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Introduction: Response to post-stroke aphasia language rehabilitation is difficult
to anticipate, mainly because few predictors can help identify optimal,
individualized treatment options. Imaging techniques, such as Voxel-based
Lesion Symptom Mapping have been useful in linking specific brain areas to
language behavior; however, further development is required to optimize the use
of structural and physiological information in guiding individualized treatment for
persons with aphasia (PWA). In this study, we will determine if cerebral blood flow
(CBF) mapped in patients with chronic strokes can be further used to understand
stroke-related factors and behavior.

Methods:We collected perfusionMRI data using pseudo-Continuous Arterial Spin
Labeling (pCASL) using a single post-labeling delay of 2,200 ms in 14 chronic PWA,
along with high-resolution structural MRI to compute maps of tissue damage
using Tissue Integrity Gradation via T2w T1w Ratio (TIGR). To quantify the CBF in
chronic stroke lesions, we tested at what point spatial smoothing should be
applied in the ASL analysis pipeline. We then related CBF to tissue damage,
time since stroke, age, sex, and their respective cross-terms to further
understand the variability in lesion CBF. Finally, we assessed the feasibility of
computing multivariate brain-behavior maps using CBF and compared them to
brain-behavior maps extracted with TIGR MRI.

Results: We found that the CBF in chronic stroke lesions is significantly reduced
compared to its homologue grey and white matter regions. However, a reliable
CBF signal (although smaller than expected) was detected to reveal a negative
relationship between CBF and increasing tissue damage. Further, the relationship
between the lesion CBF and age, sex, time since stroke, and tissue damage and
cross-terms suggested an aging-by-disease interaction. This relationship was
strongest when smoothing was applied in the template space. Finally, we show
that whole-brain CBF relates to domain-general visuospatial functioning in PWA.
The CBF-based brain-behavior maps provide unique and complementary
information to structural (lesion-based) brain-behavior maps.

Discussion: Therefore, CBF can be detected in chronic stroke lesions using a
standard pCASL MRI acquisition and is informative at the whole-brain level in
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identifying stroke rehabilitation targets in PWAs due to its relationship with
demographic factors, stroke-related factors, and behavior.
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chronic stroke lesion, cerebral blood flow, TIGR MRI, brain-behavior maps, stroke
rehabilitation targets

Introduction

The most common cause of acquired language impairment (also
known as aphasia) is stroke. Aphasia presents in up to 40% of people
who experience acute strokes and persists in approximately 61% of
individuals after 1 year (Pedersen et al., 2004). Unfortunately,
response to post-stroke aphasia rehabilitation is variable, and
identifying the best treatment options for a specific patient has
been difficult. Researchers are increasingly using structural and
functional imaging to inform and augment treatment
development, which heralds improved language outcomes
(Meinzer et al., 2011; Crosson et al., 2017; Crosson et al., 2019).
However, using imaging data to inform clinical decisions is still in its
infancy. A review of imaging studies in aphasia reveals that a diverse
range of lesion locations and subsequent brain physiology changes
hamper efforts to select appropriate interventions to optimize
treatment outcomes (Charidimou et al., 2014). However, there is
evidence that mapping each patient’s unique brain anatomy
(structural imaging) and physiology (cerebral blood flow
imaging) to their language deficits (Fridriksson, 2010) could
result in more individualized intervention.

Several imaging methodologies can provide associations
between lesion location and language behavior, including Voxel-
based Lesion Symptom Mapping (VLSM), which has been popular
in stroke research since Bates et al. (2003) introduced the method in
2003. The technique acquires detailed images of the patient’s brain
using high-resolution T1-weighted (T1w) anatomical Magnetic
Resonance Imaging (MRI) scans. An experienced neuroimager
then can manually demarcate the lesion. The area of the lesion is
transformed into a subject-specific binary mask and entered into a
t-test analysis to define which lesion location corresponds to specific
language deficits. VLSM is an elegant algorithm that defines
structure-behavior associations and implicitly takes advantage of
the heterogeneity of language behavior and lesion location. Using
functional and structural imaging to study persons with aphasia
(PWA) facilitates linking a specific brain area to specific language
behaviors and deficits. VLSM (Bates et al., 2003), is a simple yet
elegant method used to define structure-behavior associations.
However, the technique has several limitations in that it depends
on binary “all-or-nothing” lesion masks to define areas of structural
compromise and does not offer a comprehensive picture of brain
health.

In 2005, Tyler et al. (2005) advanced VLSM by discarding the
binary lesion masking step by correlating the continuous T1w image
signal intensity with continuous language measures. According to
Tyler et al. (2005), judging whether cortical tissue is intact or
damaged with an “all-or-none distinction fails to capture a much
larger range of potentially informative gradations in the degree of
structural damage.” This is a reasonable assessment, as the damage
from stroke is not limited to the Cerebral Spinal Fluid (CSF) filled

cavitation, and includes regions of gliosis and Wallerian
degeneration, all with varying impact on behavior. It was
demonstrated that T1w image signal intensity has high
correlations with word processing abilities using a lexical decision
task. Though the small number of subjects (n = 19) could have led to
issues with statistical power (Kimberg et al., 2007), this study
established the feasibility and utility of correlating the MRI signal
intensity with language behavior. Despite this important step
forward, the methodology of using the T1w signal has some
limitations in the MRI signal normalization process, as it is
dependent on highly variable anatomical attributes across stroke
survivors. To address the methodological issues from Tyler et al.
(2005), we developed Tissue Integrity Gradation via T2w T1w Ratio
(TIGR) MRI (Krishnamurthy et al., 2021) by using a ratio of T2w
and T1w signals and by normalizing the signals using bounds
determined by the grey matter and cerebrospinal fluid signal
intensities of intact regions. Therefore, regardless of atrophy,
headsize, or coil loading characteristics, the normalization
procedure in TIGR is comparable across all participants within a
cohort and does not require a control sample of intact brains to
perform the analysis.

Although the predominant line of thinking by clinicians and
scientists alike is that everything within the stroke lesion is necrotic,
we have evidence that this may not be the case. Using Tissue
Integrity Gradation via T2w T1w Ratio (TIGR) MRI, we can
objectively identify the necrotic cavitation and surrounding
pericavitational regions within the lesion (Krishnamurthy et al.,
2021). The pericavitational regions are defined as “damaged tissue
within the lesion surrounding the core cavitation that may still
contain living cell bodies” and have been observed in animal and
in vitro models (Clarkson et al., 2010; Anderson et al., 2014; Burda
and Sofroniew, 2014; Adams and Gallo, 2018; Joy and Carmichael,
2021). The pericavitational regions can be engaged using task fMRI,
are functionally connected at rest to the remaining brain network
and demonstrate evidence of residual blood flow to the lesion
(Krishnamurthy et al., 2021). One downside to using only
structural imaging to assess brain-behavior relationships is that
language is processed in a network of brain regions that must
work in concert, and language deficits can arise from
disconnected or disrupted regions far away from the lesion.
These disconnected regions can be identified by their changes in
physiology (Metter et al., 1989). Therefore, to advance the field of
stroke and aphasia rehabilitation, it is imperative to expand the
current imaging models to not only relate anatomy to behavior but
integrate both anatomy and physiology into behavior. To further
understand the tissue health of chronic stroke lesions, we expand
upon our previous findings and improve upon the detection of
cerebral blood flow in chronic stroke lesions in PWA.

