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Objectives: Our aim was to test if machine learning algorithms can predict cancer
mortality (CM) at an ecological level and use these results to identify statistically
significant spatial clusters of excess cancer mortality (eCM).

Methods: Age-standardized CM was extracted from the official databases of Brazil.
Predictive features included sociodemographic and health coverage variables. Machine
learning algorithms were selected and trained with 70% of the data, and the performance
was tested with the remaining 30%. Clusters of eCM were identified using SatScan.
Additionally, separate analyses were performed for the 10 most frequent cancer types.

Results: The gradient boosting trees algorithm presented the highest coefficient of
determination (R2 = 0.66). For total cancer, all algorithms overlapped in the region of
Bagé (27% eCM). For esophageal cancer, all algorithms overlapped in west Rio Grande do
Sul (48%–96% eCM). The most significant cluster for stomach cancer was in Macapá
(82% eCM). The most important variables were the percentage of the white population and
residents with computers.

Conclusion: We found consistent and well-defined geographic regions in Brazil with
significantly higher than expected cancer mortality.
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INTRODUCTION

Cancer occurrence significantly varies among different geographical locations and types of cancer. A
comprehensive analysis of age-adjusted incidence rates on a global scale found that, in 2018, the
incidence was 419 per 100,000 inhabitants in Oceania, 350 in North America, 217 in Latin America
and the Caribbean, and 130 in Africa, as per the report by [1].

In Brazil, cancer is ranked as the second leading cause of death, resulting in 227,920 deaths in
2018, as estimated by the World Health Organization [2]. It also reports that the age-adjusted death
rate due to cancer is 111 per 100,000 for men and 95 per 100,000 for women. Within Brazil, these
rates fluctuate considerably, with higher rates observed in the country’s more developed southern
and southeastern regions [3].

Brazil, with its vast territory and stark socioeconomic disparities, is home to a multitude of
ethnic groups. Yet, its healthcare system is relatively uniform nationwide, which makes it a
potentially promising setting for eco-epidemiologic modeling. Machine learning models have
been utilized in diverse healthcare fields, primarily for creating individualized prediction
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algorithms. These include predicting the mortality risk during
chemotherapy [4, 5], predicting in-hospital mortality [6, 7],
and making prognostic predictions [8–10]. Yet, their
application in ecological epidemiology modeling is still
growing [11–13].

Spatial epidemiology methods can effectively identify
disease incidence variations in relation to demographic,
environmental, behavioral, socioeconomic, and genetic risk
factors [14]. The scan statistic method by Kulldorff [15] for
spatial clustering analysis is commonly used to identify areas
with high health-related outcome rates. This technique has
been employed in oncology research for diseases like lung
cancer in China [16], colorectal cancer in Florida [17], and
breast cancer in the United States [18].

The potential of merging scan statistics with machine learning
models is an expanding area of research [19], with exciting
applications in obesity [20], HIV, and mobile data [21]. It can
also be pivotal in identifying clusters with unexpectedly high
incidence rates based on local characteristics.

The primary objective of this study is to analyze the
predictive power of sociodemographic variables for cancer
mortality rates across the municipalities in Brazil. Following
this, the research then intends to leverage these findings to
identify clusters with unusually high cancer mortality rates, in
other words, mortality rates not explained solely by local
socioeconomic factors.

METHODS

Data Collection
The schematic representation of the study is shown in Figure 1.
We first extracted crude mortality data from each of the
5,565 municipalities of Brazil using the Mortality Information

System (SIM) of the Ministry of Health, which has been shown to
have high coverage, capturing over 95% of deaths in the Brazilian
territory [22]. Cancer mortality was selected using the
International Statistical Classification of Diseases and Related
Health Problems (ICD)-10 codification for malignant tumors
(Chapter 2 of the ICD-10) and aggregated to the Municipality
level from 2007 to 2016. Age-adjusted mortality rates for each
municipality were calculated using the World Health
Organization Standard population from 2000 to 2025 [23].

A total of 40 sociodemographic variables focusing on
income, assets, demography, and urbanization were
collected from the last census (from 2010), with
municipalities as the aggregated level [24]. The percentage
of private healthcare coverage was obtained from the Ministry
of Health [25]. Details on all variables are listed in
Supplementary Annex S1. Geographical coordinates of
municipalities for the spatial analysis were obtained from
the Brazilian Institute of Geography and Statistics (IBGE) [24].

Machine Learning Models
Municipalities were randomly split into train and test sets (70%
and 30% of the total sample, respectively). Missing data for
covariates were imputed using the K-Nearest Neighbors
method, and continuous variables were standardized to the
range between 0–1 using the caret package [26] from R
software [27]. The train set was used to tune the
hyperparameters with three repeated 10-fold cross-validation.
We first tested the predictive performance of nine popular
machine learning algorithms: linear regression, LASSO
regression (LASSO), ridge regression, random forests (RF),
extreme gradient boosting (XGB), linear support vector
machines (LSVM), polynomial support vector machines
(PSVM), conditional inference model tree, and decision trees.
Model performance in the train set was measured with R2 with

FIGURE 1 | Study area and schematic diagram of methods (Spatial clusters of cancer mortality in Brazil: a machine learning modeling approach, Brazil,
2008–2016). 1) 2010 Census [24], 2) Brazilian Territory 2020 [30], 3) Gross Domestic Product (GDP) by Purchasing Power Parity (PPP) and 2017 International Dollars
[47], 4) Human Development Index (HDI) [48], 5) Gini Index (World Bank Estimate) [49], and 6) Poverty headcount ratio at $5.50 a day (2011 PPP) (% of population) [50].
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95% confidence intervals (95% CI), and the four best algorithms
according to this metric were selected (XGB, RF, pSVM, and
LASSO).

