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Osteoarthritis (OA) is a chronic inflammatory disease that causes synovial
hyperplasia, cartilage destruction, and the formation of bone spurs.
Macrophages play an indispensable role in the pathogenesis of OA by
producing proinflammatory cytokines. To achieve the effect of arthritis,
hormones can effectively inhibit the progression of inflammation by inhibiting
the secretion of inflammatory cytokines by macrophages in traditional therapy.
However, the drug is quickly cleared from the joint space, and the high injection
site infection rate and low local drug concentration make the clinical efficacy of
corticosteroids greatly reduced. We described the design and preparation of
Polyethylene Glycol-grafted Poly Alpha-lipoic Acid-dexamethasone
Nanoparticles (NPDXM/PPLA), elucidated the mechanism of action of NPDXM/PPLA

in the treatment of OA in mice, and provided an experimental basis for
investigating the treatment of OA with polymer nanoparticles loaded with
dexamethasone. Flow cytometry and confocal laser scanning microscopy were
used to confirm that NPDXM/PPLA was well absorbed and released bymacrophages,
and it was discovered that NPDXM/PPLA could efficiently reduce the proliferation of
activated macrophages (RAW 264.7 cells). Enzyme-linked immunosorbent assay
revealed that NPDXM/PPLA could efficiently reduce the expression of
proinflammatory cytokines IL-1β, IL-6, and TNF-α. The knee bone structure of
OA mice was investigated by MicroCT, and it was discovered that intraarticular
injection of NPDXM/PPLA effectively alleviated the bone damage of the articular
cartilage. Therefore, NPDXM/PPLA is a potential therapeutic nanomedicine for the
treatment of OA.
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1 Introduction

Osteoarthritis is commonly an age-related disease with a degenerative illness of the
joints. The most common symptoms of osteoarthritis are articular cartilage wear and
synovitis, which causes pain and swelling in the joint, as well as limited activity (French et al.,
2013; Fernanda et al., 2018). OA affects not only articular cartilage but also the entire joint,
including the subchondral bone, ligament, synovium, meniscus, and even the muscles
around the joint (Martel-Pelletier et al., 2012). Although the pathogenesis of OA is not fully
understood, the disease is characterized by the gradual degeneration of articular cartilage.
Recent studies found that this progressive degeneration is related to oxidative stress, and
reactive oxygen species play a significant role in this procedure (Lepetsos and Papavassiliou,
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2016). At the same time, the inflammatory microenvironment plays
a significant role in the occurrence and development of OA. The
severe inflammatory response of macrophages results in the
recruitment of a large number of inflammatory cells and the
secretion of high levels of proinflammatory cytokines such as IL-
1β, IL-6, TNF-A, and matrix metalloproteinases (MMPs) at the
lesion site. Reduces proteoglycan synthesis and type II collagen, and
aggravates cartilage erosion and degeneration (Bondeson et al., 2006;
Blom et al., 2007; Crielaard et al., 2012; Sonderegger et al., 2012;
Agarwal et al., 2016; Sang et al., 2016).

In clinical practice, intraarticular injection of corticosteroids or
hyaluronic acid is often employed to relieve pain and control
inflammation (Jones et al., 2018; Conaghan et al., 2019). Although
corticosteroids can alleviate pain and other symptoms, their related side
effects and the rate of joint cavity clearance severely limit their clinical
application (Evans et al., 2014; Brown et al., 2019). Corticosteroids
injected into the joint cavity are cleared with a half-life of 1–4 h (Brown
et al., 2019). Multiple intraarticular injections are needed to achieve
therapeutic effects. However, repeated intraarticular injections can
cause joint infection, and long-term corticosteroids use can destroy
articular cartilage and hasten joint degeneration (McAlindon et al.,
2018). With the continuous development of medical chemistry,
researchers have used nanomaterials as drug delivery carriers.
Nanomaterials have consistently demonstrated improved drug
retention properties in the joint cavity and drug delivery to the joint
when compared to free drug injection. Furthermore, active and passive
targeting strategies can be used to modify nanomaterials to promote
interaction and localization with specific articular tissues such as
cartilage and synovium (Brown et al., 2019). In addition, α-lipoic
acid (αLA) is a natural antioxidant synthesized in the human body
and an important cofactor of mitochondrial metabolism, which has
been employed in the treatment of Alzheimer’s illness and diabetes