Cerebral blood flow (CBF) can be quantified non-invasively
using a neuroimaging technology called pseudo-Continuous Arterial
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Spin Labeling (pCASL) which is a sub-class of arterial spin labeling
(ASL) MRI methods available. Generally, the ASL experiment collects
one set of images that contain signals from both tissue and blood
compartments (the “control” image) and one set of images that contain
signals from tissue and magnetically labeled blood to reduce the
contribution of the blood signal (the “label” image). The difference
between control and label images removes the tissue signal to reveal an
image of pure blood signal (the “perfusion” image). To convert the
perfusion image to physiological units (the “CBF” image), the
perfusion image is further divided by a separately acquired proton
density (M0) calibration image and modeled with sequence-specific
factors such as post-labeling delay and physiological factors such as
arterial blood T1. The consensus paper provides a comprehensive
description of the technology (Alsop et al., 2015). Often these
computations are achieved in native space–or the space in which
the image was acquired–but most comparative studies require all
participant CBF images to be normalized to template space. One
current issue in the ASL MRI field is the standardization of processing
steps to obtain absoluteCBFmaps (Pinto et al., 2020). For example, it is
unclear whether some post-processing steps such as spatial smoothing
should be applied in native or template space, if at all. Spatial
smoothing is a process of spatially weighting the signal intensity
from neighboring voxels to decrease the impact of instrumentation
noise. There is a clear need for consistent post-processing options with
a complete description of all post-processing steps, including spatial
smoothing, to achieve absolute CBF quantification (Pinto et al., 2020).
Steps such as spatial smoothing have an even greater impact when
quantifying CBF in chronic stroke lesions due to the rapid transitions
in microstructural damage (Burda and Sofroniew, 2014) and the
impact on brain metabolism and corresponding CBF.

The objective of this project is to advance the ability of ASL MRI
to reliably detect the CBF within the lesion and facilitate

characterizing how lesion CBF relates to clinical factors relevant to
aphasia. To accomplish this objective, we will optimize at what stage
spatial smoothing should be applied in the ASL analysis pipeline. We
hypothesize that the blood flow in chronic stroke lesions will reduce
with increasing tissue damage. We also hypothesize that both stroke-
and demographic-related factors will relate to lesion CBF. Finally, in
an exploratory analysis, we will generate brain-behavior relationships
between CBF and verbal learning or visuospatial learning and
compare them to structural lesion-based brain-behavior maps.

Materials and methods

General procedures

Imaging and behavioral data from 14 English-speaking PWA
(Table 1; age range 24–81 years old) who were >6 months post-left-
hemisphere ischemic stroke (range of time since stroke
9–121 months) were analyzed for this study. Participants with a
history of mental health disorders or other neurological disorders
were excluded. Participants with hemorrhagic strokes were excluded
due to the limitations of quantifying tissue damage in the presence of
hemosiderin. Western Aphasia Battery Aphasia Quotient (WAB AQ)
(range 27.4–80.6). The participants were asked to undergo an MRI
session and a language assessment session which included the
administration of the Western Aphasia Battery-Revised (WAB-R)
(Kertesz, 2007), the Hopkins Verbal Learning Test-Revised (HVLT-
R) (Benedict et al., 1998), and the Brief Visual Memory Test-Revised
(BVMT-R) (Benedict et al., 1996). This study used raw scores from the
HVLT-R and BVMT-R total recall, delayed recall, and recognition hits
to compute brain-behavior relationships with CBF. This study was
carried out in accordance with the recommendations of the joint

TABLE 1 Participant demographic, aphasia, and lesion characteristics.

Sub Age at
scan

Sex Months since
stroke

WAB-
AQ

Aphasia type Lesion
volume (mL)

Cavitation
volume (mL)

%
Cavitation

S01 51 M 24 59 Anomic 97,078 35,999 37.1

S02 59 M 38 65.9 Anomic 84,630 20,796 24.6

S03 50 M 85 75.3 Anomic 133,145 52,620 39.5

S04 71 F 24 67.1 Transcortical
Motor

126,144 13,215 10.5

S05 61 M 121 74.5 Anomic 137,945 53,874 39.1

S06 24 F 23 55.3 Broca’s 133,655 38,924 29.1

S07 35 M 9 27.4 Broca’s 126,164 6,537 5.2

S08 47 M 44 75.6 Anomic 105,421 42,877 40.7

S09 43 F 49 80.6 Anomic 64,703 21,073 32.6

S10 81 F 60 74.1 Conduction 114,099 31,687 27.8

S11 73 M 55 79.6 Anomic 124,145 64,475 51.9

S12 45 M 14 78.6 Anomic 148,123 14,366 9.7

S13 50 M 70 59.4 Conduction 95,516 28,115 29.4

S14 60 M 9 52.4 Wernicke’s 132,319 44,429 33.6
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review committee at Emory University and Atlanta Veterans Affairs
Medical Center. All participants gave written informed consent in
accordance with the Declaration of Helsinki.

MRI acquisition

MRI scans were acquired on a 3T Siemens Prisma (Erlangen,
Germany) using the body coil for radio frequency (RF) transmission
and a 32-channel phased-array head coil for RF receiving. Two types
of anatomical MRI scans were acquired on each subject: 1) a T1-
weighted high-resolution anatomical image (T1-MPRAGE, TR =
2,530 ms, TE = 2.96 ms, TI = 1,100 ms, FA = 7°, isotropic
resolution = 1 × 1 × 1 mm (Crosson et al., 2017), acquisition
bandwidth = 130 Hz), and 2) a T2-weighted high-resolution
anatomical image (T2-SPACE, TR = 3200 ms, TE = 285 ms,
FA = 120°, isotropic resolution = 1 × 1 × 1 mm (Crosson et al.,
2017), acquisition bandwidth = 700 Hz).

Pseudo–Continuous Arterial Spin Labeling (pCASL) MRI was
collected to measure regional whole-brain cerebral blood flow (CBF)
maps (2D ascending gradient echo EPI acquisition, 35 slices, slice
thickness = 4 mm, 10% gap, matrix = 74 × 74, FoV = 220 × 220 mm2,
in-plane resolution = 3 × 3 mm2, GRAPPA = 2, no Partial Fourier,
acquisition bandwidth = 2,505 Hz, TR = 5,060 ms, TE = 13 ms, slice
acquisition time = 37.5 ms, PLD = 2,200 ms, labeling duration =
1,500 ms, label offset = 90 mm). The pCASL method acquires
interleaved control and label images, the subtraction of which
yields a pure-blood signal that is directly proportional to CBF and
can be mapped on a voxel-wise basis to obtain whole-brain regional
blood flow information. An additional M0 scan was acquired with the
same brain coverage as the pCASL scan, except for a longer repetition
time (TR = 10 s) to allow for fully relaxed magnetization to remove
proton density effects during CBF quantification.