We performed hyperparameter selection for each algorithm
with a 10-fold cross-validation algorithm trained with a random
search algorithm using three repetitions with standard
variations provided by the caret package [26]. Model
performance was measured solely in the test set
(Supplementary Annex S3).

After selecting the best-performing combination of
hyperparameters of the algorithms, each was trained on the
whole set with 10-fold cross-validation, and the results of the
test folds were the predictive values for the next steps of the
analysis to guarantee that every municipality has a test set result.
After selecting the best-performing model, a variable importance
analysis was performed with SHAP (Shapley Additive
Explanation) [28].

Geographical Analysis
To identify geographical clusters of higher-than-expected cancer
mortality rates (not explained by sociodemographic
characteristics), the prediction of the machine learning
algorithms was used in the Kulldorff scan statistic [15] as the
expected incidence rate value in association with the actual
incidence rate. Additionally, the analysis incorporated the
projected population [29] and municipalities centroids
obtained from IBGE [30].

The Kulldorf scan statistic works by moving a varying-size
circular window across a study region and, for each location,
comparing the observed and expected number of cases within

and outside the window using a likelihood ratio test. Under the
null hypothesis, the disease risk is the same within and outside the
window, while the alternative hypothesis assumes a higher risk
within. The window that maximizes the likelihood ratio is
considered the most likely cluster. The statistical significance of
the detected clusters is then assessed using Monte Carlo
simulation [15].

The only parameter in the Kulldorff scan statistic is the
maximum cluster size, which is determined by spatial territory
or by the population at risk. Kulldorff and Nagarwalla [31]
reported that a scan window no higher than 50% of the at-risk
population is the ideal rule of thumb to avoid negative cluster
detection. Due to the unusually low and highly variable
population density in Brazil, a cluster size of 0.3% of the
total Brazilian population was considered to capture a
meaningful territorial extension. It is important to note
that, for a country like Brazil with sparsely populated rural
areas, clusters with larger populations could potentially distort
the analysis by generating clusters disproportionately
extensive.

Sub Analysis of Specific Types of Cancer
The analysis was first performed for all cancers combined
(Chapter 2 of ICD-10), and then specific analyses were
performed for the 10 types of cancer with the highest number
of deaths (Supplementary Annex S2).

Ethics
The data used in this analysis is freely available in the public
domain by the Ministry of Health of Brazil, thus not requiring

FIGURE 2 | SHapley Additive exPlanations (SHAP) analysis of the top 12 contributing variables contribution to the extreme Gradient Boosting model for Cancer
Mortality rate using Sociodemographic (Spatial clusters of cancer mortality in Brazil: a machine learning modeling approach, Brazil, 2008–2016).
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an ethics committee approval for access, analysis, and
publication.

RESULTS

In the algorithm selection phase, best performing algorithms were
RF (R2 = 0.651, 95% CI = 0.640–0.662, and Root Mean Squared
Error–RMSE = 15.4), XGB (R2 = 0.626, 95% CI = 0.615–0.637,
and RMSE = 15.8), pSVM (R2 = 0.599, 95% CI = 0.576–0.622, and
RMSE = 16.5), and LASSO (R2 = 0.588, 95% CI = 0.578–0.598,
and RMSE = 16.6). The results for every algorithm in the selection
phase are presented in Supplementary Annex S3.

After hyperparameter tuning, the XGB model presented the
best performance for predicting total cancer mortality rates (R2 =
0.65 in the test set and 0.66 in the whole database; RMSE =
15.2 and 15.1, respectively). A correlation plot for the XGBmodel
is shown in Figure 3A.

The SHAP analysis of the XGB model shows that the most
important predictive variable was the percentage of white
residents (Figure 2). This variable had a positive
relationship with the prediction in the entire distribution
range. The second most important variable was computer
ownership. This variable had a non-linear relationship with

a growing contribution until around 30%, then stabilizing
above this value. Per capita births were the third most
important variable, with a positive relationship until up to
25 births per thousand inhabitants, also stabilizing above
this rate.

A total of three geographic clusters of residual mortality
rates (high predictive error in the overall set) were identified
by the Kulldorff Statistics (Figure 3). The primary cluster,
with the lowest p-value (p = 0.001), was the region between
Rio Grande and Bagé in the State of Rio Grande do Sul (RS)
with an excess of 28.6 deaths per 100,000 residents (p =
0.001). The secondary cluster was the region of Porto
Velho in the State of Rondônia (RO) with an excess of
27.3 deaths per 100,000 people (p = 0.001), and the third
was the city of Barueri in the State of São Paulo (SP) with an
excess mortality rate of 38.4 deaths per 100,000 people (p =
0.001) (Table 1).

When comparing different prediction algorithms for each
specific cancer type, the RF and XGB algorithms had the
highest overall predictive performance. Using the Kulldorff
Statistic, the LASSO model identified the highest number of
clusters. No significant clusters were identified for liver,
pancreatic, breast, prostate, and brain cancers for any of the
models (Supplementary Annex S4).

FIGURE 3 | Extreme gradient boosting model results for predicting cancer mortality rates and its residuals, showing the portion of mortality not explained by local
characteristics: (A) Correlation plot with R2 0.66 for Cancer Adjusted Mortality per 100,000 people in Brazilian Municipalities (colored by Kulldorff clusters). (B) Residuals
plotted on a Brazilian map with clusters identified by color. Zoom in Barueri (C), Bagé-Rio Grande Cluster (D), and Porto Velho and Surroundings Cluster (E) (Spatial
clusters of cancer mortality in Brazil: a machine learning modeling approach, Brazil, 2008–2016).
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Figure 4 and Table 2 detail the overlapping clusters
identified by each model and cancer type. For total cancer,
a cluster composed of 16 cities (Figure 4H1) was identified by
four algorithms in the region between Bagé and Rio Grande,
and in this same region, a cluster for colorectal cancer was
identified by two models (Figure 4I5). Several overlapping
clusters of total, lung, and stomach cancer were identified in
the Region of Porto Velho and surrounding areas (Figure 4D).
In the region of Macapá, two clusters for stomach cancer were
identified: the first, identified by three models (Figure 4B2),
intersected the city of Macapá, and the second, around
Santana, was identified by one model (Figure 4B1).
Multiple clusters were identified in the State of Ceará for
different cancer types by the LASSO and pSVM models
(Figure 4C).