(Maczurek et al., 2008; Singh and Jialal, 2008; Solmonson and
Deberardinis, 2017). It has been discovered that by heating above its
melting point, αLA can be polymerized to poly α-lipoic acid (PαLA)
without the use of a catalyst or solvent. PαLA is a drug carrier with great
potential for development. PαLA and its degradation products are safe
and biocompatible. Disulfide bonds in its main chain play an
antioxidant role in osteoarthritis (Packer et al., 1995; Shimoda et al.,
2007; Shay et al., 2009; Li et al., 2013; Yang et al., 2018). Given the use of
nanomaterials as corticosteroids carriers and PLA’s excellent anti-
inflammatory properties, we speculated that NPDXM/PPLA prepared
by the electrostatic and hydrophobic action of the carboxyl group
onmPEG-g-PαLA carrying DXMmay be a promising new drug for the
treatment of OA.

To test this hypothesis, we created and tested an NPDXM/PPLA for
the effective treatment of OA (Figure 1.). NPDXM/PPLA was prepared
from αLA by the polymerization reaction. The hydrophilic polymer
mPEG was electrostatically linked to the NPDXM/PPLA by the
hydrophobic DXM of the carboxyl group on mPEG-g-PαLA. The
anti-inflammatory effects of NPDXM/PPLA nanoparticles on OAmice
induced by monosodium iodoacetate (MIA) were investigated
further. The outcome revealed that NPDXM/PPLA could effectively
carry DXM and had a better effect on OA treatment than traditional
DXM injection alone.

2 Materials and methods

2.1 Materials

Dexamethasone (DXM) (average molecular weight Mn =
206.362 g mol−1), Poly (ethylene glycol) monomethyl ether
(mPEG), α-lipoic acid (average molecular weight Mn =

FIGURE 1
Schematic illustration of the preparation of NPDXM/PPLA NPs for treatment of OA.
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2000 g mol−1), 4′, 6-diamidine-2-phenylindole (DAPI), 4-
dimethylamino pyridine (DMAP), 3-(4, 5-dimethyl-thiazole-2-yl)-
2, 5-diphenyltetrazolium bromide (MTT), Sigma–Aldrich (Sigma,
Germany) provided the 1-(3-(dimethylamino) propyl) -3-
ethylcarbondiimine hydrochloride (EDCHCl), and sodium
iodoacetate (MIA). Thermo Fisher Scientific (China) Co., Ltd.
provided cell culture substrates such as Dulbecco’s modified
Eagle’s medium (DMEM) and fetal bovine serum (FBS)
(Shanghai, China). Penicillin and streptomycin were purchased
from Shijiazhuang Huabei Pharmaceutical Co., Ltd. Biosharp Co.,
LTD. provided the lipopolysaccharide (LPS). Sinopharm Chemical
Reagent Co., LTD. supplied N, N-dimethylformamide (DMF), and
Sinopharm Chemical Reagent Co., LTD., supplied tetrahydrofuran
(THF). All other chemicals were purchased commercially.

2.2 Preparation and characterization of
mPEG-g-PαLA (NPPPLA) and NPDXM/PPLA

2.2.1 The synthesis of mPEG-g-PαLA
First, PαLA was prepared by a reaction between αLA with

diethyl ether. Then, 1.68 g PαLA and 4.0 g mPEG were dissolved
in 50 mL Tetrahydrofuran (THF) and 50 mL dimethyl sulfoxide
(DMSO), respectively. Then mixed the two solutions slowly with a
pipette gun, then 333.4 mg EDCHCl and 56.09 mg DMAP were
added. After 24 h of stirring at room temperature, adding the same
catalyst to the reaction solution, and continuing the reaction for
another 24 h, the mixed solution was dialyzed in Milli-Q water
[molecular weight cut-off (MWCO) = 3,500 Da], the dialysis time
was 5 days, and the deionized water was changed 3 times per day.
Also, the mPEG-g-PαLA was obtained by lyophilization (Scientz-
12ND lyophilizer, Ningbo Scientz Equipment limited by share Ltd.,
China). Bruker AV 300 NMR spectrometer (AVANCE III, Bruker
corporation, Switzerland) was used to measure the proton nuclear
magnetic resonance (1H NMR) spectra of PαLA and mPEG-g-
PαLA.