Estimation of tissue damage using TIGR
maps

The workflow of calculating the Tissue Integrity Gradation via
T2-weighted T1-weighted Ratio (TIGR) maps has been described
previously (Krishnamurthy et al., 2021). Briefly, the user input
includes a T1w and T2w image, as well as a binary lesion mask in
native space. The T1w and T2w images are denoised (Coupe et al.,
2008; Wiest-Daessle et al., 2008) and coregistered together via
FreeSurfer’s boundary-based registration (Greve and Fischl, 2009).
The values in each voxel of the T2w images are divided by the value of
the corresponding voxel in the aligned T1w image (T2w/T1w). Each
type of image (T1w and T2w) encodes unique signal information of
the underlying tissue morphology. Taking the T2w/T1w ratio
combines both types of information into one image to highlight
the gradient of tissue damage within the lesion. To scale the T2w/T1w
signals to a subject-specific value that can be compared across the
entire cohort, the signal intensity is bounded by GM (lower bound:0.1;
from the contra-lesional anterior grey matter ribbon eroded by one
voxel) and CSF (upper bound:1.0; from the contra-lesional anterior
lateral ventricle eroded by one voxel) and classified into nine “bins”
between 0.1 (“least damaged”) and 1.0 (“most damaged”) to maintain
comparability with binary lesion maps characterized by 0’s and 1’s

that are often used in the field. Only the voxels within the user-defined
lesion mask are classified into the tissue gradient “bins,” creating the
final TIGR map used in group analysis. We further define all lesioned
areas with a TIGR score of 1.0 as necrotic cavitation and all other
regions (0.1–0.9) as surrounding pericavitational regions. To compare
TIGR maps and CBF maps across PWA and generate brain-behavior
relationships, the T2w/T1w ratio maps are spatially normalized to
MNI template space using a “chimera” spatial normalization
[described in the Supplementary Section of Krishnamurthy et al.
(2021)]. The overlap of all participant’s lesions in the MNI template
space is accomplished using afni’s 3dOverlap. The average of all
participant’s TIGR scores in the MNI template space is accomplished
using afni’s 3dmerge.

Three analysis pipelines to compute CBF

The analysis of pCASL data is accomplished with in-house scripts
using a combination of afni (version 22.2.10) and FSL (version 6.0.1)
commands. The “no blur” pipeline uses the following analysis steps: 1)
bulk-head motion correction is computed with afni’s 3dAllineate
using 6 degrees of freedom. 2) The motion parameters are used to
censor pairs of label and control images that contain motion
of >0.7 mm and >5 degrees of rotation. A minimum of 32 pairs
(out of a maximum of 40 pairs) were used for every participant’s
dataset. 3) The label and control images were subtracted in native
space to obtain the difference signal (=control-label) using afni’s
3dcalc and then averaged before conversion to physiological units.
4) To obtain CBF in physiological units, the difference signal
(=control-label) and M0 image are combined with a single-
compartment model to obtain units of mL/100 g/min (Buxton
et al., 1998; Alsop et al., 2015). 5) The CBF map was then
transformed into MNI space by registering to T1w space using
FreeSurfer’s bbregister and subsequently applying the chimera
warp into MNI space (FSL’s applywarp). All CBF results reported
here are in 1 × 1 × 1 mm3 MNI space, which also conforms to the
voxel size in the TIGR MRI map of tissue damage.

The “blur 4 in MNI” analysis pipeline uses the output of the “no
blur” pipeline and applies spatial smoothing (or blurring) within the
brain using a 4 mm full-width-half-maximum (FWHM) Gaussian
kernel (afni’s 3dmerge) to increase the signal-to-noise ratio (SNR).
The “blur 4 in native” analysis pipeline introduces a 4 mm FWHM
Gaussian kernel smoothing before the subtraction of control and
label images in native space to increase the SNR before subtraction.
The same transformations into T1w and MNI space computed for
the “no blur” images were then applied to the “blur 4 in native”
images to maintain comparability across all datasets. The general
difference between the three analysis pipelines is depicted in Figure 1
with group average output images.

Comparison between ASL analysis pipelines

To assess the impact of each of the ASL analysis pipelines on the
non-lesioned CBF values inMNI space, we extracted a 15 mm radius
sphere in the anterior cingulate cortex [ACC,MNI coordinates x = 0,
y = 44 (anterior), z = 18 (superior)]. We ensured that the ACC
15 mm region of interest (ROI) did not overlap with any individual
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participant’s lesion. We then applied the grey matter (GM) and
white matter (WM) segmentations computed on each participant’s
T1w image using FSL’s fast algorithm (Zhang et al., 2001) to extract
ACC GM and WM CBF values. The average CBF under each
participant’s individual GM and WM CBF maps were extracted
with afni’s 3dmaskave. A separate 15 mm spherical ROI outside of
the brain and head was used to extract the standard deviation of the
noise in the air. The following metrics were computed to assess the
quality of the quantified CBF from each pipeline:

Signal-to-Noise Ratio (SNR)

SNR � μtissue
σair

(1)

Coefficient of Variation (CoV)

CoV � σtissue
μtissue

(2)

Grey matter to White matter Contrast-to-Noise Ratio (CNR)

CNR � μGM − μWM

σair
(3)

Where σ represents the standard deviation of the CBF within the
ROI and μ represents the average CBF within the ROI.

Relationship between TIGR-quantified
tissue damage and CBF

We previously related perilesional regions (TIGR score =
0 within 10 mm of the lesion), low damage lesion regions (TIGR

score 0.1–0.3), medium damage lesion regions (TIGR score 0.4–0.7),
and high damage lesion regions (TIGR score 0.8–1.0) to decrease in
cerebral blood flow in six participants (Krishnamurthy et al., 2021).
We now expand upon this finding by leveraging the interpolated 1 ×
1 × 1 mm3 CBF image to directly relate with the 1 × 1 × 1 mm3 TIGR
map in 14 participants, allowing us to use the computed TIGR score
rather than averaging over a range of TIGR scores. An ROI for each
TIGR score was generated (0.1, 0.2, 0.3, . . . , 1.0) which is unique to
each subject based on their lesion location, TIGR map profile, and
ROI size. For each participant, an average CBF value was computed
for each ROI.

To assess the relationship between CBF and tissue damage
within the lesion, a linear regression was performed in JMP
Pro16 (Cary, NC) for each participant. The fit of the linear
model is reported with R2 and F-statistic, with the corresponding
p-value. To account for multiple tests being performed, significance
was assessed using the Bonferroni corrected p-value of 0.01 divided
by N = 14 participants.

Further, given that both demographic and stroke-specific factors
may govern the amount of blood flow to the lesion, we completed an
ANOVA in JMP Pro16 to test if factors (tissue damage) along with
(time since stroke), (sex), (age), and cross terms (tissue damage*time
since stroke), (tissue damage*sex), (tissue damage*age), (time since
stroke*sex), (time since stroke*age), and (sex*age) explain CBF
within the lesion. The results of the model are reported with
F-statistic and subsequent t-tests are performed to determine
which terms had a significant effect. We also tested a separate
model that included WAB-AQ, as the aphasia quotient can be
used in the clinical setting.

