñ ø ó í ò ë ô í ð ë þ ô ñ ò �
ñ ê ê ï ð û í ë ñ 	 ñ ò í ó ý ñ þ û ê ñ ï ð ò ü í ü ñ ê í ë ð ñ ø ø ï í ï � � ó ô ï þ þ û í ü ñ � � : ó í ê ñ þ ì ê ü ï þ þ ì ï ò ó þ ó �
í ï í ñ í ü ñ ÿ ù ñ ð û ö ð ë ò ñ ê ê ú û ë ö í ó õ ó ê ó ô � í ü ñ ê í ë ð ï � ñ ë ì í ü ñ ø ï í ï ì ë ð ð ï ö ó ø ÿ ù ñ ð û ó ô � �

: ó ô ò ñ õ ï ô û � � : ó õ ö þ ñ õ ñ ô í ï í ó ë ô ê ê ù ö ö ë ð í í ð ï ô ê ï ò í ó ë ô ê ñ ð ý ó ò ñ ê ñ ó í ü ñ ð ó ô �
í ñ ð ô ï þ þ û ë ð í ü ð ë ù � ü ï ø ó ê í ð ó ú ù í ñ ø í ð ï ô ê ï ò í ó ë ô õ ï ô ï � ñ ð � í ü ó ê þ ï û ñ ð ë ì í ü ñ ê û ê í ñ õ ó ê

ï ô ó ø ñ ï þ ö þ ï ò ñ í ë ê ó í ù ï í ñ ï þ þ ê û ô ò ü ð ë ô ó ê ï í ó ë ô ê ñ ð ý ó ò ñ ê ì ë ð í ü ñ ð ñ ê í ë ì í ü ñ @ B C B : ' :
ê û ê í ñ õ �

é ð í ñ ì ï ò í ø ï í ï ü ï ê ð ï í ü ñ ð ø ó 	 ñ ð ñ ô í ê í ë ð ï � ñ ð ñ ÿ ù ó ð ñ õ ñ ô í ê V ñ ' ò ó ñ ô í ê í ë ð ï � ñ ï ô ø

ð ñ í ð ó ñ ý ï þ ë ì ê ö ñ ò ó R ò ø ï í ï ó ê ë ì � ð ñ ï í ñ ð ó õ ö ë ð í ï ô ò ñ í ü ï ô ê ñ ï ð ò ü ö ñ ð ì ë ð õ ï ô ò ñ � : ó ô ò ñ

í ü ñ ê ñ ï ð ò ü ò ï ö ï ú ó þ ó í ó ñ ê ë ì ï � � : ï ð ñ ô ë í ð ñ ÿ ù ó ð ñ ø ì ë ð í ü ó ê í û ö ñ ë ì ø ï í ï ï ê ñ í ë ì

$ ï í R þ ñ ê ë ô ï ê í ï ô ø ï ð ø R þ ñ � ê û ê í ñ õ î ó þ þ � ó ý ñ í ü ñ � ð ñ ï í ñ ê í ö ñ ð ì ë ð õ ï ô ò ñ �
+ ü ñ ê ñ í î ë ò ë ô $ ó ò í ó ô � ð ñ ÿ ù ó ð ñ õ ñ ô í ê ê ù � � ñ ê í ï í î ë � í ó ñ ð ï ð ò ü ó í ñ ò í ù ð ñ ò ë ô ê ó ê í ó ô �

ë ì ï � � : í ë ê í ë ð ñ õ ñ í ï � ø ï í ï í ë ñ ô ï ú þ ñ ù ê ñ ð ê í ë R ô ø ï ð í ñ ì ï ò í ê ï ô ø ï ê ñ í ë ì $ ï í

R þ ñ ê ë ô ø ó ê l í ë ê í ë ð ñ í ü ñ ï ò í ù ï þ ø ï í ï � é þ þ ø ï í ï ó ô í ü ñ � � : ê ü ë ù þ ø ï þ ê ë ú ñ

ê í ë ð ñ ø ó ô í ü ñ $ ï í R þ ñ ê ê ë í ü ï í ó ô í ü ñ ñ ý ñ ô í ë ì � � : ñ ð ð ë ð ê í ü ñ ð ñ ö ë ê ó í ë ð û ò ï ô ú ñ

ð ñ ö ï ó ð ñ ø í ð ï ô ê ö ï ð ñ ô í þ û ì ð ë õ í ü ñ ø ï í ï ü ñ þ ø ó ô R þ ñ ê � : ó õ ó þ ï ð þ û í ü ñ � � : � ê í ð ï ô ê �
ï ò í ó ë ô ê ñ ð ý ó ò ñ ê ê ü ï þ þ ú ñ ù ê ñ ø í ë ö ð ñ ý ñ ô í ò ë ô ò ù ð ð ñ ô ò û ö ð ë ú þ ñ õ ê 2 õ ï ô û � î ð ó í ñ ð ê 4

ì ð ë õ ò ë ð ð ù ö í ó ô � í ü ñ ø ó ê l ø ï í ï ê í ë ð ñ � + ü ó ê õ ó ð ð ë ð ó ô � ï ö ö ð ë ï ò ü î ó þ þ ô ë í ô ë í ó ò ñ �
ï ú þ û ï 	 ñ ò í í ü ñ ö ñ ð ì ë ð õ ï ô ò ñ ë ì 8 : � é = ê ó ô ò ñ î ü ñ ô ñ ý ñ ð í ü ñ õ ñ í ï � ø ï í ï ë ô ø ó ê l ó ê

ò ü ï ô � ñ ø í ü ñ 2 õ ù ò ü þ ï ð � ñ ð 4 ï ð í ñ ì ï ò í ø ï í ï î ó þ þ ï þ ê ë ð ñ ÿ ù ó ð ñ õ ë ø ó R ò ï í ó ë ô �

� 	 �
 � � � � � � � � � � � � � � � 	
 � � � � � �

8 : � é = ê ü ï þ þ ð ñ ö ð ñ ê ñ ô í ï þ þ í ü ñ ó ô ì ë ð õ ï í ó ë ô ò ë ô í ï ó ô ñ ø î ó í ü ó ô ó í ï ê ï ê ñ í ë ì ï ð í ñ �
ì ï ò í ê ï þ þ ë ì î ü ó ò ü ö ë ê ê ñ ê ê ö ð ë ö ñ ð í ó ñ ê � ê ë õ ñ ò ë õ õ ë ô ï ò ð ë ê ê ï þ þ ï ð í ñ ì ï ò í ê ï ô ø ë í ü ñ ð ê

ö ë ê ê ñ ê ê ñ ø ú û ê ö ñ ò ó ï þ ó ê ñ ø ï ð í ñ ì ï ò í í û ö ñ ê � + ü ó ê î ó þ þ ï þ þ ë î í ü ñ ð ñ ö ë ê ó í ë ð û í ë í ð ñ ï í

ï ð í ñ ì ï ò í ê ñ ó í ü ñ ð ï ê � ñ ô ñ ð ó ò ö ó ñ ò ñ ê ë ì ó ô ì ë ð õ ï í ó ë ô 2 ì ë ð ü ó � ü � þ ñ ý ñ þ ê ñ ï ð ò ü ñ ê ñ í ò 4 ë ð

í ï l ñ ï ø ý ï ô í ï � ñ ë ì ï ø ø ó í ó ë ô ï þ ë ö ñ ð ï í ó ë ô ê ì ë ð ê ö ñ ò ó ï þ ó ê ñ ø ï ð í ñ ì ï ò í í û ö ñ ê �

� i g i g � � b _ � � ` b ^ b � � ` b � � _

é ð í ñ ì ï ò í ê ê ü ï þ þ ú ñ ê í ð ù ò í ù ð ñ ø ð ñ ò ù ð ê ó ý ñ þ û V ï í í ü ñ þ ë î ñ ê í þ ñ ý ñ þ ñ ý ñ ð û R þ ñ ó ê ï ô ï ð í ñ �
ì ï ò í � é ø ø ó í ó ë ô ï þ þ û � ï ð í ñ ì ï ò í ê ê ü ï þ þ ó ô ü ñ ð ó í ö ð ë ö ñ ð í ó ñ ê ì ð ë õ í ü ñ ó ð ö ï ð ñ ô í ï ð í ñ ì ï ò í ê (
ò ë ô ê ó ø ñ ð í ü ñ ñ 7 ï õ ö þ ñ ë ì ï ô � $ ø ë ò ù õ ñ ô í î ó í ü ï ê ê ë ò ó ï í ñ ø ó õ ï � ñ ï ô ø ë í ü ñ ð

ø ï í ï R þ ñ ê � é í í ü ñ ü ó � ü ñ ê í þ ñ ý ñ þ í ü ñ ø ë ò ù õ ñ ô í î ó þ þ ú ñ ð ñ ö ð ñ ê ñ ô í ñ ø ú û ï ê ó ô � þ ñ

ï ð í ñ ì ï ò í ò ë ô í ï ó ô ó ô � ê ñ ý ñ ð ï þ ê ù ú ï ð í ñ ì ï ò í ê ì ë ð ñ ï ò ü ë ì í ü ñ ø ë ò ù õ ñ ô í ò ë õ ö ë ô ñ ô í ê �
é ê ê ù õ ó ô � í ü ñ ø ë ò ù õ ñ ô í î ï ê ö ð ë ø ù ò ñ ø ú û ï ê ó ô � þ ñ ï ò í ë ð í ü ñ ï ù í ü ë ð ï ô ø ë í ü ñ ð

ê ù ò ü ó ô ì ë ð õ ï í ó ë ô î ó þ þ ú ñ ó ô ü ñ ð ó í ñ ø ì ð ë õ í ü ñ ö ï ð ñ ô í ï ð í ñ ì ï ò í � : ñ ñ R � ù ð ñ C ì ë ð ï

ð ñ ö ð ñ ê ñ ô í ï í ó ë ô ë ì ê ù ò ü ï ô ï ð í ñ ì ï ò í �
' ô þ ó � ü í ë ì í ü ó ê ø ñ ê ó � ô ø ñ ò ó ê ó ë ô í ü ñ ð ñ ï ð ñ ê ë õ ñ ô ñ ò ñ ê ê ï ð û ò ë ô ê í ð ï ó ô í ê ë ô í ü ñ

ê í ð ù ò í ù ð ñ ë ì ï ð í ñ ì ï ò í ê (

Metadata abstract data
store

DBMS & Transaction
services

Artefact abstract data
store

Artefact Dispatcher

Metrics Engine

Indexing and Search Engine

Search Interface

METRIC

METRIC

METRIC

METRIC

PRESENTATION LAYER

STORAGE

ARTEFACTS

Transformation
(For example XSLT)

METRICS

Disk Storage

INDEXING

Metadata Extractor

....

....

The outside world

� ó � ù ð ñ x (8 ý ñ ð ï þ þ é ð í ñ ì ï ò í ï ô ï � ñ õ ñ ô í : û ê í ñ õ é ð ò ü ó í ñ ò í ù ð ñ

* C ë í î ë ï ð í ñ ì ï ò í ê õ ï û > ë î ô ? ï ê ó ô � þ ñ ê ù ú ï ð í ñ ì ï ò í � - ù í ï ô ë í ü ñ ð î ï û �

ï ð í ñ ì ï ò í ê õ ï û ô ë í ó ô ü ñ ð ó í ö ð ë ö ñ ð í ó ñ ê ì ð ë õ õ ë ð ñ í ü ï ô ë ô ñ ï ð í ñ ì ï ò í � + ü ó ê

ø ñ ò ó ê ó ë ô ü ï ê ú ñ ñ ô ú ë ð ð ë î ñ ø ì ð ë õ í ü ñ ø ñ ê ó � ô ë ì í ü ñ 6 ï ý ï ö ð ë � ð ï õ õ ó ô �
þ ï ô � ù ï � ñ ï ô ø ó ê ó ô í ñ ô ø ñ ø í ë ï ý ë ó ø í ü ñ ê ë ò ï þ þ ñ ø > � ó ï õ ë ô ø 8 ì � ñ ï í ü ?
ò ï ù ê ñ ø ú û ò ë ô $ ó ò í ó ô � ö ð ë ö ñ ð í ó ñ ê � + ü ë ù � ü ø ù ï þ � ë î ô ñ ð ê ü ó ö ë ì ï ô ï ð í ñ ì ï ò í

ó ê ô ë í ö ë ê ê ó ú þ ñ � ï ð í ñ ì ï ò í ê õ ï û ú ñ ð ñ � ù ê ñ ø ú û þ ó ô l ó ô � ì ð ë õ ï ô ë í ü ñ ð ï ð í ñ ì ï ò í

ï ô ø í ü ñ ï ö ö ð ë ö ð ó ï í ñ ò ë ô ê í ð ù ò í ó ë ô ö þ ï ò ñ ø ù ö ë ô í ü ñ ð ñ þ ï í ó ë ô ê ü ó ö î ü ñ ô í ü ñ

ï ð í ñ ì ï ò í ó ê ö ð ñ ê ñ ô í ñ ø �

* B 7 ö þ ó ò ó í ö ð ë ö ñ ð í ó ñ ê ï ê ê ó � ô ñ ø í ë ê ù ú � ï ð í ñ ì ï ò í ê ë ý ñ ð ð ó ø ñ í ü ñ ò ë ð ð ñ ê ö ë ô ø ó ô �
ö ð ë ö ñ ð í ó ñ ê ó ô í ü ñ ó ð ö ï ð ñ ô í ï ð í ñ ì ï ò í �

é ê ó ø ñ ì ð ë õ ó ô ü ñ ð ó í ï ô ò ñ ë ì ö ð ë ö ñ ð í ó ñ ê ì ð ë õ ï ô ë í ü ñ ð ï ð í ñ ì ï ò í ï ô ø ñ ô ò ï ö ê ù þ ï í ó ë ô

ë ì ê ù ú � ï ð í ñ ì ï ò í ê � ï ð í ñ ì ï ò í ê ï þ ê ë ö ë ê ê ñ ê ê þ ó ô l ó ô � ð ñ þ ï í ó ë ô ê ü ó ö ê î ó í ü ë í ü ñ ð ï ð í ñ ì ï ò í ê �
� ë ô ê ó ø ñ ð ë ù ð � $ ø ë ò ù õ ñ ô í ï ô ø ó í ê ï ê ê ë ò ó ï í ñ ø ó õ ï � ñ ê ï � ï ó ô � é ê ó ô � þ ñ ó õ ï � ñ

2 ì ë ð ñ 7 ï õ ö þ ñ ï ò ü ï ð í 4 î ó í ü ó ô í ü ñ ø ë ò ù õ ñ ô í õ ï û ú ñ � ñ ô ñ ð ï í ñ ø ú û ê ë õ ñ ö ð ë ò ñ ê ê

ø ñ ê ò ð ó ú ñ ø ñ þ ê ñ î ü ñ ð ñ ó ô í ü ñ ð ñ ö ë ê ó í ë ð û ï ô ø í ü ë ù � ü í ü ñ ó õ ï � ñ ø ë ñ ê ô ë í ó ô ü ñ ð ó í

ö ð ë ö ñ ð í ó ñ ê ì ð ë õ í ü ó ê ö ð ë ò ñ ê ê ó í � � � I � ù ö ë ô í ü ï í ö ð ë ò ñ ê ê í ë ñ 7 ó ê í ï í ï þ þ � : ñ ý ñ ð ï þ

DOCUMENT

Author: Joe Bloggs

CONTENTS

Identifier: DOC−977
Keywords: Foo, Bar, Qux

Section 1

Section 2

 Image 1

.<<..DATA...>>

DOCUMENT

DOCUMENT

DOCUMENT

DOCUMENT

DOCUMENT

DOCUMENT

Type: text/xml

Type: image/png
Identifier: IMG001

Identifier: DOC−977−1

Identifier:DOC−977−2

<<...INHERITS...>>

<<...INHERITS...>>

CONTENTS

Identifier: DOC−977−1−1

Identifier DOC−977−1−2:

Identifier:DOC−977−1−3

<<...INHERITS...>>

<<...INHERITS...>>

<<...INHERITS...>>
Author: John Mill

<<...INHERITS...>>

� ó � ù ð ñ C (: í ð ù ò í ù ð ñ 8 ì é ô B 7 ï õ ö þ ñ é ð í ñ ì ï ò í

í û ö ñ ê ë ì þ ó ô l ó ô � ð ñ þ ï í ó ë ô ê ü ó ö ê ü ï þ þ ñ 7 ó ê í î ó í ü ó ô í ü ñ ê û ê í ñ õ (

� c f � � ê ñ ø í ë ó ô ø ó ò ï í ñ ï ð í ñ ì ï ò í ê ï ê ê ë ò ó ï í ñ ø î ó í ü ï ô ë í ü ñ ð ú û ê ë õ ñ ó ô ì ë ð õ ï þ þ ó ô l

� _ � ` � c � _ � � ê ñ ø í ë ó ô ø ó ò ï í ñ ï ô ë í ü ñ ð ï ð í ñ ì ï ò í î ü ó ò ü ø ë ò ù õ ñ ô í ê í ü ñ ò ù ð ð ñ ô í ë ô ñ �

^ � � � _ � b _ � ' ô ø ó ò ï í ñ ê ï ô ï ð í ñ ì ï ò í í ü ï í ó ê ê í ð ë ô � þ û ï ê ê ë ò ó ï í ñ ø î ó í ü í ü ñ ò ù ð ð ñ ô í

ë ô ñ ú ù í ó ê ô ë í ð ñ ÿ ù ó ð ñ ø í ë ð ñ í ï ó ô í ü ñ ò ù ð ð ñ ô í ï ð í ñ ì ï ò í � é ô ñ 7 ï õ ö þ ñ ë ì ê ù ò ü ï

ð ñ þ ï í ó ë ô ê ü ó ö î ë ù þ ø ú ñ ï ô ï ð í ñ ì ï ò í ð ñ ö ð ñ ê ñ ô í ó ô � ò ë ø ñ ì ë ð ï ò þ ó ñ ô í ê ù � � ñ ê í ó ô �
í ü ñ ð ñ þ ï í ñ ø ê ñ ð ý ñ ð � ê ó ø ñ ê ë ì í î ï ð ñ

� _ � _ f � _ f ` � � ê ñ ø í ë ó ô ø ó ò ï í ñ ï ô ï ð í ñ ì ï ò í í ü ï í í ü ñ ò ù ð ð ñ ô í ë ô ñ ø ñ ö ñ ô ø ê ù ö ë ô

+ ü ó ê ð ñ ê ñ õ ú þ ñ ê í ü ñ � ñ ú ó ï ô Z 6 ï ò l ê ë ô ï ô ø : ò ü î ï ð - � � [[+ \ ò ë ô R � ù ð ï í ó ë ô õ ï ô �
ï � ñ õ ñ ô í ê û ê í ñ õ ì ë ð ö ï ò l ï � ñ ø ê ë ì í î ï ð ñ � � ô þ ó l ñ í ü ñ ó ô ü ñ ð ó í ï ô ò ñ ò ï ö ï ú ó þ ó í ó ñ ê ø ñ �
ê ò ð ó ú ñ ø ï ú ë ý ñ ò û ò þ ó ò ð ñ þ ï í ó ë ô ê ü ó ö ê ï ð ñ ö ë ê ê ó ú þ ñ ï ô ø õ ù ê í ú ñ ø ñ í ñ ò í ñ ø ï ô ø ñ þ ó õ ó �

ô ï í ñ ø �

� i g i p � � b � � d � 	 � b �

é ô û ö ë í ñ ô í ó ï þ í ñ ò ü ô ë þ ë � ó ñ ê ì ë ð ø ñ ê ò ð ó ú ó ô � ï ð í ñ ì ï ò í ê õ ù ê í ê ï í ó ê ì û ê ñ ý ñ ð ï þ ó õ ö ë ð �
í ï ô í ö ð ë ö ñ ð í ó ñ ê (

� c � � b � _ c � � b + ü ñ ú ï ð ð ó ñ ð í ë ñ ô í ð û ì ë ð í ü ñ í ñ ò ü ô ë þ ë � û 2 ó ô í ñ ð õ ê ë ì + � 8 � ê ñ í ù ö

ò ë õ ö þ ñ 7 ó í û ñ í ò 4 õ ù ê í ú ñ þ ë î ñ ô ë ù � ü í ë ñ ô ê ù ð ñ 8 : � é = ò ï ô ú ñ ø ñ ö þ ë û ñ ø

ÿ ù ó ò l þ û ï ô ø ñ ï ê ó þ û �

� � b _ f � c � � _ é ð í ñ ì ï ò í ø ñ ê ò ð ó ö í ó ë ô ê ó ô ò þ ù ø ó ô � ê ö ñ ò ó ï þ ó ê ñ ø ï ð í ñ ì ï ò í ê ê ü ë ù þ ø ú ñ ñ 7 �

í ñ ô ê ó ú þ ñ ó ô ï ú ï ò l î ï ð ø ê ò ë õ ö ï í ó ú þ ñ î ï û ï í ï ô û í ó õ ñ ú û í ü ñ ù ê ñ ð

� � _ f � � � _ _ � f � c f b _ � d � _ � � � � _ : ó ô ò ñ ô ë ô � ó ô í ð ù ê ó ý ó í û ó ê ï ð ñ ÿ ù ó ð ñ õ ñ ô í ë ì í ü ñ

@ B C B : ' : ê û ê í ñ õ ï ê ï î ü ë þ ñ � 8 : � é = õ ù ê í ñ õ ö þ ë û ó ô í ñ ð ë ö ñ ð ï ú þ ñ í ñ ò ü �

ô ë þ ë � ó ñ ê î ó í ü ñ 7 ò ñ þ þ ñ ô í í ë ë þ ê ù ö ö ë ð í í ë ñ ï ê ñ ó ô í ñ � ð ï í ó ë ô î ó í ü ñ 7 ó ê í ó ô � ê û ê �

í ñ õ ê �

� ë ô ê ó ø ñ ð ó ô � í ü ï í 8 : � é = î ó þ þ ï þ ð ñ ï ø û ö ë ê ê ñ ê ê ê ë õ ñ ì ë ð õ ë ì � � : í ë ö ð ë �

ý ó ø ñ í ð ï ô ê ï ò í ó ë ô ê ñ ð ý ó ò ñ ê ï ô ø ê í ë ð ñ õ ñ í ï � ø ï í ï ë ô ñ ö ë í ñ ô í ó ï þ í ñ ò ü ô ë þ ë � û ó ê ï ð ñ þ ï �

í ó ë ô ï þ ø ï í ï ú ï ê ñ � ' ô ö ï ð í ó ò ù þ ï ð í ü ñ ñ ô í ó í û ð ñ þ ï í ó ë ô ê ü ó ö õ ë ø ñ þ ê ù ö ö ë ð í ñ ø ú û í ü ñ ê ñ

ø ï í ï ú ï ê ñ ê î ó þ þ ö ð ë ý ó ø ñ ï ö ë î ñ ð ì ù þ þ ó ô l ó ô � õ ñ ò ü ï ô ó ê õ í ü ñ ó ô í ñ � ð ó í û ë ì î ü ó ò ü ó ê

ñ ô ì ë ð ò ñ ø ú û í ü ñ � � : � + ü ë ù � ü í ü ñ ø ï í ï ú ï ê ñ ê ò ü ñ õ ï ó ê ñ 7 í ñ ô ê ó ú þ ñ ë ô � í ü ñ � $ û

î ó í ü ë ù í ï 	 ñ ò í ó ô � ø ï í ï ó ô í ñ � ð ó í û � ñ ï ò ü ê ö ñ ò ó ï þ ó ê ñ ø ï ð í ñ ì ï ò í í û ö ñ î ó þ þ ù ê ù ï þ þ û ð ñ �

ÿ ù ó ð ñ ï ô ñ î ð ñ þ ï í ó ë ô î ó í ü ó ô í ü ñ ø ï í ï ú ï ê ñ � � ó ô ï þ þ û ô ë í ï þ þ = � � : ê ø ñ ï þ î ñ þ þ

î ó í ü þ ï ð � ñ ÿ ù ï ô í ó í ó ñ ê ë ì í ñ 7 í ø ï í ï �

� $ Z � ð ï û ñ í ï þ � � x � � � \ ë 	 ñ ð ê ï ô ë í ü ñ ð ö ë í ñ ô í ó ï þ í ñ ò ü ô ë þ ë � û ì ë ð ï ð í ñ ì ï ò í ø ñ �

ê ò ð ó ö í ó ë ô � ' ô ö ï ð í ó ò ù þ ï ð ó í ê õ ë ø ù þ ï ð ò ë ô ê í ð ù ò í ó ë ô ï þ þ ë î ê ì ñ ï í ù ð ñ ê ì ð ë õ ï ý ï ð ó ñ í û

ë ì ë í ü ñ ð � $ ø ë ò ù õ ñ ô í í û ö ñ ê í ë ú ñ ó õ ö ë ð í ñ ø î ó í ü õ ó ô ó õ ï þ ñ 	 ë ð í � é ø ø ó í ó ë ô �

ï þ þ û � � $ � : ò ü ñ õ ï ö ð ë ý ó ø ñ ê ï ý ï þ ó ø ï í ó ë ô ê û ê í ñ õ ñ ÿ ù ï þ í ë í ü ï í ö ð ë ý ó ø ñ ø ú û õ ï ô û

ø ï í ï ú ï ê ñ ê � � ó ô ï þ þ û � $ ó ê ï ô ñ 7 í ð ñ õ ñ þ û ö ë ð í ï ú þ ñ í ñ ò ü ô ë þ ë � û î ó í ü ñ 7 ò ñ þ þ ñ ô í í ë ë þ

ê ù ö ö ë ð í ï ò ð ë ê ê ï þ þ ö þ ï í ì ë ð õ ê � ñ ï ê ó ô � í ü ñ ó ô í ñ ð ë ö ñ ð ï ú ó þ ó í û ú ù ð ø ñ ô ë ì í ü ñ ê û ê í ñ õ �

� i g i s � _ f _ � c ` � _ b � � � � b �

é þ þ ï ð í ñ ì ï ò í ê î ó þ þ ö ë ê ê ñ ê ê � � � � K � � � í ë ï ó ø ó ô ø ñ 7 ó ô � ï ô ø ê ñ ï ð ò ü ó ô � � é ê ø ñ ê ò ð ó ú ñ ø

