

Available online to ejournal.pnc.ac.id

Journal of Innovation Information Technology and Application

Journal Page is available to https://ejournal.pnc.ac.id/index.php/jinita

83

*) Corresponding Author : Fateh_boutekkouk,ibnm@yahoo.fr

Towards Automatic Maude Specifications Generation From C
Functions

Fateh Boutekkouk 1

1Department of Computer Science, University of Larbi Ben M’hedi, Oum El Bouaghi, Algeria,

email:1 Fateh_boutekkouk,ibnm@yahoo.fr

A R T I C L E I N F O A B S T R A C T

Article history:

Received 05 April 2023
Revised 26 June 2023
Accepted 26 June 2023

Available online 26 June 2023

In this paper, we aim to contribute to the knowledge about how imperative
C functions can be transformed to Maude functional and system modules
respectively. Maude is a formal specification language characterized by
simplicity, expressivity and good performance. It is a multi-paradigm
meta-language based on rewriting logic and equational theories used to

specify, simulate and formally verify concurrent and distributed systems.
Maude has been used to define the operational semantics of many
programming and specification languages. In particular, the addition of
this paper is to close the gap between a subset of the C standard language
and Maude relying on a transformational approach.

Keywords:
C programming language

Maude
Formal specification
Formal verification

IEEE style in citing this
article:
F. Boutekkouk, “Towards

Automatic Maude
Specifications Generation From
C Functions,” Journal of

Innovation Information
Technology and Application

(JINITA), vol. 5, no. 1, pp. 83–
96.

1. INTRODUCTION

Since its earlier occurrence, the C language remains among the most widely used programming
languages in software coding. This is due to the fact that C provides programmers with a great deal of

flexibility in the representation of data and the use of pointers.
However, C is also among the most bug prone programming languages because C is not strongly-

typed. The official specification of the C language (The ISO C standard [1]) underspecifies the semantics of
the C language in three different ways: Implementation-defined, unspecified, undefined. As an example of
implementation-defined behavior is the propagation of the high-order bit when a signed integer is shifted right.
As an example of unspecified behavior is the order, in which the arguments to a function and arithmetic

expressions are evaluated. These behaviors lead to side effects because it depends on the compiler used. As
an example of undefined behavior is dereferencing a NULL pointer or integer overflow. This behavior leads
to software run time bugs and security issues.

On the other hand, the functional programming paradigm [2] is a well known programming model
that has been used in the context of formal computing and Artificial Intelligence.

The functional and imperative paradigms have different viewpoints. The functional paradigm is

based on the function mathematical concept. A function evaluates an expression to produce a value and the
whole program can be seen as a composite function. The order in which subexpressions are evaluated does
not affect the resulting values. Consequently, the functional paradigm is most suitable for deterministic
systems without side effects. The imperative paradigm however, relies on the execution of statements that
change the state of the memory. The order in which statements are executed affects the result. The imperative
paradigm is most suitable for nondeterministic systems with side effects [3].

Our idea is to transform C functions without side effects to Maude functional modules defining
equational theory and C procedures (i.e. functions without return value) with side effects to Maude system

ISSN : 2715-9248 84

JINITA Vol. 5, No. 1, June 2023
DOI: doi.org/10.35970/jinita.v5i1.1846

modules defining rewriting logic theory. In fact, the literature on formal verification of C code is very rich [1,

2, 5, 6, 11, 12, 13, 15, 16, 17, 18, 19]. However, in this work we are interested in the transformation of a C
code to a Maude code.

Maude [4] is a formal specification language characterized by simplicity, expressivity and good
performance. It is a multi-paradigm meta-language based on rewriting logic and equational theories used to
specify, simulate and formally verify concurrent and distributed systems. Maude has been used to define the
operational semantics of many programming and specification languages [3, 20].

The move towards functional paradigm enables formal proofs [7]. Similarly, narrowing C procedures
to rewriting rules will permit to leverage the rewriting logic capabilities for reachability analysis, symbolic
execution and model checking. Thanks to Maude increasing tools, one can mathematically reason about
functional modules with respect to some interesting properties as termination, Ross church property and
completeness and system modules with regard to reachability analysis and other user-defined properties using
Maude LTL model checker. In this work, we will be interested in C functions and procedures. C functions can

include any type of statement without side effects, conditional statements as if and if-else statements, and
while loops. Instead, C procedures can include any form of side-effect statements.

Maude, on the other side, is qualified as a high-level functional programming/specification language.
It does not rely on variables assignments, rather than, it relies on equational algebra. Equations are axioms
defining the way calculations are performed. They do not use neither local/global variables nor loops. Instead,
they use recursive and higher order functions.

Another issue with the transformation of a C procedure (i.e. a void function) to rewriting logic theory
is that a C procedure is sequential; however, the rewriting logic is by principle concurrent. Through this
research work, we investigate the possibility of transformation of a subset of the C language to a subset of the
Maude language. As a first attempt, we tried to make the transformation as simple as possible while closing
to maximum the semantic gap between the two languages by choosing carefully the Maude concepts that
match well the semantic of a restricted set of C constructors. This paper is structured as follow: in section two

the fundamental concepts of the Maude language are presented. In section three, we detail the transformation
of C functions with returned value to Maude functional modules with some illustrative examples. In section
three, we discuss the transformation of C functions without parameters to Maude functional modules. Section
four is dedicated to the transformation of C procedures to Maude system modules. In section five, some
reduction and rewriting results are presented. We close this paper by a conclusion and some short-term
perspectives.

