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In this paper, we aim to contribute to the knowledge about how imperative 
C functions can be transformed to Maude functional and system modules 
respectively. Maude is a formal specification language characterized by 
simplicity, expressivity and good performance. It is a multi-paradigm 
meta-language based on rewriting logic and equational theories used to 

specify, simulate and formally verify concurrent and distributed systems. 
Maude has been used to define the operational semantics of many 
programming and specification languages. In particular, the addition of 
this paper is to close the gap between a subset of the C standard language 
and Maude relying on a transformational approach.   
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1. INTRODUCTION  

Since its earlier occurrence, the C language remains among the most widely used programming 
languages in software coding. This is due to the fact that C provides programmers with a great deal of 

flexibility in the representation of data and the use of pointers. 
However, C is also among the most bug prone programming languages because C is not strongly-

typed. The official specification of the C language (The ISO C standard [1]) underspecifies the semantics of 
the C language in three different ways: Implementation-defined, unspecified, undefined. As an example of 
implementation-defined behavior is the propagation of the high-order bit when a signed integer is shifted right. 
As an example of unspecified behavior is the order, in which the arguments to a function and arithmetic 

expressions are evaluated. These behaviors lead to side effects because it depends on the compiler used. As 
an example of undefined behavior is dereferencing a NULL pointer or integer overflow. This behavior leads 
to software run time bugs and security issues. 

On the other hand, the functional programming paradigm [2] is a well known programming model 
that has been used in the context of formal computing and Artificial Intelligence. 

The functional and imperative paradigms have different viewpoints. The functional paradigm is 

based on the function mathematical concept. A function evaluates an expression to produce a value and the 
whole program can be seen as a composite function. The order in which subexpressions are evaluated does 
not affect the resulting values. Consequently, the functional paradigm is most suitable for deterministic 
systems without side effects. The imperative paradigm however, relies on the execution of statements that 
change the state of the memory. The order in which statements are executed affects the result. The imperative 
paradigm is most suitable for nondeterministic systems with side effects [3]. 

Our idea is to transform C functions without side effects to Maude functional modules defining 
equational theory and C procedures (i.e. functions without return value) with side effects to Maude system 
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modules defining rewriting logic theory. In fact, the literature on formal verification of C code is very rich [1, 

2, 5, 6, 11, 12, 13, 15, 16, 17, 18, 19]. However, in this work we are interested in the transformation of a C 
code to a Maude code. 

Maude [4] is a formal specification language characterized by simplicity, expressivity and good 
performance. It is a multi-paradigm meta-language based on rewriting logic and equational theories used to 
specify, simulate and formally verify concurrent and distributed systems. Maude has been used to define the 
operational semantics of many programming and specification languages [3, 20]. 

The move towards functional paradigm enables formal proofs [7]. Similarly, narrowing C procedures 
to rewriting rules will permit to leverage the rewriting logic capabilities for reachability analysis, symbolic 
execution and model checking. Thanks to Maude increasing tools, one can mathematically reason about 
functional modules with respect to some interesting properties as termination, Ross church property and 
completeness and system modules with regard to reachability analysis and other user-defined properties using 
Maude LTL model checker. In this work, we will be interested in C functions and procedures. C functions can 

include any type of statement without side effects, conditional statements as if and if-else statements, and 
while loops. Instead, C procedures can include any form of side-effect statements. 

Maude, on the other side, is qualified as a high-level functional programming/specification language. 
It does not rely on variables assignments, rather than, it relies on equational algebra. Equations are axioms 
defining the way calculations are performed. They do not use neither local/global variables nor loops. Instead, 
they use recursive and higher order functions. 

Another issue with the transformation of a C procedure (i.e. a void function) to rewriting logic theory 
is that a C procedure is sequential; however, the rewriting logic is by principle concurrent. Through this 
research work, we investigate the possibility of transformation of a subset of the C language to a subset of the 
Maude language. As a first attempt, we tried to make the transformation as simple as possible while closing 
to maximum the semantic gap between the two languages by choosing carefully the Maude concepts that 
match well the semantic of a restricted set of C constructors. This paper is structured as follow: in section two 

the fundamental concepts of the Maude language are presented. In section three, we detail the transformation 
of C functions with returned value to Maude functional modules with some illustrative examples. In section 
three, we discuss the transformation of C functions without parameters to Maude functional modules. Section 
four is dedicated to the transformation of C procedures to Maude system modules. In section five, some 
reduction and rewriting results are presented. We close this paper by a conclusion and some short-term 
perspectives. 

2. Maude language 

Maude is a high-level formal specification and programming language supporting equational, 
rewriting logic and object oriented computations offering a unified logical framework for verification and 
validation of concurrent and distributed systems. Simplicity, expressivity and good performance are the 
three key characteristics of the Maude system. In addition, Maude is reflexive in the sense that its concepts 
are specified at Maude meta-level using Maude itself. Maude supports the meta-programming and 

parametrized programming as well. Rewriting logic is the logic of concurrent change. It is a flexible and 
general semantic framework for giving semantics to a wide range of languages and models of concurrency. 