ñ ï ð þ ó ñ ð ñ ï ò ü ï ð í ñ ì ï ò í î ó þ þ ü ï ý ñ ê ë õ ñ � ñ ô ñ ð ó ò ö ð ë ö ñ ð í ó ñ ê ï ô ø ê ë õ ñ ê ö ñ ò ó ï þ ó ê ñ ø

ö ð ë ö ñ ð í ó ñ ê ï ò ò ë ð ø ó ô � í ë ó í ê ð ë þ ñ � + ü ñ � ñ ô ñ ð ó ò õ ñ í ï � ø ï í ï ó ô ò þ ù ø ñ ø � ó ô ü ñ ð ó í ñ ø ú û

ñ ï ò ü ï ð í ñ ì ï ò í ê ü ï þ þ ó ô ò þ ù ø ñ (

* é ù ô ó ÿ ù ñ ó ø ñ ô í ó R ñ ð

* é ø ñ ê ò ð ó ö í ó ý ñ í ó í þ ñ

* 8 ð ó � ó ô ï þ ò ð ñ ï í ë ð � ï ò í ë ð î ó í ü ö ð ó õ ï ð û ð ñ ê ö ë ô ê ó ú ó þ ó í û ì ë ð í ü ñ ï ð í ñ ì ï ò í

* � ë ô í ð ó ú ù í ó ô � ï ù í ü ë ð ê

* � ï í ñ ò ð ñ ï í ñ ø � õ ë ø ó R ñ ø

* � ï þ ó ø ó í û ë ý ñ ð í ó õ ñ

* $ ó ô l ð ñ þ ï í ó ë ô ê ü ó ö ê � ê ù ò ü ï ê ø ñ ö ñ ô ø ñ ô ò ó ñ ê ï ô ø ð ñ ù ê ñ ð ñ þ ï í ñ ø þ ó ô l ê

* : ù ú o ñ ò í l ñ û î ë ð ø ê

* ' ô ì ë ð õ ï í ó ë ô ë ô í ü ñ ö ð ë ò ñ ê ê ù ê ñ ø í ë ò ð ñ ï í ñ í ü ñ ï ð í ñ ì ï ò í 2 ó ì ï ô û 4

* é ò ò ñ ê ê ö ñ ð õ ó ê ê ó ë ô ê �

* � ñ ð ê ó ë ô ó ô � ó ô ì ë ð õ ï í ó ë ô

é ø ø ó í ó ë ô ï þ þ û � ò ü ï ô � ñ ó ô ì ë ð õ ï í ó ë ô ï ô ø ë í ü ñ ð þ ë � ê ê ü ï þ þ ú ñ í ð ñ ï í ñ ø ï ê õ ñ í ï �
ø ï í ï î ü ñ ð ñ ý ñ ð ö ë ê ê ó ú þ ñ � + ü ó ê î ó þ þ ö ð ë ý ó ø ñ ï ô ë í ó ë ô ë ì ö ð ñ ê ñ ô ò ñ ï ê > ì ë ë í ê í ñ ö ê ó ô

í ü ñ ê ï ô ø ?
 ë ê í ë ì í ü ó ê � ñ ô ñ ð ó ò õ ñ í ï � ø ï í ï ò ï ô ú ñ ê í ð ù ò í ù ð ñ ø ï í í ü ñ ö ð ñ ê ñ ô í ï í ó ë ô þ ñ ý ñ þ

ù ê ó ô � ï ê ö ñ ò ó ï þ ó ê ñ ø ý ñ ð ê ó ë ô ë ì ï ô ñ 7 í ñ ô ê ó ú þ ñ õ ñ í ï � ø ï í ï ý ë ò ï ú ù þ ï ð û � + ü ñ ô ñ ò ñ ê ê ï ð û

ê ò ü ñ õ ï õ ï û ú ñ ó õ ö ë ð í ñ ø ï ê ï ô ï õ ñ � ê ö ï ò ñ ó ô í ë í ü ñ ê ò ü ñ õ ï ë ð � + � ù ê ñ ø í ë

ê í ð ù ò í ù ð ñ í ü ñ ï ð í ñ ì ï ò í ø ñ ê ò ð ó ö í ë ð ê �

� 	 � � � � � � � � � � � � � � � � � � � � � � � � � 	
 � � � � � �

+ ü ó ê í û ö ñ ë ì > ø ë ò ù õ ñ ô í ï í ó ë ô ? î ó í ü ó ô í ü ñ @ B C B : ' : ê û ê í ñ õ ó ê � ñ ô ñ ð ï í ñ ø ë ô

ø ñ õ ï ô ø ï ô ø ï ê ê ë ò ó ï í ñ ø î ó í ü ó í ê ê ë ù ð ò ñ ï ð í ñ ì ï ò í ê � ' í ê ü ï þ þ ú ñ ù ê ñ ø í ë ê í ë ð ñ ó í ñ õ ê

ë ì ó ô ì ë ð õ ï í ó ë ô í ü ï í ï ð ñ ô ë í ô ñ ò ñ ê ê ï ð û ì ë ð ï ê ë ì í î ï ð ñ ï ð í ñ ì ï ò í í ë ú ñ ù ê ñ ø ó ô ï

ê ë ì í î ï ð ñ ö ð ë ò ñ ê ê ú ù í ö ð ë ý ó ø ñ ù ê ñ ì ù þ ö ñ ð ê ö ñ ò í ó ý ñ ë ð ü ñ þ ö ì ù þ ê ñ ò ë ô ø ï ð û ó ô ì ë ð õ ï í ó ë ô �
: ù ò ü ï ð í ñ ì ï ò í ê ê ü ï þ þ ò ë ô ê ó ê í ë ì (

* é - ' � í ñ ò ü ô ó ò ï þ ø ë ò ù õ ñ ô í ï í ó ë ô ë ì ê ë ì í î ï ð ñ �

* � ê ñ ð ò ë õ õ ñ ô í ê ï ô ø ë í ü ñ ð ó ô ì ë ð õ ï þ ø ë ò ù õ ñ ô í ê �

* � ü ï ô � ñ þ ë � ê �

* ñ í ð ó ò ê ë ù í ö ù í ê ù ò ü ï ê í ü ñ þ ñ ý ñ þ ë ì ó ô í ñ ð ï ò í ó ë ô ú û ë í ü ñ ð ù ê ñ ð ê î ó í ü í ü ñ

í ï ð � ñ í ï ð í ñ ì ï ò í ï ô ø

* 8 ð � ï ô ó ê ï í ó ë ô ï þ l ô ë î þ ñ ø � ñ ê ù ò ü ï ê ó ô í ñ ð ñ ê í ó ô � ð ñ ì ñ ð ñ ô ò ñ ê � ú ñ ê í ö ð ï ò í ó ò ñ ð ñ ò �
ë õ õ ñ ô ø ï í ó ë ô ê � ï ô ñ ò ø ë í ñ ê ñ í ò �

� i p i g ^ b � � c f �

é í í ü ñ ö ð ñ ê ñ ô í ï í ó ë ô þ ï û ñ ð í ü ñ ò ë ô í ñ ô í ê ë ì í ü ñ ð ñ ö ë ê ó í ë ð û ê ü ï þ þ ú ñ í ð ï ô ê ì ë ð õ ñ ø ó ô í ë

ó ô ì ë ð õ ï í ó ë ô ï ö ö ð ë ö ð ó ï í ñ ì ë ð í ü ñ ý ï ð ó ë ù ê ù ê ñ ð ê ë ì í ü ñ ê û ê í ñ õ î ü ñ í ü ñ ð õ ï ò ü ó ô ñ

2 ï � ñ ô í 4 ë ð ü ù õ ï ô � : ó ô ò ñ í ü ñ ø ï í ï î ó þ þ ú ñ ó ô ó í ó ï þ þ û ö ð ñ ê ñ ô í ñ ø ï ê � $ � � : $ ï ô ø

ï ô ï ö ö ð ë ö ð ó ï í ñ í ð ï ô ê ì ë ð õ þ ï ô � ù ï � ñ ó ê ï ö ö ð ë ö ð ó ï í ñ í ë ò ë ô ø ù ò í í ü ó ê ï ò í ó ý ó í û �
+ ü ñ ú ñ ü ï ý ó ë ù ð ë ì 8 : � é = ï í í ü ó ê þ ñ ý ñ þ ð ñ ê ñ õ ú þ ñ ê ñ 7 ó ê í ó ô � ø ë ò ù õ ñ ô í � ò ë ô í ñ ô í

õ ï ô ï � ñ õ ñ ô í ê û ê í ñ õ ê í ü ï í ï ö ö þ û ï ê í û þ ñ ê ü ñ ñ í í ë ò ë ô í ñ ô í ú ñ ì ë ð ñ í ð ï ô ê õ ó í í ó ô � ó í

í ë 2 ù ê ù ï þ þ û î ñ ú � ú ï ê ñ ø 4 ò þ ó ñ ô í ê � ' ø ñ ï þ þ û ê í û þ ó ô � ï ô ø í ð ï ô ê ì ë ð õ ï í ó ë ô ê ê ü ë ù þ ø ú ñ

ñ ô í ó ð ñ þ û í ð ï ô ê ö ï ð ñ ô í í ë í ü ñ ù ê ñ ð í ü ë ù � ü ê ó ô ò ñ 8 : � é = ò ï ô ô ë í l ô ë î ï þ þ ï ù ê ñ ð � ê

ð ñ ÿ ù ó ð ñ õ ñ ô í ê ú ñ ì ë ð ñ ü ï ô ø ï ì ï ò ó þ ó í û ê ü ë ù þ ø ú ñ ö ð ë ý ó ø ñ ø í ë ó ô ø ó ò ï í ñ í ë í ü ñ ê û ê í ñ õ

ñ 7 ï ò í þ û î ü ï í ï ù ê ñ ð ð ñ ÿ ù ó ð ñ ê �

� 	 � � � � � � � � � � � � � � � � � � � 	
 � � � � � �

8 : � é = ê ü ï þ þ ö ñ ð õ ó í ò þ ó ñ ô í ê í ë ê ñ ï ð ò ü í ü ñ ê û ê í ñ õ í ë ð ñ í ð ó ñ ý ñ ï ð í ñ ì ï ò í ê í ü ï í õ ï í ò ü

í ü ñ ó ð ô ñ ñ ø ê � + î ë õ ñ í ü ë ø ê í ë ø ë í ü ó ê ê ü ï þ þ ú ñ ö ð ñ ê ñ ô í ñ ø í ë í ü ñ ù ê ñ ð � ú ë í ü ð ñ þ û ó ô �
ë ô ë ô ñ ù ô ø ñ ð þ û ó ô � ê ñ ï ð ò ü í ñ ò ü ô ë þ ë � û (

� � é ô ' ô í ñ ð ô ñ í ê ñ ï ð ò ü � ñ ô � ó ô ñ ê í û þ ñ ó ô í ñ ð ì ï ò ñ ö ñ ð õ ó í í ó ô � ê ñ ï ð ò ü ó ô � ú û l ñ û î ë ð ø �

ú ë ë þ ñ ï ô ò ë ô ô ñ ò í ó ý ñ ê ï ô ø ë ð ø ñ ð ó ô � ë ì ð ñ ê ù þ í ê ú û ï ý ï ð ó ñ í û ë ì õ ñ í ð ó ò ê � é ê

õ ë ê í ù ê ñ ð ê ï ð ñ ì ï õ ó þ ó ï ð î ó í ü ' ô í ñ ð ô ñ í ê ñ ï ð ò ü ñ ô � ó ô ñ ê í ü ó ê ó ô í ñ ð ì ï ò ñ î ó þ þ

$ ï í í ñ ô í ü ñ ê û ê í ñ õ þ ñ ï ð ô ó ô � ò ù ð ý ñ �

x � é ô ó ô í ñ ð ì ï ò ñ î ü ó ò ü ï þ þ ë î ê ï ô ï ð í ñ ì ï ò í ø ñ ê ò ð ó ö í ë ð í ë ú ñ ö ï ê ê ñ ø ó ô ï ê ï 0 � � K

� � � � � � � é ð í ñ ì ï ò í ê í ü ï í õ ï í ò ü í ü ñ ò ë õ ö ï ð ï í ë ð ê ü ï þ þ ú ñ ð ñ í ù ð ô ñ ø + ü ñ ë í ü ñ ð

ê ñ ï ð ò ü ó ô í ñ ð ì ï ò ñ ê ü ï þ þ � ñ ô ñ ð ï í ñ ï ò ë õ ö ï ð ï í ë ð ñ ô ò ë õ ö ï ê ê ó ô � í ü ñ ê ñ ï ð ò ü ö ð ë ö �

ñ ð í ó ñ ê �

� � ã ä ' ä / + å 4) ? / / è � ç ? â è ä á � � 	 ã â + � ? ç â /

+ ü ë ù � ü ñ ï ò ü ï ð í ñ ì ï ò í õ ï û ú ñ í ð ñ ï í ñ ø ï ê ï � ñ ô ñ ð ó ò ë ú o ñ ò í � ó ô ê í ï ô ò ñ ê ë ì ï ð í ñ ì ï ò í ê