2. Maude language

Maude is a high-level formal specification and programming language supporting equational,
rewriting logic and object oriented computations offering a unified logical framework for verification and
validation of concurrent and distributed systems. Simplicity, expressivity and good performance are the
three key characteristics of the Maude system. In addition, Maude is reflexive in the sense that its concepts
are specified at Maude meta-level using Maude itself. Maude supports the meta-programming and

parametrized programming as well. Rewriting logic is the logic of concurrent change. It is a flexible and
general semantic framework for giving semantics to a wide range of languages and models of concurrency.

The equational logic underlying Maude is membership equational logic. In this logic sorts (i.e.
types) are grouped into equivalence classes called kinds. Maude sorts are user -defined, while kinds are
implicitly associated with connected components of sorts and are considered as error supersorts. The
specification unity in Maude is called module. In Maude, there exist three types of modules: functional

modules defining equational theory, system modules defining rewriting logic theory and object modules
implementing some of the object oriented programming paradigm principles as classes, objects, messages,
heritage and polymorphism. The same Maude module can simultaneously be viewed as an executable
formal specification and as a program. nonexecutable specifications can also be defined in a Maude. Such
specifications are generally theorems and lemmas used for the purpose of theorem proving.

A functional module has the syntax: fmod ModuleName is [sorts, operations signature,

membership axioms, equations] endfm.
A functional module defines sorts, operations on these sorts and their equations and/or

membership axioms. Listing (a) shows an example of a functional module named PEANO-NAT-EXTRA.
It defines a sort Nat, two constructors 0 and s and an operation + with its equation.

ISSN : 2715-9248 85

JINITA Vol. 5, No. 1, June 2023
DOI: doi.org/10.35970/jinita.v5i1.1846

Sorts are declared using the keyword sort or sorts. A sort can be interpreted as a set of values. The
keyword subsort or subsorts define a sub-set of sorts. To each declared sort, Maude creates automatically

its corresponding kind. To make difference between a sort and a kind, the syntax [sort] is used to denote a
kind. All subsorts of a sort form one component having the same kind. Kinds can be used to define partial
operations. An operation signature is declared using the keyword op or ops and may have optional
attributes. Each operation signature includes the definition domain (arguments sorts), and co -domain or
rang (result sort). An operation without arguments is a constant. The attribute ctor is used to define a
constructor. An operation can be notated using prefix or mixfix notation. The latter requires to specify

explicitly the position of arguments using the underscore character. A Maude operation can be overloaded
but the most famous overloading is subsort overloading. Variables (i.e. operations parameters) are declared
using the keyword var or vars. An equation is defined using the keyword eq and may have a set of optional
attributes. An equation has the form eq t = t’ where ta and t’ are two terms of the same kind. Note that
variables are not allowed to figure in t’ if they do not figure in t. A conditional equation is defined using
the keyword ceq. A condition can be an equation, a matching equation having the form t := t’ or a Boolean

equation. A Maude module can import other modules using one of the three available importation modes:
protecting, extending or including. Equations are reduced (i.e. evaluated) using the command ‘reduce’ or
‘red’. Maude includes many predefined functional modules (i.e. in-built modules) as BOOLEAN, INT,
FLOAT, STRING, RATIONAL, LIST, CONVERSION and others. Furthermore, Maude offers a variety
of tools for verification of inductive properties using the Maude's inductive theorem prover (ITP),
verification of termination using the Maude termination tool (MTT), verification of the church-Rosser

property using the Maude church-Rosser checker (CRC) and verification of completeness using the Maude
Sufficient Completeness Checker (SCC).

A system module has the syntax: mod ModuleName is [sorts, operations, equations, rewriting
rules] endm

In fact, a system module is an extension of functional module to support rewriting logic and

rewriting logic rules are rewritten modulo equations. listing (b) shows a Maude system module named
CIGARETTES. It defines two rewriting rules labeled [smoke] and [makenew]. In its general form, a
rewriting rule has the form t -> t’ where t and t’ are two terms of the same kind. The two rewriting rules are
rewritten modulo the operation of concatenation op __ : State State -> State [ctor assoc comm] . assoc and

comm denote associative and commutative. All rewriting rules are in essence concurrent and each rule
models a transition with a partial state. Rewriting rules can be conditional. The condition can be an equation,
a rewriting rule, or a membership condition having the form t :: sort. As in equations, rewriting rules may
have optional attributes. Rewriting rules are reduced using the command rewrite or rew. Other commands
exist. The command frewrite is used for Fairless rewriting. The difference between the two commands
resides in the rewriting strategy. A user-defined strategy can also be defined at the Meta level. The

command rew may have some optional parameters to specify for example the maximum number of
rewriting steps. Beside the command rew, Maude offers the command search for reachability analysis and

fmod PEANO-NAT-EXTRA is

sorts Nat NzNat .

subsort NzNat < Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor iter] .

op _+_ : Nat Nat -> Nat .

vars M N : Nat .

eq 0 + N = N .

eq s(M) + N = s(M + N) .

endfm

(a)

mod CIGARETTES is

sort State .

op c : -> State [ctor] . *** cigarette

op b : -> State [ctor] . *** butt

op __ : State State -> State [ctor assoc comm] .

rl [smoke] : c => b .

rl [makenew] : b b b b => c .

endm

(b)