2.2.2 The synthesis of mPEG-g-PαLA (NPPPLA)and
NPDXM/PPLA

First, 100 mg mPEG-g-PαLA was dissolved in 8 mL DMSO,
then dropped into 100 mL deionized water and stirred for 2 h to
prepare mPEG-g-PαLA. The solution was then transferred to an
MWCO 3500 dialysis bag for 10 h to remove DMSO before being
lyophilized to obtain NPPPLA. Again, 100 mg mPEG-g-PαLA and
20 mg DXM were dissolved in 8 mL DMSO, dropped into 100 mL
deionized water, stirred for 2 h, then transferred to the MWCO
3500 dialysis bag for 10 h to remove DMSO, and NPDXM/PPLA NPs
were lyophilized. The Dio-labeled NPPPLA were prepared following
the same method and were denoted as NPDio/PPLA.

Transmission electron microscopy (TEM) and dynamic laser
scattering were used to determine the hydrodynamic radius (Rh) of
NPDXM/PPLA NPs (DLS). TEM test: First, weigh 2 mg NPPPLA and
NPDXM/PPLA respectively, and configure them into 0.1 mg/mL solution.
The solution should then be pipetted onto a clean copper net with a
20 μL pipette and allowed to dry at room temperature for 24 h. TEM
was also performed using a JEOL JEM-1011 transmission electron
microscope (JEOL, Ltd., Tokyo, Japan) with a 100 kV accelerating
voltage. DLS test: First, weigh 2 mg NPPPLA and NPDXM/PPLA,

respectively, and dissolved them in PBS solution with pH 7.4 for
later use. The Wyatt QELS instrument was then set up to measure
the fluid dynamic radius (Rh) of the NPPPLA and NPDXM/PPLA.

2.3 In vitro release of DXM from NPDXM/PPLA

In vitro DXM release of NPDXM/PPLA was evaluated in PBS
containing 200 U mL−1 esterase at pH = 7.4. In short, NPDXM/PPLA is
released in PBS buffers with or without H2O2. To begin, 3.0 mg
NPDXM/PPLA was weighed and dissolved in 15 mL pH= 7.4 PBS
buffer before being transferred to an MWCO 3500 dialysis bag for
standby. The solution should then be added to a different medium
every 200 mL. Medium (I) was 100 mL PBS buffer with pH = 7.4;
Medium (II) was 100 mL PBS buffer containing 10 mol H2O2 with
pH = 7.4; Medium (III) was 100 mL PBS buffer containing 1 mol
H2O2 with pH = 7.4. The dialysis bags were then placed in beakers
containing various release media and placed in a 37°C constant
temperature oscillating box that was continuously shaking at
100 RPM to simulate the human body environment. The release
solution in the 2.0 mL beaker was removed with a pipetting gun at a
predetermined time point, and 2.0 mL of the media in the beaker
was added. The content of DXM was determined by high-
performance liquid chromatography (HPLC) (Flexar,
PerkinElmer, Shelton, United States of America). The mobile
phase was methanol-water (60:40, V/V) at a flow rate of
1.0 mL min−1 in an analytical C18 column (5 m, 250 4.6 mm,
PerkinElmer Brownlee, United States). The detection wavelength
was 240 nm, and the column temperature was 25°C. The injection
volume was 20 μL. The limits of detection and quantitation were
26.2 and 87.2 ng mL−1, respectively. The calibration curve was linear
in the range of 110–7,780 ng mL−1 (r2 = 0.999). The release curve
was drawn using the standard curve method, which is used to
calculate the DXM concentration released at each time point.

2.4 Determination of the stability of NPDXM/

PPLA

NPDXM/PPLA stability test: 0.5 mg NPDXM/PPLA was dissolved in
5 mL PBS with pH = 7.4 to prepare 0.1 mg/mL solution. The solution
was then transferred to the DLS sample bottle, which was oscillated in
a 37°C constant temperature oscillating chamber at a constant
temperature of 100 rpm to simulate the internal environment of
the human body. The change in particle size was detected and
plotted by the Wyatt QELS device at specified time points.

