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First-motion polarity determination is essential for deriving volcanic and tectonic
earthquakes’ focal mechanisms, which provide crucial information about fault
structures and stress fields. Manual procedures for polarity determination are
time-consuming and prone to human error, leading to inaccurate results.
Automated algorithms can overcome these limitations, but accurately
identifying first-motion polarity is challenging. In this study, we present the
Convolutional First Motion (CFM) neural network, a label-noise robust strategy
based on a Convolutional Neural Network, to automatically identify first-motion
polarities of seismic records. CFM is trained on a large dataset of more than
140,000 waveforms and achieves a high accuracy of 97.4% and 96.3% on two
independent test sets. We also demonstrate CFM’s ability to correct mislabeled
waveforms in 92%of cases, evenwhen they belong to the training set. Our findings
highlight the effectiveness of deep learning approaches for first-motion polarity
determination and suggest the potential for combining CFM with other deep
learning techniques in volcano seismology.
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1 Introduction

In the field of Earth sciences, the study of seismic waves generated by earthquakes
occupies an important role since it allows us to retrieve the main features of both the
propagation medium and the seismic source. As for the seismic source, the attention is
mainly devoted to estimating the geometric and kinematic parameters, including the
location, magnitude, fault dimension and focal mechanisms. Focal mechanisms are
crucial to characterize the seismogenic fault structures and the stress field of a region,
from local to nationwide scale, in tectonic (Vavryčuk, 2014; Napolitano et al., 2021a; Uchide
et al., 2022), and volcanic areas (Roman et al., 2006; Judson et al., 2018; La Rocca and
Galluzzo, 2019; Aoki, 2022; Zhan et al., 2022).

The focal mechanisms can be computed using P-wave first-motion polarity (e.g., FPFIT;
Reasenberg, 1985; Snoke et al., 2003; Hardebeck and Shearer, 2002), the waveform
information (e.g., Zhao and Helmberger, 1994) or both (Weber, 2018). P-wave polarity
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is also used as an additional constraint in the moment-tensor
inversion (e.g., in volcanic settings, Dahm and Brandsdottir,
1997; Miller et al., 1998; Pesicek et al., 2012; Alvizuri and Tape,
2016) and full waveform inversion (e.g., for explosion Chiang et al.,
2014; Ford et al., 2009). Determining first-motion polarities by
manual procedures, mostly done for larger events, is time-
consuming, susceptible to human error and can result in
different outcomes depending on the expert analyst. In addition,
a proper identification of the first-motion polarity can be difficult
when dealing with small magnitude earthquakes. This may be due to
the unfavorable signal-to-noise ratio. An enhanced method of
identifying first-motion polarities will allow us to resolve the
focal mechanism of smaller magnitude events, thereby improving
our ability to characterize and interpret seismogenic areas.
Automated procedures (e.g., Chen and Holland, 2016; Pugh
et al., 2016) can avoid drawbacks, such as time consumption and
ensure reproducibility. Despite this, identifying first-motion polarity
is not a straightforward classification task that can be easily
expressed using mathematical procedures. Consequently, the
effectiveness of the automated algorithms (not based on machine
learning) relies on a limited number of parameters, which require
intensive human involvement to fine-tune, and may result in worse
performance compared to human analysis (Ross et al., 2018).

Deep learning offers a notable advantage in that prior knowledge
of the observed phenomena is not a prerequisite for model
development. This is attributed to the capability of Deep Neural
Networks (DNNs) to autonomously extract significant features from
raw data, eliminating the need for a mathematical representation of
the problem. Moreover, when confronted with extensive datasets,
deep learning has proved to be a suitable and highly effective
methodology to be employed. Hence, the vast amount of
seismological data represents an excellent opportunity for the
application of DNNs, making deep learning an ideal choice for
our purposes. Recent studies demonstrated the possibility of
developing effective and competitive applications of DNNs in the
study of seismic waves generated by earthquakes, volcanic eruptions,
explosions, along with other sources (Mousavi and Beroza, 2022).
DNNs have been used for events detection and location (Perol et al.,
2018), arrival times picking (Ross et al., 2018; Zhu and Beroza,
2019), data denoising (Richardson and Feller, 2019), classification of
volcano-seismic events (López-Pérez et al., 2020), construction of
suitable ontologies (Falanga et al., 2022), discrimination of explosive
and tectonic sources (Linville et al., 2019; Kong et al., 2022),
waveform recognition both focusing on transients and
continuous background acquisition (Rincon-Yanez et al., 2022)
and for ground motion prediction equations (Prezioso et al., 2022).