î ó þ þ ú ñ ë ì ê ö ñ ò ó ï þ ó ê ñ ø í û ö ñ ê î ó í ü ï ý ï ð ó ñ í û ë ì ö ð ë ö ñ ð í ó ñ ê �

� 	 � � � � � 	 � �

+ ü ñ ê ë ì í î ï ð ñ ï ð í ñ ì ï ò í î ó þ þ ð ñ ö ð ñ ê ñ ô í ú ë í ü ð ñ ÿ ù ó ð ñ õ ñ ô í ê ï ô ø ø ñ ê ó � ô ï ð í ñ ì ï ò í ê � ì ë ð

ñ 7 ï õ ö þ ñ í ü ñ ó ô ì ë ð õ ï í ó ë ô � ñ ô ñ ð ï í ñ ø ú û � é : B í ë ë þ ê ï ê î ñ þ þ ï ê ê ë ù ð ò ñ ò ë ø ñ ì ë ð ê ë ì í �

î ï ð ñ õ ë ø ù þ ñ ê � + ü ñ � � � � � � � � ï ð í ñ ì ï ò í ê ê ü ë ù þ ø ö ë ê ê ñ ê ê í ü ñ ì ë þ þ ë î ó ô � ï ø ø ó í ó ë ô ï þ

õ ñ í ï � ø ï í ï (

 d d � � + ü ñ í ë ë þ ê ù ê ñ ø í ë ò ð ñ ï í ñ í ü ñ ï ð í ñ ì ï ò í 2 ï ê ð ñ ì ñ ð ñ ô ò ñ ê í ë ï � � � � ï ð í ñ ì ï ò í 4 �

� _ � � � _ � f � d � 	 � b c d f é ô û ð ñ ù ê ñ ê ö ñ ò ó R ò ó ô ì ë ð õ ï í ó ë ô ï ê ê ë ò ó ï í ñ ø î ó í ü í ü ñ ï ð í ñ �

ì ï ò í � ' ô ö ï ð í ó ò ù þ ï ð � ð ñ ì ñ ð ñ ô ò ñ ê í ë í ü ñ � � � 0 � � � � I � � � I 0 � � î ü ñ ð ñ í ü ó ê ï ð í ñ ì ï ò í ó ê

ù ê ñ ø ï ô ø ó ô ì ë ð õ ï í ó ë ô ð ñ þ ï í ó ô � í ë í ü ñ ò ë õ ö ë ê ï ú ó þ ó í û ë ì ï ð í ñ ì ï ò í ê ï ê ð ñ ù ê ï ú þ ñ

ê ë ì í î ï ð ñ ò ë õ ö ë ô ñ ô í ê ê ü ë ù þ ø ú ñ ü ñ ð ñ �

^ _ � � c ` _ � � _ � � c � _ � 8 í ü ñ ð ê ë ì í î ï ð ñ ï ð í ñ ì ï ò í ê í ü ï í í ü ñ ï ð í ñ ì ï ò í ø ñ ö ñ ô ø ê ë ô � B ì �

ì ë ð í ê ü ë ù þ ø ú ñ õ ï ø ñ ü ñ ð ñ í ë ö ð ñ ý ñ ô í ò û ò þ ó ò ï þ ø ñ ö ñ ô ø ñ ô ò ó ñ ê ï ê ë ù í þ ó ô ñ ø ó ô

ê ñ ò í ó ë ô) � � � �

^ _ � � c ` _ � � d � c � _ � ' ô í ü ñ ò ë ô í ñ 7 í ë ì ê ë ì í î ï ð ñ ò ë ø ñ � í ü ó ê ó ô ò þ ù ø ñ ê ó ô í ñ ð ì ï ò ñ

ø ñ í ï ó þ ê ì ë ð í ü ñ õ ë ø ù þ ñ ë ð ò ë õ ö ë ô ñ ô í � ' ô í ü ñ ò ë ô í ñ 7 í ë ì ï ø ñ ê ó � ô ë ð ð ñ �

ÿ ù ó ð ñ õ ñ ô í ê ê ë ì í î ï ð ñ ï ð í ñ ì ï ò í í ü ó ê ï í í ð ó ú ù í ñ ê ü ë ù þ ø ú ñ ô ù þ þ �

� ë í ü í ü ñ : ñ ð ý ó ò ñ ê ï í í ð ó ú ù í ñ ê ê ü ë ù þ ø î ü ñ ð ñ ý ñ ð ö ë ê ê ó ú þ ñ ú ñ ø ñ ê ò ð ó ú ñ ø ù ê ó ô �

ê í ï ô ø ï ð ø ' ô í ñ ð ì ï ò ñ � ñ ê ò ð ó ö í ó ë ô $ ï ô � ù ï � ñ ê ê ù ò ü ï ê í ü ñ / ñ ú : ñ ð ý ó ò ñ ê � ñ ê ò ð ó ö í ó ë ô

$ ï ô � ù ï � ñ Z � ü ð ó ê í ñ ô ê ñ ô ñ í ï þ � � x � � � \ �

� 	 � � �
 � � � � � � � �

� � 0 M � � I � � � � � I ï ð í ñ ì ï ò í ê ó ô 8 : � é = ï ð ñ ï ô û ó í ñ õ ê ë ì ê ù ö ö þ ñ õ ñ ô í ï ð û ó ô ì ë ð õ ï �

í ó ë ô ï ø ø ñ ø ú û ù ê ñ ð ê ë ð ï ù í ë õ ï í ó ò ï þ þ û � ñ ô ñ ð ï í ñ ø ú û ó ô í ñ ð ô ï þ 8 : � é = ö ð ë ò ñ ê ê ñ ê �

+ ü ñ û ï ð ñ ô ë í ó ô í ñ ô ø ñ ø ë ù í ö ù í ì ð ë õ ï ô û ê ë ì í î ï ð ñ ö ð ë ò ñ ê ê ú ù í ð ï í ü ñ ð ó ô ò ó ø ñ ô �

í ï þ ó ô ì ë ð õ ï í ó ë ô ö ð ë ø ù ò ñ ø î ü ó þ ñ ï ö ð ë ò ñ ê ê ó ê ú ñ ó ô � ñ ô ï ò í ñ ø � é þ þ ò ë õ ö ë ô ñ ô í ê ë ì

ø ë ò ù õ ñ ô í ê ê ù ò ü ï ê ó õ ï � ñ ê ê ü ë ù þ ø ï þ ê ë ú ñ ò þ ï ê ê ó R ñ ø ï ê � � 0 M � � I � � � � � I �

é ô û ø ë ò ù õ ñ ô í ê ö ð ë ø ù ò ñ ø ï ê ö ï ð í ë ì ï ì ë ð õ ï þ ê ë ì í î ï ð ñ ö ð ë ò ñ ê ê ê ù ò ü ï ê = ñ �

ÿ ù ó ð ñ õ ñ ô í ê ë ð � ñ ê ó � ô ø ë ò ù õ ñ ô í ê ê ü ï þ þ ú ñ ø ñ ê ó � ô ï í ñ ø ï � � � � � � � � ï ð í ñ ì ï ò í �

� ë ò ù õ ñ ô í ï í ó ë ô � ñ ô ñ ð ï í ñ ø ú û 8 : � é = � ê ó ô í ñ ð ô ï þ ê û ê í ñ õ ê 2 ê ù ò ü ï ê í ü ñ õ ñ í ð ó ò ê

ñ ô � ó ô ñ 4 ö ð ë ø ù ò ñ ï ê ö ñ ò ó ï þ í û ö ñ ë ì � � 0 M � � I � � � � � I ï ð í ñ ì ï ò í l ô ë î ô ï ê ï � � M � I � � �

: ñ ñ ê ñ ò í ó ë ô " � + ì ë ð õ ë ð ñ ó ô ì ë ð õ ï í ó ë ô ë ô í ü ó ê ï ð í ñ ì ï ò í í û ö ñ �

� ë ò ù õ ñ ô í ï í ó ë ô ê ü ï þ þ ú ñ ê í ë ð ñ ø ï ê � $ ì ë ð î ü ó ò ü ê í û þ ñ ê ü ñ ñ í ê ï ô ø ì ë ð õ ï í í ó ô �

ë ú o ñ ò í ê ñ 7 ó ê í í ë í ð ï ô ê ì ë ð õ í ü ñ ò ë ô í ñ ô í ó ô í ë ø ó ê í ð ó ú ù í ó ë ô ì ë ð õ ï í ê ê ù ò ü ï ê - � � ë ð

8 + $ �

� 	 � � � � �

+ ü ñ � � � � ï ð í ñ ì ï ò í ê ø ñ ê ò ð ó ú ñ ñ 7 í ñ ð ô ï þ ö ð ë � ð ï õ ê í ü ï í õ ï û ú ñ ñ 7 ñ ò ù í ñ ø ï ô ø õ ï û

ë ö í ó ë ô ï þ þ û ï ò í ù ö ë ô ï ê ñ í ë ì ñ 7 í ñ ð ô ï þ ï ð í ñ ì ï ò í ê � � ñ ü ï ý ó ë ù ð ê ø ñ ê ò ð ó ú ñ ø ú û í ü ñ í ë ë þ

ï ð í ñ ì ï ò í õ ï û ó ô ò þ ù ø ñ í ü ñ ì ë þ þ ë î ó ô � (

* é þ þ ë î ê í ü ñ ó ô ý ë ò ï í ó ë ô ë ì ï í ü ó ð ø � ö ï ð í û í ë ë þ ú û @ B C B : ' : í ë ö ð ë ø ù ò ñ 8 : �

� é = ï ð í ñ ì ï ò í ê � + ü ñ � � � � ï ð í ñ ì ï ò í í ï l ñ ê ò ï ð ñ ë ì í ð ï ô ê þ ï í ó ô � í ü ñ í ë ë þ � ê ó ô ö ù í

ï ô ø ë ù í ö ù í ý ó ï í ü ñ ö ð ñ ê ñ ô í ï í ó ë ô þ ï û ñ ð �

* � ñ ê ò ð ó ú ñ ê ï õ ñ í ð ó ò � > B 7 ñ ò ù í ó ô � ? í ü ñ õ ñ í ð ó ò ö ð ë ø ù ò ñ ê í ü ñ ò ù ð ð ñ ô í ð ñ ê ù þ í ê �

' ô ð ñ ï þ ó í û ë ì ò ë ù ð ê ñ í ü ñ õ ñ í ð ó ò ê î ó þ þ ú ñ ò ï þ ò ù þ ï í ñ ø ú ñ ü ó ô ø í ü ñ ê ò ñ ô ñ ê ú û í ü ñ

õ ñ í ð ó ò ê ñ ô � ó ô ñ �

+ ë ö ñ ð õ ó í í ü ñ ê ñ ú ñ ü ï ý ó ë ù ð ê í ü ñ í ë ë þ ï ð í ñ ì ï ò í õ ù ê í ö ë ê ê ñ ê ê í ü ñ ì ë þ þ ë î ó ô � ö ð ë ö �
ñ ð í ó ñ ê (

� f � d ` � b c d f c f � d � 	 � b c d f � ñ í ï ó þ ê ë ì ü ë î í ü ñ í ë ë þ ê ü ë ù þ ø ú ñ ó ô ý ë l ñ ø ú û @ B C �
B : ' : ò þ ó ñ ô í ê � + ü ó ê ï þ þ ë î ê í ü ñ ï ø ø ó í ó ë ô ë ì ï í ë ë þ � ê ñ ð ý ñ ð ê û ê í ñ õ þ ó l ñ í ü ï í

ñ õ ö þ ë û ñ ø ú û 8 - ï í ï þ ï í ñ ð ø ï í ñ ï ô ø í ü ñ ó ô í ñ ð ì ï ò ó ô � ë ì 8 : � é = í ë ñ 7 í ñ ð ô ï þ

ê ë ì í î ï ð ñ ð ñ ö ë ê ó í ë ð ó ñ ê �

^ _ � � c ` _ � � _ � � c � _ � é þ ó ê í ë ì ë í ü ñ ð � � � � ó ø ñ ô í ó R ñ ð ê í ü ï í í ü ó ê � � � � ð ñ ÿ ù ó ð ñ ê í ë

ö ñ ð ì ë ð õ ó í ê í ï ê l ê �

^ _ � � c ` _ � � d � c � _ � é ô ó ø ñ ô í ó R ñ ð ø ñ ê ò ð ó ú ó ô � í ü ñ ê ñ ð ý ó ò ñ í ü ñ í ë ë þ ê ö ð ë ý ó ø ñ � � ë ð

ñ 7 ï õ ö þ ñ � � � y � �
� { | � ï ô ø � � � î ë ù þ ø ï þ þ ú ñ ñ 7 ï õ ö þ ñ ê ë ì í ë ë þ ê ö ð ë ý ó ø ó ô � í ü ñ

� � � � 	 } | � � � ê ñ ð ý ó ò ñ �

+ ü ñ ê ñ ð ý ó ò ñ l ñ û î ë ð ø ê ù ê ñ ø ó ô ñ ï ò ü ê û ê í ñ õ ê ü ë ù þ ø ú ñ ê ö ñ ò ó R ñ ø ï í ê û ê í ñ õ

ø ñ ö þ ë û õ ñ ô í ë ð ï þ þ ë î ñ ø í ë ñ ý ë þ ý ñ ó ô ï ô ï ø � ü ë ò ì ï ê ü ó ë ô � @ ñ ô ñ ð ï þ þ û ë ì ò ë ù ð ê ñ