2.5 Endocytosis and release of NPDio/PPLA
fromRAW264.7 cells monitored by FCM and
CLSM

Entosis and the release of NPDio/PPLA from RAW 264.7 cells
were detected using confocal laser scanning microscopy (CLSM)
and flow cytometry. In brief, RAW 264.7 cells were seeded into a six-
well plate at a density of 5 × 104 cells per well, add 2 mL DMEM
medium containing 10% (V/V) FBS and 1% (W/V) penicillin-
streptomycin, and cultured for 12 h in a 5% carbon dioxide
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(CO2) incubator at 37 °C in a humid environment. Then, RAW
264.7 cells were activated with 1 μg ML−1 LPS for 24 h. Following
activation of the macrophages, the medium was replaced with
DMEM medium containing NPDio/PPLA at a Dio concentration of
1 μg ML−1. Then, the medium was incubated at 37 °C for 0.5 h, 2 h,
4 h, 6 h, 8 h, and 10 h. Following that, the medium was removed, the
cells were washed three times with PBS, fixed with 4%
paraformaldehyde, and the nuclei stained with 4’,6-diamidine-2-
phenylindole (DAPI) Aladdin. Finally, using an LSM 543 CLSM
microscope (Carl Zeiss, Jena, Germany) with a 20-eyepiece objective
lens, microscopic images of cell uptake were obtained. For FCM
analysis, activated RAW 264.7 cells were co-cultured with NPDio/
PPLA. Following that, the medium was removed, and the cells were
washed three times with PBS, digested with trypsin, and centrifuged
for 5 minutes to collect the cells. Finally, they were suspended in
500 μL PBS, and the fluorescence intensity of cell uptake was
measured using a Guava EasyCyte 12 flow cytometer (Millipore,
Billerica, MA, United States).

2.6 Cell viability assay

The toxicity of NPPPLA, NPDXM/PPLA, and free DXM to RAW
264.7 cells was determined using MTT. In brief, RAW 264.7 cells
were sown into 96-well plates at a density of 7,000 cells per well.
Following a 24-h culture with or without LPS (1 μg mL−1), the
medium was replaced with 200 μL of DMEM medium containing
free DXM, NPPPLA, and NPDXM/ PPLA. The concentration in the
medium containing DXM was from 0.048 to 50 μg mL−1. After 24 h,
add 20 μL of 5% MTT solution and incubate for another 4 h.
Following that, 150.0 μL DMSO was added to the medium, and
the absorbance of each well was measured at 490 nm using a
multifunctional microplate reader (Spark, TECAN, Switzerland).

2.7 Expression of proinflammatory cytokines

The expression of proinflammatory cytokines were determined by
enzyme-linked immunosorbent assay (ELISA) in activated RAW
264.7 cells. In brief, the cells were seeded at a density of 4 105 cells/
well in 6-well plates and cultured for 24 h. RAW264. For 24 h, 7 cells were
activated with 1 μgmL−1 LPS. Following that, 2 mL of DMEM containing
saline, NPPPLA, NPDXM/PPLA, or free DXM at a final TA concentration of
1 μgmL−1 was added to the cell culturemedium.After 24 h, IL-1β, TNF-α,
and IL-6 levels in the supernatants were determined using ELISA kits
(Spark® multimode microplate reader, TECAN, Switzerland).

2.8 In vivo therapeutic effect of NPDXM/
PPLA on OA mice

50 BALB/c mice (six to eight weeks old) were purchased from
the Chinese Academy of Medical Sciences Institute of Experimental
Animals. All animal procedures were following the “Jilin University
Laboratory Animal Care” and Use Guidelines verified by the Animal
Ethics Committee of the First Hospital of Jilin University. First,
40 mice were given general anesthesia with pentobarbital sodium
(2%). To induce OA,MIA (5 mg kg−1, Sigma–Aldrich, st. Louis, MO,

United States of America) was injected intraarticular through the
subpatellar ligament of the left knee with a 30G needle (5 mg kg−1,
Sigma–Aldrich, st. Louis, MO, United States of America) in mice
(Chung et al., 2015; Sun et al., 2018). The successful induction of OA
was confirmed by significantly reducing the load-bearing and
withdrawal point stimulus thresholds of the hind paw (Bove
et al., 2003; Nwosu et al., 2016). Mice without OA induction
were used as a negative control.

Three days after OA induction, the mice were randomly divided
into four groups and given different treatments: normal saline,
DXM, NPPPLA, and NPDXM/PPLA, respectively. The OA knee was
tested by intraarticular injection in each group. The preparations
concentration in the DXM, NPPPLA, and NPDXM/PPLA groups
remained constant at 1.0 mg kg−1. Day zero was the first day of
treatment. All groups were given treatments every 4 days until the
mice were put down at the end of the third week.