Regarding esophageal cancer, four models identified two
overlapping clusters in the region between Parana and Santa
Catarina (Figure 4: E4 and E5). Three overlapping clusters were
identified in the western region of the State of Rio Grande do Sul
(Figure 4: I1, I2, and I3), and a similar situation was identified in
the region around the city of Teófilo Otoni (Figure 4: F2 and F3).
Four clusters were identified in the State of Espírito Santo
(Figure 4: F4, F5, F6, and F7).

The mean excess mortality rate not explainable by
sociodemographic characteristics was highest for non-specified
cancer (weighted mean: 126% ± weighted standard deviation:
143% with weights on expected cases), followed by stomach
cancer (73% ± 10%), colorectal cancer (one cluster 70%),
esophagus cancer (67% ± 24%), lung cancer (51% ± 11%), and
total cancer (28% ± 4%).

DISCUSSION

Utilizing solely socioeconomic factors and healthcare
coverage parameters, machine learning algorithms
demonstrated a high overall success rate in predicting
cancer mortality. Cancer mortality is a consequence of its
incidence and lethality, and both have a strong association
with socioeconomic characteristics [32, 33]. Therefore,
machine learning algorithms could potentially offer a
superior modeling approach compared to conventional
statistical methods. We used the predicted values to
identify statistically significant clusters of excess cancer
mortality (i.e., higher rates in comparison to the expected
rate given its sociodemographic characteristics) throughout
Brazil. There were consistent and significant cluster overlaps
for the different algorithms, especially in the southern and
northern regions of the country.

The area between Bagé and Rio Grande (Figure 4H1), the
southernmost region of Brazil, was identified by all models for
both total cancer and colorectal cancer. Lung cancer clusters
were also particularly common in this state, with three
different clusters around the capital Porto Alegre, one
cluster in Pelotas/Rio Grande, and another in the western
area of the State. For stomach cancer, the region of Macapá in
Amapá State, Northern Brazil, showed an 82% excess in
mortality in addition to two other clusters in the state of
Ceará with excess mortality of 85% in the region around
Barreiros and 71% around Piquet Carneiro, both in the rural
part of the state. These cancer types are etiologically related to
tobacco smoking [34]. In alignment with this, Macapá, Porto

TABLE 1 | Cancer mortality rates by Kulldorff statistic cluster and municipality by the extreme gradient boosting algorithm (Spatial clusters of cancer mortality in Brazil: a
machine learning modeling approach, Brazil, 2008–2016).

Cluster/Municipality Adjusted rate (deaths per
100,000)

Predicted rate (deaths per
100,000)

Residual (deaths per
100,000)

Population
(thousands)

Additional
cases

Cluster 1 151.3 122.7 28.6 538.2 154.1
Rio Grande 160.0 124.5 35.5 205.2 72.8
Bagé 157.3 126.3 31.0 121.0 37.5
Canguçu 138.9 111.4 27.5 55.3 15.2
Jaguarão 154.0 125.1 28.9 28.6 8.3
Capão Do Leão 127.0 121.7 5.3 25.2 1.3
Piratini 149.6 124.9 24.8 20.6 5.1
Arroio Grande 139.8 126.5 13.3 19.0 2.5
Pinheiro Machado 144.6 117.0 27.6 13.1 3.6
Candiota 138.6 128.6 10.1 9.2 0.9
Pedro Osório 143.4 124.7 18.7 8.0 1.5
Herval 133.6 124.8 8.8 7.0 0.6
Cerrito 113.3 97.9 15.4 6.5 1.0
Morro Redondo 113.8 110.4 3.4 6.5 0.2
Hulha Negra 141.3 115.1 26.2 6.3 1.7
Aceguá 145.5 128.8 16.7 4.6 0.8
Pedras Altas 126.8 80.1 46.7 2.2 1.0

Cluster 2 129.0 101.7 27.3 498.0 136.0
Porto Velho 131.0 103.2 27.9 475.7 132.7
Candeias Do Jamari 85.4 70.5 14.9 22.4 3.3

Cluster 3 160.7 122.4 38.4 253.9 97.4
Barueri 160.7 122.4 38.4 253.9 97.4

Brazil—Others 98.5 98.2 0.3 197,908.7 584.6

Bold represents the totals for each cluster.
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Alegre, and Porto Velho, the state capitals with the highest
recorded rates of smoking habits among men [35], coincide
with some of these identified cancer clusters. A recent study
identified several clusters for gastric cancer in Brazil, one of
them in the state of Ceará [36], but it is important to note that
this study did not apply an adjustment for sociodemographic
characteristics, which could impact some clusters, especially
in the southern regions of Brazil. A cluster analysis of
stomach cancer cases in Central America identified a
possible association with a germline, as well as a hotspot
for Helicobacter pylori infection, which should be a focus of
future epidemiologic research in this region [37].