The equational logic underlying Maude is membership equational logic. In this logic sorts (i.e. 
types) are grouped into equivalence classes called kinds.  Maude sorts are user -defined, while kinds are 
implicitly associated with connected components of sorts and are considered as error supersorts. The 
specification unity in Maude is called module. In Maude, there exist three types of modules: functional 

modules defining equational theory, system modules defining rewriting logic theory and object  modules 
implementing some of the object oriented programming paradigm principles as classes, objects, messages, 
heritage and polymorphism. The same Maude module can simultaneously be viewed as an executable 
formal specification and as a program. nonexecutable specifications can also be defined in a Maude. Such 
specifications are generally theorems and lemmas used for the purpose of theorem proving. 

A functional module has the syntax: fmod ModuleName is [sorts, operations signature, 

membership axioms, equations] endfm.  
A functional module defines sorts, operations on these sorts and their equations and/or 

membership axioms. Listing (a) shows an example of a functional module named PEANO-NAT-EXTRA. 
It defines a sort Nat, two constructors 0 and s and an operation + with its equation.  
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Sorts are declared using the keyword sort or sorts. A sort can be interpreted as a set of values. The 
keyword subsort or subsorts define a sub-set of sorts. To each declared sort, Maude creates automatically 

its corresponding kind. To make difference between a sort and a kind, the syntax [sort] is used to denote a 
kind. All subsorts of a sort form one component having the same kind. Kinds can be used to define partial 
operations. An operation signature is declared using the keyword op or ops and may have optional 
attributes. Each operation signature includes the definition domain (arguments sorts), and co -domain or 
rang (result sort). An operation without arguments is a constant. The attribute ctor is used to define a 
constructor. An operation can be notated using prefix or mixfix notation. The latter requires to specify 

explicitly the position of arguments using the underscore character. A Maude operation can be overloaded 
but the most famous overloading is subsort overloading. Variables (i.e. operations parameters) are declared 
using the keyword var or vars. An equation is defined using the keyword eq and may have a set of optional 
attributes. An equation has the form eq t = t’ where ta and t’ are two terms of  the same kind. Note that 
variables are not allowed to figure in t’ if they do not figure in t. A conditional equation is defined using 
the keyword ceq. A condition can be an equation, a matching equation having the form t := t’ or a Boolean 

equation. A Maude module can import other modules using one of the three available importation modes: 
protecting, extending or including. Equations are reduced (i.e. evaluated) using the command ‘reduce’ or 
‘red’. Maude includes many predefined functional modules (i.e. in-built modules) as BOOLEAN, INT, 
FLOAT, STRING, RATIONAL, LIST, CONVERSION and others. Furthermore, Maude offers a variety 
of tools for verification of inductive properties using the Maude's inductive theorem prover (ITP), 
verification of termination using the Maude termination tool (MTT), verification of the church-Rosser 

property using the Maude church-Rosser checker (CRC) and verification of completeness using the Maude 
Sufficient Completeness Checker (SCC). 

A system module has the syntax: mod ModuleName is [sorts, operations, equations, rewriting 
rules] endm 

 
 

 
 
 
 
 
 

 
In fact, a system module is an extension of functional module to support rewriting logic and 

rewriting logic rules are rewritten modulo equations. listing (b) shows a Maude system module named 
CIGARETTES. It defines two rewriting rules labeled [smoke] and [makenew]. In its general form, a 
rewriting rule has the form t -> t’ where t and t’ are two terms of the same kind. The two rewriting rules are 
rewritten modulo the operation of concatenation op __ : State State -> State [ctor assoc comm] . assoc and 

comm denote associative and commutative. All rewriting rules are in essence concurrent and each rule 
models a transition with a partial state. Rewriting rules can be conditional. The condition can be an equation, 
a rewriting rule, or a membership condition having the form t :: sort. As in equations, rewriting rules may 
have optional attributes. Rewriting rules are reduced using the command rewrite or rew. Other commands 
exist. The command frewrite is used for Fairless rewriting. The difference between the two commands 
resides in the rewriting strategy. A user-defined strategy can also be defined at the Meta level. The 

command rew may have some optional parameters to specify for example the maximum number of 
rewriting steps. Beside the command rew, Maude offers the command search for reachability analysis and 

fmod PEANO-NAT-EXTRA is  

sorts Nat NzNat .  

subsort NzNat < Nat . 

op 0 : -> Nat [ctor] .  

op s : Nat -> Nat [ctor iter] .  

op _+_ : Nat Nat -> Nat .  

vars M N : Nat .  

eq 0 + N = N .  

eq s(M) + N = s(M + N) .  

endfm 

(a) 

mod CIGARETTES is  

sort State .  

op c : -> State [ctor] . *** cigarette  

op b : -> State [ctor] . *** butt  

op __ : State State -> State [ctor assoc comm] .  

rl [smoke] : c => b .  

rl [makenew] : b b b b => c .  