The knee joint was harvested and treated for further analysis after
the animals were killed. First, the knee joint specimens of mice were
fixed in 10% formalin buffer at 4 °C for 24 h and then decalcified with
EDTA for 1 h. Next, the decalcified specimens were buried in paraffin
and cut into 5 μm sections. Immunohistochemistry was used to stain
sections with hematoxylin and eosin (H&E), IL-1, TNF-, and IL-6
(Affinity Biosciences, OH, United States of America). Knee specimens
were also used to assess the shape of the knee and to measure skeletal
characteristics with Micro CT.

2.9 Statistical analysis

All results are presented as the means ± standard deviations, and
the important statistical data were analyzed using one-way ANOVA
in the GraphPad Prism Software (GraphPad Software Inc., San
Diego, United States of America).* indicates that p < 0.05 was
considered statistically significant.; ** represents 0.01 < p < 0.05 and
*** represents p < 0.001 was considered to be more highly
statistically significant.

3 Results and discussion

3.1 Preparation and characterization of
mPEG-g-PαLA

As shown in Figure 2A, PαLA was synthesized by ring-opening
polymerization of the aLA monomer at 80°C. The structure of PαLA
was confirmed by 1H NMR. The mPEG-g-PαLA polymer was
created by esterifying the hydroxyl group of mPEG with the
carboxyl group of PαLA and coupling the mPEG with the PαLA
side chain. 1H NMR spectroscopy confirmed the structure of the
obtainedmPEG-g-PαLA. As shown in Figure 2B, the positions of the
proton peaks H, I, and J of polymer mPEG-g-PαLA in the 1H NMR
spectrum indicate that mPEG has successfully connected with the
PαLA side group. Furthermore, software integration of H and B peaks
revealed that mPEG modified 50% of the carboxyl groups on the
PαLA side chain. In addition, the structure of the product was
analyzed by gel permeation chromatography (GPC). The peak time
of GPC in Figure 2C is 17.9 min, indicating the weight of mPEG-g-
PαLA is Mw = 7.76 × 104 Da, proving that mPEG-g-PαLA has been
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successfully grafted. In summary, this means that mPEG successfully
connects to the side chain of PαLA.

3.2 Preparation and characterization of
NPPPLA and NPDXM/PPLA

The Rh of NPPPLAmeasured byDLSwas (21.4 ± 1.7) nm, and TEM
images showed an irregular shape of NPPPLA (Figure 3A). Meanwhile,
the Rh and TEM of NPDXM/PPLA were also tested. NPDXM/PPLA had an
Rh of (24.0 ± 1.2) nm, and TEM images revealed a quasi-circular

structure (Figure 3B). We found a slight increase in the size of NPDXM/

PPLA, which also indicates that DXM is successfully encapsulated in
nanoparticles. DXM’s drug loading content and drug loading efficiency
were both as expected at 10.1% and 80.7%, respectively. Due to the
amphiphilic properties of polymers, drug delivery efficiency is
improved. Furthermore, DLS was used to test the particle size
change of NPDXM/PPLA at different times in PBS with pH = 7.4
(Figure 3C), and it was found that the particle size change of
NPDXM/PPLA was not obvious within 7 days, indicating that the
nanoparticles were relatively stable under normal physiological state.
And can maintain the shaped structure for a long time.

FIGURE 2
(A) Polymerization of αLA and 1H NMR spectra of PαLA (DMSO-D6) (B) 1H NMR spectra of PαLA (DMSO-D6) of mPEG-g-PαLA (DMSO). (C) GPC
analysis of DMF phase of mPEG-g-PαLA.

FIGURE 3
(A) Sizes of NPPPLA measured by DLS and TEM images of NPPPLA. (B) Sizes of NPDXM/PPLA measured by DLS and TEM images of NPDXM/PPLA. (C) The
particle size of NPDXM/PPLA at different times tested by DLS.
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3.3 In vitro drug release of NPDXM/PPLA

