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Zika virus E protein modulates
functions of human brain
microvascular endothelial cells
and astrocytes: implications on
blood-brain barrier properties
Guneet Kaur, Pallavi Pant, Reshma Bhagat and Pankaj Seth*

National Brain Research Centre, Gurgaon, Haryana, India

Neurotropic viruses can cross the otherwise dynamically regulated blood-brain

barrier (BBB) and affect the brain cells. Zika virus (ZIKV) is an enveloped

neurotropic Flavivirus known to cause severe neurological complications, such

as encephalitis and fetal microcephaly. In the present study, we employed human

brain microvascular endothelial cells (hBMECs) and astrocytes derived from

human progenitors to establish a physiologically relevant BBB model. We used

this model to investigate the effects of ZIKV envelope (E) protein on properties

of cells comprising the BBB. E protein is the principal viral protein involved

in interaction with host cell surface receptors, facilitating the viral entry. Our

findings show that the presence of ZIKV E protein leads to activation of both

hBMECs and astrocytes. In hBMECs, we observed a decrease in the expression

of crucial endothelial junction proteins such as ZO-1, Occludin and VE-Cadherin,

which are vital in establishment and maintenance of the BBB. Consequently,

the ZIKV E protein induced changes in BBB integrity and permeability. We

also found upregulation of genes involved in leukocyte recruitment along with

increased proinflammatory chemokines and cytokines upon exposure to E

protein. Additionally, the E protein also led to astrogliosis, evident from the

elevated expression of GFAP and Vimentin. Both cell types comprising the BBB

exhibited inflammatory response upon exposure to E protein which may influence

viral access into the central nervous system (CNS) and subsequent infection of

other CNS cells. Overall, our study provides valuable insights into the transient

changes that occur at the site of BBB upon ZIKV infection.

KEYWORDS

Zika virus, E protein, blood-brain barrier, tight junction, brain microvascular endothelial
cells, astrocytes

Introduction

Zika virus (ZIKV) is an enveloped, single stranded, positive sense RNA virus from the
family Flaviviridae. It is an arthropod-borne virus spread through Aedes aegypti and Aedes
albopictus mosquitoes and also transmitted through bodily fluids (Chimelli et al., 2017;
Cordeiro et al., 2017; Miner and Diamond, 2017). It is the only Flavivirus known to cause
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teratogenic effects in humans, primarily resulting in abnormally
small head circumference-microcephaly, intracranial calcification,
and fetal death in some cases. ZIKV-associated clinical implications
in adults predominantly include Guillain-Barré syndrome (GBS),
and other neurological complications such as encephalitis,
meningitis, encephalopathy (Muñoz et al., 2016, 2017; Carod-
Artal, 2018; de Almeida Oliveira Evangelista et al., 2021). The
genome of ZIKV is ∼10.8 kb and encodes for single polyprotein
which is later processed into three structural- capsid (C), envelope
(E), premembrane/membrane (PrM), and seven non-structural
proteins- NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5
(Kuno and Chang, 2007).

The blood-brain barrier (BBB) is a complex and well-regulated
interface between the peripheral and the central nervous system
(CNS). BBB plays a pivotal role in maintaining the homeostasis
of the CNS which includes limiting passive diffusion of polar
molecules from bloodstream into the brain, supply of nutrients and
oxygen as well as efflux of harmful metabolites and xenobiotics,
maintaining the water-electrolyte balance, and regulating the
circulation of immune cells across the barrier (Luissint et al.,
2012; Helms et al., 2015). BBB consists of unique microvascular
endothelial cells which line the cerebral capillaries associated with
other cell types such as pericytes and astrocytic-end feet processes,
which together form the “neurovascular unit”. Brain microvascular
endothelial cells (BMECs) are the primary component of BBB
which are characterized by lack of fenestrations, scarce pinocytosis
and presence of elaborate trans-membrane transport molecules
(Joo, 2002; Naik and Cucullo, 2012; Helms et al., 2015). Presence
of tight junctions (Occludin, claudin and zonula occludens-ZO)
is the central feature of BMECs which are crucial in establishing
and maintaining the BBB integrity. Inter-endothelial junctions also
include adherens junctions (AJ), in which the primary component
is vascular endothelium (VE)-Cadherin. The mutual interactions
between the cells comprising the neurovascular unit are crucial for
barrier formation and maintaining its integrity.