endm  

(b) 
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an LTL model checker to check user-defined properties expressed in Linear Temporal Logic LTL. Maude 

also includes a SAT solver, unification and narrowing tools. Unification is a technique used to solve 
equations based on substitutions. Narrowing is an extension of rewriting theory where free variables are 
allowed to figure in terms and unified via matching and substitutions used for symbo lic reachability 
analysis. In spite of all these big advantages, Maude still lack a link to some common programming 
languages as C and Java. Our ultimate objective is to develop a tool permitting automatic Maude code 
generation from C code and vice versa. This paper traces the big lines for automatic Maude code generation 

from C code. To our best knowledge, this work is the first one trying to establish a bridge between Maude 
and C languages following a transformational approach. 
3. Transformation of C functions with returned values to Maude functional modules 

3.1.  Function signature 

In C, the signature of a function returning a value has the form: type function f(type_1 p1, type_2 
p2, …, type_n pn) where type is the type of the returned value and p1, …pn, are the function parameters 

having types type_1, type_2, …, type_n respectively. In Maude: op f : type_1 type_2… type_n  -> type . 
where type, type1, type2, …typen, can be any Maude in-built  sorts as Nat, Int, Float or user-defined sorts 
declared using the sort keyword. Another possible transformation is : op f : [type_1] [type_2]… [type_n]  -
> [type] . where [type_1], [type_2],… [type_n] , [type]  are kinds and can be used to define partial 
operations. Other forms of the C function signature are: 

type* function f(type_1 p1, type_2 p2, …, type_n ) and type** function f(type_1 p1, type_2 p2, 

…, type_n ), Here, *type (resp. **type) means that function f returns a pointer to a 1D array (resp. 2D array) 
or to some other user-defined types as structures. In these cases, *type will be defined as a Maude list or 
any user-defined sort. 
3.2.  Function body 

A C function body is composed of a sequence of assignments and control statements and return 
one value. Input parameters are by default passed by value. A C function may include side effect assignment 

as x = (x =0) + (x = 1) or  ++x + ++x. Another source of side effects in C is the access to global variables 
and aliased pointers. Such side effect assignments can lead to different behaviors given the same input 
parameters. Consequently, the result of the computation depends strongly on the C compiler used. Side 
effect should not be appear in pure functional code. We expect from pure functions to be fully deterministic. 
In order to transform a C function with a return value to a Maude functional module, we need to make some 
assumptions: 

1.We assume that all side effect assignments are removed from the C code and substituted by simple 
assignments of the form V = E. 
2.The C code is free from pointers except for functions returning arrays.  
3.All forms of C loops are substituted by the basic while loops. 
4.Switch-case statements are removed and replaced by the basic conditional if-else statements. 
In order to explain, our ideas, let us start by some C code. For example listing (a) shows a C function with 

two integer parameters a and b and returns an arithmetic expression. Note that this functional style of C 
code does not use any local variable. 

Code (a’) represents the pure imperative style of its equivalent functional style in code (a). Of 
course we can easily transform (a’) to (a) by successive substitutions forwardly. However, this technique 
does not work well in all cases. Take the example of the C code (b) that swaps the values of two variables 
a and b without using an intermediate variable: 

 

 
 
 

 
 

If we make sequential forward substitutions, we obtain the code: 

b = (a+b)-b  (by substituting (1) in (2)) leads to b=a (2’) 
a = (a+b)-a  (by substituting (1) and (2’) in (3)) leads to a = b  

int f(int a, int b) 

{return (a*b) + 20;} 

(a) 

int f(int a, int b) 

{ int x = a * b ;int y = x + 20 ; 

return y;} 

(a) 

int a; int b; 

a = a + b;(1) 

b = a – b;(2) 

a = a – b;(3) 

(b) 
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The result is incorrect because b is swapped however, a does not. So, each non side effect assignment is 

transformed to an equation and the entire C function is defined as an equation combining higher order 
equations. The most inner equation corresponds to the first assignment and the most outer equation 
corresponds to the last assignment. A C assignment like x = 10 can be transformed to a Maude constant 
operation of the form:  
op x : -> Int  [ctor] . 
eq x = 10 . 

Code (M1) is the Maude code which corresponds to C code (C1) . 
 

 
 
 

 
 

3.2.1. if statement 
Each C if statement is transformed to a conditional equation. In code (C2), the statement  x=2*y 

is executed whether the condition (a > 1000) is satisfied or not. However the statement y=a–y is executed 
only when the condition is verified. 

 
 
 
 

 
 

 
3.2.2. if else statement 

 
 

 
 
 
 
Here, for each branch of the if statement, a conditional equation is created. 

fmod Cfunction is 

protecting INT . 

op f : Int Int -> Int . 

vars a b : Int . 

eq f(a,b) = (a * b) + 20 . 

endfm 

(C1) 

fmod Cfunction is 

protecting INT . 

op f : Int Int -> Int . 

vars a b : Int . 

op fx : Int Int -> Int . 

op fy : Int -> Int . 

eq fx(a,b) = a * b . 

eq fy(a) = a + 20 . 

eq f(a,b) = fy(fx(a,b)) . 

endfm 

red f(5, 6) . ***reduce 

(M1) 

 

int f(int a) 

{int y =200;  

if a > 1000  y = a – y ; 

int x = 2 * y ; 

return x;} 

(C2) 

fmod Cfunction is 

protecting INT . 

op f : Int  -> Int . 

var a : Int . 

op y : -> Int [ctor] . 

eq y = 200 . 

op fy : Int -> Int . 

op fx : Int -> Int . 

eq fy(a) = a - y  . 

eq fx(a) = 2 * a  . 

ceq f(a) = fx(fy(a)) if a > 1000 . 

ceq f(a) = fx(a) if a < 1000 or a == 1000 . 

endfm 

red f(1500) . 

red f(900) . 