FIGURE 1
Three analysis pipelines to compute CBF were tested. The spatial smoothing in the “blur 4 in native” pipeline occurs in the native space, prior to the
subtraction of control and label images. The spatial smoothing in the “blur 4 in MNI” pipeline occurs in the MNI space, and the “no blur” pipeline does not
have spatial smoothing applied to the images. The resulting CBF map is always in MNI space. Average CBF maps from 14 participants (all left hemisphere
lesions) for each analysis pipeline are shown as a reference.
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Multivariate brain-behavior relationships

We recently established that whole-brain task-fMRI data can be
used to quantify brain-behavior maps in PWA (Song et al., 2023).
Based on these promising results, we built upon this multi-variate

framework by using whole-brain CBF maps. We assessed the
feasibility of quantifying brain-behavior relationships between
whole-brain CBF maps and either HVLT-R or BVMT-R
behavioral measures using LESYMAP’s sparse canonical
correlation analysis (sccan) (Pustina et al., 2018) thresholded at

FIGURE 2
(A) The T1w, TIGR MRI, and CBF map from each individual participant, showing the heterogeneity of lesion location, tissue damage, and CBF maps.
(B) The maximum lesion overlap and the maximum average TIGR scores are in adjacent, but only partially overlapping, areas. Note: Left is left in the
images.
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p < 0.05. Because LESYMAP’s sccan models all voxels
simultaneously, no multiple comparison corrections are
necessary. To determine if whole-brain CBF maps can capture
brain-behavior results above and beyond structural imaging
modalities, we show results for TIGR maps and CBF maps, all in
MNI template space to facilitate group statistics and comparison
across methodologies. To account for the effects of lesion on the CBF
values, we covaried two lesion-derived metrics from each voxel only
if the relationship was significant: 1) lesion volume and 2) cavitation
volume. There were no other covariates such as age entered into the
modeling of the brain-behavior relationship. Due to the whole-brain
nature of CBF data, a whole-brain mask was generated by
overlapping binarized anatomical brain masks from each
participant (afni 3dOverlap) and thresholded at a minimum of
N = 10 participants represented in each voxel (afni 3dcalc). The
k-fold cross-validation for sccan was set to 7 and the output results
were clustered at 1,000 contiguous voxels.

Results

General results

PWA characteristics are shown in Table 1. All 14 participants
were ensured to have good-quality T1w, T2w, and pCASL images via
careful image pre-processing and quality control. The lesion location
was heterogeneous across the MCA territory and the CBF visually
decreased in their respective lesioned areas (Figure 2A). The false-
color TIGR map ranges from blue (0.1, least damaged) to red (1.0,
most damaged) and estimates the degree of tissue damage in the
lesioned area (Figure 2A). Of the 14 participants, the maximum
number of lesions that overlapped in any given region was 9 but did
not overlap with the maximally damaged regions as quantified by
TIGR (Figure 2B). The red portion of the colorbar in Figure 2B
represents the highest 80% of the maximum overlap or average
tissue damage. The lesion overlap is greater in white matter regions,
whereas the greatest average tissue damage is in gray matter regions
(Figure 2B).

Comparison of ASL analysis pipelines in
intact brain regions and the whole lesion

The average ACC GM CBF was 46.7 ± 7.7 mL/100 g/min for
blur-4-in-native, 47.7 ± 8.0 mL/100/min for blur-4-in-MNI, and
51.2 ± 8.5 mL/100 g/min for no-blur ASL analysis pipelines. The
average ACC WM CBF was 36.2 ± 7.4 mL/100 g/min for blur-4-in-
native, 33.9 ± 7.7 mL/100 g/min for blur-4-in-MNI, and 30.5 ±
8.5 mL/100 g/min for no-blur ASL analysis pipelines. An ANOVA
testing the effect of ASL analysis pipeline and tissue type on average
CBF values was significant [F (3,80) = 23.66, p < 0.0001], but
indicated that only the tissue type had a significant effect on
average CBF values (F = 70.87, p < 0.0001), while the ASL
analysis pipeline did not have a significant effect on average CBF
values (F = 0.06, p = 0.95). There is, however, a small effect of the
ASL analysis pipeline on GM-WM CNR [F (2,39) = 4.64, p = 0.02],
indicating that the no-blur ASL analysis pipeline provided a greater
CNR (2.8 ± 1.3) than the blur-4-in-MNI (CNR = 2.1 ± 1.2) and the

blur-4-in-native (CNR = 1.5 ± 0.9). This translates to the increased
pairwise t-statistic in GM and WM (Figure 3A), where blur-4-in-
native has pairwise GM-WM difference with t (13) = 7.8 (p <
0.0001), blur-4—in-MNI has a pairwise GM-WM difference with t
(13) = 9.3 (p < 0.0001), and no-blur has the greatest pairwise GM-
WM difference with t (13) = 10.4 (p < 0.0001). A significant decline
with age in ACC GM CBF was detected (t = −2.2, p = 0.04), but not
in ACC WM CBF (t = 0.5, p = 0.60).

The lesion CBF is significantly lower than the homologue WM
CBF (t = 11.2–12.8, p < 0.0001), which is remarkably lower than the
homologue GM CBF (t = 5.6–6.1, p < 0.0001), regardless of ASL
analysis pipeline (Figure 3B). The CoV of the CBF in the lesion area
is greater than in GM or WM, suggesting that more transitions in
CBF are captured within the entire lesion ROI compared to other
tissue types. Because not all lesioned tissue is equal, and some
regions may have more or less blood flow due to the degree of
tissue damage, it supports our expectation that a relationship
between tissue damage and CBF may be detectable.

Assessing the relationship between lesion
CBF and tissue damage

To assess the impact of tissue damage on blood flow, we plotted
the average lesion CBF against the TIGR score for each participant.
Most participants tend to have a higher CBF in less damaged tissue
and a lower CBF in more damaged tissue (Figure 4). To assess if the
relationship between CBF and TIGR is significant, linear regression
was applied to each participant’s dataset for each analysis pipeline.
As seen in Table 2, 6 out of 14 participants had a Bonferroni-
corrected significant relationship between CBF and TIGR. Further,
an additional 5 participants had non-Bonferroni corrected
significant relationships between CBF and TIGR. Only one
participant (S13) did not indicate any relationship between CBF
and TIGR score. Further, 12 out of 14 participants showed the
expected negative relationship between CBF and TIGR as indicated
by the column “sign of the slope” in Table 2. One participant showed
a significant positive relationship between CBF and TIGR. It is also
evident in Figure 4 that there is a lot of variability in the lesion CBF
that is not explained by tissue damage. For example, there is
variability in the CBF of the least damaged regions (TIGR = 0.1),
which ranges from 11–36 mL/100 g/min. Therefore, in the next
section, we introduce a model with more explanatory factors to
further describe the CBF within the lesion.