During the development of OA, activated macrophages are
relevant to the unregulated expression of matrix metalloproteinases
(MMPs), proinflammatory cytokines, and other tissue-degrading
enzymes (Bondeson et al., 2006; Bondeson et al., 2010; Sellam and
Berenbaum, 2010). It has been reported that matrix
metalloproteinases break ester bonds (Xia et al., 2001; Giannelli
et al., 2004). As a result, detecting DXM release from NPDXM/PPLA

in PBS (pH 7.4, containing 200 U ML−1 esterase) can mimic DXM
release in OA (Joshi et al., 2018). In vitro drug release of NPDXM/PPLA

was performed in PBS buffer with or without H2O2, and the release
curve was determined by HPLC. Figure 4 depicts the results. When
the pH is 7.4, we can divide the NPDXM/PPLA release into three periods:
(1) rapid release stage; DXM released in PBS at pH = 7.4, PBS
containing 10 mmol H2O2 at pH = 7.4 and PBS containing 1 mol
H2O2 at pH = 7.4 was 33%, 53%, and 68%, respectively, in the first
10 h (2) Slow-release stage: 38%, 62%, and 73% were released within
20 h (3) Plateau stage: DXMwas rarely released. The amount of DXM
released increased significantly as the concentration of H2O2 in the
release medium increased. The increase in DXM release should be
attributed to the H2O2-mediated cleavage of NPDXM/PPLA. As a result,
we concluded that NPDXM/PPLA can release DXM stably under
physiological conditions, but can accelerate DXM release under the
condition of higher oxidant concentration.

3.4 Endocytosis and intracellular drug
release

The endocytosis of NPDio/PPLA to activated RAW 264.7 cells
was studied using FCA and CLSM to demonstrate the endocytosis
and intracellular drug release ability of activated RAW 264.7 cells to
NPDio/PPLA. When activated RAW 264.7 cells were treated with
NPDio/PPLA, the fluorescence intensity increased with increasing

incubation time as shown in Figures 5A,B. In addition, the
fluorescence intensity reached a stable state after 8 h of
incubation, indicating that macrophages’ internalization of NPDio/
PPLA nanoparticles reached saturation after 8 h. In contrast, activated
RAW 264 showed an extremely low fluorescence signal. NPPPLA or
non-LPS-activated RAW 264. Was applied to 7 cells. Seven cell,
implying that macrophages could release NPDio/PPLA nanoparticles
could be released by macrophages. RAW 2647 cells were further
examined by CLSM (Figure 5C). DAPI nuclei were blue and Dio
fluorescence was green. Dio is a lipophilic membrane dye that can
only be diffused laterally into cells, staining the entire cell membrane
gradually. Green fluorescence surrounds blue fluorescence,
indicating that the released Dio enters the cell, and green
fluorescence intensity increases significantly over time. The
results were consistent with the FCA results. In conclusion,
NPDio/PPLA can be effectively endocytosis and released into
macrophages by activated RAW 264.7 cells.

3.5 The ability of NPDXM/PPLA to inhibit
activated macrophages

PPLA was non-toxic to RAW 264.7 cells and inhibited
macrophage activity, as shown in Figure 6. αLA, a natural
antioxidant synthesized in the human body, does not affect
RAW 264.7 cells’ activity. In addition, the poor solubility of
DXM may be responsible for the decreased inhibition of RAW
264.7 cells. In the absence of LPS, with the DXM concentration
increasing to 50 μg mL−1, the RAW 264.7 cell activity of the
NPDXM/PPLA group was 70%, and cell inhibition was up to 30%
compared to the DXM and NPPPLA groups (Figure 6A). This may
be due to the endocytosis of nanoparticles by macrophages.
Furthermore, the cell inhibition effect of the NPDXM/PPLA
group after LPS activation was 43%, indicating that the
inhibition effect of NPDXM/PPLA on the proliferation of activated
RAW 264.7 cells increased (Figure 6B).

3.6 Therapeutic effect and expression of
proinflammatory cytokines in OA mice

The MIA model is the most successful and frequent OA
model, and its pathological characteristics are very similar to
human OA (Pomonis et al., 2005; Liu et al., 2011; Malfait et al.,
2013). Because of its good in vitro experimental results, we
established an OA animal model to evaluate the therapeutic
effect of NPDXM/PPLA. Three days after the successful
formation of artificial OA, 40 mice were divided into
4 groups: NS group, NPPPLA group, DXM group, and NPDXM/

PPLA. OA mice were injected with drugs of each group at a weight
of kg every 4 days. Mice without OA induction were set as a
control group. The degree of articular cartilage destruction,
extracellular matrix loss, and changes in inflammatory
cytokines (IL-1β, IL-6, and TNF-α) was measured after
treatment. As shown in Figure 7A, H&E staining sections of
chondrocytes in the normal group showed neat chondrocytes and
no synovial hyperplasia around the joint. In comparison to the
control group, the NPDXM/PPLA treatment group had less

FIGURE 4
The release of DXM from NPDXM/PPLA in PBS (pH 7.4) containing
200 U mL−1 Esterase.
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inflammatory cell infiltration and only minor chondrocytes
degeneration, whereas the normal saline treatment group had
more obvious chondrocyte destruction and severe synovial
hyperplasia with a high number of inflammatory cell infiltration.