(M2) 

int f(int a, int b) 

{int x = 10;  

if a > b  x = (2*a) + x; 

else x = (5*b) + x; 

return x;} 

(C3) 

 

return y;} 

fmod Cfunction is 

protecting INT . 

op f : Int Int  -> Int . 

vars a b : Int . 

op x :  -> Int [ctor] . 

eq x = 10 . 

op fx1 : Int Int -> Int . 

op fx2 : Int Int -> Int . 

eq fx1(a,b) = 2 * a + x  . 

eq fx2(a,b) = 5 * b + x  . 

ceq f(a,b) = fx1(a,b) if a > b . 

ceq f(a,b) = fx2(a,b) if a < b or a == b 

. 

endfm 

red f(8, 6) . 

red f(6, 8) . 

(M3) 
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3.2.3. Nested if 

All assignments are identified for which we define for each assignment a conditional equation. 
The condition of each equation is a conjunction (i.e. and) between all nested conditions. An unconditional 
equation with the attribute ‘owise’ is added to specify the remaining cases . 

 
 

 

 

 

 

 

 

 

 

 

 

 

3.2.4. while loop 

In this paper, we will consider the basic while loop since other C loops as ‘for loop’ can be 
transformed to the while loop. Iterative loops can be transformed to recursive functions [9]. To explain, 

how we can transform a while loop to a Maude functional module, we consider the C function that calculate 
the sum of N first integers. The general idea is to transform the loop statement into a recursive conditional 
equation called loop. The signature of the loop operation has to contain all parameters that figure in the 
condition of the while and all variables occurring in the left side of all assignments defined inside the body 
of the while loop. Then the recursive call is established while modifying the values of the variables. For 
each loop equation, we have to define one conditional recursive equation and one non-recursive one to 

terminate the recursion. Initial values of local variables are transmitted to the loop equation from the main 
equation. From code C5, we can derive the loop equation having the following signature: op loop : Int Int 
Int -> Int .This signature has three arguments corresponding to n, i and som variables. Each of them is an 
integer. The sort of the returned value is the same of the type of the returned value by the C function (in 
this case, Int). 

 

 

 

3.2.5. while loop with break 

Listing C6 shows a C function that checks whether an integer number is prime or not. In this 
example, the statement break is used inside the while loop and forces the exit of the loop even the loop 
condition is true. The idea of transformation is similar to the first case, but here, we have to add a conditional 
equation reflecting the exit of the loop due to the break statement. 

int f(int a, int b) 

{int x = 0;  

if a > b   

   if a < 10  x = a-b; 

   else x = a – (2*b); 

else 

 if a < b   

  if b < 10  x = a+b; 

   else x = 2*a; 

return x;} 

(C4) 

fmod Cfunction is 

protecting INT . 

op f : Int Int  -> Int . 

vars a b : Int . 

op x :  -> Int [ctor] . 

eq x = 0 . 

op fx1 : Int Int -> Int . 

op fx2 : Int Int -> Int . 

op fx3 : Int Int -> Int . 

op fx4 : Int -> Int . 

eq fx1(a,b) = a - b . 

eq fx2(a,b) = a – (2 * b) . 

eq fx3(a,b) = a + b . 

eq fx4(a) = 2 * a . 

ceq f(a,b) = fx1(a,b) if a > b and a < 10 . 

ceq f(a,b) = fx2(a,b) if a > b and (a == 10 or a > 

10) . 

ceq f(a,b) = fx3(a,b) if a < b and b < 10 . 

ceq f(a,b) = fx4(a) if a < b and (b == 10 or b > 

10) . 

eq f(a,b) = x [owise] . 

endfm 

red f(9, 8) . 

red f(12, 8) . 

red f(8, 9) . 

red f(8, 12) . 

(M4) 

 

 

 

 

 

int sum(int n) 

{int i = 1; int som = 0; 

While (i <= n) { 

som = som + i; 

i = i + 1;} 

return som;} 

(C5) 

fmod SUM is 

protecting INT . 

op sum : Int  -> Int . 

op loop : Int Int Int  -> Int . 

vars i n som : Int . 

ceq loop(n, som, i) = loop(n, som + i, i + 1) if i < n 

or i == n . 

ceq loop(n, som, i) = som if i > n . 

eq sum(n) = loop(n, 0, 1) . 

endfm 

red sum(10, 0, 1) . 