Modeling the effect of tissue damage, time
since stroke, age, and sex on blood flow to
the lesion

The CBF within the lesion was modeled with a group-level
ANOVA to further account for the variability by introducing
stroke-related factors tissue damage (from TIGR) and time
since stroke, and demographic-related factors age and sex, as
well as their cross terms. The CBF output from each of the
three ASL-analysis pipelines was modeled in separate ANOVAs
and the factor outputs are summarized in Table 3. The significant
factors include tissue damage, time since stroke, sex, age, and
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cross-terms age-by-sex and time since stroke-by-age. These factors
were significant, regardless of the analysis pipeline, but the best fit
of the lesion CBF was provided by the blur-4-in-MNI ASL-analysis
pipeline (F = 55.62, p < 0.0001). Although the no-blur pipeline
provided the greatest GM-WM contrast in intact brain regions
(Figure 3), the resulting ANOVA for the no-blur CBF provided the

lowest fit as indicated by the F-statistic (Table 3). Because WAB-
AQ is also a clinical (stroke-related) factor, we tested the addition
of WAB-AQ to the model but found that no terms with WAB-AQ
remained significantly related to lesion CBF. Therefore, we only
consider the model without WAB-AQ factors.

As indicated by Figure 5, more regional tissue damage within the
stroke lesion is related to a lower CBF within that region (defined by
the TIGR maps). Further, if more time has elapsed since the stroke,
the lesion CBF is also lower. The model also suggests that the lesion
CBF is higher in older participants compared to younger, which is
opposite to the intact ACC GM CBF. The model also identified that
Females tend to have a greater lesion CBF compared to Males.
Finally, there was an interaction between the two demographic
factors age-by-sex, but more interestingly, the model also
indicated a significant interaction between stroke and
demographic-related factors age-by-time since stroke. Because the
blur-4-in-MNI CBF output resulted in the best fit of stroke and
demographic-related factors, this CBF value is further graduated to
determine if brain-behavior relationships could be identified with
CBF maps.

Multivariate brain-behavior relationships

If a voxel’s CBF value across the group was significantly related
to either lesion or cavitation volume, the relationship was covaried
out to reduce any confounds in the identified brain-behavior
relationships. No significant relationships between lesion volume
or cavitation volume were identified with TIGR maps and therefore
not regressed out.

Significant multivariate brain-behavior relationships (thresholded at
p < 0.05) were found for BVMT total recall and BVMT recognition for

FIGURE 3
The quantified CBF from each ASL analysis pipeline. (A) The anterior cingulate cortex (ACC) GM and WM CBF. The number represents the t-statistic
of a paired t-test between tissue types. (B) Top row: The CBF of the lesion and its homologue GM and WM. The number represents the t-statistic of a
paired t-test between regions. Bottom row: The CoV of the CBF across the same tissue regions for each analysis pipeline.

FIGURE 4
Each participant’s lesion CBF at each TIGR score. Each line
represents the average CBF computed from all three ASL analysis
pipelines. The error envelope is constructed using the maximum and
minimum CBF computed from all three pipelines.
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both cavitation and lesion-corrected CBF data (Figure 6). TIGR maps
resulted in significant brain-behavior relationships with BVMT total
recall. The cavitation-corrected CBF maps show fewer brain-behavior
areas than the lesion-corrected CBF brain-behavior maps, although the
two input data tend to agree on the areas where both are significant. The
results in Figure 6 show that CBF-derived brain-behavior maps for
BVMT–total recall are distinct from the brain-behavior maps for
BVMT–recognition, suggesting that whole-brain CBF maps can
generate behavior-specific information. Further, the TIGR

relationship with BVMT total recall shows one overlapping and one
unique area compared to the CBF relationships with BVMT total recall,
suggesting the structural and functional modalities are complementary.
The BVMT total recall maps include the anterior thalamus and
retrosplenial cortex, both of which are associated with spatial-
memory-related behavior (Vann et al., 2009). Conversely, the
BVMT–recognition shows areas of the default mode network and
the right executive function network, which are involved in decision-
making (Sridharan et al., 2008). Finally, the HVLT behavior did not

TABLE 2 The statistics describing the linear relationship between CBF and TIGR for each subject (Sub) and each analysis method: blur-4-in-native, blur-4-in-MNI,
and no-blur. The * in the p-value column indicates significance at a Bonferroni corrected p = 0.01. The sign of the slope column indicates if the relationship is
negative (−) or positive (+). The bolded numbers correspond to the values with a * (significance at a Bonferroni corrected p = 0.01).

Sub Blur 4 in native Blur 4 in MNI No blur Sign of the slope

R2 F (1,8) p-value R2 F (1,8) p-value R2 F (1,8) p-value

S01 0.84 43.34 0.0002* 0.82 37.70 0.0003* 0.78 28.67 0.0007* -

S02 0.86 48.30 0.0001* 0.88 56.39 <0.0001* 0.90 73.98 <0.0001* -

S03 0.45 6.52 0.03 0.46 8.82 0.03 0.29 3.34 0.10 -

S04 0.35 4.27 0.07 0.36 4.57 0.07 0.25 2.65 0.14 -

S05 0.50 7.99 0.02 0.48 7.27 0.03 0.46 6.73 0.03 -

S06 0.82 36.22 0.0003* 0.81 33.69 0.0004* 0.75 24.05 0.001 -

S07 0.23 2.40 0.16 0.18 1.75 0.22 0.17 1.67 0.23 -

S08 0.85 45.44 0.0001* 0.81 34.52 0.0004* 0.82 37.45 0.0003* -

S09 0.62 13.29 0.007 0.64 14.36 0.005 0.63 13.56 0.006 -

S10 0.71 19.63 0.002 0.66 15.70 0.004 0.57 10.44 0.01 +

S11 0.44 6.27 0.04 0.34 4.05 0.08 0.24 2.59 0.15 -

S12 0.94 127.32 <0.0001* 0.92 90.70 <0.0001* 0.86 50.82 <0.0001* -

S13 0.02 0.16 0.70 0.01 0.07 0.80 0.01 0.07 0.80

S14 0.87 55.28 <0.0001* 0.90 75.63 <0.0001* 0.77 26.65 0.0009 -

TABLE 3 The ANOVA model output for each ASL analysis pipeline. The numbers indicate a t-statistic, except the bottom row, which is an F-statistic. The red box
indicates that blur-4-in-MNI produces the CBF values that are best described by the model. Note: For each model factor, **** indicates p < 0.0001, *** indicates p <
0.001, ** indicates p < 0.01, * indicates p < 0.05, and N/S is not significant. The bolded numbers indicate the greatest t or F statistic in that row (if significant).

Model factor Blur 4 in native Blur 4 in MNI No blur

sex 11.83**** 11.19**** 9.96****

age at scan 9.40**** 10.47**** 9.25****

age at scan × time since stroke 8.37**** 8.91**** 8.12****

age at scan × sex 6.80**** 6.34**** 5.74****

tissue damage (TIGR) −4.72**** −5.16**** −5.04****

time since stroke −4.11**** −3.95*** −3.25**

tissue damage × sex 2.32* 2.03* 1.93N/S

tissue damage × age at scan 1.55N/S 1.59N/S 1.44N/S

tissue damage × time since stroke −0.96N/S −0.96N/S −0.84N/S

time since stroke × sex −0.34N/S −0.07N/S 0.25N/S

F(10,129) = 54.90**** 55.62**** 45.36****
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result in significant brain-behavior maps using LESYMAP’s sccan
multivariate analysis for either TIGR or CBF imaging inputs.