Several studies have demonstrated the significant applicability of
Convolutional Neural Networks (LeCun et al., 2015) in determining
the first-motion polarity. CNNs use convolutional layers to extract
spatial patterns from a multi-dimensional input array or matrix-like
data. By applying multiple filters with adjustable weights through a
process known as convolution, these filters extract relevant features
through their scanning process. Stacking multiple convolutional
layers allows the network to automatically learn and identify
relevant abstract features useful for the task. The ability of CNNs
to capture complex spatial relationships has made them particularly
effective in a wide range of image and signal processing tasks,
including the determination of first-motion polarity. One of the

earliest studies in this field, conducted by Ross et al. (2018), involved
training a simple CNN on 18.2 million seismograms from the
Southern California Seismic Network (SCSN) catalog, achieving a
precision in determining polarities of 95%. Hara et al. (2019)
established a lower limit on the number of waveforms required
for a satisfactory level of performance during training. The same
authors explored the possibility of using a CNN to predict
waveforms deriving from events located in regions different from
those where data used for the training set have been collected.
Uchide (2020) derived focal mechanisms and important
information about the stress field in Japan exploiting the first-
motion polarities determined by using a CNN-based technique.
Li et al. (2023) utilized the CNN by Zhao et al. (2023) to develop an
automatic workflow for focal mechanism inversion.

In this work, we present the Convolutional First Motion (CFM)
neural network, a label-noise robust strategy based on a CNN to
automatically identify first-motion polarities of seismic waves. We
take advantage of the regularization effects of dropout layers and the
implicit regularization properties of Stochastic Gradient Descent
(SGD), when used in combination with early stopping, to handle a
percentage of mislabelling (often known as noisy labels). CFM is
trained on more than 140,000 waveforms derived from INSTANCE
dataset (Michelini et al., 2021), and tested both on 8,983 waveforms
belonging to different events of the same dataset and on
4,072 waveforms collected from Napolitano et al. (2021b). We
found that when CFM is applied to mislabeled waveforms, which
we identified through a data visualization procedure, it corrects
them in 92% of the cases, even when they belong to the training set.
CFM showed high accuracy levels (i.e., 97.4% and 96.3%) when
tested on two independent test sets, high reliability and great
generalization ability. The approach shown in our study reveals
that an appropriate augmentation procedure can make the network
able to deal with uncertainty in arrival times, which increases the
potential for using CFM in combination with automatic deep
learning techniques for phase picking. Such methodology is
expected to have a strong impact on any problem related to the
source modeling of tectonic and volcanic quakes, whose
construction is founded on the best picking and phase recognition.

2 Data

We collected the seismic waveforms included in the INSTANCE
dataset (Michelini et al., 2021) and used them to train the neural
network and to evaluate its performance. The dataset, specifically
compiled to apply machine learning techniques, comprises
1,159,249 waveforms originating from different sources (natural
and anthropogenic earthquakes, volcanic eruptions, landslides along
with other sources). The waveforms were registered by both
velocimeters (HH, EH channels) and accelerometers (HN
channel) seismometers belonging to 19 seismic networks
operated and managed by several Italian institutions. The dataset
includes 54,000 earthquakes that occurred between January
2005 and January 2020 in Italy and surrounding regions, with
magnitude ranging from 0.0 to 6.5 (see Michelini et al., 2021 for
further details). Each datum consists of a 120 s time window. Each
waveform is associated with upward, downward, or undefined
polarity. We excluded all those events with undefined polarity. In
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addition, selecting only the vertical component of velocimeters data,
we achieved 161,198 seismic traces of which 103,530 showed upward
polarity and 57,668 downward polarity. We will refer to these
waveforms as dataset A (Figure 1A). We split this dataset into
three subsets, respectively used as.

• Training set: 141,972 waveforms (88.0% of the total data)
corresponding to 23,878 events shown as red circles in
Figure 1A;

• Validation set: 10,243 waveforms (6.4% of the total data)
corresponding to 2,275 events shown as orange circles in
Figure 1A;

• Testing set: 8,983 waveforms (5.6% of the total data)
corresponding to 2,398 events shown as blue circles in Figure 1A.

The spatial selection was made to avoid correlations between
waveforms in the different sets, following the approach proposed by
Uchide (2020). It is noteworthy that the validation set comprises
earthquakes from the Etna volcano region (orange box in
Figure 1A).