ISSN : 2715-9248 86

JINITA Vol. 5, No. 1, June 2023
DOI: doi.org/10.35970/jinita.v5i1.1846

an LTL model checker to check user-defined properties expressed in Linear Temporal Logic LTL. Maude

also includes a SAT solver, unification and narrowing tools. Unification is a technique used to solve
equations based on substitutions. Narrowing is an extension of rewriting theory where free variables are
allowed to figure in terms and unified via matching and substitutions used for symbo lic reachability
analysis. In spite of all these big advantages, Maude still lack a link to some common programming
languages as C and Java. Our ultimate objective is to develop a tool permitting automatic Maude code
generation from C code and vice versa. This paper traces the big lines for automatic Maude code generation

from C code. To our best knowledge, this work is the first one trying to establish a bridge between Maude
and C languages following a transformational approach.
3. Transformation of C functions with returned values to Maude functional modules

3.1. Function signature

In C, the signature of a function returning a value has the form: type function f(type_1 p1, type_2
p2, …, type_n pn) where type is the type of the returned value and p1, …pn, are the function parameters

having types type_1, type_2, …, type_n respectively. In Maude: op f : type_1 type_2… type_n -> type .
where type, type1, type2, …typen, can be any Maude in-built sorts as Nat, Int, Float or user-defined sorts
declared using the sort keyword. Another possible transformation is : op f : [type_1] [type_2]… [type_n] -
> [type] . where [type_1], [type_2],… [type_n] , [type] are kinds and can be used to define partial
operations. Other forms of the C function signature are:

type* function f(type_1 p1, type_2 p2, …, type_n) and type** function f(type_1 p1, type_2 p2,

…, type_n), Here, *type (resp. **type) means that function f returns a pointer to a 1D array (resp. 2D array)
or to some other user-defined types as structures. In these cases, *type will be defined as a Maude list or
any user-defined sort.
3.2. Function body

A C function body is composed of a sequence of assignments and control statements and return
one value. Input parameters are by default passed by value. A C function may include side effect assignment

as x = (x =0) + (x = 1) or ++x + ++x. Another source of side effects in C is the access to global variables
and aliased pointers. Such side effect assignments can lead to different behaviors given the same input
parameters. Consequently, the result of the computation depends strongly on the C compiler used. Side
effect should not be appear in pure functional code. We expect from pure functions to be fully deterministic.
In order to transform a C function with a return value to a Maude functional module, we need to make some
assumptions:

1.We assume that all side effect assignments are removed from the C code and substituted by simple
assignments of the form V = E.
2.The C code is free from pointers except for functions returning arrays.
3.All forms of C loops are substituted by the basic while loops.
4.Switch-case statements are removed and replaced by the basic conditional if-else statements.
In order to explain, our ideas, let us start by some C code. For example listing (a) shows a C function with

two integer parameters a and b and returns an arithmetic expression. Note that this functional style of C
code does not use any local variable.

Code (a’) represents the pure imperative style of its equivalent functional style in code (a). Of
course we can easily transform (a’) to (a) by successive substitutions forwardly. However, this technique
does not work well in all cases. Take the example of the C code (b) that swaps the values of two variables
a and b without using an intermediate variable:

If we make sequential forward substitutions, we obtain the code:

b = (a+b)-b (by substituting (1) in (2)) leads to b=a (2’)
a = (a+b)-a (by substituting (1) and (2’) in (3)) leads to a = b

int f(int a, int b)

{return (a*b) + 20;}

(a)

int f(int a, int b)

{ int x = a * b ;int y = x + 20 ;

return y;}

(a)

int a; int b;

a = a + b;(1)

b = a – b;(2)

a = a – b;(3)

(b)

ISSN : 2715-9248 87

JINITA Vol. 5, No. 1, June 2023
DOI: doi.org/10.35970/jinita.v5i1.1846

The result is incorrect because b is swapped however, a does not. So, each non side effect assignment is

transformed to an equation and the entire C function is defined as an equation combining higher order
equations. The most inner equation corresponds to the first assignment and the most outer equation
corresponds to the last assignment. A C assignment like x = 10 can be transformed to a Maude constant
operation of the form:
op x : -> Int [ctor] .
eq x = 10 .

Code (M1) is the Maude code which corresponds to C code (C1) .

3.2.1. if statement
Each C if statement is transformed to a conditional equation. In code (C2), the statement x=2*y

is executed whether the condition (a > 1000) is satisfied or not. However the statement y=a–y is executed
only when the condition is verified.

3.2.2. if else statement

Here, for each branch of the if statement, a conditional equation is created.

fmod Cfunction is

protecting INT .

op f : Int Int -> Int .

vars a b : Int .

eq f(a,b) = (a * b) + 20 .

endfm

(C1)

fmod Cfunction is

protecting INT .

op f : Int Int -> Int .

vars a b : Int .

op fx : Int Int -> Int .

op fy : Int -> Int .

eq fx(a,b) = a * b .

eq fy(a) = a + 20 .

eq f(a,b) = fy(fx(a,b)) .

endfm

red f(5, 6) . ***reduce

(M1)

int f(int a)

{int y =200;

if a > 1000 y = a – y ;

int x = 2 * y ;

return x;}

(C2)

fmod Cfunction is

protecting INT .

op f : Int -> Int .

var a : Int .

op y : -> Int [ctor] .

eq y = 200 .

op fy : Int -> Int .

op fx : Int -> Int .

eq fy(a) = a - y .

eq fx(a) = 2 * a .

ceq f(a) = fx(fy(a)) if a > 1000 .

ceq f(a) = fx(a) if a < 1000 or a == 1000 .

endfm

red f(1500) .

red f(900) .