Discussion

The results of this study demonstrate that CBF is detectable in
chronic stroke lesions, suggesting that the pericavitational regions may
be viable and can be engaged and targeted during aphasia and stroke
rehabilitation. We recommend that at least in chronic stroke datasets,
spatial smoothing should be applied in the MNI template space during

the CBF analysis to increase the grey matter and white matter contrast
while maintaining sensitivity to changes in tissue damage. We showed
for the first time that the CBF in chronic stroke lesions decreases with
increasing tissue damage as quantified by TIGR MRI. Further, we
showed that demographic and stroke-related factors also influence the
lesion blood flow, suggesting that individualization of stroke
intervention strategies is a priority to achieve optimal treatment
outcomes. Finally, using an advanced multivariate approach, for the
first time, we demonstrated that whole brain CBF in PWA is related to
visual-spatial learning and memory and can serve as complementary
information to lesion-based brain-behavior maps.

FIGURE 5
The leverage plots for the ANOVA model output. The lesion CBF is significantly associated with stroke-related factors of tissue damage and time
since stroke, and demographic-related factors of age and sex.

FIGURE 6
Multivariate brain-behavior maps using TIGRMRI and either cavitation-corrected or lesion-corrected cerebral blood flow (CBF) for BVMT total recall
and BVMT recognition. The gold indicates either mean TIGR (cavitation corrected) or lesion overlap (lesion corrected). The red and blue indicate regions
of significant multivariate brain-behavior relationships.
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Comparison of ASL analysis pipelines

Measuring cerebral blood flow within chronic stroke lesions is
challenging because of the small ASL signal and additional
reductions caused by tissue damage. However, we have shown
that standard pCASL MRI can effectively measure CBF within
these lesions. We improved the detection sensitivity of changes in
CBF in rapidly transitioning tissue damage by optimizing the step in
which spatial smoothing is applied within the ASL analysis pipeline.
Our approach increases the sensitivity to differences in tissue types,
including grey matter and white matter, as well as quantifying tissue
damage using the TIGR score. It is well accepted that GM has a
higher CBF than WM and previous studies have determined that
pCASL MRI can reliably detect WM perfusion (van Osch et al.,
2009). Therefore, we first assessed the effects of spatial smoothing on
the non-lesioned ACC and determined that the GM-WM
differences are detectable regardless if smoothing is applied in
native space, MNI template space, or not at all. However, there
was an increase in tissue contrast, when smoothing was applied in
MNI template space compared to native space, but the highest GM-
WM CNR was found if no smoothing was applied. Given these
results, we thought that no smoothing would provide the best
snapshot of lesion CBF, however, when modeling the CBF with
demographic and stroke-related factors (Table 3), it became
apparent that spatial smoothing in MNI template space was the
most appropriate.

As is well known from the functional and physiological MRI
literature, spatial smoothing provides stability to the regional MR
signal, generally benefitting the ASL perfusion signal (Wang et al.,
2005; Fazlollahi et al., 2015) andminimizing the anatomic variability
in group-level analyses (Scouten et al., 2006; Mikl et al., 2008).
However, there are also some negative outcomes of spatial
smoothing such as reductions in tissue CNR (Molloy et al.,
2014), loss in precision of cluster extent (Hagler et al., 2006), and
increased Type-1 errors in the estimation of group-level significant
maps (Vul et al., 2009). While we observed the expected decrease in
the tissue CNR, such a limitation should be evaluated within the
context of study goals. For clinical neuroradiological evaluation of
CBF maps at the individual level, perhaps tissue CNR becomes more
important. Instead, for group-level investigational research studies,
we show that the improved relationship between stroke and
demographic-related factors outweighs the reduced CNR.
Although the tissue damage transitions in the TIGR images can
be as rapid as 1–2 mm, possibly limited by the resolution of the T1w
and T2w images, blurring the CBF maps still improved the overall
relationship with tissue damage and other factors. It will be of
interest to repeat this study at the higher field strength of 7T, where
submillimeter resolution ASL data can be collected (Zuo et al., 2013)
and the SNR is 3-fold compared to 3T (Shao et al., 2021). Perhaps
due to these inherent signal improvements, smaller transitions in the
stroke lesion CBF signal can be detected at 7T. However, technical
limitations for implementing ASL at 7T such as specific absorption
rate (SAR) limits and the ability to achieve reasonably strong
labeling at a reasonably large labeling-plane offset may preclude a
widespread adaptation of TIGR and ASL data collection in stroke
participants and will likely serve as a validation of the present
findings. Instead, translating the current approach to wide-bore
research and clinical systems with lower gradient amplitudes may

help the translation of the approach into the clinic, particularly for
post-stroke individualization of rehabilitation approaches. Finally,
the impact of spatial smoothing and smoothing kernel size in MNI
space and its effect on the extent of detected cluster size and Type-1
errors is important but was not the focus of the current study. Future
work should consider advancing the stroke ASL analysis pipelines to
investigate these questions using larger datasets.

Another challenge to CBF quantification is the estimation of
tissue proton density (M0) to calibrate the perfusion signal. We used
a separately acquired M0 image to calibrate the perfusion data on a
voxel-by-voxel basis, rather than using the whole brain difference
signal or intact region as the calibration reference signal, as has
previously been used to reduce inter-subject variability (Aslan and
Lu, 2010). We hypothesize that the M0 voxel-by-voxel
normalization may be the most appropriate for stroke brains
because a whole-brain average will be influenced by lesion size
and location, possibly introducing more inter-subject variability,
and the intact control region may be affected by changes in blood
flow distal to the lesion (i.e., diaschisis), further introducing more
inter-subject variability. Future work should compare and contrast
the different CBF normalization techniques.