Then, we collected the 870 earthquakes (ML 1.8–5.0), recorded
during the 2010–2014 Pollino (Southern Italy) seismic sequence
(Figure 1B) by three seismic networks (Istituto Nazionale di
Geofisica e Vulcanologia (INGV), Università della Calabria
(UniCal) and Deutsche GeoForschungsZentrum (GFZ)) (Passarelli
et al., 2012; Margheriti et al., 2013) and located in the new 3D
velocity model by Napolitano et al. (2021b). From these events, we
selected the vertical components of the waveforms sampled at
100 Hz, registered by velocimeters and with clear P-wave
polarity. We refer to this dataset as dataset B. It comprises
4,072 manually picked waveforms derived from 824 out of the
original 870 events collected. We used dataset B as a second test

set to evaluate the performance of the neural network on data from a
specific Italian tectonic setting. To avoid any possible overlapping
between dataset A and dataset B, we removed the 821 common
waveforms in the former dataset.

In addition, we used seismic traces from the Southern California
Seismic Network (Ross et al., 2018) and western Japan region (Hara
et al., 2019) to evaluate the network’s generalization ability on
waveforms from completely different regions. For this purpose,
we selected the 863,151 waveforms belonging to the
273,882 earthquakes registered at 682 stations from the SCSN
dataset. This constitutes the part of the test set with definite
polarity used in Ross et al. (2018), whose magnitudes lie in the
range [−1.0,7.2]. Similarly, we used 3,930 waveforms (ML -1.3–6.2)
constituting a part of the test set sampled at 100 Hz provided to us by
Hara et al. (2019). The waveforms from the western Japan region
were registered by stations operated by the National Research
Institute for Earth Science and Disaster Prevention (NIED), the
National Institute of Advanced Industrial Science and Technology
(AIST), the Japan Meteorological Agency (JMA), and Kyoto
University (Hara et al., 2019).

3 Methods

3.1 Data visualization with SOM and label
noise

Before training the network on part of dataset A, the
preliminary step of our analysis has been the implementation
of a data visualization technique to investigate the waveforms. To
this end, we applied the Self Organizing Maps (SOM, Kohonen,
T., 2013). This unsupervised machine learning technique is

FIGURE 1
Localization of seismic events, shown with circles along the Italian peninsula. (A) The 28,551 events considered in dataset A (derived from the
INSTANCE dataset). Waveforms belonging to events displayed by red circles are used as training data. The orange and blue boxes respectively contain
events used to derive validation and test waveforms data. (B) The 842 events present in dataset B (derived from Napolitano et al., 2021b), located in
Southern Italy, whose waveforms are used as a second test set.
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highly efficient in reducing the dimensionality of large datasets,
by leveraging the similarities between the data, to cluster and
visualize them in a low-dimensional grid, while preserving their
topological structure. In order to focus the SOM on the features
of our interest, the map was given a representation of the data in
feature space. We normalized the traces to unit variance and we
focused our attention on time windows of 0.26 s (26 samples),
which include the 0.20 s preceding the P-arrivals and the 0.05 s
after. We used 5 samples after the arrival, as they were enough to
capture the entire first oscillation of the seismic wave in the case
of higher frequency earthquakes, and enough to point out the
trend of the oscillation in the case of lower frequency
earthquakes. A lower value was not sufficient to capture the
trend of oscillations in low-frequency events, whereas with
higher values we observed that the analysis also focused on
the second oscillations. We employed 20 samples before the
arrival as they constituted the minimum number required to
capture the essential characteristics of the noise trend in each
scenario. Features provided to the SOM were extracted either by
the Principal Component Analysis (Bishop and Nasrabadi, 2006),
to which the normalized 0.26-seconds-long time windows were
provided, and by evaluating averages of 0.16-seconds-long
moving temporal windows. The first average was calculated
over the time window starting from 0.19 s before the P-arrival,
and the subsequent 9 averages were calculated on shifted
windows, moving forward by 0.01 s each (1 sample), with the
last time window covering the last 0.16 s (from 0.10 s before the
arrival to 0.05 s after). In total, we gave the SOM 16 features,
namely, the first 6 principal components and 10 moving averages.
We chose to consider the principal components up to the sixth
because it was a fair trade-off between the number of dimensions
taken into account and the explained variance. By using six
components, we were able to achieve a 95% explained variance.