Although clusters of lung cancer in Rio Grande do Sul and
stomach cancer in Amapá are geographically consistent with
cancer incidence analyses of the National Institute of Cancer
(INCA) [3], high incidence rates do not necessarily coincide
with areas with an anomalous number of cases as the large

variance of sociodemographic characteristics throughout
Brazil could mean that even high cancer rates are within
the expected value, given these local characteristics. Our
study, by first predicting the cancer mortality rate of
Brazilian municipalities using sociodemographic
characteristics (and showing that they have a high
predictive ability), was then able to identify spatial clusters
with higher-than-expected cancer mortality rates considering
socioeconomic and healthcare coverage factors.

It is important to note that no significant clusters were found
for breast, prostate, liver, pancreatic, and brain cancers. One
possible reason is that some of these specific cancers have low
incidence and are, therefore, amenable to random local variations
that decrease the predictive ability of the machine learning
models. Another possibility is that these cancers are less
significantly affected by other factors beyond
sociodemographic characteristics. Eleven clusters of non-

FIGURE 4 |Geographic cluster location for various cancer types and regions. (A) Brazil. (B)Macapá region with two overlapping clusters of Stomach Cancer. (C)
Ceará State with different clusters for Total Cancer, Lung Cancer, and Stomach Cancer. (D) Porto Velho Region with four overlapping clusters for Total Cancer, Lung
Cancer, and Stomach Cancer. (E) Regions in the State of Paraná with different combinations of clusters for Total Cancer, Esophagus Cancer, and Non-Specified
Location Cancer. (F) Southeast Brazil with seven clusters for Esophagus Cancer. (G) Rio Grande do Sul State with a varied combination of clusters for different
types, specified for Total and Lung Cancer (H) and Esophagus, Colorectal, and Non-Specified Location Cancers (I) (interactive version available at https://labdaps.
github.io/cancerclusters.html) (Spatial clusters of cancer mortality in Brazil: a machine learning modeling approach, Brazil, 2008–2016).
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TABLE 2 | Geographic cluster details for various cancer types and regions (Spatial clusters of cancer mortality in Brazil: a machine learning modeling approach, Brazil,
2008–2016).

Cancer type Number of
models

Figure 4
location

Models Number of
cities

Population Mean
estimated

Number of
cases

Cluster p-value
range

Mean excess
cases (%)

Total Cancer 4 H1 XGB, RF,
SVM, LASSO

16 538.220 643 815 0.001–0.002 27

Total Cancer 3 F11 XGB, RF,
LASSO

1 253.877 309 408 0.001–0.005 32

Total Cancer 2 D1 SVM, LASSO 1 475.691 447 623 0.001–0.001 40
Total Cancer 2 E3 SVM, LASSO 20 587.156 641 820 0.001–0.001 28
Total Cancer 1 C1 LASSO 18 500.042 334 445 0.001–0.001 33
Total Cancer 1 A4 LASSO 18 556.312 416 550 0.001–0.001 32
Total Cancer 1 H2 LASSO 16 574.415 635 806 0.001–0.001 27
Total Cancer 1 C3 LASSO 23 592.999 392 496 0.002–0.002 27
Total Cancer 1 C7 LASSO 32 539.167 356 442 0.046–0.046 24
Total Cancer 1 C6 LASSO 26 586.597 428 537 0.002–0.002 25
Total Cancer 1 A2 LASSO 22 474.579 425 544 0.001–0.001 28
Total Cancer 1 A5 LASSO 2 308.748 296 375 0.047–0.047 27
Total Cancer 1 D2 XGB 2 498.045 507 642 0.001–0.001 27
Total Cancer 1 A3 RF 12 446.095 236 315 0.04–0.04 33
Total Cancer 1 E2 RF 13 401.607 455 564 0.047–0.047 24
Total Cancer 1 H (2, 3) SVM 17 576.921 641 809 0.003–0.003 26

Colorectal C. 2 I5 SVM, LASSO 16 538.220 47 79 0.001–0.001 70

Esophagus C. 3 F2 XGB, RF,
LASSO

28 571.144 41 61 0.002–0.007 50

Esophagus C. 3 E4 XGB, RF,
LASSO

28 565.803 45 80 0.001–0.001 76

Esophagus C. 3 F6 XGB, RF,
LASSO

5 586.686 26 47 0.001–0.003 78

Esophagus C. 2 F1 RF, SVM 10 573.875 31 47 0.033–0.035 52
Esophagus C. 2 I (1, 2) XGB, RF 16 584.172 44 65 0.001–0.004 48
Esophagus C. 1 E5 SVM 27 583.542 44 80 0.001–0.001 82
Esophagus C. 1 E1 SVM 15 431.730 32 48 0.033–0.033 50
Esophagus C. 1 F XGB 2 443.871 21 37 0.013–0.013 76
Esophagus C. 1 F3 SVM 31 591.580 47 64 0.017–0.017 36
Esophagus C. 1 F4 LASSO 17 587.888 27 45 0.031–0.031 67
Esophagus C. 1 I (1, 3) LASSO 10 476.257 28 55 0.001–0.001 96
Esophagus C. 1 F (5, 7) SVM 9 551.007 29 46 0.015–0.015 59
Esophagus C. 1 F7 SVM 2 522.051 14 31 0.002–0.002 121
Esophagus C. 1 I1 SVM 6 323.479 21 39 0.004–0.004 86
Esophagus C. 1 F7 SVM 1 353.043 8 21 0.013–0.013 163

Lung C. 2 H2 SVM, LASSO 16 574.415 97 152 0.001–0.001 57
Lung C. 2 H4 SVM, LASSO 6 591.722 107 161 0.001–0.001 50
Lung C. 2 H5 SVM, LASSO 20 506.420 100 146 0.002–0.007 46
Lung C. 2 D2 SVM, LASSO 2 498.045 59 99 0.002–0.002 68
Lung C. 2 C2 SVM, LASSO 16 555.057 40 70 0.015–0.019 75
Lung C. 1 H6 LASSO 9 524.379 106 147 0.044–0.044 39
Lung C. 1 H7 LASSO 2 452.728 86 124 0.047–0.047 44

Non-Specified
Location C.