(M2)

int f(int a, int b)

{int x = 10;

if a > b x = (2*a) + x;

else x = (5*b) + x;

return x;}

(C3)

return y;}

fmod Cfunction is

protecting INT .

op f : Int Int -> Int .

vars a b : Int .

op x : -> Int [ctor] .

eq x = 10 .

op fx1 : Int Int -> Int .

op fx2 : Int Int -> Int .

eq fx1(a,b) = 2 * a + x .

eq fx2(a,b) = 5 * b + x .

ceq f(a,b) = fx1(a,b) if a > b .

ceq f(a,b) = fx2(a,b) if a < b or a == b

.

endfm

red f(8, 6) .

red f(6, 8) .

(M3)

ISSN : 2715-9248 88

JINITA Vol. 5, No. 1, June 2023
DOI: doi.org/10.35970/jinita.v5i1.1846

3.2.3. Nested if

All assignments are identified for which we define for each assignment a conditional equation.
The condition of each equation is a conjunction (i.e. and) between all nested conditions. An unconditional
equation with the attribute ‘owise’ is added to specify the remaining cases .

3.2.4. while loop

In this paper, we will consider the basic while loop since other C loops as ‘for loop’ can be
transformed to the while loop. Iterative loops can be transformed to recursive functions [9]. To explain,

how we can transform a while loop to a Maude functional module, we consider the C function that calculate
the sum of N first integers. The general idea is to transform the loop statement into a recursive conditional
equation called loop. The signature of the loop operation has to contain all parameters that figure in the
condition of the while and all variables occurring in the left side of all assignments defined inside the body
of the while loop. Then the recursive call is established while modifying the values of the variables. For
each loop equation, we have to define one conditional recursive equation and one non-recursive one to

terminate the recursion. Initial values of local variables are transmitted to the loop equation from the main
equation. From code C5, we can derive the loop equation having the following signature: op loop : Int Int
Int -> Int .This signature has three arguments corresponding to n, i and som variables. Each of them is an
integer. The sort of the returned value is the same of the type of the returned value by the C function (in
this case, Int).

3.2.5. while loop with break

Listing C6 shows a C function that checks whether an integer number is prime or not. In this
example, the statement break is used inside the while loop and forces the exit of the loop even the loop
condition is true. The idea of transformation is similar to the first case, but here, we have to add a conditional
equation reflecting the exit of the loop due to the break statement.

int f(int a, int b)

{int x = 0;

if a > b

 if a < 10 x = a-b;

 else x = a – (2*b);

else

 if a < b

 if b < 10 x = a+b;

 else x = 2*a;

return x;}

(C4)

fmod Cfunction is

protecting INT .

op f : Int Int -> Int .

vars a b : Int .

op x : -> Int [ctor] .

eq x = 0 .

op fx1 : Int Int -> Int .

op fx2 : Int Int -> Int .

op fx3 : Int Int -> Int .

op fx4 : Int -> Int .

eq fx1(a,b) = a - b .

eq fx2(a,b) = a – (2 * b) .

eq fx3(a,b) = a + b .

eq fx4(a) = 2 * a .

ceq f(a,b) = fx1(a,b) if a > b and a < 10 .

ceq f(a,b) = fx2(a,b) if a > b and (a == 10 or a >

10) .

ceq f(a,b) = fx3(a,b) if a < b and b < 10 .

ceq f(a,b) = fx4(a) if a < b and (b == 10 or b >

10) .

eq f(a,b) = x [owise] .

endfm

red f(9, 8) .

red f(12, 8) .

red f(8, 9) .

red f(8, 12) .

(M4)

int sum(int n)

{int i = 1; int som = 0;

While (i <= n) {

som = som + i;

i = i + 1;}

return som;}

(C5)

fmod SUM is

protecting INT .

op sum : Int -> Int .

op loop : Int Int Int -> Int .

vars i n som : Int .

ceq loop(n, som, i) = loop(n, som + i, i + 1) if i < n

or i == n .

ceq loop(n, som, i) = som if i > n .

eq sum(n) = loop(n, 0, 1) .

endfm

red sum(10, 0, 1) .

(M5)

ISSN : 2715-9248 89

JINITA Vol. 5, No. 1, June 2023
DOI: doi.org/10.35970/jinita.v5i1.1846

3.2.6. while loop with continue

Continue statement forces the next iteration of the loop to take place skipping any code in between.
Continue can be replaced by an if-else statement, where the skipped code (i.e. all the code just after
continue) is put in the else branch as shown in code C’7. Here we have to define three loop conditional
equations: one for the if branch, one for the else branch and the third for loop exit.

3.2.7. Nested while

We start with the most inner while loop by transforming it to a conditional equation named loopi,
where i gives the maximum level of loops nesting following the technique described above. Then, we
transform the less inner while loop by defining a second conditional equation loopi-1 and so on until we
reach the most outer loop. Each inner loop equation becomes an argument of the next outer loop equation.