In our analysis, the map nodes were organized in a two-
dimensional hexagonal 8 × 8 grid (Supplementary Figure S1B
gives a representation of the grid). After the SOM training stage,
we displayed the waveforms’ clusters on the map of nodes. Each
single node represents a cluster that contains all those data whose
distance in input space is smaller than the distance to all other
nodes. Supplementary Figure S1A,S2A,S3A show the mean value
of the waveforms contained in each node and one-fifth of the
waveforms falling in each of them, respectively using the total,
upward, and downward first-motion polarity. The number of
waveforms in each cluster is represented by the size of the
hexagons in Supplementary Figure S1B,S2B,S3B. We observe
that the map places most of the waveform with downward
polarity on the left side of the grid (Supplementary Figure
S3B), especially in the upper part, while the waveforms with
upward polarities are mostly placed on the right side of the grid
(Supplementary Figure S2B), with the more populated nodes
situated in the lower part. The net separation between the two
parts provides a strong indication that, generally, the polarities
are resolved in an unambiguous way. Nevertheless, a problem
often encountered is that the polarities can be mistakenly labeled.
To overcome such difficulty, we investigated the SOM results in
more detail.

Figure 2 shows in each cell the weighted percentage of traces
with upward polarities contained in it. Since the number of

downward polarities is smaller than the upward one in dataset A,
a weighted percentage is required for a robust analysis. Specifically,
the value cij, showed in the cell relative to the node located in the i-th
row and j-th column of the grid, is:

cij � Uij

Uij + wDij
, (1.1)

where Uij and Dij are respectively the number of upward and
downward waveforms assigned to the node ij, and
w � ∑

ij

Uij/∑
ij

Dij. We notice the presence of some cells whose

percentages of upward polarities are less than 1% or more than 99%.
Considering the possibility of labeling errors in the dataset, we
hypothesize that the high (low)-populated-upward cells represent
nodes where all or most of the waveforms share the same polarity.
Consequently, we suppose that the 458 outliers traces falling in those
nodes (namely, the waveforms with an assigned polarity different
from the majority) are likely to be mislabeled examples.

In fact, we manually checked that at least 100 of the 123 down-
labeled traces, which fell in nodes with a weighted percentage of up-
labeled data above 99%, had indeed an upward polarity. Analogously,
at least 237 of the 336 up-labeled traces, located in nodes with more
than 99% down-populated data, were clear waveforms with negative
polarity. The remaining traces were mostly unclear waveforms, where
extracting polarity information was a challenging task also for a
human analyst. We do not exclude the presence of other
mislabeled data (respect to the 337 found by the SOM
visualization). A visual inspection of 1,000 randomly selected
waveforms highlighted that approximately 8% of waveforms are
affected by some problems, such as noisy arrival times or not
reliable polarity information.

This level of noise is very common in real-world datasets,
especially in the case of such large ones, where the ratio of

FIGURE 2
Heatmap relative to SOM nodes, showing the weighted
percentages cij of upward waveforms laying in each node. We infer
that the waveforms with assigned polarity different from the majority
falling in dark blue and dark red cells (percentages less than 1% or
more than 99%) are mislabeled data.
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corrupted labels can cover, in some cases, up to 40% of the entire
dataset (Song et al., 2022). Although it may appear to have drastic
consequences to use problematic data to train a classifier, numerous
studies have demonstrated that, with appropriate precautions and
depending on the nature of the encountered noise, deep learning can
exhibit remarkable robustness (Rolnick et al., 2017; Drory et al.,
2018). Furthermore, other works highlight that noise can also be
useful to better generalize (Damian et al., 2021).

Subsequent investigations revealed that attempting to clean our
dataset yielded no significant benefits. Specifically, a second SOM
visualization technique, similar to the one previously described, has
been applied. This analysis aimed to analyze upward and downward
polarity waveforms separately and enabled us to remove from
dataset A approximately 10,000 waveforms. We excluded all the
waveforms that fell within SOM nodes where we determined the
majority of the data to be ambiguous or where extracting polarity
information was very challenging. These waveforms comprised
elements from the training, validation, and test sets.
Supplementary Figure S4 shows some of the excluded nodes. In
Supplementary Table S1, we compare the performance of the
network trained on the original training set with the network
trained on the cleaned training set, presenting the performance
on both the cleaned test set and the original test set. Notably, we
observed no significant differences in the performance of the two
networks, when tested on the same test-set. Therefore, despite the
presence of mislabelling in our dataset, we have chosen not to
exclude any waveform, but rather, we aimed to design a network that
can effectively handle and mitigate the effects of label noise, without
the need for a preliminary selection of data points, which can result
in information loss.