The relationship between lesion CBF and
tissue damage

We assessed the relationship between lesion CBF and tissue
damage using linear regression. A significantly decreasing CBF
with increasing tissue damage was detected in 6 out of
14 participants at a Bonferroni corrected p = 0.01 and in an
additional five participants at a non-Bonferroni corrected value
(Table 2) suggesting that this relationship will be detectable in
most chronic ischemic stroke lesions. In one participant, who is
characterized as a 50-year-old Male, 70 months post-stroke,
with Conduction aphasia, no relationship between CBF and
tissue damage was found; however, this was also the participant
with the lowest CBF value at a TIGR score of 0.1 (least tissue
damage). Therefore, the detectability of further tissue-damage-
related CBF decreases may be minimal for this participant.
Further, the CBF for this participant does decrease between
TIGR scores 0.1 and 0.6, but then rises again to peak at TIGR
score 0.9 and then falls to a minimum in the cavitation (TIGR
score 1.0). Indeed, the rise of CBF at a mid-level TIGR score is
observed in approximately half of the participants (Figure 4),
indicating that there may be a tissue-type transition. We
speculate that perhaps the lower TIGR scores of 0.1–0.5 (less
damage) are mapped to white matter, while TIGR scores of
0.6–0.9 (more damage) are mapped to grey matter. This would
explain the “jump” in CBF mid-way through the tissue damage
scores because GM always has higher CBF than WM but is now
confounded by the amount of damage impacting the tissue. This
does not mean that GM is necessarily always more damaged
than white matter, but may perhaps stem from the inherent
differences in tissue properties (cell type and morphology, tissue
T1 and T2, etc.) that are a latent confound to TIGR tissue
damage classification. The cavitation (TIGR score 1.0) is
mapped indiscriminately to either tissue type. It is worth
noting that the ratio of T1w to T2w anatomical images is
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known, rightly or wrongly, in other contexts as the “myelin
map” (Glasser and Van Essen, 2011; Boaventura et al., 2022) due
to its strong association with myelin content in the non-lesioned
brain. The ratio of T1 to T2 in myelin maps or T2 to T1 in TIGR
maps is a representation of microstructure differences across
brain regions–which, in a healthy brain can grossly be attributed
to regional differences in myelination. In stroke lesions, or most
neurological diseases, it is not so simple because the
microstructural changes are so vast and varied that the
change in the ratio cannot be attributed to a single cell type.
Empirical data to further investigate these observations does not
yet exist, and will likely rely on models to determine the
previous individual sulcal and gyral patterns of the lesioned
tissue. These models may also take into account atrophy and
pressure-related changes in sulcal patterns. All other
participants showed a significant reduction in CBF with
increasing tissue damage, as hypothesized, except for one,
which may be due to the pCASL MRI sequence, which is
discussed later in the Limitations section.

Lesion CBF relates to stroke and
demographic factors

The model output showed that CBF within the lesion was
significantly described by demographic factors “age” and “sex”
and stroke-related factors “time since stroke” and “tissue
damage.” CBF is a complex measure of vascular and metabolic
supply to the tissue (Drake and Iadecola, 2007), and incorporating
all of these factors in the model allows for an improved
understanding of clinically-relevant factors that are important for
diagnosis and treatment planning (Table 3; Figure 5).

It is well accepted that CBF reduces with age in healthy
participants (Mokhber et al., 2021), which we also detected in the
intact ACC GM ROI establishing the validity of our analysis
pipeline. However, the model result showing that lesion CBF is
more preserved in older individuals compared to younger
individuals is somewhat counterintuitive (Figure 5). It may be
that the global aging-related decline in brain connections results
in a reduced impact on blood flow to the lesion, or may have an
impact on post-stroke vascular dynamics. While it is encouraging
that our results reflect these exciting findings, empirical evidence of
such a relationship does not yet exist and more sophisticated multi-
modal work is needed to characterize the lesion physiology and
microstructure in humans.

The model also showed that Females have more preserved blood
flow to the lesion than Males, but this finding conforms to the bulk
of the literature on healthy aging, where cortical CBF in Females is
greater than in Males, at least at an age less than 65 (Aanerud et al.,
2017). The significant age-by-sex interaction term further indicates
that the lesion CBFmay be sensitive toMale-Female CBF differences
that change with age. However, the small sample size of Females
(N = 4, age 24–81) compared to Males (N = 10, age 35–73) strongly
indicates that this finding needs to be replicated with a much larger
cohort with a wide range in age and balanced representation of
Males to Females.

The stroke-related factor “time-since-stroke” showed that lesion
CBF declines as more time passes since the stroke. This may indicate

that metabolic and vascular declines are perhaps still occurring in
the chronic stages of stroke in the lesioned area, plausibly due to the
loss of neural cells due to lack of blood supply. This is an interesting
finding, as subcortical structures downstream from the lesion do not
change their volume in the chronic stages (Krishnamurthy et al.,
2020), indicating that these are subtle metabolic and vascular
processes that may occur locally and closer to the lesion.
Furthermore, the significant age-by-time since stroke interaction
further indicates that the rate of decline in CBF after stroke may
depend on the age at which the stroke occurred. This is one of the
first pieces of evidence that aging-by-disease interactions can be
quantified to help in individualized patient treatment planning.

The data indicated that lesion CBF decreases significantly with
increasing tissue damage (Table 2; Figure 4). This result was
reinforced in the model that accounted for both stroke and
demographic-related factors (Table 3; Figure 5). Therefore, if
TIGR MRI indicates that a region of the chronic stroke lesion is
pericavitational, it is likely that the damaged-but-intact tissue is
viable and can be reengaged with targeted rehabilitation.

Brain-behavior relationships

When examining the relationship between the brain and
behavior, researchers have relied on lesion information for over
200 years (Baldo et al., 2022). Although powerful and highly
informative, this approach limits the search for relationships to
only the areas where lesions occur. In PWA, that usually means only
the left hemisphere middle cerebral artery (MCA) territory is
inspected for brain-behavior relationships. Instead, using whole-
brain cerebral blood flow maps with CBF that is detectable in the
lesioned areas allows the entire brain now to become available when
assessing functional and physiological brain-behavior relationships.
First, we will examine the lesion-level brain-behavior relationships
and then extend the results into the CBF-based brain-behavior
relationships.

We previously showed that brain-behavior maps extracted with
TIGR show similar brain-behavior maps compared to binary lesions
(Krishnamurthy et al., 2021), but may have more statistical power
due to the continuous nature of TIGR compared to the binary “all-
or-none” nature of lesions maps. Therefore, given the small sample
size of N = 14 participants, we chose to evaluate lesion-based brain-
behavior maps using TIGR as the input. The BVMT total recall
related significantly to two regions of the group-level TIGR maps: 1)
a left frontal region encompassing primary sensory-motor, dorsal
pre-motor, and dorsal lateral prefrontal cortices, as well as the
posterior insula, and 2) a left parietal region encompassing
supramarginal gyrus and angular gyrus. The frontal region is
positively related to tissue damage, which indicates that damage
to these regions predicts better visuospatial function. This result is
counterintuitive because damage to any brain region will likely result
in some level of worse behavioral outcome. However, it may be that
damage to the frontal regions indicates a lower probability of
damage to the parietal regions, which instead shows a negative
relationship between tissue damage and BVMT total recall. In PWA,
the left inferior parietal lobule (IPL) is often associated with language
processes, but in the case of the visuospatial learning captured by the
BVMT total recall, it may be that this finding suggests that
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visuospatial learning is processed in both the right and left parietal
cortices because functions such as new learning are not clearly
localized (Goodglass et al., 1979). The clues to this can be gathered
from the CBF-derived brain-behavior maps.