ï ð í ñ ì ï ò í ï ù í ü ë ð ê î ó þ þ ô ë í ê ö ñ ò ó ì û ï ú ê í ð ï ò í í ë ë þ ê ú ù í í ü ñ ê ö ñ ò ó R ò í ë ë þ ê í ü ñ û

ù ê ñ ø í ë ò ð ñ ï í ñ ï ô ï ð í ñ ì ï ò í �

 � � � _ b b � � _ � é ô ë ö í ó ë ô ï þ þ ó ê í ë ì ï ð í ñ ì ï ò í í û ö ñ ê í ü ï í í ü ñ í ë ë þ õ ï û ï ò í ù ö ë ô

� � b � � b b � � _ � é ô ë ö í ó ë ô ï þ þ ó ê í ë ì ï ð í ñ ì ï ò í í û ö ñ ê í ü ï í í ü ñ í ë ë þ ö ð ë ø ù ò ñ ê

� 	 �
 � � � � � � �

+ ü ñ . 0 � � � 2 ï þ ê ë ê û ô ë ô û õ ë ù ê î ó í ü � � � � 4 ï ð í ñ ì ï ò í í û ö ñ ó ô 8 : � é = ó ê ô ñ ò ñ ê ê ï ð û

ì ë ð í î ë õ ï o ë ð ö ï ð í ê ë ì í ü ñ ê û ê í ñ õ (

^ _ ` � � c b � / ó í ü ë ù í ï ò ò ñ ê ê í ë ï ý ï þ ó ø . 0 � � � ï ð í ñ ì ï ò í ù ê ñ ð ê ë ì í ü ñ ê û ê í ñ õ î ó þ þ ô ë í

ú ñ ï ú þ ñ í ë ö ñ ð ì ë ð õ ï ô û ï ò í ó ý ó í û � + ü ó ê ñ ô ê ù ð ñ ê í ü ï í ï þ þ ï ò í ó ë ô ê 2 ñ ý ñ ô ê ó õ ö þ ñ

ð ñ ï ø ê ú û ï ô ë ô û õ ë ù ê ù ê ñ ð ê 4 õ ï û ú ñ í ð ï ò l ñ ø ù ê ó ô � í ü ñ õ ñ í ð ó ò ê ñ ô � ó ô ñ �

� � b � d � � � d � _ � f � d � 	 � b c d f é ò í ë ð ï ð í ñ ì ï ò í ê ï ð ñ ù ê ñ ø í ë ì ù þ R þ í ü ñ ò ð ñ ï í ë ð ï í �
í ð ó ú ù í ñ ê ë ì ï þ þ ï ð í ñ ì ï ò í ê ï ô ø í ü ñ ð ë þ ñ ï í í ð ó ú ù í ñ ê ë ì � � � 0 � � � � � � � � I � ï ô ø

� � � 0 � � � � I � � � I 0 � ï ð í ñ ì ï ò í ê �

+ ë ì ï ò ó þ ó í ï í ñ ú ë í ü ë ì í ü ñ ê ñ ï ò í ó ý ó í ó ñ ê í ü ñ . 0 � � � õ ù ê í ö ë ê ê ñ ê ê í ü ñ ì ë þ þ ë î ó ô �
ö ð ë ö ñ ð í ó ñ ê (

* / ü ñ í ü ñ ð í ü ñ . 0 � � � ó ê ü ù õ ï ô ë ð õ ï ò ü ó ô ñ � ï ò ü ó ô ñ ï ò í ë ð ê 2 ê ù ò ü ï ê ï � ñ ô í ê 4

ø ó 	 ñ ð ì ð ë õ � � � � ï ð í ñ ì ï ò í ê ó ô í ü ï í í ü ñ ì ë ð õ ñ ð ï ò í ñ 7 í ñ ð ô ï þ þ û ì ð ë õ @ B C B : ' :

î ü ó þ ê í í ü ñ þ ï í í ñ ð ï ð ñ ó ô ý ë l ñ ø ú û @ B C B : ' : í ë ö ñ ð ì ë ð õ ï ê ö ñ ò ó R ò í ï ê l ê �

* é ù í ü ñ ô í ó ò ï í ó ë ô ó ô ì ë ð õ ï í ó ë ô �

* - ñ ð õ ó ê ê ó ë ô ê ó ô ì ë ð õ ï í ó ë ô �

* � ë ô í ï ò í ø ñ í ï ó þ ê 2 ì ë ð ü ù õ ï ô ï ò í ë ð ê 4 �

� 	 � � � � �

+ ü ñ � � � � 0 # ï ð í ñ ì ï ò í ó ê ñ ê ê ñ ô í ó ï þ þ û ï ö þ ï ó ô ï ð í ñ ì ï ò í î ü ó ò ü ñ ô ò ï ö ê ù þ ï í ñ ê ï ÿ ù ï ô í ó í û

ë ì þ ñ � ï ò û ø ï í ï í ü ï í ó ê ô ë í ê í ë ð ñ ø ó ô ï î ï û í ü ï í 8 : � é = ò ï ô ù ô ø ñ ð ê í ï ô ø ë ð ó ô ø ñ 7

ò ë ð ð ñ ò í þ û � � ë ð ñ 7 ï õ ö þ ñ � ï þ ï ð � ñ ê ñ í ë ì ø ë ò ù õ ñ ô í ê ó ô ö ð ë ö ð ó ñ í ï ð û ì ë ð õ ï í ê í ü ï í

ü ï ý ñ ô ë í ú ñ ñ ô õ ï ô ï � ñ ø ï ê � � 0 M � � I � � � � � I ï ð í ñ ì ï ò í ê ì ð ë õ í ü ñ ë ù í ê ñ í õ ï û ú ñ

í ð ñ ï í ñ ø ï ê � � � � 0 # ï ð í ñ ì ï ò í ê ù ô í ó þ ê ù ò ü í ó õ ñ ï ê í ü ñ û ò ï ô ú ñ ñ ô í ñ ð ñ ø ï ê ö ð ë ö ñ ð

ï ð í ñ ì ï ò í ê �
� ë ô ê ñ ÿ ù ñ ô í þ û í ü ñ ë ô þ û ï ø ø ó í ó ë ô ï þ ï í í ð ó ú ù í ñ ë ì ï � � � � 0 # ó ê ï ø ï í ñ í ë ó ô ø ó ò ï í ñ

î ü ñ ô ó í ó ê ö þ ï ô ô ñ ø í ü ï í í ü ñ ò ë ô í ñ ô í ê ë ì í ü ñ $ ñ � ï ò û ï ð í ñ ì ï ò í î ó þ þ ú ñ ï ø ø ñ ø ï ê í ð ù ñ

ï ð í ñ ì ï ò í ê � é ú ê ñ ô ò ñ ë ì í ü ñ ø ï í ñ ó ô ø ó ò ï í ñ ê í ü ñ $ ñ � ï ò û î ó þ þ ô ë í ú ñ ó ô í ñ � ð ï í ñ ø �

� 	 � � � � � � � � � � �

é � � � 0 � � � � � � � � I � ø ñ ê ò ð ó ú ñ ê ö ï ð í ë ì ï î ë ð l � $ ë î ö ð ë ò ñ ê ê � $ ó l ñ ë í ü ñ ð ï ð í ñ ì ï ò í ê

í ü ñ û ï ð ñ ð ñ ò ù ð ê ó ý ñ þ û ø ñ R ô ñ ø � ï þ þ ë î ó ô � ñ ï ê û ð ñ � ù ê ñ ë ì ï ô û ï ö ö ð ë ö ð ó ï í ñ ê ù ú ê ñ í ë ì

ï ö ð ë ò ñ ê ê � + ü ñ ö ð ë ò ñ ê ê ó í ê ñ þ ì ê ü ï þ þ ú ñ ø ñ ê ò ð ó ú ñ ø ú û í ü ñ ù ê ñ ë ì ï ì ë ð õ ï þ ë ð ê ñ õ ó �
ì ë ð õ ï þ / ë ð l � $ ë î � ñ R ô ó í ó ë ô $ ï ô � ù ï � ñ 2 / � $ 4

é � � � 0 � � � � � � � � I � ê ü ï þ þ ü ï ý ñ í ü ñ ì ë þ þ ë î ó ô � ï ø ø ó í ó ë ô ï þ ö ð ë ö ñ ð í ó ñ ê í ë ê ù ö ö ë ð í

í ü ñ ê ñ í ï ê l ê (

� f � � b � + ü ñ ï ð í ñ ì ï ò í í û ö ñ ê í ü ï í í ü ñ ö ð ë ò ñ ê ê î ó þ þ ò ë ô ê ù õ ñ 2 ó ì ï ô û 4 î ü ñ ô ð ù ô �

� � b � � b � + ü ñ ï ð í ñ ì ï ò í í û ö ñ ê í ü ï í í ü ñ ö ð ë ò ñ ê ê î ó þ þ ö ð ë ø ù ò ñ 2 ó ì ï ô û 4 �

� d � _ � + ü ñ . 0 � � � � ó ô ý ë þ ý ñ ø ó ô ñ 7 ñ ò ù í ó ô � í ü ó ê ö ï ð í ó ò ù þ ï ð î ë ð l � $ ë î ê í ñ ö

 � _ � _ � � c � c b _ � + ü ñ ö ð ñ � ð ñ ÿ ù ó ê ó í ñ ê ì ë ð í ü ó ê ê í ñ ö í ë ñ 7 ñ ò ù í ñ ê ù ò ò ñ ê ê ì ù þ þ û � ê ù ò ü ï ê

ë í ü ñ ð ö ð ë ò ñ ê ê ñ ê ò ë õ ö þ ñ í ó ô � ê ù ò ò ñ ê ê ì ù þ þ û ñ í ò �

é ö ð ë ò ñ ê ê ñ þ ñ õ ñ ô í ó í ê ñ þ ì ò ï ô ô ë í ú ñ ñ 7 ñ ò ù í ñ ø í ë ó õ ö þ ñ õ ñ ô í ï ö ï ð í ó ò ù þ ï ð î ë ð l �
$ ë î � ' ô ê í ñ ï ø � í ü ñ í ë ö þ ñ ý ñ þ � � � 0 � � � � � � � � I � õ ù ê í ú ñ � I � � � I � � � � � ï ê ï � � � 0 � � � � I K

� � � I 0 � î ü ó ò ü ó ê þ ó ô l ñ ø í ë ï ê ö ñ ò ó R ò ý ñ ð ê ó ë ô ë ì í ü ñ � � � 0 � � � � � � � � I � � + ü ñ ð ñ ì ë ð ñ �

ï ú ê í ð ï ò í � � � 0 � � � � � � � � I � � ò ï ô ú ñ ù ê ñ ø í ë ø ñ R ô ñ ð ñ � ù ê ï ú þ ñ ö ð ë ò ñ ê ê ñ ê î ü ó þ ê í ò ë ô �
ò ð ñ í ñ � � � 0 � � � � I � � � I 0 � � ò ï ô ú ñ ù ê ñ ø í ë ð ñ ò ë ð ø í ü ñ ñ 7 ñ ò ù í ó ë ô ë ì ñ ï ò ü ö ð ë ò ñ ê ê �

ö ð ë ý ó ø ó ô � ù ê ñ ì ù þ ó ô ì ë ð õ ï í ó ë ô ì ë ð ì ù í ù ð ñ ö ð ë ò ñ ê ê ø ñ ê ó � ô ï ô ø ï ô ï þ û ê ó ê ë ì î ë ð l ó ô �
ö ð ï ò í ó ò ñ ê �

� 	 � � � � � � � � � � � �

8 ô ò ñ ï � � � 0 � � � � � � � � I � ó ê ó ô ê í ï ô í ó ï í ñ ø � ï þ þ ó í ê ê ù ú � ñ þ ñ õ ñ ô í ê 2 ó ì ï ô û 4 ï ð ñ ï þ ê ë

ó ô ê í ï ô í ó ï í ñ ø ï ê � � � 0 � � � � I � � � I 0 � ï ð í ñ ì ï ò í ê � ö ð ñ ê ñ ð ý ó ô � í ü ñ ð ñ þ ï í ó ë ô ê ü ó ö ú ñ í î ñ ñ ô

í ü ñ õ � + ë ø ó 	 ñ ð ñ ô í ó ï í ñ õ ù þ í ó ö þ ñ ó ô ê í ï ô ò ñ ê ë ì ï ð ù ô ô ó ô � ö ð ë ò ñ ê ê ì ð ë õ í ü ñ ó ð í ñ õ �
ö þ ï í ñ � � � 0 � � � � � � � � I � ï � � � 0 � � � � I � � � I 0 � õ ù ê í ü ï ý ñ í ü ñ ì ë þ þ ë î ó ô � ï ø ø ó í ó ë ô ï þ ï í �

í ð ó ú ù í ñ ê (

� f � b � f ` _ � � _ f b c � _ � � ë ð ï þ þ ê ù ú � ó ô ê í ï ô ò ñ ê í ü ó ê ï í í ð ó ú ù í ñ ê ü ï þ þ ø ñ ô ë í ñ í ü ñ í ë ö