3.2 CFM architecture and preprocessing
stage

The CFM network exclusively utilizes the vertical component of
waveforms that have been sampled at a frequency of 100 Hz whose
polarity information is available. To ensure consistency of the input
data, all waveforms are subjected to a standardized preprocessing
stage. Specifically, we subtracted to each waveform themean value of
the noise, from 200 samples (2.0 s) before the corresponding P
arrival time to 5 samples before (in order to not include in the value
of the mean some unbalanced oscillations due to the seismic phase).
Subsequently, the initial wave portion is emphasized by setting a
clipping threshold, in order not to neglect any of the smaller
oscillations resulting from the signal (Uchide T., 2020). In this
work, the threshold is different for each data point. To decide its
value, the amplitude of the highest peak among those preceding the
arrival time by at least 5 points was considered for each waveform.
The threshold is equal to 20 times the value of this amplitude. Each
seismogram is normalized to its respective threshold value. The
portion of the signal exceeding this threshold is cut off. Previous
studies did not highlight a specific filtering standard. Uchide (2020)
used a high-pass filter at 1 Hz, while Ross et al. (2018) applied a filter
between 1 and 20 Hz. On the other hand, Hara et al. (2019) and
Chakraborty et al. (2022) avoided using any filter. CNN (and other
deep networks) are known to work well on raw data (Goodfellow
et al., 2016), since they learn features during training, in a

hierarchical way, where initial layers acquire local features from
data and the final layers extract global features representing high-
level information. Considering these factors, we decided not to apply
any frequency filters to our data.

We chose as our training set the part of dataset A outside the two
boxes depicted in Figure 1A. Waveforms were presented in time
windows of 160 samples (1.60s, 0.79 preceding the P-arrival and
0.80 after), with the 80th sample corresponding to the declared
P-arrival times. During the training stage, we presented to the
network both waveforms and their corresponding labels.
Specifically, we assigned to a generic waveform x the label yx � 1
if its label in the dataset was “upward” polarity; else yx � 0. As
previously stated, dataset A contains 103,530 upward and
57,668 downward polarity waveforms, resulting in an upward/
downward ratio of 1.8. Similar level of unbalance is present in
the selected data constituting our training set (on 141,972 total
waveforms 91,563 showed upward polarity, while 50,409 showed
downward polarity). A class imbalance may lead the network to
prioritize the majority class, resulting in overlooking the
characteristics of the minority class (Wang et al., 2016). For this
reason, we balanced the training data applying a data augmentation
technique (Uchide T., 2020; Chakraborty et al., 2022; Falanga et al.,
2022) that allowed us to use a single data twice: the original trace and
the corresponding flipped one, obtained by multiplying −1 and
assigning it the opposite polarity. As a result, our augmented
training set doubled in size, comprising 283,944 waveforms, with
half exhibiting upward polarity and the remaining half exhibiting
downward polarity. We did not augment test or validation data.

Figure 3 represents the Convolutional Neural Network
architecture used in the present study. The network architecture
is divided into two stages, the first of which is represented by the
Convolutional layers. They provide a very efficient way to extract
relevant features from grid-like data (Goodfellow et al., 2016), such
as in the case of 1D time series (Kiranyaz et al., 2021) or 2D grids of
pixel, i.e., images (Krizhevsky et al., 2017). The ReLU activation
function is employed after each convolutional layer, owing to its
well-known benefits in facilitating the training process (Krizhevsky
et al., 2017). After three of the five Convolutional layers, a
MaxPooling layer is added, which reduces the dimension of the
input, preserving the most important features, and helps the
network to gain translational invariance (Goodfellow et al., 2016).
We also added Dropout layers, which are known to improve
performance in case of training with noisy labels (Rusiecki,
2020), and prevent overfitting. In the second part of the network,
the classification task is performed. The final layer’s sigmoid, or
logistic, activation function produces an output in the range [0, 1].
This choice allows the network output to be interpreted as the
probability of an input vector to belong to one of the two
investigated classes. We have used a threshold value of 0.5, above
which we interpret data as having upward polarity and below which
we interpret data as having downward polarity.

We set the binary cross-entropy as the loss function to be
minimized. To train the network, we used the Stochastic
Gradient Descent (Robbins and Monro, 1951). SGD is one of the
most simple and effective optimization methods widely used, and it
can lead to better generalization performance compared to other
more sophisticated methods. SGD is considered to play a central role
in the observed generalization abilities of deep learning, since its
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stochasticity, resulting from the mini-batch sampling procedure, can
provide a crucial implicit regularization effect (Ali et al., 2020).
Moreover, the implicit regularization properties of SGD (Damian

et al., 2021) are particularly useful when dealing with noisy data. We
exploited the Stochastic Gradient Descend with the addition of
Momentum. The default learning rate of 0.01 shows good

FIGURE 3
Architecture of the CFM, the deep Convolutional neural network for First Motion polarity classification used in this study. Numbers under each layer
indicate its shape (i.e., number of channels x number of samples). ConvPool and ConvDrop indicate convolution with maxpooling and convolution with
dropout, respectively. The values of K under each convolutional layer indicate the corresponding kernel size. The Flatten procedure (light blue arrow) only
reshapes the previous layer in a one-dimensional array, without affecting any value.