The signature of the most outer loop has to include all the arguments that figure in the embodied while
loops conditions and all variables that occur in the left right of assignments of the while loops bodies.
Finally, the equation of the main function is defined in term of the most outer loop equation by transmitting
the necessary parameters and initial values. M8 shows the Maude code for the C8 code. In this example,
we have two nested while loops. The most inner loop is transformed to the conditional equation loop2 with
three arguments, however, the most outer loop is transformed to loop1 with five parameters. loop2 becomes

an argument of loop1.

int prime(int n)

{int i = 2;

While (i <= n / 2) {

if n % i = 0 break;

i = i + 1 ;}

if i > n / 2 return 1 else

if (n % i = 0) return 0;}

(C6)

fmod BREAK is

protecting INT .

op prime : Int -> Bool .

op loop : Int Int -> Bool .

vars i n som : Int .

ceq loop(n, i) = loop(n, i + 1) if (i < n quo 2 or

i == n quo 2) and (n rem i =/= 0) .

ceq loop(n, i) = true if i > n quo 2 .

ceq loop(n, i) = false if n rem i == 0 .

eq prime(n) = loop(n, 2) .

endfm

red prime(117) .

red prime(223) .

(M6)

int f(int n){

int a=1;int s=0;

while a < n{

if a == 7{

a=a+1;

continue;}

s=s+a;

a=a+1;}

return s ;

(C7)

int f(int n){

int a=1;int s=0;

while a < n{

if a == 7

a=a+1; else{

s=s+a;

a=a+1;}}

return s;

(C’7)

fmod CONTINUE is

protecting INT .

op f : Int -> Int .

op loop : Int Int Int -> Int .

vars n a s : Int .

ceq loop(n,a,s) = loop(n, a + 1, s) if a < n and a == 7 .

ceq loop(n,a,s) = loop(n, a + 1, s + a) if a < n and a =/= 7 .

ceq loop(n,a,s) = s if a > n or a == n .

eq f(n) = loop(n, 1, 0) .

endfm

red f(10) .

(M7)

(M6)

ISSN : 2715-9248 90

JINITA Vol. 5, No. 1, June 2023
DOI: doi.org/10.35970/jinita.v5i1.1846

4. Functions without

parameters

A C function can take no parameters. In C, int f() means that f returns an integer value while it can
take any number of arguments. In this case, the compiler will not perform any checking on the number and
types on parameters when calling this function. If we want no arguments then we have to declare as int

f(void). In Maude, an operation without parameters is considered as a constant function declared without
specifying the function definition domain. Many cases of C functions without parameters exist:
4.1. A function, which computes a constant value

Let’s consider the function f() returning the value of Pi = 3.14.

4.2. A function, which calculates a certain value using some local variables

4.3. A function, which calculates some value using some local variables whose values are introduced

by the user

In order to transform the C function to a Maude code, all local variables introduced by the user
(i.e. via scanf) will be considered as parameters. In C code C11, the two variables x and y will be added to
the signature of the Maude operation.

4.4. A function, which has access to a global variable

A pure functional language does not manipulate global variables. A global variable can be a source
of side effects in imperative languages such as C because it is visible to all functions and each function can
read and/or update its value. In order to transform a C function to Maude, each global variable will be

considered as a parameter of this function, but also should be considered as a return value for the same
function, so any updating in the global variable value can be visible to the other functions. C12 shows an

fmod Cfunction is

protecting INT .

op f : Int Int -> Int .

op loop2 : Int Int Int -> Int .

op loop1 : Int Int Int Int Int -> Int .

vars i j n m x : Int .

ceq loop2(m, x, j) = loop2(m, x + 2, j + 1) if j < m or j

== m .

ceq loop2(m, x, j) = x if j > m .

ceq loop1(n, m, x, j, i) = loop1(n, m, loop2(m, x, j),

j, i + 1) if i < n or i == n .

ceq loop1(n, m, x, j, i) = x if i > n .

eq f(n, m) = loop1(n, m, 0, 1, 1) .

endfm

red f(10, 5) .

(M8)

endfm

long f(void){

return 3.14;}

(C9)

op f : -> Float .

eq f = 3.14 .

(M9)

int f(void){

int x = 100;

int y = 5;

return x + y;}

(C10)

op f : -> Int .

op x : -> Int .

op y : -> Int .

eq x = 100 .

eq y = 5 .

eq f = x + y .

(M10)

#include <stdio.h>

int f(void){

int x;

int y;

scanf("%d", &x);

scanf("%d", &y);

return x + y;}

(C11)

op f : Int Int -> Int .

vars x y : Int .

eq f(x, y) = x + y .

(M11)

int f(int n, int m)

{int i = 1; int x = 0;

While (i <= n) {

int j = 1;

while (j <= m) {

x = x + 2;

j = j + 1 ;

}

i = i + 1 ;}

return x;}

(C8)

ISSN : 2715-9248 91

JINITA Vol. 5, No. 1, June 2023
DOI: doi.org/10.35970/jinita.v5i1.1846

example of a function that updates the value of a global variable called y, then use this value to compute a

certain value z. The Maude code for this function is showed in M12. Operation f has now one parameter y
and two returned values: z and y. Here, two solutions are possible: whether we specify the rang of the
operation as a list of pairs if the sort of the global variable is same as the sort of the returned value of the
function. Each pair is composed of the name of the variable with its value. If the sorts of the returned value
and the global variable are different, then the rang of the function can be declared as a struct sort.
Let us assume that y is also an integer, so we can puts both the return value and y in the same list. In this

example, the list is composed of two pairs: (“f”, z(y(val), x)) and (g, y(val)) where “f” is the name of the
operation (i.e C function) and g designates the global variable. z(y(val), x) is the expression calculating the
return value of f(), and y(val) is the new value of the global variable whose initial value when reading by
the function is val.