(M5) 
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3.2.6. while loop with continue 

Continue statement forces the next iteration of the loop to take place skipping any code in between. 
Continue can be replaced by an if-else statement, where the skipped code (i.e. all the code just after 
continue) is put in the else branch as shown in code C’7. Here we have to define three loop conditional 
equations: one for the if branch, one for the else branch and the third for loop exit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.7. Nested while 

We start with the most inner while loop by transforming it to a conditional equation named loopi, 
where i gives the maximum level of loops nesting following the technique described above. Then, we 
transform the less inner while loop by defining a second conditional equation loopi-1 and so on until we 
reach the most outer loop. Each inner loop equation becomes an argument of the next outer loop equation. 

The signature of the most outer loop has to include all the arguments that figure in the embodied while 
loops conditions and all variables that occur in the left right of assignments of the while loops bodies. 
Finally, the equation of the main function is defined in term of the most outer loop equation by transmitting 
the necessary parameters and initial values. M8 shows the Maude code for the C8 code. In this example, 
we have two nested while loops. The most inner loop is transformed to the conditional equation loop2 with 
three arguments, however, the most outer loop is transformed to loop1 with five parameters. loop2 becomes 

an argument of loop1. 
 

 

 

 

 

 

 

int prime(int n) 

{int i = 2;  

While (i <= n / 2) { 

if n % i = 0 break; 

i = i + 1 ;} 

if i > n / 2 return 1 else 

if (n % i = 0) return 0;} 

(C6) 

fmod BREAK is 

protecting INT . 

op prime : Int  -> Bool . 

op loop : Int Int  -> Bool . 

vars i n som : Int . 

ceq loop(n, i) = loop(n, i + 1) if (i < n quo 2 or 

i == n quo 2) and (n rem i =/= 0) . 

ceq loop(n, i) = true if i > n quo 2 . 

ceq loop(n, i) = false if n rem i == 0 . 

eq prime(n) = loop(n, 2) . 

endfm 

red prime(117) . 

red prime(223) . 

(M6) 

 

int f(int n){ 

int a=1;int s=0; 

while a < n{ 

if a == 7{ 

a=a+1; 

continue;} 

s=s+a; 

a=a+1;} 

return s ; 

(C7) 

int f(int n){ 

int a=1;int s=0; 

while a < n{ 

if a == 7 

a=a+1; else{ 

s=s+a; 

a=a+1;}} 

return s; 

(C’7) 

fmod CONTINUE is 

protecting INT . 

op f : Int -> Int . 

op loop : Int Int Int -> Int . 

vars n a s : Int . 

ceq loop(n,a,s) = loop(n, a + 1, s) if a < n and a == 7 . 

ceq loop(n,a,s) = loop(n, a + 1, s + a) if a < n and a =/= 7 . 

ceq loop(n,a,s) = s if a > n or a == n . 

eq f(n) = loop(n, 1, 0) . 

endfm 

red f(10) . 

(M7) 

 

 

 

 

 

(M6) 
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4.    Functions without 

parameters 

A C function can take no parameters. In C, int f() means that f returns an integer value while it can 
take any number of arguments. In this case, the compiler will not perform any checking on the number and 
types on parameters when calling this function. If we want no arguments then we have to declare as int 

f(void). In Maude, an operation without parameters is considered as a constant function declared without 
specifying the function definition domain. Many cases of C functions without parameters exist: 
4.1. A function, which computes a constant value 

Let’s consider the function  f() returning the value of Pi = 3.14. 
 

 

 

 

 

 

4.2. A function, which calculates a certain value using some local variables 

 

 

 

 

 

 

 

 
4.3. A function, which calculates some value using some local variables whose values are introduced 

by the user 

In order to transform the C function to a Maude code, all local variables introduced by the user 
(i.e. via scanf) will be considered as parameters. In C code C11, the two variables x and y will be added to 
the signature of the Maude operation. 

 
 
 
 
 
 

 
 

4.4. A function, which has access to a global variable 

A pure functional language does not manipulate global variables. A global variable can be a source 
of side effects in imperative languages such as C because it is visible to all functions and each function can 
read and/or update its value. In order to transform a C function to Maude, each global variable will be 

considered as a parameter of this function, but also should be considered as a return value for the same 
function, so any updating in the global variable value can be visible to the other functions. C12 shows an 

fmod Cfunction is 

protecting INT . 

op f : Int Int  -> Int . 

op loop2 : Int Int Int -> Int . 

op loop1 : Int Int Int Int Int -> Int . 

vars i j n m x : Int . 

ceq loop2(m, x, j) = loop2(m, x + 2, j + 1) if j < m or j 

== m . 

ceq loop2(m, x, j) = x if j > m . 

ceq loop1(n, m, x, j, i) =  loop1(n, m, loop2(m, x, j), 

j, i + 1)   if i < n or i == n . 

ceq loop1(n, m, x, j, i) =  x if i > n . 

eq f(n, m) = loop1(n, m, 0, 1, 1) .  

endfm 

red f(10, 5) . 

(M8) 

 

 

 

endfm 

 

long f(void){ 

return 3.14;} 

(C9) 

 

 

op f : -> Float . 

eq f = 3.14 . 