FIGURE 4
Confusionmatrices for dataset A (A) and dataset B (B) test sets. The x-axis shows network prediction, while the y-axis reports the labels present in the
dataset. The accuracies for dataset A and dataset B are approximately 97.4% and 96.3%, respectively.

Frontiers in Earth Science frontiersin.org06

Messuti et al. 10.3389/feart.2023.1223686

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1223686


performances (multiple training with learning rate in the range
[0.007, 0.015] did not highlight substantial differences). We fixed
the momentum parameter to be equal to 0.8 and the batch size value
equal to 512.

We set the maximum number of epochs to 100 and, to prevent
overfitting, we implemented an early stopping technique that
interrupts the training if there is no improvement in the
validation loss for 7 consecutive epochs. Early stopping is also an
effective implicit regularization technique, which has been observed
to be surprisingly effective in preventing overfitting to mislabeled
data, especially when used in combination with first-order
optimization algorithms, such as SGD (Li et al., 2020).

4 Results

CFM was trained on waveforms outside blue and orange boxes
in Figure 1A. The early stopping technique stopped the training at
epoch number 20.We then evaluated the performance on the test set
derived from dataset A (Figure 1A, blue box) and on the dataset B
(Figure 1B), expressing it through confusion matrices (Figures 4A,B,
respectively), showing the number of samples labeled consistently
with the dataset (top-left and bottom-right) or oppositely (top-right
and bottom-left). From them, we computed the accuracies, defined
as the number of correct predictions divided by the total ones. The
network reached accuracies of 97.4% and 96.3%, respectively.

To provide a measure of the network’s reliability, we
evaluated its behavior as the output varies on dataset A test
set. A classifier is said to be ‘well-calibrated’ when its output
probability can be directly interpreted as a confidence level
(Dawid, 1982). For instance, a well-calibrated classifier should
classify the samples such that among the samples to which it gave

a predicted probability close to 0.8, approximately 80% actually
belong to the positive class, which in our case is represented by
upward polarity. Figure 5 represents a reliability diagram of our
network (Niculescu-Mizil and Caruana, 2005), which indicates
how often data points assigned a certain forecast output
probability interval actually exhibit upward polarity (assigned
in the dataset). Mathematically, the value of the height of the
rectangle belonging to the bin Ik corresponds to the empirical
probability:

P yx � 1
∣∣∣∣ ĈFM x( ) ∈ Ik( ) � x: yx � 1, ĈFM x( ) ∈ Ik{ }

∣∣∣∣∣
∣∣∣∣∣

x: ĈFM x( ) ∈ Ik{ }
∣∣∣∣∣

∣∣∣∣∣
, (1.2)

where x is a generic data point, yx is its label, ĈFM(x) the network
out probability and | · | represents the cardinality of the ensemble.
Although reliability diagrams can be helpful for visualizing
calibration, having a scalar summary statistic of calibration is
more practical. To this end, we calculated the Expected
Calibration Error (Guo et al., 2017):

ECE � ∑
M

m�1

nm
n

acc Bm( ) − conf Bm( )∣∣∣∣
∣∣∣∣, (1.3)

wherem is the number of predictions in bin m, n is the total number
of data points, and acc (m) and conf (m) are the accuracy and
confidence of bin m, respectively. The ECE values range in the
interval [0, 1], and the lower they are, the better the calibration of a
model. We obtained an ECE value of 3.7% for our network. In
general, ECE values depend on the specific task and dataset involved.
For a general comparison, refer to Guo et al., 2017.

4.1 CFM robustness to false annotations

We remember the SOM analysis of Section 3.1 revealed the
presence of 337 waveforms with false labels (located within the
nodes highlighted in Figure 2). Since the training set covers the
majority of dataset A, the majority of these outlier waveforms
(specifically 311) also belong to it. Despite the fact that the
training algorithm forces the network output to match the
assigned label, we found that 310 out of the 337 misclassified
waveforms are assigned to the correct class by CFM. Figure 6
shows some examples of such waveforms we identified in Section
3.1 and for which the network predicts correct polarities. Given that
the network successfully corrected 92% of the false labels, we
consider this as evidence of its ability to be robust to overfitting
erroneous labels.