4 F9 XGB, RF,
SVM, LASSO

16 422.324 24 37 0.013–0.037 56

Non-Specified
Location C.

4 A1 XGB, RF,
SVM, LASSO

9 508.427 19 37 0.001–0.001 100

Non-Specified
Location C.

4 I6 XGB, RF,
SVM, LASSO

1 340.257 16 35 0.001–0.001 122

Non-Specified
Location C.

4 I4 XGB, RF,
SVM, LASSO

3 168.828 7 26 0.001–0.001 285

Non-Specified
Location C.

4 E6 XGB, RF,
SVM, LASSO

1 25.389 1 14 0.001–0.001 1,300

Non-Specified
Location C.

4 F10 XGB, RF,
SVM, LASSO

1 108.145 4 15 0.001–0.003 275

Non-Specified
Location C.

2 A6 SVM, LASSO 1 303.002 7 19 0.001–0.029 171

2 E8 RF, SVM 1 159.076 7 17 0.023–0.04 162
(Continued on following page)
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specified location cancer were also found, six of them by all four
models tested. These clusters may indicate regions lacking the
specialization of mortality registration services in identifying
specific tumors.

Even though etiological reasoning regarding increased cancer
mortality rates is beyond the scope of this study, we strongly
advocate for further research to gather new local data and validate
our findings. Notably, most of the cancer types with clusters
identified in this study are associated with preventable risk factors
[34]. For instance, tobacco smoking, the primary risk factor for
lung and esophageal cancers [34], has seen a reduction due to
effective anti-tobacco campaigns [38]. It is important, however, to
note that part of tobacco consumption influence in the local areas
may have been attenuated due to its relation to socioeconomic
factors [39].

Further areas of inquiry could involve cultural practices
unique to Brazil’s southern region, such as the consumption
of hot mate tea and frequent barbecuing, given their
observed associations with gastric [40] and lung [34]
cancers, respectively. Furthermore, the most important
risk factor for gastric cancer is the presence of H. Pylori
[34], and its screening has been shown to reduce gastric
cancer incidence by 35% [41] and in a cost-effective way
[42]. Using spatial clustering methods associated with
machine learning modeling could potentially enhance
geography-targeted screening, campaigns, and
epidemiological field studies.

Variable importance analysis of the machine learning
algorithms found that computer ownership, automobile
ownership, electricity coverage, percentage of houses with
fridges, and literacy rate increased the probability of a high
prediction of cancer mortality rates. Socioeconomic factors
have been associated with cancer incidence and mortality,
especially given that high-income individuals are able to
treat competing risk factors such as cardiovascular diseases
and diabetes, as well as due to the presence of differences in
dietary and lifestyle behaviors [43–45].

There are important limitations to this study. First, it was
not able to provide a reason for the excessive mortality rates
found. However, it can provide essential guidance for future
epidemiological field research regarding environmental,
genetic, behavioral, and socioeconomic risk factors [14].
Second, our study focused on mortality rather than
incidence because Brazil lacks a nationwide, population-
based cancer registry. Mortality data, being of higher quality
and available at the municipal level, was used instead. While
mortality can serve as a reasonable proxy for incidence [46],
it might also encompass other sources of variability,
particularly for cancer types associated with higher
survival rates. Third, all the covariates are solely from
point-in-time data from the last Brazilian census.
However, considering that cancer is a chronic disease, it
is likely that the fluctuation over a small number of years
would not be very significant. Lastly, the quality of the
mortality data could vary among the different cities. In
order to try to mitigate this potential concern, we added a
proxy for data quality in the model (the rate of unidentified
cause mortality), but there could still be some remaining
issues regarding data quality heterogeneity.

Combining clustering statistics with machine learning
modeling offers a promising and adaptable tool applicable
to a wide array of outcomes. This study identified
numerous clusters of elevated mortality across various
regions of Brazil for lung, stomach, esophageal,
colorectal, and overall cancer. These findings not only
highlight potential areas for further epidemiological field
studies but also provide guidance for targeted healthcare
interventions.
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TABLE 2 | (Continued) Geographic cluster details for various cancer types and regions (Spatial clusters of cancer mortality in Brazil: a machine learning modeling approach,
Brazil, 2008–2016).

Cancer type Number of
models

Figure 4
location

Models Number of
cities

Population Mean
estimated

Number of
cases

Cluster p-value
range

Mean excess
cases (%)

Non-Specified
Location C.
Non-Specified
Location C.

1 F8 RF 1 381.407 15 27 0.019–0.019 80

Non-Specified
Location C.

1 A7 SVM 1 39.190 1 8 0.01–0.01 700

Non-Specified
Location C.

1 E7 SVM 6 524.942 20 35 0.013–0.013 75

Stomach C. 3 B2 XGB, SVM,
LASSO

5 597.394 51 92 0.001–0.022 82

Stomach C. 2 C4 SVM, LASSO 13 364.233 27 50 0.021–0.028 85
Stomach C. 2 D2 SVM, LASSO 2 498.045 33 58 0.017–0.023 76
Stomach C. 2 C5 SVM, LASSO 17 585.956 38 65 0.011–0.014 71
Stomach C. 2 B3 SVM, LASSO 2 594.948 46 80 0.001–0.002 74
Stomach C. 1 B1 RF 5 577.729 57 90 0.006–0.006 58

Int J Public Health | Owned by SSPH+ | Published by Frontiers July 2023 | Volume 68 | Article 16047898

Casaes Teixeira et al. Cancer Clusters by Machine Learning



N—Methodology on spatial clustering. AC—Supervision,
methodology and revision. All authors contributed to the
article and approved the submitted version.