Proinflammatory cytokines expressed by macrophages have
been shown to play an important role in the early stages of OA and
in promoting disease progression (Blanco et al., 2011; Huang and
Kraus, 2016). Inhibiting the release of proinflammatory cytokines

FIGURE 5
(A) FCA of RAW 264.7 cells: Cultured in DMEMmedium containing NPDio/PPLA for 2 h, 4 h, 6 h, 8 h, 10 h with 1 μgmL−1 LPS. The average fluorescence
intensity of Dio at each time point was detected. (B) FCA of RAW 264.7 cells: Cultured in DMEM medium containing NPDio/PPLA for 2 h, 4 h, 6 h, 8 h, 10 h
without 1 μg mL−1 LPS. The average fluorescence intensity of Dio at each time point was detected (C) Confocal scanning microscope images of RAW
264.7 cells co-cultured with DMEM medium containing NPDio/PPLA with 1 μg mL−1 LPS for 2 h, 4 h, and 8 h.

FIGURE 6
(A) Inhibitory effects of DXM, NPPPLA and NPDXM/PPLA on RAW 264.7 cells in the presence of 1 μg mL−1 LPS (B) Inhibitory effects of DXM, NPPPLA and
NPDXM/PPLA on RAW 264.7 cells in the absence of 1 μg mL−1 LPS.
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in OA tissue therefore can effectively reduce the degree of cartilage
damage (Agarwal et al., 2016; Utomo et al., 2016, 2019; Chevalier
and Eymard, 2019). To further investigate the anti-inflammatory
effect of the NPDXM/PPLA group, the expression of
proinflammatory cytokines including IL-1β, IL-6, and TNF-α in
mouse knee osteoarthritis specimens was determined by an ELISA.
The expressions of proinflammatory cytokines IL-1β, IL-6, and
TNF-α were lower in the NPDXM/PPLA group compared to the
saline group, as shown in Figures 7B–D. The expression of
proinflammatory cytokines in the NPDXM/PPLA treatment group
was also decreased.

Next, we evaluated the knee bone structure of OA mice by
Micro CT. The comparison of bone volume fraction (BV/TV) in
the subchondral region of the knee in mice, as shown in Figure 8,
revealed that the bone mass in the saline group was
approximately 55%, while that in the NPDXM/PPLA group was
90%. The bone mass of the knee subchondral bone in mice treated
with normal saline was importantly lesser than that in mice
treated with NPDXM/PPLA, whereas the bone mass of the knee in
mice treated with NPDXM/PPLA was similar to that in healthy
mice. Taken together, all these outcomes show that NPDXM/PPLA

is promising for the treatment of OA.

FIGURE 7
(A) The efficacies of NS, NPPPLA, DXM andNPDXM/PPLA onOAwere observed by H&E staining joint sections and corresponding immunohistochemical
staining sections (B–D) Expression of pro-inflammatory cytokines in all treatment groups.

FIGURE 8
The efficacies of NS, NPPPLA, DXM and NPDXM/PPLA on OAwere observed byMicro CT and analyzed the bone volume fraction (BV/TV) in subchondral
region.
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4 Conclusion

In this study, we synthesized NPDXM/PPLA through
polymerization and hydrophilic interactions. In vitro
characterization affirmed that NPDXM/PPLA can carry and release
DXM effectively. It also revealed good stability under physiological
conditions. FCA and CLSM confirmed that NPDXM/PPLA can be
activated by macrophage endocytosis and release. Finally, synovial
inflammation was reduced in the OA mice model, and cartilage
destruction and bone loss were inhibited, which was closer to the
knee joint of the control mice. As a result, NPDXM/PPLA can be used to
treat osteoarthritis and is a potential vector material for clinical use. At
present, the research on drug delivery, targeting, controlled release
and other aspects is the forefront of drug delivery systems. In this
study, drug delivery nanoparticles were prepared by simple and easy
methods, achieving a more stable drug controlled release, which has a
certain anti osteoarthritis effect, providing a certain reference for the
development of more efficient drug delivery systems in the future.
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