4.2 Dealing with uncertain arrival times

In this section, to check the robustness of the network to
uncertainty in arrival times, we evaluated the performance of
the network including artificial time shifts in arrival times. To
this end, we shifted each time-window of dataset A test set by a
constant value of T samples, with values of T in the range
[-20,20]. A value of T = 5, for example, indicates that the time
window center is located 5 samples (0.05 s) past the declared

FIGURE 5
Reliability diagram of the network. Predictions made by the
model are grouped into bins based on their predicted probabilities.
The heights of the bars are the proportion of true positive cases within
each bin. Green edges represent the average predicted
probability of the bin, i.e., the optimal calibration. Numbers on each
bar indicate the upward (red) and downward (blue) polarity waveforms
laying in each bin.
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P-arrival. Red line in Figure 7 shows the behavior of the network
(trained on centered time-windows) varying T as test sample-
shift. We notice that, as expected, accuracy is highest when there
is no shift. Accuracy rapidly declines, dropping to 50% when
there is a shift of +10 samples, indicating a significant
degradation in performance.

Anyway, uncertainty in fixing the onset of P-wave is a trouble
that often affects experimental data becoming much more difficult
to manage for different reasons: poor signal-to-noise ratio,
magnitude of the events decreases (small-energy/magnitude
earthquake), recording stations installed in densely populated
areas, complex medium properties, volcanic environment.

For this reason, we explored the possibility of giving the network the

ability to dealwith uncertainty inP-arrival times. Specifically, we developed

an aimed augmentation strategy and performed a second training strategy,

including a time-shift in the training set too. We used a time-shift

augmentation procedure perturbing the centering of time windows

contained in the training set, leaving the validation set unperturbed.
In particular, we selected 50% of the training waveforms and

applied two independent uniform random time-shifts to each. The
first time-shift was selected from the range [-N, −1], and the second
from [1, N]. The original waveform and the two shifted versions
were then included in the training set. We conducted two training
sessions, on two augmented training sets, with N values of 5 and 10,
respectively. Evaluating performance on unperturbed dataset A test
set (T=0), we observe accuracy levels of 97.2% (in the case of N=10)
and of 97.3% (in the case of N=5), which are slightly lower than the

FIGURE 6
Some seismic traces erroneously labeled by the analyst that we identified with the SOM data visualization in Section 3.1. On the top of each subplot,
we annotate the magnitude of the event (M) and the signal-to-noise ratio (SNR). Passigned and Ppredicted refer to the polarity assigned in the dataset and the
prediction of the network (with the corresponding probability to belong to the predicted class in square brackets).

FIGURE 7
The performances of the CFM network on the test set after the
two different training strategies. The blue and green lines refer to the
trainings with a time-shift in the training set, with a maximum value N
of 5 and 10 samples respectively. The red line shows the training
without random time-shifts in the training set. Performance is shown
as a function of the different shifts T in the test set. Dashed black lines
refer to accuracy levels of 0.5 and 0.75.
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correspondent obtained by the model trained on unperturbed
waveforms. However, as shown by the blue and green lines in
Figure 7, adding time-shifts to the training set can lead to an
improvement in performance in the presence of uncertain arrival
times. In particular, we observed a broader plateau where the
accuracy remains above 92.4%, even when dealing with shifts of
10 samples, in the case of N=10 (green line), and it takes
17 translation test samples to reduce the accuracy below 75%.

4.3 Model generalization ability

To evaluate the generalization ability of the CFM network, we
checked the capability to generate accurate predictions on new
datasets coming from completely different geographic regions
(Southern California and western Japan regions), using
recordings obtained by different seismic networks, and far from
the region (Italy) on which the net was trained on.

We first utilized the SCSN test dataset provided by Ross et al.
(2018). We excluded waveforms without assigned polarity, resulting
in 863,151 traces suitable for our purposes. The network achieves an
accuracy of 98.4% for waveforms with SNR greater than or equal to
10, while the accuracy is 96.3% for waveforms with a SNR less than
10. The overall accuracy is 97.5%, comparable to the model trained
by Ross et al. (2018) on the SCSN dataset (i.e. 95%). Figure 8A shows
the confusion matrix related to the network prevision on the SCSN
dataset.

We furthermore tested the performance on the test set provided
by Hara et al. (2019), using only the 3,930 waveforms sampled at
100 Hz. We recall that CFM inputs are 160-sample waveforms,
whereas the dataset we received contains 150-sample waveforms.
Therefore, we have decided to conduct an additional training while
keeping all the settings presented in the previous sections
unchanged, except for the input shape, which we have adjusted

to 150 samples to ensure compatibility. This additional training
resulted in similar performances on both the dataset A and dataset B
test sets when compared to the performance achieved with the 160-
sample training. The predictions on the Hara et al. (2019) test set are
presented in Figure 8B, from which one can compute an accuracy
value of about 91.5%, slightly lower than the 95.4% obtained by the
model of Hara et al. (2019).