(M9) 

 

int f(void){ 

int x = 100; 

int y = 5; 

return x + y;} 

(C10) 

 

 

op f : -> Int . 

op x : -> Int . 

op y : -> Int . 

eq x = 100 . 

eq y = 5 . 

eq f = x + y . 

(M10) 

 

#include <stdio.h> 

int f(void){ 

int x; 

int y; 

scanf("%d", &x); 

scanf("%d", &y); 

return x + y;} 

(C11) 

 

 

op f : Int Int -> Int . 

vars x y : Int . 

eq f(x, y) = x + y . 

(M11) 

int f(int n, int m) 

{int i = 1; int x = 0; 

While (i <= n ) { 

int j = 1; 

while (j <= m) { 

x = x + 2; 

j = j + 1 ; 

} 

i = i + 1 ;} 

return x;} 

(C8) 
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example of a function that updates the value of a global variable called y, then use this value to compute a 

certain value z. The Maude code for this function is showed in M12. Operation f has now one parameter y 
and two returned values: z and y. Here, two solutions are possible: whether we specify the rang of the 
operation as a list of pairs if the sort of the global variable is same as the sort of the returned value of the 
function. Each pair is composed of the name of the variable with its value. If the sorts of the returned value 
and the global variable are different, then the rang of the function can be declared as a struct sort. 
Let us assume that y is also an integer, so we can puts both the return value and y in the same list. In this 

example, the list is composed of two pairs: (“f”, z(y(val), x)) and (g, y(val)) where “f” is the name of the 
operation (i.e C function) and g designates the global variable. z(y(val), x) is the expression calculating the 
return value of f(), and y(val) is the new value of the global variable whose initial value when reading by 
the function is val. 

 
 

 
 
 
 
 

 

 
5.    Transformation of Functions without returned values (procedures) 

In C, a function without a return value is declared as void, In this case the return statement is 
usually omitted. In general, a procedure has side effect statements and accepts parameters passing by 
reference declared as pointers. Since C procedures show nondeterministic behavior, we will transform them 
as Maude system modules. Rewiring logic match well with nondeterministic behaviors. 

In contrast to equational logic, Maude rewriting logic can be used to specify the operational semantics of 
the imperative code. Thus, it specifies the effect of the execution of each statement on the state of the 
memory code. Each variable inside the procedure will be specified by a triplet including its name, its type 
and its current value as follows: 
sorts state var type value . 
subsort var < String . 

subsort value < Int . 
op undef : -> value . 
op nil : -> state [ctor] . 
ops int intlong char string double : -> type [ctor] . 
op <_,_,_> : var type value -> state . 
op __ : state state -> state [assoc comm id:nil ] . 

 
Here, we define the concatenation of states (i.e. multiset of states) as associative, commutative with 
identity. The constant nil designates a null instruction (i.e. the ‘;’ statement) which has no effec t on the 
state of the code. Each triplet is specified as <_,_,_> . We add two constants START and END to specify 
the start and the end of the C code. The constant Undef specifies any undefined (i.e. uninitialized) value. 
We put all the above definitions in a functional module called PROCEDURE. 

 

int f(void){ 

int x = 20; 

y = y + 1000; 

int z = y + x; 

return z ;} 

(C12) 

 

 

sort List . 

sort pair . 

op _,_ : String Int -> pair . 

subsort pair < List . 

op nil : -> List [ctor] . 

op _;_ : List List -> List [ctor assoc id: nil ] . 

op f : List -> List . 

op x : -> Int . 

op y : Int -> Int . 

vars val a b : Int . 

var g : String . 

op z : Int Int -> Int . 

eq x = 20 . 

eq y(val) = val + 1000 . 

eq z(a, b) = a + b . 

eq f(g, val) = ("f", z(y(val), x)) ; (g, y(val)) . 

endfm 

red f("y", 600) . 

(M12) 
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More generally, each C statement modifying the state of the memory can be specified as a 

rewriting rule of the form: t -> t’, where t and t’ are terms designating the state before and after the execution 
of the C statement. Terms t and t’ can include sub-terms specifying many C statements. For example, let us 
assume that the C code has three assignments: 
int i =10; int x =20; int y =i+x; 

Before these assignments, suppose that each of the three variables takes the undef value. Remark 
that the first two assignments are independent. The third assignment however depends on the two previous 
statements. A possible Maude code for this is: 
rl [init] : <"i", int, undef>  <"x", int, undef> <"y", int, undef> => <"i", int, 10>  <"x ", int, 20> <"y", int, 
undef> . 
rl [inity] : <"i", int, i>  <"x", int, x> <"y", int, undef> => <"i", int, i>  <"x", int, x> <"y", int, i + x> .  

 
The first rule, which is labelled [init], permits the initialization of the two variables i and x. 

Variable y remains uninitialized. The second rule [inity] permits the initialization of the variable y based 
on values i and x. This rule also maintains the states of i and x. Nevertheless, if we suppose that variables i 
and x will not be never used later, the second rule becomes: 
rl [inity] : <"i", int, i>  <"x", int, x> <"y", int, undef> => <"y", int, i + x> . 