FUNDING

This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior - Brasil
(CAPES) - Finance Code 001.

CONFLICT OF INTEREST

The authors declare that they do not have any conflicts of interest.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.ssph-journal.org/articles/10.3389/ijph.2023.1604789/
full#supplementary-material

REFERENCES

1. Ferlay J, Lam F, Colombet M, Mery L, Pineros M, Znaor A. Global Cancer
Observatory: Cancer Today. Lyon, France: International Agency for Research
on Cancer (2020). Available at: https://gco.iarc.fr/today (Accessed September
4, 2020).

2. World Health Organization. Mortality Database [Internet] Cancer Mortality
Database (2019). Available at: https://www-dep.iarc.fr/WHOdb/WHOdb.htm
(Accessed September 4, 2020).

3. Ministério da Saúde do Brasil.Ministério da Saúde do Brasil. Estimativa INCA
2020. Brasil: Incidência de Câncer no Brasil (2019).

4. Elfiky A, Pany M, Parikh R, Obermeyer Z. A Machine Learning Approach to
Predicting Short-Term Mortality Risk in Patients Starting Chemotherapy.
J Clin Oncol (2017) 35(15):6538-6538. doi:10.1200/JCO.2017.35.15_suppl.
6538

5. Mucaki EJ, Zhao JZL, Lizotte DJ, Rogan PK. Predicting Responses to Platin
Chemotherapy Agents with Biochemically-Inspired Machine Learning. Signal
Transduct Target Ther (2019) 4(1):1. doi:10.1038/s41392-018-0034-5

6. Thorsen-Meyer HC, Nielsen AB, Nielsen AP, Kaas-Hansen BS, Toft P,
Schierbeck J, et al. Dynamic and Explainable Machine Learning Prediction
of Mortality in Patients in the Intensive Care Unit: a Retrospective Study of
High-Frequency Data in Electronic Patient Records. Lancet Digit Health
(2020) 2(4):e179–91. doi:10.1016/S2589-7500(20)30018-2

7. Taylor RA, Pare JR, Venkatesh AK, Mowafi H, Melnick ER, Fleischman W,
et al. Prediction of In-Hospital Mortality in Emergency Department Patients
with Sepsis: A Local Big Data-Driven, Machine Learning Approach. Acad
Emerg Med (2016) 23(3):269–78. doi:10.1111/acem.12876

8. Singal AG, Mukherjee A, Joseph Elmunzer B, Higgins PDR, Lok AS, Zhu J,
et al. Machine Learning Algorithms Outperform Conventional Regression
Models in Predicting Development of Hepatocellular Carcinoma. Am
J Gastroenterol (2013) 108(11):1723–30. doi:10.1038/ajg.2013.332

9. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine
Learning Applications in Cancer Prognosis and Prediction. Comput Struct
Biotechnol J (2015) 13:8–17. doi:10.1016/j.csbj.2014.11.005

10. Park K, Ali A, Kim D, An Y, Kim M, Shin H. Robust Predictive Model for
Evaluating Breast Cancer Survivability. Eng Appl Artif Intell (2013) 26(9):
2194–205. doi:10.1016/j.engappai.2013.06.013

11. Chiavegatto Filho Adp, dos Santos HG, do Nascimento CF, Massa K, Kawachi
I. Overachieving Municipalities in Public Health: A Machine-Learning
Approach. Epidemiology (2018) 29(6):836–40. doi:10.1097/EDE.
0000000000000919

12. Schmidt CW. Into the Black Box: What Can Machine Learning Offer
Environmental Health Research? Environ Health Perspect (2020) 128(2):
22001. doi:10.1289/EHP5878

13. Ren X, Mi Z, Georgopoulos PG. Socioexposomics of COVID-19 across
New Jersey: a Comparison of Geostatistical and Machine Learning
Approaches. J Expo Sci Environ Epidemiol (2023) 1–11. doi:10.1038/
s41370-023-00518-0

14. Elliott P, Wartenberg D. Spatial Epidemiology: Current Approaches and
Future Challenges. Environ Health Perspect Public Health Serv US Dept
Health Hum Serv (2004) 112:998–1006. doi:10.1289/ehp.6735

15. Kulldorff M. A Spatial Scan Statistic. Commun Stat Theor Methods (1997)
26(6):1481–96. doi:10.1080/03610929708831995

16. Lin H, Ning B, Li J, Ho SC, Huss A, Vermeulen R, et al. Lung Cancer Mortality
Among Women in Xuan Wei, China: A Comparison of Spatial Clustering
Detection Methods. Asia Pac J Public Health (2015) 27(2):NP392–401. doi:10.
1177/1010539512444778

17. Sherman RL, Henry KA, Tannenbaum SL, Feaster DJ, Kobetz E, Lee DJ.
Applying Spatial Analysis Tools in Public Health: An Example Using Satscan
to Detect Geographic Targets for Colorectal Cancer Screening Interventions.
Prev Chronic Dis (2014) 11(3):E41. doi:10.5888/pcd11.130264

18. Kulldorff M, Feuer EJ, Miller BA, Freedma LS. Breast Cancer Clusters in the
Northeast United States: A Geographic Analysis. Am J Epidemiol (1997)
146(2):161–70. doi:10.1093/oxfordjournals.aje.a009247

19. Kamel BoulosMN, Peng G, Vopham T. AnOverview of GeoAI Applications in
Health and Healthcare. Int J Health Geogr (2019) 18(1):7–9. doi:10.1186/
s12942-019-0171-2

20. Lotfata A, Georganos S, Kalogirou S, Helbich M. Ecological Associations
between Obesity Prevalence and Neighborhood Determinants Using Spatial
Machine Learning in Chicago, Illinois, USA. ISPRS Int J Geo-Information
(2022) 11:550. doi:10.3390/ijgi11110550

21. Brdar S, Gavrić K, Ćulibrk D, Crnojević V. Unveiling Spatial Epidemiology of
HIV with Mobile Phone Data OPEN. New York: Nature Publishing Group
(2015). Available at: www.nature.com/scientificreports (Accessed May 21,
2023).