5 Discussion

First-motion polarity determination can be a challenging task
even for expert analysts, mainly when dealing with small-magnitude
events, in both tectonic and volcanic environments. Deep learning
neural networks have been widely applied in geophysics. Among
many other applications, they have been used to detect first-motion
polarities (Ross et al., 2018; Hara et al., 2019; Uchide, 2020;
Chakraborty et al., 2022).

In this work, we developed the CFM network, a straightforward
Convolutional Neural Network that can accurately identify the first-
motion waveform polarity. Our results showed that CFM achieved a
testing accuracy of 97.4% when applied to previously unseen traces.
CFM also shows well generalization abilities, resulting in high
accuracies on waveforms recorded from seismic networks located
in completely different regions than those utilized to derive the
training set (i.e., waveforms derived from the SCSN and western
Japan test sets). For the SCSN test set, as noted in the previous works
by Ross et al. (2018); Chakraborty et al. (2022), performance is better
when dealing with waveforms that have a SNR greater than 10. Even
if this is confirmed in our results, our network shows a gap in
performance on different SNR of 2.1% when tested on SCSN test set,
which is significantly lower than the 7.9% reported by Chakraborty
et al. (2022). For the western Japan region, the accuracy achieved by
CFM on the Hara et al. (2019) test set, at 91.5%, is slightly lower than

FIGURE 8
Confusionmatrices for SCSN (A) and western Japan (B) test sets. The accuracies are approximately 97.5% and 91.5%, respectively. We recall that the
performance on the western Japan test set refers to the different training using 150 as input waveforms.
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the accuracies obtained on the other test sets and the one reported by
Hara et al. (2019) themselves. However, a manual analysis of all
333 misclassified waveforms revealed that the polarity assigned in
the test set was correct only in 29 cases, while for 59 waveforms the
polarity identified by the model was correct. Other waveforms either
presented ambiguous or unextractable polarity (119 waveforms) or
had a considerable error in arrival time, up to 35 samples
(126 waveforms). Supplementary Figure S5 provides a
representation of the various cases. These findings confirm that
the instances where the network does not perform well are
remarkably limited, and its inferior performance cannot be
attributed to shortcomings.

We observed that the employed implicit regularization strategies
prevented the network from overfitting mislabeled data, resulting in
the network’s ability to correct false labeling, even when the
mislabeled waveforms are present in the training set. In line with
previous studies (Uchide, 2020; Chakraborty et al., 2022), we
demonstrated that implementing a time-shift augmentation
procedure can lead to a decrease in performance when applied to
unperturbed waveforms. However, unlike previous works, our
additional training stages uncovered that an accurate
augmentation procedure enables the handling of uncertainties in
arrival times with only a minimal loss in performance on the
unaltered data.

We also observe CFM exhibiting good calibration properties,
which is critical for ensuring a high level of reliability in the model’s
outputs, although we did not carry out any explicit calibration
processes (Guo et al., 2017). In addition, we observe (Figure 5)
that when the network works on waveforms with defined polarity, as
in our case, the vast majority of outputs lie in the ranges [0, 0.1] for
downward polarity and [0.9, 1] for upward polarity, resulting in high
reliability. Due to its well-calibration properties, CFM is able to
produce accurate probability estimates, enabling us to make
informed decisions based on the output probability values. For
example, a threshold can be introduced to determine when to
accept or reject a prediction.

In conclusion, our study introduces the robust and highly
adaptable CFM network that holds significant potential for
determining the P-wave polarities. The generalization ability
of the algorithm in producing accurate prediction on
waveforms registered in regions different from those used to
derive training data and its ability to rectify previously
misclassified polarities are noteworthy contributions of this
research. CFM key selling point lies in its capability to
efficiently revise or validate large volumes of analyst-derived
first-motion polarities in historic catalogs using a consistent
method. It is important to note that the algorithm relies on
phase arrival times and therefore cannot handle catalogs without
this information. Although the application was presented on
manually obtained picks, our findings suggest that the CFM
network can easily be adapted downstream of the application
of an automatic P-phase detection and labeling network, which is
currently being worked on as a future development. This
integration would enhance its adaptability and streamline the
resolution of poorly-determined focal mechanisms in catalogs by
quickly and robustly rectifying mislabeled first-motion polarities
in databases. Overall, our research lays the foundation for further
advancements in accurately characterizing tectonic and volcanic

seismic events and improving our understanding of focal
mechanisms.
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