The CBF-derived brain behavior maps show multiple distinct
areas, both within the lesion and distal to the lesion. The CBF-
derived brain-behavior region overlaps with the TIGR-based frontal
region, while the TIGR-based parietal brain-behavior region does
not overlap with the CBF-derived region. Therefore, the left parietal
involvement identified with only the TIGR information may
represent complementary information. It is not clear why the
CBF-related regions do not overlap with all TIGR-related regions,
especially since the TIGR ad CBF scores are linearly related.
However, other regions outside of the lesion are highlighted
when using CBF: specifically the right IPL. Therefore, the L-IPL
from TIGR and R-IPL from CBF together point to both
hemispheres’ involvement in BVMT total recall, showing that
visuospatial learning is related to the baseline blood flow to the
right parietal areas (as traditionally implicated in visuospatial
tasks) as well as the left parietal areas. The BVMT recognition
task, which recalls which shapes were encountered, has more right
lateralization in the CBF brain-behavior maps. This interpretation
would have been difficult when assessing lesion-derived brain-
behavior maps in the absence of the CBF-derived maps because the
additional network information is missing when confined to only
the lesion overlap areas. We recommend that the brain-behavior
mapping field go beyond lesion-based maps and start
incorporating whole-brain functional and physiological maps as
inputs. Both types of maps may agree on some regions but seem to
also provide unique and complementary information that together
helps improve our understanding of the brain and determine
targets of intervention.

We did not identify significant brain-behavior relationships with
verbal learning as measured with the HVLT-R, although the reasons
for this are not clear as the behavior was well distributed between
low and high values, and the lesion locations were also distributed
across the MCA territory. Perhaps the CBF maps did not show a
relationship to HVLT-R because verbal learning is more confined to
the left hemisphere compared to visuospatial learning. However,
TIGR MRI also did not relate to HVLT-R which was disappointing
as verbal learning in PWA is a predictor of rehabilitation success
(Dignam et al., 2017), and identifying the hubs of the brain network
involved in verbal learning may have been informative for treatment
planning.

In this report, we also assessed the effects of covarying the lesion
volume versus the cavitation volume from the CBF maps before
computing the brain-behavior maps. Both cavitation volume and
lesion volume had areas of significant correlation with CBF, and
both cavitation-corrected and lesion-corrected CBF resulted in
significant brain-behavior maps with similar regions (Figure 6).
Based on the number of significant regions captured by each
modality, we recommend that the field continue to correct by
lesion volume, not by cavitation volume. The cavitation-corrected
CBF, at least at this small sample size, seems to lose some statistical
sensitivity relating to behavior (both subcortical and frontal regions
are missing when correcting by cavitation size). Although the
cavitation represents the part of the lesion that is fully damaged,
it may be that the distal blood flow is more impacted by the size of

the lesion, regardless of how much potentially viable tissue is still
present in the lesion.

Finally, all brain-behavior results using CBF show a negative
relationship, indicating that greater blood flow to those brain
regions predicts a worse behavioral outcome. Such a result,
though counterintuitive, is not beyond the realm of possibility.
A theoretical, yet empirically elusive, construct in the stroke
literature is the concept of diaschisis (Carrera and Tononi,
2014)—defined as “neurophysiological changes that occur
distant to a focal brain lesion.” It may be that loss of input and
output to a region distal to the lesion may cause an increase in
blood flow due to a reduction in inhibitory tone (Blicher et al.,
2015), which together (i.e., GABA and CBF) influence cognitive
decline (Krishnamurthy V. et al., 2022; Krishnamurthy L. C. et al.,
2022). Therefore, an increased CBF distal to the lesion may
indicate a failure of the network and lead to worse behavioral
outcomes.

Limitations

This study is the first of its kind to assess the CBF in chronic
stroke lesions and relate to the underlying tissue damage of the
lesion. While the study has many novel discoveries, there are a
few limitations that also need to be highlighted. First, the study
sample size of N = 14 chronic stroke participants is small and
therefore should be viewed strictly as a proof-of-principle.
Particularly the model output and the brain-behavior
relationships require further testing with larger cohorts, as
these statistical tests usually require dozens of participants to
identify significant relationships (Sperber et al., 2019).
However, advanced multivariate approaches (such as
Lesymap’s sccan) are tailored to produce meaningful results
from small sample datasets. It may be that the input of a whole-
brain CBF map to the multivariate brain-behavior analysis
allowed the model to converge because the entire network is
represented in the data input, rather than a subset often defined
by a lesion overlap mask.

Another limitation of this study is the MRI sequence
parameters used to collect perfusion-weighted images. Our
pCASL MRI sequence used a 2D EPI acquisition without
background suppression and a single post-labeling delay. The
current recommendations of the field (Alsop et al., 2015) are to
use a 3D acquisition to remove the difference in blood arrival
between slices and to apply background suppression to improve
the computation of the difference signal by reducing the
overlying tissue signal. We chose not to use background
suppression because we are interested in quantifying the CBF
of the lesion, but the T1 of lesioned tissue is not known and
requires an additional MRI scan to quantify. Therefore,
background suppression in ASL sequences must still be
optimized for the chronic stroke brain, but will likely improve
the relationship between lesion CBF and tissue damage
quantified using TIGR. The lesion CBF of S10 likely suffered
from an inadequate subtraction and caused the relationship
between CBF and tissue damage to be positive, when all other
participants had the expected negative relationship. Further, the
intact WM CBF was consistently quantified at ~30 mL/100 g/min
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in this cohort, which is higher than the literature WM CBF of
~20 mL/100 g/min (Mokhber et al., 2021), possibly due to an
incomplete tissue subtraction. The other limitation of the pCASL
MRI sequence used in this study is the single post-labeling delay
of 2,200 ms, which is relatively long, but will not provide
additional information about blood arriving at a later time
due to collateral flow (Lou et al., 2019). It may be ideal to
collect two or more PLDs (perhaps up to 2,800 ms) to
improve upon the CBF quantification after stroke or use the
more advanced MR ASL fingerprinting (Su et al., 2017) to
quantify multiple physiological parameters such as CBF and
bolus arrival time using a single acquisition. Collecting MRS
ASL fingerprinting data could also rule out arterial transit time
artifacts that may occur in and around the lesion, which may be
responsible for the “jump” in CBF midway through the tissue
damage scores. The increased information from MR ASL
fingerprinting within chronic stroke lesions could help
improve the modeling of demographic and stroke-related
factors, as well as brain-behavior relationships.

The removal of physiological noise from the perfusion-weighted
signal was also not undertaken. We did not collect either cardiac or
respiratory information during the pCASL MRI acquisition, as such
data was not readily available using our setup. It has been shown that
removing both cardiac and respiratory fluctuations during the ASL
analysis can help improve the stability of the signals and remove
spurious regional variations (Hassanpour et al., 2018). It may be that
the slight negative CBF of highly damaged (i.e., cavitated) regions in
some participants may be a result of physiological pulsatility causing
a greater label signal compared to the control signal. Another means
of removing physiological noise in ASL images is to use ICA-
denoising approaches (Carone et al., 2019), but optimization and
development of ICA denoising on stroke ASL data was beyond the
scope of this report.

Conclusion

In summary, we presented for the first time that CBF can be
detected in chronic stroke lesions, demonstrating that this
signal relates to tissue damage, with adequate fidelity to
model with stroke and demographic-related factors and to
relate to behavior.
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