It is important to notice that rewriting logic has a concurrent semantic, the imperative paradigm semantic 
however has a sequential semantic, so in order to specify C sequentiality, we add to the right term of a 
rewriting rule and to the left term of its next rewriting rule, a sort of tag. By this, a rule starts the rewriting 
only if its previous rule finishes the rewriting. 
For instance, if we want the two rules [init] and [inity] will be executed sequentially, we can define a tag 
called E1 as follows: 

op E1 : -> state [ctor] . 
rl [init] : <"i", int, undef>  <"x", int, undef> <"y", int, undef> => <"i", int, 10>  <"x", int, 20> <"y", int, 
undef>  E1 . 
rl [inity] : E1 <"i", int, i>  <"x", int, x> <"y", int, undef> => <"i", int, i>  <"x", int, x> <"y", int, i + x> . 
We say that the first rule produces E1 and the second rule consumes E1. 
The position of E1 does not matter since the operation of concatenation is commutative. 

Finally, the sub-term <"y", int, undef> in the first rule occurs in the right and in the left of the rule. Because 
rewriting logic is the logic of changing, this sub-term can be removed from the first rule, but it must figure 
in the initial configuration (initial state) as a parameter of the command rew. So, the rule [init] can be 
rewritten as: 
rl [init] : <"i", int, undef>  <"x", int, undef>  => <"i", int, 10>  <"x", int, 20>  E1 .  
Of course, there are other sophisticated solutions to specify sequentiality. For example by resorting to 

Maude meta-level to define a sequential strategy. 

fmod PROCEDURE is 

protecting INT . 

protecting FLOAT . 

protecting STRING . 

sorts state var type value . 

subsort var < String . 

subsort value < Int . 

op undef : -> value . 

op nil : -> state [ctor] . 

ops int intlong char string double : -> type [ctor] 

. 

ops START END : -> state . 

op <_,_,_> : var type value -> state . 

op __ : state state -> state [assoc comm id: nil ] . 

endfm 

(M13) 
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Conditional statements and loops are specified using conditional rewriting rules. For instance, 

code C14 is transformed to Maude code M14. Here, the loop while is specified using two conditional 
rewriting rules: [while] and [endWhile].  

 
 

 
 

 

 

Rewriting logic is suitable for specifying side effect statements, which show nondeterministic behavior. In 
essence, rewriting rules execute concurrently but since the Maude interpreter is sequential, concurrent 
transitions are simulated by corresponding interleavings of sequential rewriting steps.  
An example of a C side effect is: 
int x, y = (x = 3) + ( x = 4); 

printf("x = %d y =%d \n", x, y); 
Possible outputs can be: 
x=4 y=7,  
x=3 y=7,  
x=4 y=8 (if compiled with gcc -03)  
The above C code can be specified as a set of concurrent rewriting rules as follows: 

rl [0] : < "x", int, undef > => < "x", int, 3 > . 
rl [1] : < "x", int, undef > => < "x", int, 4 > . 
rl [2] : < "x", int, x > < "y", int, undef > => < "y", int, x + x > [print x y] .  
The assignment y =x++ can be specified as: 
rl [0] : < "y", int, undef > < "x", int, x > => < "y", int, x >  
< "x", int, x + 1 > . 

The assignment y=++x can be specified as: 
rl [1] : < "y", int, undef > < "x", int, x > => < "y", int, x + 1 > < "x", int, x + 1 > .  

In a general fashion, a function with a returned value can be considered as a special case of a 
procedure. Thus any C function with returned value can be transformed to its equivalent procedure by 
adding the returned value of the function into the procedure parameters list and remove the returned 
statement from the function code . This new parameter should be passed by reference. As an example, let 

us assume the C code C15. Here, the function sum can be transformed to a procedure of the same name 
with two parameters. 

 
 
 
 

 
 
 
 

This transformation from a function to a procedure, gives us the idea to transform Maude equations 
to rewriting rules and vice versa. An equation eq t = t’ can be interpreted as t -> t’ and t’ -> t. for the 

purpose of transformation from a function to a procedure, we will take the rule t -> t’ where the term t is 
an operation signature and t’ is either an operation signature or a constant. The same thing with a conditional 
equation. So a conditional equation of the form  

#include <stdio.h> 

void sum(int n){ 

int i=1; int s=0; 

while i <= n { 

s=s+i; 

i=i+1; 

} 

printf(s);} 

(C14) 

 

mod sum is 

protecting PROCEDURE . 

op E1 : -> state . 

vars n i s : Int . 

rl[start] : START < "n", int, n > =>  

 < "n", int, n > < "i", int, 1 > < "s", int, 0 > E1 

. 

crl[while] : E1 < "n", int, n > < "s", int, s > < 

"i", int, i > => E1 < "n", int, n > < "s", int, s + 

i > < "i", int, i + 1 > if i < n or i == n . 

crl[endwhile] : E1 < "n", int, n > < "s", int, s > 

< "i", int, i > => END if i > n [print s] . 

endm 

set print attribute on . 

rew START < "n", int, 10 > . 