þ ñ ý ñ þ � � � 0 � � � � I � � � I 0 � ï ð í ñ ì ï ò í ó ô í ü ñ ð ù ô ô ó ô � ö ð ë ò ñ ê ê �

� � _ 	 _ f b � _ � � c d f + ü ñ ý ñ ð ê ó ë ô ë ì í ü ñ í ñ õ ö þ ï í ñ � � � 0 � � � � � � � � I � í ü ï í ê ö ï î ô ñ ø

í ü ó ê ö ð ë ò ñ ê ê � + ü ó ê ó ê í ë ñ ô ê ù ð ñ í ü ï í ó ì í ü ñ ú ñ ê í � ö ð ï ò í ó ò ñ ö ð ë ò ñ ê ê ò ü ï ô � ñ ê ó ô

í ü ñ ì ù í ù ð ñ ò ë õ ö þ ñ í ñ ø � � � 0 � � � � I � � � I 0 � � õ ï û ú ñ ê í ù ø ó ñ ø ó ô í ü ñ ò ë ô í ñ 7 í ë ì

í ü ñ ë ð ó � ó ô ï þ ö ð ë ò ñ ê ê

^ b � b _ + ü ñ ò ù ð ð ñ ô í ê í ï í ñ ë ì í ü ó ê ó ô ê í ï ô ò ñ (

* = ñ ï ø û + ë = ù ô

* = ù ô ô ó ô �

* : ù ò ò ñ ê ê ì ù þ ò ë õ ö þ ñ í ó ë ô

* � ô ê ù ò ò ñ ê ê ì ù þ ò ë õ ö þ ñ í ó ë ô

� 	 � � �
 � � � �

+ ü ñ � � M � I � � ï ð í ñ ì ï ò í ð ñ ö ð ñ ê ñ ô í ê ý ñ ð ê ó ë ô ó ô � � ò ü ï ô � ñ ó ô ì ë ð õ ï í ó ë ô ì ë ð ñ ï ò ü ï ð í ñ ì ï ò í

ó ô í ü ñ ê û ê í ñ õ � B ï ò ü ï ð í ñ ì ï ò í î ó þ þ ü ï ý ñ ï ô ï ê ê ë ò ó ï í ñ ø � � M � I � � í ë > ê í ë ð ñ ? 	 í ü ó ê

ó ô ì ë ð õ ï í ó ë ô ï ô ø ö ð ñ ê ñ ô í ó í ï ê ï ò ë ü ñ ð ñ ô í ø ë ò ù õ ñ ô í � ' ô ö ï ð í ó ò ù þ ï ð í ü ñ � � M � I � �

î ó þ þ ú ñ ù ê ñ ø ï ê ï õ ñ ï ô ê ë ì ò ë ô ý ñ ô ó ñ ô í þ û ö ï ò l ï � ó ô � í ü ñ ë ù í ö ù í ì ð ë õ õ ñ í ð ó ò ê

� � � � � ï ö ö þ ó ñ ø í ë í ü ñ ï ð í ñ ì ï ò í � : ó ô ò ñ � � M � I � � ï ð í ñ ì ï ò í ê ï ð ñ ý ó ð í ù ï þ � í ü ñ û ö ë ê ê ñ ê ê

ô ë ï ø ø ó í ó ë ô ï þ ï í í ð ó ú ù í ñ ê � + ü ñ õ ñ í ð ó ò ê ï ô ø ë í ü ñ ð ó ô ì ë ð õ ï í ó ë ô ó ô ñ ï ò ü � � M � I � �

ø ñ ö ñ ô ø ë ô í ü ñ ú ï ê ñ ï ð í ñ ì ï ò í í û ö ñ �
� ë ð í ü ó ê ð ñ ï ê ë ô 6 ë ù ð ô ï þ ï ð í ñ ì ï ò í ê ò ï ô ô ë í ú ñ ð ñ ò ù ð ê ó ý ñ þ û ø ñ R ô ñ ø þ ó l ñ õ ë ê í

ë í ü ñ ð ï ð í ñ ì ï ò í í û ö ñ ê � : ü ë ù þ ø ï õ ë ð ñ ò ë ô ò ð ñ í ñ ð ñ ö ð ñ ê ñ ô í ï í ó ë ô ë ì ï � � M � I � � ô ñ ñ ø

í ë ú ñ ê í ë ð ñ ø ó ô í ü ñ ð ñ ö ë ê ó í ë ð û � í ü ñ ð ñ ê ù þ í ê ë ì ñ 7 ï õ ó ô ó ô � ï 6 ë ù ð ô ï þ ï í ï ö ï ð í ó ò ù þ ï ð

í ó õ ñ õ ï û ú ñ ê ï ý ñ ø ï ê ï � � 0 M � � I � � � � � I ï ð í ñ ì ï ò í �

� à = ') + = + á â ? â è ä á ? á å $ % ') ä è â ? â è ä á � â ã ? â + � �

8 ö ñ ô � ê ë ù ð ò ñ ê ë ì í î ï ð ñ ó ê í û ö ó ò ï þ þ û ø ñ ý ñ þ ë ö ñ ø ó ô ò ð ñ õ ñ ô í ï þ þ û Z = ï û õ ë ô ø � � [[[\ � ' ô

í ü ñ @ B C B : ' : ö ð ë o ñ ò í � í ü ñ ö þ ï ô ó ê í ë ø ñ ý ñ þ ë ö í ü ñ ê ë ì í î ï ð ñ ó ô ï ò þ ë ê ñ ø � ê ë ù ð ò ñ ê í û þ ñ

ì ë ð í ü ñ R ð ê í û ñ ï ð � ï ô ø í ë ð ñ þ ñ ï ê ñ í ü ñ ê ë ì í î ï ð ñ ó ô í ë í ü ñ ë ö ñ ô ï í í ü ï í ö ë ó ô í � � ð ë õ

í ü ï í ö ë ó ô í ë ô î ï ð ø ê � ø ñ ý ñ þ ë ö õ ñ ô í î ó þ þ í ï l ñ ö þ ï ò ñ ó ô í ü ñ ë ö ñ ô � ' ô ó í ó ï þ þ û 2 ø ù ð ó ô �
í ü ñ R ð ê í û ñ ï ð 4 � í ü ñ ø ñ ý ñ þ ë ö õ ñ ô í î ó þ þ ì ë þ þ ë î ï í ð ï ø ó í ó ë ô ï þ ò þ ë ê ñ ø � ê ë ù ð ò ñ þ ó ì ñ ò û ò þ ñ �

î ü ó ò ü ó ê ò ù ð ð ñ ô í þ û ï í í ü ñ ê í ï � ñ ë ì � ï í ü ñ ð ó ô � ï ô ø ï ô ï þ û ê ó ô � ð ñ ÿ ù ó ð ñ õ ñ ô í ê �

� � � - � � � (& () � � � � - � � (� � � � � � � 0 � � � - � (� " � / (� � � (* � � � & �) � � () � � - (� � � * (� - � (- � � � "
� � * � � (� - � 0 � / *) � � � - � � (� � � " � * - � (� � - (� � � * (� � / � � � � � & (� � � � � * � � (� � � * � � � - � � � &
(� � � � * / - - � � (2

� 	 � � � � � � � � � � � � � � � � � � � �

+ ü ñ ð ñ ï ð ñ í î ë ò ï í ñ � ë ð ó ñ ê ë ì õ ñ õ ú ñ ð ê ë ì í ü ñ @ B C B : ' : ò ë ô ê ë ð í ó ù õ (ù ô ó ý ñ ð ê ó í ó ñ ê

ï ô ø ò ë õ ö ï ô ó ñ ê � + ü ñ ù ô ó ý ñ ð ê ó í ó ñ ê î ó þ þ ù ê ñ í ü ñ ð ñ ê ù þ í ê ë ì í ü ñ ö ð ë o ñ ò í ì ë ð í ñ ï ò ü ó ô �
ï ô ø ð ñ ê ñ ï ð ò ü ö ù ð ö ë ê ñ ê 2 ö ù ú þ ó ê ü ó ô � ö ï ö ñ ð ê � � � 0 A � î ü ó þ ñ í ü ñ ò ë õ ö ï ô ó ñ ê î ó þ þ ñ 7 ö þ ë ó í

í ü ñ ð ñ ê ù þ í ê ú û ù ê ó ô � í ü ñ í ë ë þ ê ï ô ø ñ 7 ö ñ ð í ó ê ñ � ñ ô ñ ð ï í ñ ø ø ù ð ó ô � í ü ñ ö ð ë o ñ ò í � + ü ñ ê ñ

ð ñ ê ù þ í ê î ó þ þ ñ ô ï ú þ ñ í ü ñ õ í ë ó õ ö ð ë ý ñ í ü ñ ó ð ê ë ì í î ï ð ñ ñ ô � ó ô ñ ñ ð ó ô � ö ð ë ò ñ ê ê ñ ê ù ê ó ô �
ú ë í ü í ü ñ í ë ë þ ê 2 � A � A � 8 : � é = 4 ï ô ø í ü ñ õ ñ í ü ë ø ê ì ë ð î ë ð l $ ë î ï ô ø ò ë ô R � ù ð ï í ó ë ô

õ ï ô ï � ñ õ ñ ô í �

� 4 ä á ç) æ / è ä á /

+ ü ñ õ ë í ó ý ï í ó ë ô ï ô ø ð ñ ÿ ù ó ð ñ õ ñ ô í ê ì ë ð 8 : � é = � ï ô 8 ö ñ ô : ë ù ð ò ñ ê ë ì í î ï ð ñ ð ñ ö ë ê �
ó í ë ð û � ü ï ý ñ ú ñ ñ ô ø ñ ê ò ð ó ú ñ ø ï ô ø ø ó ê ò ù ê ê ñ ø � 8 : � é = ó ê ï ö ï ð í ë ì í ü ñ @ B C B : ' :

ö ð ë o ñ ò í � ï ô ó ô ó í ó ï í ó ý ñ í ë ø ñ ý ñ þ ë ö ï ô ñ ô í ñ ð ö ð ó ê ñ ò þ ï ê ê ê ë ì í î ï ð ñ ñ ô � ó ô ñ ñ ð ó ô � ñ ô ý ó �
ð ë ô õ ñ ô í ì ë ð ø ó ê í ð ó ú ù í ñ ø ò ë þ þ ï ú ë ð ï í ó ý ñ î ë ð l ó ô � � + ü ñ ô ñ 7 í ö ü ï ê ñ ó ê í ë ò ë õ ö þ ñ í ñ

í ü ñ ø ñ ê ó � ô ë ì í ü ñ ñ ô í ó ð ñ @ B C B : ' : ê û ê í ñ õ ó ô ò ë þ þ ï ú ë ð ï í ó ë ô î ó í ü ë ù ð B ù ð ë ö ñ ï ô

ö ï ð í ô ñ ð ê � � ù ð í ü ñ ð ó ô ì ë ð õ ï í ó ë ô õ ï û ú ñ ì ë ù ô ø ï í � � � � � � � � � � � 	 � � � � | � | � � � � � 	 �

+ ü ñ l ñ û ð ñ ÿ ù ó ð ñ õ ñ ô í ì ë ð @ B C B : ' : ï ê ï î ü ë þ ñ ó ê í ü ï í ó í ó ê þ ó � ü í î ñ ó � ü í ï ô ø

ô ë ô � ó ô í ð ù ê ó ý ñ ï ô ø í ü ñ ð ñ ì ë ð ñ î ó þ þ ô ë í ø ó ê ð ù ö í ñ 7 ó ê í ó ô � ê ù ò ò ñ ê ê ì ù þ ë ð � ï ô ó ê ï í ó ë ô ï þ

ö ð ï ò í ó ò ñ ê ï ô ø ì ù ð í ü ñ ð õ ë ð ñ õ ï û ú ñ ï ø ï ö í ñ ø í ë ì ï ò ó þ ó í ï í ñ í ü ë ê ñ ö ð ï ò í ó ò ñ ê ó ô ï ô û

ë ð � ï ô ó ê ï í ó ë ô ï þ ò ë ô í ñ 7 í � 8 : � é = ó ê ó ô í ñ ô ø ñ ø í ë ö ð ë ý ó ø ñ ï ø ó ê í ð ó ú ù í ñ ø ï ô ø ø ñ �
ö ñ ô ø ï ú þ ñ ð ñ ö ë ê ó í ë ð û î ó í ü ï � þ ë ú ï þ ô ï õ ñ � ê ö ï ò ñ ì ë ð õ ï ô ï � ó ô � ï þ þ ï ð í ñ ì ï ò í ê ð ñ þ ï í ñ ø

í ë ê ë ì í î ï ð ñ ñ ô � ó ô ñ ñ ð ó ô � ó ô ò þ ù ø ó ô � ö ð ë ò ñ ê ê õ ë ø ñ þ ê � ê ë ù ð ò ñ ò ë ø ñ ï ô ø ë í ü ñ ð l ó ô ø ê

ë ì ø ë ò ù õ ñ ô í ê �
/ ñ ü ï ý ñ ö ð ë ö ë ê ñ ø ï ô ï ð ò ü ó í ñ ò í ù ð ñ ì ë ð ê ù ò ü ï ê û ê í ñ õ ñ ï ð þ ó ñ ð ó ô í ü ñ ö ï ö ñ ð �

+ ü ñ ï ð ò ü ó í ñ ò í ù ð ñ ó ê ó ô í ñ ô ø ñ ø í ë ì ï ò ó þ ó í ï í ñ ï ò í ó ý ñ ï ð í ñ ì ï ò í õ ï ô ï � ñ õ ñ ô í � ï ò ë þ �
þ ñ ò í ó ý ñ í ñ ð õ ì ë ð ê ñ ý ñ ð ï þ ï ù í ë õ ï í ñ ø ì ï ò ó þ ó í ó ñ ê ó ô ò þ ù ø ó ô � ò ü ï ô � ñ í ð ï ò ñ ï ú ó þ ó í û ï ô ø

þ ë � � ó ô � � ø ñ ö ñ ô ø ñ ô ò û ï ô ï þ û ê ó ê � ø û ô ï õ ó ò ï ð í ñ ì ï ò í ø ï í ï í ð ï ô ê ì ë ð õ ï í ó ë ô ï ô ø ü ó ê �
í ë ð û � ö ð ñ ê ñ ô ò ñ ï ê õ ñ í ï � ø ï í ï � + ü ñ ü ñ ï ð í ë ì í ü ó ê í ñ ò ü ô ó ÿ ù ñ î ó þ þ ú ñ ó ô 8 : � é = � ê

ó ô ø ñ 7 ó ô � ï ô ø õ ñ í ð ó ò ê ò ë õ ö ë ô ñ ô í ê �

� + � + ã + á ç + /

Z � ð ï û ñ í ï þ � � x � � � \ � ð ï û � + � � - ï ë þ ó � 6 � � : ö ñ ð ú ñ ð � � ò � ù ñ ñ ô � � � � ï ô ø ï þ ñ ð � B �
2 x � � � 4 � B 7 í ñ ô ê ó ú þ ñ ï ð l ù ö $ ï ô � ù ï � ñ 2 � $ 4 � � � 2 ê ñ ò ë ô ø ñ ø ó í ó ë ô 4 � + ñ ò ü ô ó ò ï þ

ð ñ ö ë ð í � + ü ñ / ë ð þ ø / ó ø ñ / ñ ú � ë ô ê ë ð í ó ù õ �

Z � ü ð ó ê í ñ ô ê ñ ô ñ í ï þ � � x � � � \ � ü ð ó ê í ñ ô ê ñ ô � B � � � ù ð ú ñ ð ï � � � � ñ ð ñ ø ó í ü � @ � � / ñ ñ ð �
ï î ï ð ï ô ï � : � � ï ô ø = ñ ê ñ ï ð ò ü � ' � 2 x � � � 4 � / ñ ú ê ñ ð ý ó ò ñ ê ø ñ ê ò ð ó ö í ó ë ô þ ï ô � ù ï � ñ

ý ñ ð ê ó ë ô � � � � + ñ ò ü ô ó ò ï þ ð ñ ö ë ð í � + ü ñ / ë ð þ ø / ó ø ñ / ñ ú � ë ô ê ë ð í ó ù õ �

Z � þ ë ð ñ ê ñ í ï þ � � � [+ + \ � þ ë ð ñ ê � � � � @ ð ï ý ñ ê � � � 8 ï ð í R ñ þ ø � � � � ï ô ø û / ó ô ë � ð ï ø � + �
2 � [+ + 4 � � ë õ ö ù í ñ ð ê û ê í ñ õ ê ï ô ø í ü ñ ø ñ ê ó � ô ë ì ë ð � ï ô ó - ï í ó ë ô ï þ ó ô í ñ ð ï ò í ó ë ô � . � �

� � � I � � 0 � � � I � � I � � 0 � � I � � � � � � � � I � # � � � � � � " 2 x 4 (�) C � � 4 x �

Z @ ï ó þ B � 1 ï ó ê ñ ð ï ô ø 2 ï ô � � � [[4 \ @ ï ó þ B � 1 ï ó ê ñ ð � : í ñ ö ü ñ ô B � � ë ê ê ó ò l � / � 6 � ï ô ø

2 ï ô � � 6 � 6 � 2 � [[4 4 � é ô ï ð ò ü ó í ñ ò í ù ð ñ ì ë ð / / / � ú ï ê ñ ø ü û ö ñ ð ò ë ø ñ ñ ô ý ó ð ë ô õ ñ ô í ê �

' ô � � � � � I � � � I � � � � I � � � � I � � � � I 0 � � I � � � � � � � � � I � � I � � � � I � � � M � � � I � � � � � � � � � �

ö ï � ñ ê C � � C � � ë ê í ë ô é �

Z 8 ï ï l ñ � � [[[\ 8 ï ï l ñ � 6 � � 2 � [[[4 � 8 ö ñ ô ñ ê ê ó ô ê ü ï ð ñ ø ü û ö ñ ð õ ñ ø ó ï î ë ð l ê ö ï ò ñ ê (
+ ü ñ ò ï ê ñ ì ë ð ò ë þ þ ï ú ë ð ï í ó ý ñ ë ö ñ ô ü û ö ñ ð õ ñ ø ó ï ê û ê í ñ õ ê � . � � � � � � � � � � � � � � � K

� � � � + 2 C 4 (C C � %) �

Z 6 ï ò l ê ë ô ï ô ø : ò ü î ï ð - � � [[+ \ 6 ï ò l ê ë ô � ' � ï ô ø : ò ü î ï ð - � � � 2 � [[+ 4 � + ü ñ � ñ ú ó ï ô

ö ë þ ó ò û õ ï ô ù ï þ � + ñ ò ü ô ó ò ï þ ð ñ ö ë ð í � + ü ñ � ñ ú ó ï ô - ð ë o ñ ò í �

Z 6 ï ò ë ú ê ë ô ñ í ï þ � � � [[[\ 6 ï ò ë ú ê ë ô � ' � � � ë ë ò ü � @ � � ï ô ø = ù õ ú ï ù � ü � 6 � 2 � [[[4 � � � �
� I � � � � � � � � � � � � � O � � � � � � I � � � � 0 � � � � é ø ø ó ê ë ô � / ñ ê þ ñ û �

Z 6 ó ï ô � ñ í ï þ � � � [[4 \ 6 ó ï ô � � / � � 1 ï ó ê ñ ð � @ � B � � 2 ï ô � � 6 � 6 � � ï ô ø ñ ô B � � ë ê ê ó ò l �

: � 2 � [[4 4 � / ñ ú ò ó í û (é / / / � ú ï ê ñ ø ü û ö ñ ð õ ñ ø ó ï ñ ô ý ó ð ë ô õ ñ ô í ì ë ð ê ë ì í î ï ð ñ

ø ñ ý ñ þ ë ö õ ñ ô í � ' ô � � � � � � � � � � � � I � I � � � � � � � � I � � 0 � I � � � � � � � � I � # � � � � � �

ö ï � ñ ê x % � � x %) �

Z 1 ï ó ê ñ ð � � [[+ \ 1 ï ó ê ñ ð � @ � B � 2 � [[+ 4 � / / / ú ï ê ñ ø ò ë þ þ ï ú ë ð ï í ó ë ô ñ ô ý ó ð ë ô õ ñ ô í ê

î ó í ü ø ó ê í ð ó ú ù í ñ ø í ë ë þ ê ñ ð ý ó ò ñ ê � � � � � � � � � � � � � M � I � � � � 2 � 4 (C � x) �

Z $ ï ó ï ô ø + ï ó í � � [[+ \ $ ï ó � + � � : � ï ô ø + ï ó í � 6 � 2 � [[+ 4 � @ ñ ô ñ ð ï þ ö ü ë í ë � ð ï ö ü ó ò ó õ ï � ñ

ð ñ í ð ó ñ ý ï þ ê ó õ ù þ ï í ó ô � ü ù õ ï ô ý ó ê ù ï þ ö ñ ð ò ñ ö í ó ë ô � ' ô � � � 0 � � � I � � � � � � � . � �

� � � � � � � � � � � K � � I � � � � I 0 � � � � � � � � � � I � M � � � � � � � � I � � � I � � I � � � � � � O � � �

ö ï � ñ ê � 4 � x + � ñ þ ú ë ù ð ô ñ � é ù ê í ð ï þ ó ï �

Z $ ñ ú þ ï ô � � � [[% \ $ ñ ú þ ï ô � � � � � � 2 � [[% 4 � + ü ñ � ò ü ï þ þ ñ ô � ñ (� ë ô R � ù ð ï í ó ë ô õ ï ô �
ï � ñ õ ñ ô í í ü ï í î ë ð l ê � ' ô + ó ò ü û � / � � � � ñ ø ó í ë ð � � � I � � M � � � � � I � � I � � � � � I � �

+ ð ñ ô ø ê ' ô : ë ì í î ï ð ñ � ò ü ï ö í ñ ð � � ö ï � ñ ê � � C 4 � 6 ë ü ô / ó þ ñ û ï ô ø : ë ô �

Z 8 ó ô ï ê � 1 ù l l ë ô ñ ô ï ô ø = ë ê ê ó � � [[[\ 8 ó ô ï ê � 1 ù l l ë ô ñ ô � 8 � ï ô ø = ë ê ê ó � @ � 2 � [[[4 �
8 ô í î ë ï ö ö ð ë ï ò ü ñ ê í ë ê ë ì í î ï ð ñ ð ñ ö ë ê ó í ë ð ó ñ ê ï ô ø ü û ö ñ ð í ñ 7 í ì ù ô ò í ó ë ô ï þ ó í û � � � M � K

I � � � � � � � � � � � � I � � � � � � � � I � � 2 % 4 �

Z = ï û õ ë ô ø � � [[[\ = ï û õ ë ô ø � B � : � 2 � [[[4 � � � � � � � � � � � � � I � � � � � � � � � � � M � K
� I � � I � � I M � � I � � � I � � M � 0 � � # � I � 0 0 � � I � � � � � O � � M � � � I � � # � 8 � = ñ ó þ þ û ï ô ø

ï ê ê ë ò ó ï í ñ ê �

Z : ï ò ü ê � � [[) \ : ï ò ü ê � - � 2 � [[) 4 � + ð ï ô ê ì ë ð õ ó ô � î ë ð l (� ë þ þ ï ú ë ð ï í ó ë ô � þ ñ ï ð ô ó ô � �

ï ô ø ø ñ ê ó � ô � � � � � M I � 0 � � � � I � � � � � � . � � � C + 2 [4 (C " � % % �

Z : ñ þ ý ó ô � � [[[\ : ñ þ ý ó ô � é � � 2 � [[[4 � : ù ö ö ë ð í ó ô � ò ë þ þ ï ú ë ð ï í ó ý ñ ï ô ï þ û ê ó ê ï ô ø ø ñ �
ê ó � ô î ó í ü ü û ö ñ ð í ñ 7 í ì ù ô ò í ó ë ô ï þ ó í û � � � M � I � � � � � � � � � � � � I � � � � � � � � I � � 2 % 4 �

	 �) ä / / ? ã �

� � b _ � � ` b é ö ð ë ø ù ò í � î ü ñ í ü ñ ð ì ë ð õ ï þ ë ð ó ô ì ë ð õ ï þ ì ð ë õ í ü ñ ö ð ë ò ñ ê ê ë ì ê ë ì í î ï ð ñ

ñ ô � ó ô ñ ñ ð ó ô � �

� � � ^ � ï í ï ú ï ê ñ ï ô ï � ñ õ ñ ô í : û ê í ñ õ � � ï ð ó ë ù ê í û ö ñ ê ñ 7 ó ê í �

� � _ _ ^ d � b � � � _ é õ ë ð ñ ð ó � ë ð ë ù ê í û ö ñ ë ì 8 ö ñ ô : ë ù ð ò ñ � î ó í ü í ü ñ ó ô í ñ ô í ó ë ô ë ì

ö ð ë ø ù ò ó ô � ë ì > � ð ñ ñ : ö ñ ñ ò ü ? 2 ð ï í ü ñ ð í ü ï ô > � ð ñ ñ ú ñ ñ ð ? 4 ê ë ì í î ï ð ñ �

� � � � ^ � ^ @ ñ ô ñ ð ï þ ó ê ñ ø B ô ý ó ð ë ô õ ñ ô í ì ë ð ö ð ë ò ñ ê ê õ ï ô ï � ñ õ ñ ô í ó ô ò ë ë ö ñ ð ï í ó ý ñ

ê ë ì í î ï ð ñ ñ ô � ó ô ñ ñ ð ó ô � �

� _ b � � � � b � ' ô í ü ñ ò ë ô í ñ 7 í ë ì 8 : � é = ê ù ö ö þ ñ õ ñ ô í ï ð û ø ï í ï ê í ë ð ñ ø ì ë ð í ü ñ ö ù ð �

ö ë ê ñ ë ì ó ô ø ñ 7 ó ô � ï ô ø ê ñ ï ð ò ü ó ô � í ü ñ ð ñ ö ë ê ó í ë ð û �

� ^ � � � 8 ö ñ ô : ë ù ð ò ñ � ë õ ö ë ô ñ ô í é ð í ñ ì ï ò í = ñ ö ë ê ó í ë ð û

� ^ ^ 8 ö ñ ô : ë ù ð ò ñ : ë ì í î ï ð ñ � : ö ñ ò ó R ò ï þ þ û ê ë ì í î ï ð ñ í ü ï í ò ë õ ö þ ó ñ ê î ó í ü í ü ñ 8 ö ñ ô

: ë ù ð ò ñ � ñ R ô ó í ó ë ô �

^ � � : ë ì í î ï ð ñ � ë ô R � ù ð ï í ó ë ô ï ô ï � ñ õ ñ ô í

 � � + ë í ï þ � ë ê í 8 ì 8 î ô ñ ð ê ü ó ö

� � � / ë ð l � $ ë î � ñ ê ò ð ó ö í ó ë ô $ ï ô � ù ï � ñ � é ô ñ 7 ï õ ö þ ñ ó ê í ü ñ / ñ ú : ñ ð ý ó ò ñ ê � ñ �

ê ò ð ó ö í ó ë ô $ ï ô � ù ï � ñ Z � ü ð ó ê í ñ ô ê ñ ô ñ í ï þ � � x � � � \

KeyMan: Trust Networks for Software

Distribution

Ben Laurie <ben@algroup.co.uk>

Matthew Byng-Maddick <mbm@aldigital.co.uk>

February 28, 2002

1 The Problem

Software, particularly open source software, is vulnerable to attack by distribu-
tion of maliciously altered versions of it.