22. Queiroz BL, Freire Fhm de A, Gonzaga MR, Lima EECDE, Queiroz BL,
Freire Fhm de A, et al. Completeness of Death-Count Coverage and Adult
Mortality (45q15) for Brazilian States from 1980 to 2010. Revista
Brasileira de Epidemiologia (2017) 20:21–33. doi:10.1590/1980-
5497201700050003

23. National Cancer Institute (NCI). World (WHO 2000-2025) Standard -
Standard Populations - SEER Datasets (2013). Available from: https://seer.
cancer.gov/stdpopulations/world.who.html (Accessed February 10, 2019).

24. Censo IBGE. Demográfico 2010 (2010). Available at: https://www.ibge.gov.br/
home/estatistica/populacao/censo2010/default.shtm (accessed September 17,
2017).

25. ANS AN de SSu. Beneficiários de planos privados de saúde, por cobertura
assistencial (Brasil – 2009-2019). Brasil: National Supplementary Health
Agency (2019).

26. KuhnM,Weston S,Williams A, Keefer C, Engelhardt A, Cooper T, et al. Caret:
Classification and Regression Training. United States: Astrophysics Source
Code Library (2018).

27. R Core Team. R. A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing (2018).

28. Lundberg SM, Lee SI. A Unified Approach to Interpreting Model Predictions.
In: 31 st Conference on Neural Information Processing Systems [Internet];
December 4-9, 2017; Long Beach, CA (2017). p. 4766–75. Available at: http://
papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-
predicti (Accessed March 15, 2020).

29. IBGE Projeção. da população do Brasil e das Unidades da Federação. State of
Rio de Janeiro, Brazil: Instituto Brasileiro de Geografia e Estatística (2019).

30. Instituto Brasileiro de Geografia e Estatística (IBGE). Áreas Territoriais.
Brasília: IBGE (2020).

31. Kulldorff M, Nagarwalla N. Spatial Disease Clusters: Detection and Inference.
Stat Med (1995) 14(8):799–810. doi:10.1002/sim.4780140809

32. Lundqvist A, Andersson E, Ahlberg I, Nilbert M, Gerdtham U. Socioeconomic
Inequalities in Breast Cancer Incidence and Mortality in Europe—A

Int J Public Health | Owned by SSPH+ | Published by Frontiers July 2023 | Volume 68 | Article 16047899

Casaes Teixeira et al. Cancer Clusters by Machine Learning

https://www.ssph-journal.org/articles/10.3389/ijph.2023.1604789/full#supplementary-material
https://www.ssph-journal.org/articles/10.3389/ijph.2023.1604789/full#supplementary-material
https://gco.iarc.fr/today
https://www-dep.iarc.fr/WHOdb/WHOdb.htm
https://doi.org/10.1200/JCO.2017.35.15_suppl.6538
https://doi.org/10.1200/JCO.2017.35.15_suppl.6538
https://doi.org/10.1038/s41392-018-0034-5
https://doi.org/10.1016/S2589-7500(20)30018-2
https://doi.org/10.1111/acem.12876
https://doi.org/10.1038/ajg.2013.332
https://doi.org/10.1016/j.csbj.2014.11.005
https://doi.org/10.1016/j.engappai.2013.06.013
https://doi.org/10.1097/EDE.0000000000000919
https://doi.org/10.1097/EDE.0000000000000919
https://doi.org/10.1289/EHP5878
https://doi.org/10.1038/s41370-023-00518-0
https://doi.org/10.1038/s41370-023-00518-0
https://doi.org/10.1289/ehp.6735
https://doi.org/10.1080/03610929708831995
https://doi.org/10.1177/1010539512444778
https://doi.org/10.1177/1010539512444778
https://doi.org/10.5888/pcd11.130264
https://doi.org/10.1093/oxfordjournals.aje.a009247
https://doi.org/10.1186/s12942-019-0171-2
https://doi.org/10.1186/s12942-019-0171-2
https://doi.org/10.3390/ijgi11110550
http://www.nature.com/scientificreports
https://doi.org/10.1590/1980-5497201700050003
https://doi.org/10.1590/1980-5497201700050003
https://seer.cancer.gov/stdpopulations/world.who.html
https://seer.cancer.gov/stdpopulations/world.who.html
https://www.ibge.gov.br/home/estatistica/populacao/censo2010/default.shtm
https://www.ibge.gov.br/home/estatistica/populacao/censo2010/default.shtm
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predicti
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predicti
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predicti
https://doi.org/10.1002/sim.4780140809


Systematic Review and Meta-Analysis. Eur J Public Health (2016) 26(5):
804–13. doi:10.1093/eurpub/ckw070

33. Faggiano F, Partanen T, Kogevinas M, Boffetta P. Socioeconomic Differences
in Cancer Incidence and Mortality. IARC Sci Publ (1997)(138) 65–176.

34. Cogliano VJ, Baan R, Straif K, Grosse Y, Lauby-Secretan B, Ghissassi FE, et al.
Preventable Exposures Associated with Human Cancers. J Natl Cancer Inst
Oxford Acad (2010) 103:1827–39. doi:10.1093/jnci/djr483

35. Departamento de Análise de Situação e Saúde. Vigilância de Fatores de RISCO
e Proteção para Doenças Crônicas por Inquérito Telefônico - Vigitel. Brasilia:
MINISTÉRIO DA SAÚDE (2007). Available at: www.saude.gov.br/svs
(Accessed August 23, 2020).