(M14) 

int sum(int n) 

{int i = 1; int som = 0; 

While (i <= n) { 

som = som + i; 

i = i + 1;} 

return som;} 

(C15) 

void sum(int n, int* som) 

{int i = 1; som = 0; 

While (i <= n) { 

som = som + i; 

i = i + 1;}} 

(C15’) 
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ceq t = t’ if C can be replaced by crl [R] : t -> t’ if C . To explain, how the transformation is done, we take 

the code M5 as an example. Here, we have two operations sum and loop. Loop is a recursive , but sum is 
not.  ceq loop(n, som, i) = loop(n, som + i, i + 1) if i < n or i == n .   is transformed to: 
crl [loop1] : < "n", int, n >  < "som", int, som >  < "i", int, i > => < "n", int, n >  < "som", int, som + i > < 
"i", int, i + 1 > if i < n or i == n . 
ceq loop(n, som, i) = som if i > n .  is transformed to: 
crl [loop2] : < "n", int, n >  < "som", int, som > < "i", int, i > => < "som", int, som >  if i > n .  

eq sum(n) = loop(n, 0, 1) .  is transformed to: 
rl [sum] : < "n", int, n >  => < "n", int, n >  < "som", int, 0 >  < "i", int, 1 >  .  

For each functional module, we create a system module named 
PROCEDUREFunctionalModuleName. The functional module will be imported to recuperate variables 
declarations. However, all operations signatures and equations have to be removed from the functional 
module. By adding *** (three asterisks), the corresponding definition becomes a commentary. 

 
6.    Verification of Maude specifications 

6.1.  The ‘reduce’ command 

With the reduce command; we can evaluate the functional correction of Maude equations. 

As examples, we show the reduction of M6 and M8 using core Maude interpreter 2.6. 
 

 
Figure 1. Result of reduction of functional module M6 

 

 
Figure 2. Result of reduction of functional module M8 

 
6.2.  Simulation using the command ‘rewrite’ 

fmod SUM’ is 

***protecting INT . 

***op sum : Int  -> Int . 

***op loop : Int Int Int  -> Int . 

vars i n som : Int . 

***ceq loop(n, som, i) = loop(n, som + i, 

i + 1) if i < n or i == n . 

***ceq loop(n, som, i) = som if i > n . 

***eq sum(n) = loop(n, 0, 1) . 

endfm 

***red sum(10, 0, 1) . 

(M’5) 

 

mod PROCEDURESUM is 

protecting PROCEDURE . 

protecting SUM’ . 

crl [loop1] : < "n", int, n > < "som", 

int, som > < "i", int, i > => < "n", 

int, n > < "som", int, som + i > < "i", 

int, i + 1 > if i < n or i == n . 

crl [loop2] : < "n", int, n > < "som", 

int, som > < "i", int, i > => < "som", 

int, som > if i > n . 

rl [sum] : < "n", int, n > => < "n", 

int, n > < "som", int, 0 > < "i", int, 1 

> . 

endm 

rew < "n", int, 10 > . 

(M’’5) 
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As example, we show the rewriting of system module M’’5. 

 

 
Figure 3. The rewriting result of the system module M’’5 

6.3.  Reachability analysis using the command “search”  

As an example, we want to check whether the state ERROR in (C16) can be reached or not. Code 
M16 shows the Maude specification of the corresponding C code with the appl ication of the search 
command. 

 
 
 
 

 
 
 

 

 
Figure 4. The reachability analysis result of M16 

 
7.    Conclusion and future work 

In this paper, we showed how C functions could be transformed to Maude functional and system 
modules. Maude functional modules implement equational theory. System modules, however implement 
rewriting theory. This transformation will enable formal verification of C programs via available Maude 
tools. Our future investigations will focus on the automation of the proposed transformation while taking 

into account other C constructors and features as pointers, complex types like structures, unions, arrays 
and casting. 
 

void test(int n){ 

int i = 0; int j = 0 

while (i < 2n) { 

if (i < n) i = i+1;  

else j = i+1;  

i = i+1} 

if i < j printf 

("error");} 

(C16) 

mod TEST is 

protecting PROCEDURE . 

op ERROR : -> state . 

rl [start] : START < "i", int, undef > < "j", int, undef > 

=> < "i", int, 0 > < "j", int, 0 > . 

crl [loop1] : < "n", int, n > < "i", int, i > => < "n", 

int, n > < "i", int, i + 2 > if ( i < 2 * n ) and ( i < n ) 

. 

crl [loop2] : < "n", int, n > < "i", int, i > < "j", int, j 

> => < "n", int, n > < "j", int, i + 1 > < "i", int, i + 1 

> if ( i < 2 * n ) and ( i > n or i == n) . 

crl [endloop] : < "n", int, n > < "i", int, i > < "j", int, 

j > => END if ( i > 2 * n or i == 2 * n ) . 

crl [error] : < "n", int, n > < "i", int, i > < "j", int, j 

> => ERROR if ( i > 2 * n or i == 2 * n ) and ( i < j ) 

[print "error" ] . 

endm 

search START < "n", int, n > < "i", int, undef > < "j", 

int, undef > =>* ERROR . 

(M16) 
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