The standard solution to this attack is to either distribute checksums (tradition-
ally MD5 but SHA-1 would be better these days) or to PGP sign the distribution
or its checksum.

Clearly distributing checksums is a very weak solution, particularly since these
are usually obtained by downloading them from the same site as the software
itself, which makes the checksum as vulnerable as the software, and hence of no
value.

PGP signing is a better solution, but neither of the current ways of associating
the signing key with the project are particularly strong.

One is to use identifiers with the appropriate email domain, or some kind of role
email address. This is not a particularly strong way of connecting the package
signer, because you can never be sure of the key signers’ own authority to mark
a key as authorised to sign the particular software. This is especially true where
one authority has many projects that it manages.

Another common scheme is to include a list of valid signing keys in the software
distribution - this does have some merit for validating future distributions from
the same source, but clearly is of no value whatsoever in validating the first one
someone downloads.

In both cases, the sheer difficulty of actually checking PGP signatures, which is
a tedious manual process, is a major barrier to any rigour in this scheme.

2 Why is it hard to validate the signer?

As one of the authors is a director of the Apache Software Foundation (ASF),
it will be used as an example throughout this paper.

In the ASF, there are around 50 different projects. Each one has a number of
contributors, and typically any of those contributors can build any particular
release of the software. Clearly, only the builder of the release is in a position to
sign the software. This means that there are literally hundreds of people who
can sign software that is distributed by the ASF.

But how does one check that they are entitled to? This is really quite trou-
blesome. You might check that their key has been signed by some well-known
member of the ASF, perhaps. But what does that actually mean? It means
that well known person has validated their identity and does not imply that
they can necessarily sign a release of Apache!

A solution that has been suggested to solve this problem is to have an ASF-
wide signing key. Although this clearly helps, it just changes the problem from
one of validation to one of management. Who has control of the key? If it is
too many people, then the key is both reduced in value, because we have the
original problem - there are people empowered to sign things they should not be
- and also a new one - the key will presumably have to be revoked and replaced

on a regular basis, as the pool of eligible signers changes, if too few, then the
problem is that the signer may no longer be the person who made the release.

It was thinking about these problems that led to the idea of KeyMan.

3 What is KeyMan?

KeyMan is a piece of software that permits the management of keys, certificates
and signatures in a distributed and exportable network of trust.

The idea is relatively simple. First, there’s the concept of domains. Every
object can have its trust evaluated in a domain, the domain being an indication
of who controls it. Sub-domains are considered to be contained within their
super-domains, so, for example, the domain ”apache” might be the domain for
the whole ASF, and the domain ”httpd.apache” the domain for the Apache
Webserver.

The next idea is a trust level - this is simply a number between 0 and 1 inclusive,
where 0 means ”no trust” and 1 means ”complete trust”. Numbers in between
do not have any strict meaning, for example .5 doesn’t mean ”I half trust this” -
they are just meant to be an indication of degree of trust, providing at least some
rough idea of how much trust should be placed in a thing. Their interpretation
will probably be a matter of personal preference (the most obvious being that
only things with a trust of 1 should be trusted).

The only other thing KeyMan uses is a trust depth. This is used when making
a certificate of a key - one signs the key with a domain (or domains), a trust
metric, indicating one’s personal trust in that key in that domain and a depth,
indicating how far the trust extends in signatures or certificates made by the
key being signed. It acts rather like a Time-To-Live metric, in that things can
reduce it by arbitrary amounts, but must always decrement it.

KeyMan objects are implemented as XML data structures, parts of which are
signed, and parts of which are not. These will be described in a future paper.
Being XML, they can easily be integrated into a larger XML export document,
so multiple items (either objects or certificates) can appear as one document.

3.1 Why use a non-1 trust metric?

The principle reason we have thought of for using a metric that isn’t 0 or 1
(clearly 0 is the same as not signing at all, of course) is to indicate that you
have some confidence in a key, perhaps through circumstantial evidence, but
not complete confidence.

How might you get circumstantial evidence about a key? One way is through
repeatedly seeing it over a period of time signing software you use. Another is
to see a certificate or set of certificates from keys you trust in other domains
or even in the same domain but with inadequate depth. Of course, should
this happen, it might be better to re-evaluate your trust in those certificates
(including domains and depths), rather than signing the key itself with partial
trust.

3.2 Why use a non-infinite trust depth?

The most obvious reason is because you want to give someone the ability to
certify objects in a domain without giving them the power to delegate that
ability. In this case, a depth of 1 is appropriate.

Another case is where an organisation wants to limit complexity in signing and
certification, by only granting limited power to delegate - for example, the ASF
board might sign the keys of the management committee for one of its projects
with depth 2, allowing only people directly signed by that committee to do
releases within that domain.

An infinite depth is appropriate where a key is trusted completely in a domain.
For example, the ASF board members would probably sign each others keys in
the Apache domain with infinite depth.

3.3 Evaluating Trust

In each installation of KeyMan, there exists a ”root key”, which is a key used by
the owner of the installation. Any non-zero trust in any object will be traceable
by a chain of signatures and certificates back to this root key. There are other
models for doing this, but we feel that this is the most appropriate.

So, to evaluate the trust in an object, we must first know the domain of that
object. We then find all possible paths of signatures or certificates, back from
that object to the root key, where every certificate is in the domain of the object
or a super-domain of it, and the depth on each certificate is sufficient to reach
the object. Then all the trust metrics on each path are multiplied together,
giving the path trust for that path. The highest path trust is then the trust in
the object.

The existence of multiple paths at reasonable trust levels can be an example of
the circumstantial evidence mentioned above, which might make the user more
likely to make their own certification of a given object.

4 KeyMan: the software

So now we know how KeyMan works, what does the software do? It manages all
of the above objects, and their associated signatures and certificates, calculates
the trust in supplied domains, allows you to sign and export objects, and also
to download KeyMan objects from URLs and check them in one operation
(note that the object can be a software distribution plus associated KeyMan
signatures).

It displays the chains of signatures and certificates leading to trust on an object
graphically, with helpful information available for all of the objects involved.

It allows you to sign things, and to export your certificates, signatures and
objects themselves in a format suitable for other KeyMan users to import.

And it does this all both graphically and from the command line.

Incidentally, all signatures are currently actually PGP signatures, using GnuPG
to manage them, but there is no reason they should not be any kind of public
key signature. The architecture has been designed to allow for this. It is also
possible to import pre-existing PGP signatures to be checked as part of the
certification chain. Because these are signatures rather than certificates, they
default to a trust metric of 1, an infinite depth, and a domain of ”.”, the root-
level domain.

5 Usage Scenarios

How KeyMan would be used in practice is probably best illustrated by con-
sidering four different types of user, who conveniently span more or less all
possible uses of KeyMan. Even more conveniently, each type of user builds on
the previous one, each using the software in a slightly different way.

These four types of user are software developers (assumed to be members of a
large team), sophisticated end users, package maintainers and naive end users.

5.1 Software Developers

Software developers really have two things they have to do with KeyMan -
the first is to sign each others keys. This is normally best managed by first
signing in the usual PGP web-of-trust way, indicating their trust in the key
being owned by its claimed owner, then signing in KeyMan with appropriate
domain (i.e a sub-domain of the overall project), trust metric (1, usually) and
depth (depending on project’s policies) in order to include them as a member
of a project.

In the case of the ASF, the way this would probably work is that the ASF board
would all sign each other’s keys in the ”apache” domain with infinite depth, and
get as many of the other ASF members and contributors as possible to sign their
keys in the same way (and, indeed, anyone else that can be persuaded). The
board members would then sign the keys of each project management committee
(PMC) in that PMC’s domain (which would be a sub-domain of ”apache”, for
example, ”httpd.apache”). The PMC would, in turn sign keys of the project
maintainers in appropriate domains (which might be sub-domains of the PMC
domain, or the PMC domain itself). These maintainers can then sign project
releases.

The net effect of all this activity is that anyone who can find a path of trust to
any ASF developer should end up being able to trust all software released by
the ASF (via developer → Board → PMC → maintainers → developer), but in
a way that is scalable and maintainable.

The other thing a developer has to do is release software. This is really just
a matter of signing the tarball, setting its domain and setting a URL where it
(and future versions and the certificates) can be downloaded, and then putting
the resulting KeyMan exports at that location.

5.2 Sophisticated End Users

A sophisticated end user will want to make their own decisions, control their
own life as far as trust is concerned (see Näıve End Users). This means that
they will try to find chains of trust that lead to the software they need to check,
through friends or colleagues. It is typically this kind of user that will end
up signing keys with partial trust, being unable to find routes that give them
complete trust.

Of course, they can use KeyMan as a tool to help them explore the trust network
and see if there are keys they may be able to validate to improve their position.

And if they have friends or colleagues who have trust that improves their situ-
ation (assuming they trust them, of course), then they can get them to export
their trust graphs and send them (by email for example).

5.3 Package Maintainers

A package maintainer is in much the same position as a sophisticated end user,
from the point of view of checking signatures and certificates, except that they
may have better contacts through their organisation to enable trust paths to be
found.

Once they’ve verified the source, most package maintainers will then apply
patches and other tweaks appropriate to their way of doing things, and then
will probably produce some kind of rolled-up version of the modified/configured
software. They will then sign this with a key that has been certified in the
domain of their organisation. The idea behind this being, of course, that the
distribution can have a single root key which, if trusted, will automatically
certify all software in that distribution.

Naturally, the distribution will have hierarchy of domains similar to the ones
maintained by software authors - reflecting their own internal network of pack-
agers and their managers.

5.4 Näıve End Users

The typical naive user will most likely be using vendor-supplied packages on
their system, and will be compiling very little from the original source. They
would set themselves up to trust the vendor root key, to a depth such that
they would trust the package maintainers of the vendor’s packages (probably,
in practice, infinite depth, since they should trust the vendor to manage their
keys and certificates correctly anyway).

The vendor’s key could well be distributed with the installation media for their
distribution - including KeyMan, of course. KeyMan would then be used as part
of their installation and upgrade process, and would be largely transparent to the
user. The only thing they’d have to do in a normal situation is to generate their
own root key and sign the vendor’s root key with it - of course, the distribution
would probably largely automate this process as part of the install.

6 Future work

One of the things we are still working on in KeyMan is certificate revocation.
In essence this is simple, but there are a number of issues.

The main issue is that we would like to not invalidate all past certificates made
by a key that has been revoked at a particular time. This requires us to have
timestamps, signed by third parties1. In essence, timestamps are relatively
simple - all one needs to do is send an object to someone, containing a hash of
the thing to be timestamped and a claimed time2, which the timestamper then
signs if they believe the claimed time, including a time at which they signed3.

It is clear that in the worst case we can abandon the idea of timestamps and
simply rely on the time the object actually arrived at the relying party (that is,
if there is a revocation that claims a key was revoked at time tX , and we first
saw an object signed by that key at time tY , then if tY < tX , we can still believe
the signature). Obviously this gives an attacker a denial of service attack, but
it does prevent them from forging valid signatures.

Another thing we’d like is to allow anyone to revoke anyone else’s certificates -
this makes sense with the model of the network of trust - whether you believe the
revocation depends on whether you trust its author, rather than the simplistic
model where only the holder of the key can revoke it.

In any case, there are a number of complications resulting from revocation and
timestamping which we are still working on, and which, no doubt, will be the
subject of further papers.

7 Closing Remarks

An implementation of KeyMan written in Perl is available from an anonymous
CVS download, described in http://keyman.aldigital.co.uk/.

KeyMan was designed and written by Ben Laurie and Matthew Byng-Maddick
for A.L. Digital Ltd., and is an effort sponsored by the Defense Advanced Re-
search Project Agency (DARPA) and the Air Force Research Laboratory, Air
Force Materiel Command, USAF, under agreement number F30602-01-2-0537.

1this is needed otherwise a compromised key could obviously then be used to claim any
time in the past

2this is needed because if the timestamp signer is human, they may not respond immedi-
ately

3this, we believe, is a good idea, because it allows the relying party to make their own
decisions about how large a time window with which to trust the signer