5. Transformation of Functions without returned values (procedures)

In C, a function without a return value is declared as void, In this case the return statement is
usually omitted. In general, a procedure has side effect statements and accepts parameters passing by
reference declared as pointers. Since C procedures show nondeterministic behavior, we will transform them
as Maude system modules. Rewiring logic match well with nondeterministic behaviors.

In contrast to equational logic, Maude rewriting logic can be used to specify the operational semantics of
the imperative code. Thus, it specifies the effect of the execution of each statement on the state of the
memory code. Each variable inside the procedure will be specified by a triplet including its name, its type
and its current value as follows:
sorts state var type value .
subsort var < String .

subsort value < Int .
op undef : -> value .
op nil : -> state [ctor] .
ops int intlong char string double : -> type [ctor] .
op <_,_,_> : var type value -> state .
op __ : state state -> state [assoc comm id:nil] .

Here, we define the concatenation of states (i.e. multiset of states) as associative, commutative with
identity. The constant nil designates a null instruction (i.e. the ‘;’ statement) which has no effec t on the
state of the code. Each triplet is specified as <_,_,_> . We add two constants START and END to specify
the start and the end of the C code. The constant Undef specifies any undefined (i.e. uninitialized) value.
We put all the above definitions in a functional module called PROCEDURE.

int f(void){

int x = 20;

y = y + 1000;

int z = y + x;

return z ;}

(C12)

sort List .

sort pair .

op _,_ : String Int -> pair .

subsort pair < List .

op nil : -> List [ctor] .

op _;_ : List List -> List [ctor assoc id: nil] .

op f : List -> List .

op x : -> Int .

op y : Int -> Int .

vars val a b : Int .

var g : String .

op z : Int Int -> Int .

eq x = 20 .

eq y(val) = val + 1000 .

eq z(a, b) = a + b .

eq f(g, val) = ("f", z(y(val), x)) ; (g, y(val)) .

endfm

red f("y", 600) .

(M12)

ISSN : 2715-9248 92

JINITA Vol. 5, No. 1, June 2023
DOI: doi.org/10.35970/jinita.v5i1.1846

More generally, each C statement modifying the state of the memory can be specified as a

rewriting rule of the form: t -> t’, where t and t’ are terms designating the state before and after the execution
of the C statement. Terms t and t’ can include sub-terms specifying many C statements. For example, let us
assume that the C code has three assignments:
int i =10; int x =20; int y =i+x;

Before these assignments, suppose that each of the three variables takes the undef value. Remark
that the first two assignments are independent. The third assignment however depends on the two previous
statements. A possible Maude code for this is:
rl [init] : <"i", int, undef> <"x", int, undef> <"y", int, undef> => <"i", int, 10> <"x ", int, 20> <"y", int,
undef> .
rl [inity] : <"i", int, i> <"x", int, x> <"y", int, undef> => <"i", int, i> <"x", int, x> <"y", int, i + x> .

The first rule, which is labelled [init], permits the initialization of the two variables i and x.

Variable y remains uninitialized. The second rule [inity] permits the initialization of the variable y based
on values i and x. This rule also maintains the states of i and x. Nevertheless, if we suppose that variables i
and x will not be never used later, the second rule becomes:
rl [inity] : <"i", int, i> <"x", int, x> <"y", int, undef> => <"y", int, i + x> .

It is important to notice that rewriting logic has a concurrent semantic, the imperative paradigm semantic
however has a sequential semantic, so in order to specify C sequentiality, we add to the right term of a
rewriting rule and to the left term of its next rewriting rule, a sort of tag. By this, a rule starts the rewriting
only if its previous rule finishes the rewriting.
For instance, if we want the two rules [init] and [inity] will be executed sequentially, we can define a tag
called E1 as follows:

op E1 : -> state [ctor] .
rl [init] : <"i", int, undef> <"x", int, undef> <"y", int, undef> => <"i", int, 10> <"x", int, 20> <"y", int,
undef> E1 .
rl [inity] : E1 <"i", int, i> <"x", int, x> <"y", int, undef> => <"i", int, i> <"x", int, x> <"y", int, i + x> .
We say that the first rule produces E1 and the second rule consumes E1.
The position of E1 does not matter since the operation of concatenation is commutative.

Finally, the sub-term <"y", int, undef> in the first rule occurs in the right and in the left of the rule. Because
rewriting logic is the logic of changing, this sub-term can be removed from the first rule, but it must figure
in the initial configuration (initial state) as a parameter of the command rew. So, the rule [init] can be
rewritten as:
rl [init] : <"i", int, undef> <"x", int, undef> => <"i", int, 10> <"x", int, 20> E1 .
Of course, there are other sophisticated solutions to specify sequentiality. For example by resorting to

Maude meta-level to define a sequential strategy.

fmod PROCEDURE is

protecting INT .

protecting FLOAT .

protecting STRING .

sorts state var type value .

subsort var < String .

subsort value < Int .

op undef : -> value .

op nil : -> state [ctor] .

ops int intlong char string double : -> type [ctor]

.

ops START END : -> state .

op <_,_,_> : var type value -> state .

op __ : state state -> state [assoc comm id: nil] .

endfm

(M13)

ISSN : 2715-9248 93

JINITA Vol. 5, No. 1, June 2023
DOI: doi.org/10.35970/jinita.v5i1.1846

Conditional statements and loops are specified using conditional rewriting rules. For instance,

code C14 is transformed to Maude code M14. Here, the loop while is specified using two conditional
rewriting rules: [while] and [endWhile].