36. Libanez Bessa Campelo Braga L, Fuentes Ferreira A, Antônio Siqueira
Pinheiro F, Gomes da Silva Benigno T, Heukelbach J, Barros de Castro D,
et al. Temporal Trends and Spatial Clusters of Gastric Cancer Mortality in
Brazil. Rev Panam Salud Publica (2022) 46:e101. doi:10.26633/RPSP.
2022.101

37. Dominguez RL, Cherry CB, Estevez-Ordonez D, Mera R, Escamilla V, Pawlita
M, et al. Geospatial Analyses Identify Regional Hot Spots of Diffuse Gastric
Cancer in Rural Central America. BMC Cancer (2019) 19(1):545–8. doi:10.
1186/s12885-019-5726-x

38. Hurley SF, Matthews JP. Cost-effectiveness of the Australian National
Tobacco Campaign. Tob Control (2008) 17(6):379–84. doi:10.1136/tc.
2008.025213

39. Hosseinpoor AR, Parker LA, Tursan d’Espaignet E, Chatterji S. Social
Determinants of Smoking in Low- and Middle-Income Countries: Results
from the World Health Survey. PLoS One (2011) 6(5):e20331. doi:10.1371/
journal.pone.0020331

40. Sewram V, De Stefani E, Brennan P, Boffetta P. Maté Consumption and the
Risk of Squamous Cell Esophageal Cancer in Uruguay. Cancer Epidemiol
Biomarkers Prev (2003) 12(6):508–13.

41. Fuccio L, Zagari RM, Minardi ME, Bazzoli F. Systematic Review: Helicobacter
pylori Eradication for the Prevention of Gastric Cancer. Aliment Pharmacol
Ther (2006) 25(2):133–41. doi:10.1111/j.1365-2036.2006.03183.x

42. Lansdorp-Vogelaar I, Sharp L. Cost-effectiveness of Screening and Treating
Helicobacter pylori for Gastric Cancer Prevention. Best Pract Res Clin
Gastroenterol (2013) 27:933–47. doi:10.1016/j.bpg.2013.09.005

43. Gersten O, Wilmoth JR. The Cancer Transition in Japan since 1951. Source:
Demographic Res (2002) 7:271–306. doi:10.4054/demres.2002.7.5

44. Omran AR. The Epidemiologic Transition: A Theory of the Epidemiology of
Population Change. Milbank Mem Fund Q (1971) 49(4):509–38. doi:10.2307/
3349375

45. Barrett R, Kuzawa CW,McDade T, Armelagos GJ. Emerging and Re-Emerging
Infectious Diseases: The Third Epidemiologic Transition. Annu Rev Anthropol
(1998) 27:247–71. doi:10.1146/annurev.anthro.27.1.247

46. Black RJ, Bray F, Ferlay J, Parkin DM. Cancer Incidence and Mortality in the
European union: Cancer Registry Data and Estimates of National Incidence for
1990. Eur J Cancer A (1997) 33(7):1075–107. doi:10.1016/s0959-8049(96)
00492-3

47. International Monetary Fund (IMF). World Economic Outlook Database.
Washington, DC: IMF (2020).

48. United Nations Development Program (UNDP). Human Development
Reports. New York, US: UNDP (2019).

49. World Bank. Gini index (World Bank Estimate) - Brazil (2018). Available at:
https://data.worldbank.org/indicator/SI.POV.GINI?locations=BR (Accessed
October 25, 2020).

50. World Bank. Poverty Data - Brazil (2018). Available from: https://data.
worldbank.org/indicator/SI.POV.UMIC?locations=BR (Accessed October
25, 2020).

Copyright © 2023 Casaes Teixeira, Toporcov, Chiaravalloti-Neto and Chiavegatto
Filho. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Int J Public Health | Owned by SSPH+ | Published by Frontiers July 2023 | Volume 68 | Article 160478910

Casaes Teixeira et al. Cancer Clusters by Machine Learning

https://doi.org/10.1093/eurpub/ckw070
https://doi.org/10.1093/jnci/djr483
http://www.saude.gov.br/svs
https://doi.org/10.26633/RPSP.2022.101
https://doi.org/10.26633/RPSP.2022.101
https://doi.org/10.1186/s12885-019-5726-x
https://doi.org/10.1186/s12885-019-5726-x
https://doi.org/10.1136/tc.2008.025213
https://doi.org/10.1136/tc.2008.025213
https://doi.org/10.1371/journal.pone.0020331
https://doi.org/10.1371/journal.pone.0020331
https://doi.org/10.1111/j.1365-2036.2006.03183.x
https://doi.org/10.1016/j.bpg.2013.09.005
https://doi.org/10.4054/demres.2002.7.5
https://doi.org/10.2307/3349375
https://doi.org/10.2307/3349375
https://doi.org/10.1146/annurev.anthro.27.1.247
https://doi.org/10.1016/s0959-8049(96)00492-3
https://doi.org/10.1016/s0959-8049(96)00492-3
https://data.worldbank.org/indicator/SI.POV.GINI?locations=BR
https://data.worldbank.org/indicator/SI.POV.UMIC?locations=BR
https://data.worldbank.org/indicator/SI.POV.UMIC?locations=BR
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	Spatial Clusters of Cancer Mortality in Brazil: A Machine Learning Modeling Approach
	Introduction
	Methods
	Data Collection
	Machine Learning Models
	Geographical Analysis
	Sub Analysis of Specific Types of Cancer
	Ethics

	Results
	Discussion
	Author Contributions
	Funding
	Conflict of Interest
	Supplementary Material
	References