Rewriting logic is suitable for specifying side effect statements, which show nondeterministic behavior. In
essence, rewriting rules execute concurrently but since the Maude interpreter is sequential, concurrent
transitions are simulated by corresponding interleavings of sequential rewriting steps.
An example of a C side effect is:
int x, y = (x = 3) + (x = 4);

printf("x = %d y =%d \n", x, y);
Possible outputs can be:
x=4 y=7,
x=3 y=7,
x=4 y=8 (if compiled with gcc -03)
The above C code can be specified as a set of concurrent rewriting rules as follows:

rl [0] : < "x", int, undef > => < "x", int, 3 > .
rl [1] : < "x", int, undef > => < "x", int, 4 > .
rl [2] : < "x", int, x > < "y", int, undef > => < "y", int, x + x > [print x y] .
The assignment y =x++ can be specified as:
rl [0] : < "y", int, undef > < "x", int, x > => < "y", int, x >
< "x", int, x + 1 > .

The assignment y=++x can be specified as:
rl [1] : < "y", int, undef > < "x", int, x > => < "y", int, x + 1 > < "x", int, x + 1 > .

In a general fashion, a function with a returned value can be considered as a special case of a
procedure. Thus any C function with returned value can be transformed to its equivalent procedure by
adding the returned value of the function into the procedure parameters list and remove the returned
statement from the function code . This new parameter should be passed by reference. As an example, let

us assume the C code C15. Here, the function sum can be transformed to a procedure of the same name
with two parameters.

This transformation from a function to a procedure, gives us the idea to transform Maude equations
to rewriting rules and vice versa. An equation eq t = t’ can be interpreted as t -> t’ and t’ -> t. for the

purpose of transformation from a function to a procedure, we will take the rule t -> t’ where the term t is
an operation signature and t’ is either an operation signature or a constant. The same thing with a conditional
equation. So a conditional equation of the form

#include <stdio.h>

void sum(int n){

int i=1; int s=0;

while i <= n {

s=s+i;

i=i+1;

}

printf(s);}

(C14)

mod sum is

protecting PROCEDURE .

op E1 : -> state .

vars n i s : Int .

rl[start] : START < "n", int, n > =>

 < "n", int, n > < "i", int, 1 > < "s", int, 0 > E1

.

crl[while] : E1 < "n", int, n > < "s", int, s > <

"i", int, i > => E1 < "n", int, n > < "s", int, s +

i > < "i", int, i + 1 > if i < n or i == n .

crl[endwhile] : E1 < "n", int, n > < "s", int, s >

< "i", int, i > => END if i > n [print s] .

endm

set print attribute on .

rew START < "n", int, 10 > .

(M14)

int sum(int n)

{int i = 1; int som = 0;

While (i <= n) {

som = som + i;

i = i + 1;}

return som;}

(C15)

void sum(int n, int* som)

{int i = 1; som = 0;

While (i <= n) {

som = som + i;

i = i + 1;}}

(C15’)

ISSN : 2715-9248 94

JINITA Vol. 5, No. 1, June 2023
DOI: doi.org/10.35970/jinita.v5i1.1846

ceq t = t’ if C can be replaced by crl [R] : t -> t’ if C . To explain, how the transformation is done, we take

the code M5 as an example. Here, we have two operations sum and loop. Loop is a recursive , but sum is
not. ceq loop(n, som, i) = loop(n, som + i, i + 1) if i < n or i == n . is transformed to:
crl [loop1] : < "n", int, n > < "som", int, som > < "i", int, i > => < "n", int, n > < "som", int, som + i > <
"i", int, i + 1 > if i < n or i == n .
ceq loop(n, som, i) = som if i > n . is transformed to:
crl [loop2] : < "n", int, n > < "som", int, som > < "i", int, i > => < "som", int, som > if i > n .

eq sum(n) = loop(n, 0, 1) . is transformed to:
rl [sum] : < "n", int, n > => < "n", int, n > < "som", int, 0 > < "i", int, 1 > .

For each functional module, we create a system module named
PROCEDUREFunctionalModuleName. The functional module will be imported to recuperate variables
declarations. However, all operations signatures and equations have to be removed from the functional
module. By adding *** (three asterisks), the corresponding definition becomes a commentary.

6. Verification of Maude specifications

6.1. The ‘reduce’ command

With the reduce command; we can evaluate the functional correction of Maude equations.

As examples, we show the reduction of M6 and M8 using core Maude interpreter 2.6.

Figure 1. Result of reduction of functional module M6

Figure 2. Result of reduction of functional module M8

6.2. Simulation using the command ‘rewrite’

fmod SUM’ is

***protecting INT .

***op sum : Int -> Int .

***op loop : Int Int Int -> Int .

vars i n som : Int .

***ceq loop(n, som, i) = loop(n, som + i,

i + 1) if i < n or i == n .

***ceq loop(n, som, i) = som if i > n .

***eq sum(n) = loop(n, 0, 1) .

endfm

***red sum(10, 0, 1) .

(M’5)

mod PROCEDURESUM is

protecting PROCEDURE .

protecting SUM’ .

crl [loop1] : < "n", int, n > < "som",

int, som > < "i", int, i > => < "n",

int, n > < "som", int, som + i > < "i",

int, i + 1 > if i < n or i == n .

crl [loop2] : < "n", int, n > < "som",

int, som > < "i", int, i > => < "som",

int, som > if i > n .

rl [sum] : < "n", int, n > => < "n",

int, n > < "som", int, 0 > < "i", int, 1

> .

endm

rew < "n", int, 10 > .

(M’’5)

ISSN : 2715-9248 95

JINITA Vol. 5, No. 1, June 2023
DOI: doi.org/10.35970/jinita.v5i1.1846

As example, we show the rewriting of system module M’’5.

Figure 3. The rewriting result of the system module M’’5

6.3. Reachability analysis using the command “search”

As an example, we want to check whether the state ERROR in (C16) can be reached or not. Code
M16 shows the Maude specification of the corresponding C code with the appl ication of the search
command.

Figure 4. The reachability analysis result of M16

7. Conclusion and future work

In this paper, we showed how C functions could be transformed to Maude functional and system
modules. Maude functional modules implement equational theory. System modules, however implement
rewriting theory. This transformation will enable formal verification of C programs via available Maude
tools. Our future investigations will focus on the automation of the proposed transformation while taking

into account other C constructors and features as pointers, complex types like structures, unions, arrays
and casting.

void test(int n){

int i = 0; int j = 0

while (i < 2n) {

if (i < n) i = i+1;

else j = i+1;

i = i+1}

if i < j printf

("error");}

(C16)

mod TEST is

protecting PROCEDURE .

op ERROR : -> state .

rl [start] : START < "i", int, undef > < "j", int, undef >

=> < "i", int, 0 > < "j", int, 0 > .

crl [loop1] : < "n", int, n > < "i", int, i > => < "n",

int, n > < "i", int, i + 2 > if (i < 2 * n) and (i < n)

.

crl [loop2] : < "n", int, n > < "i", int, i > < "j", int, j

> => < "n", int, n > < "j", int, i + 1 > < "i", int, i + 1

> if (i < 2 * n) and (i > n or i == n) .

crl [endloop] : < "n", int, n > < "i", int, i > < "j", int,

j > => END if (i > 2 * n or i == 2 * n) .

crl [error] : < "n", int, n > < "i", int, i > < "j", int, j

> => ERROR if (i > 2 * n or i == 2 * n) and (i < j)

[print "error"] .

endm

search START < "n", int, n > < "i", int, undef > < "j",

int, undef > =>* ERROR .

(M16)

ISSN : 2715-9248 96

JINITA Vol. 5, No. 1, June 2023
DOI: doi.org/10.35970/jinita.v5i1.1846

REFERENCES
[1] D. Beyer, “Software Verification: 10th Comparative Evaluation (SV-COMP 2021),” Groote, J.F., Larsen, K.G. (eds) Tools

and Algorithms for the Construction and Analysis of Systems. TACAS 2021. Lecture Notes in Computer Science (vol.

12652). Springer, 2021, doi: 10.1007/978-3-030-72013-1_24.

[2] M. Bonger, Reasoning about C programs, PhD thesis, University of Queensland. 1998.

[3] F. Boutekkouk, “Maude Specification Generation from VHDL”, Das, V.V., Chaba, Y. (eds) Mobile Communication and

Power Engineering. AIM 2012. Communications in Computer and In formation Science 296, Springer, 2013, doi:

10.1007/978-3-642-35864-7_56

[4] M. Clavel, F. Duran, S. Eker, S. Escobar, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C.Talcott, Maude Manual (Version

2.7.1), 2016.

[5] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski, “Frama-C A Software Analysis

Perspective,” Formal Aspects of Computing, 2012.

[6] C.M. Ellison, A Formal Semantics of C with Applications. PhD thesis, University of Illinois, 2012.

[7] J.A. Goguen and G. Malcolm, Algebraic Semantics of Imperative Programs (Book), MIT Press, ISBN: 9780262071727,

1996.

[8] P. Hartel and H. Muller, Functional C. Revision 6.8. 1999.

[9] D. Insa and J. Silva, “Automatic Transformation of Iterative Loops into Recursive Methods,” n: CoRR abs/1410.4956, 2014.

[10] ISO/IEC 9899:2018, Information technology — Programming languages — C, https://www.iso.org/standard/74528.html

[11] F. Ivancic, I. Shlyakhter, A. Gupta, M.K. Ganai, V. Kahlon, C. Wang and Z. Yang, “Model Checking C Programs Using F-

SOFT,” International Conference on Computer Design 31 October, San Jose, CA, USA, 2005.

[12] K. Jiang, Model Checking C Programs by Translating C to Promela , Master thesis, Linkoping University, Sweden, 2009.

[13] R.J. Krebbers, The C standard formalized in Coq, PhD thesis, Radboud University Nijmegen, 2015.

[14] J.B. MacLennan, Functional Programming: Practice and Theory. Addison-Wesley, 1990.

[15] M. Norrish, C Formalised in HOL. PhD thesis, University of Cambridge, 1998.

[16] M. Sammler, R. Lepigre, and R. Krebbers, “RefjnedC: Automating the Foundational Verifjcation of C Code with Refjned

Ownership Types, ” PLDI ’21, Canada, 2021.

[17] N. Schirmer, Verification of Sequential Imperative Programs in Isabelle/HOL. PhD thesis, Technische Universitat Munchen,

2005.

[18] A. Stefanescu, “MatchC: A Matching Logic Reachability Verifier Using the K Framework,” Electronic Notes in Theoretical

Computer Science 304, pp. 183–198, 2014.

[19] Summary of C/C++ program verification tools - Programmer Sought, 20/07/2021

https://programmersought.com/article/90174848682/

[20] A. Verdejo and N. Martı-Oliet, “Executable Structural Operational Semantics in Maude,” The Journal of Logic and Algebraic

Programming, 67, pp. 226–293, 2006.