A characteristic feature of CNS viral infections is disruption
of BBB which can occur due to viral replication or a consequence
of neuroinflammation. Certain viral factors and host inflammatory
responses can adversely affect the BBB integrity. Other flaviviruses,
Japanese encephalitis virus (JEV) and West Nile virus (WNV)
are known to disrupt BBB, whereas, the exact mechanisms
underlying ZIKV neuroinvasion and encephalitis remain elusive.
The compromised integrity of BBB in JEV and WNV infections
occurs as a result of compromised tight junction complexes
(Chaturvedi et al., 1991; Roe et al., 2012). ZIKV is detected in
microcephalic brains of fetuses and is found to be neurotropic even
in adults with an intact BBB. Previous studies have indicated that
ZIKV is able to cross BBB using in vitro and animal BBB models
(Alimonti et al., 2018; Clé et al., 2020). Characteristic BMECs of
BBB are known to serve as reservoir for viral replication (Mladinich
et al., 2017). However, a comprehensive understanding of the
molecular mechanisms underlying the ZIKV-induced alterations in
the properties of BBB cells remains an area that requires further
investigation, as it represents a gap in the current knowledge of
ZIKV pathophysiology.

Viral entry into host cells is facilitated by interaction of ZIKV
envelope (E) protein with host surface receptors upon attachment.
Evidences show the advent of ZIKV neuroinvasion and its virulence
results from the genetic variation of 10 amino acids near the

N-linked glycosylation site of E protein (Annamalai et al., 2017;
Carbaugh et al., 2019). The N-linked glycosylation of E protein
is a crucial determinant for its virulence. Asian ZIKV strains
(H/PF/2013 and PRVABC59) are glycosylated at N154 of the E
protein. This E glycosylation augments the transmission, viral
attachment, and its pathogenesis (Faye et al., 2014; Carbaugh
et al., 2019). In the present study, we investigated the effects of
structural E protein of ZIKV on the properties of human brain
microvascular endothelial cells (hBMECs) and human progenitor
derived astrocytes (PDA) and how these interactions influence the
BBB phenotype.

Materials and methods

Human primary progenitor derived
astrocytes

Human fetal brain tissue samples (10–14 weeks old) were
collected with informed consent of the mother(s) from elective
abortions. Samples were processed as per approved protocols
by Institutional Human Ethics Committee in compliance with
recommendations of Indian Council of Medical Research, New
Delhi, India. Cells isolated from the telencephalon region were
used to derive human neural progenitor cells (hNPCs) by culturing
and passaging under aseptic conditions. hNPCs were then cultured
on Poly-D-lysine (Sigma-Aldrich, St. Louis, MO, USA, Cat#
P7280) coated culture flasks in neurobasal media (Invitrogen, San
Diego, CA, USA, Cat# 21103-049) containing growth factors-
epidermal growth factor (EGF, 20 ng/ml) (Peprotech, Rocky Hill,
NJ, USA, Cat#AF-100-15-500UG) and fibroblast growth factor
(FGF, 25 ng/ml) (Peprotech, Rocky Hill, NJ, USA, Cat#100-18B-
50UG) supplemented with neuronal survival factor-1 (NSF-1)
(Lonza, Charles City, IA, USA, Cat# CC-4323), N2 supplement
(Invitrogen, San Diego, CA, USA, Cat# 17505-048), bovine serum
albumin (BSA) (Sigma-Aldrich, St. Louis, MO, USA, Cat# A9418),
glutamine (Sigma-Aldrich, St. Louis, MO, USA, Cat# G7513)
and antibiotics- penicillin-streptomycin (Invitrogen, San Diego,
CA, USA, Cat# 15140122), and gentamycin (Sigma-Aldrich, St.
Louis, MO, USA, Cat# G1522). hNPCs were characterized by
expression of their respective functional markers where more than
99% cells were positive for Nestin and SOX-2 (Supplementary
Figures 1A–F). These cells were further assessed for their ability
to differentiate into neurons. More than 95% of differentiated
cells were positive for neuronal markers MAP2 and Tuj1
(Supplementary Figures 1G–L).

Human neural progenitor cells (hNPCs) were differentiated
into an astrocytic-lineage by replacing with astrocyte growth
media- complete minimal essential media (CMEM) (Sigma-
Aldrich, St. Louis, MO, USA, Cat# M0268-10 × 1L) supplemented
with 10% fetal bovine serum (FBS) (Gibco, CA, USA, Cat#
10270-106). The differentiation was continued for 21 days with
half media change and splitting. More than 95% cells were
immunopositive for Vimentin and glial fibrillary acidic protein
(GFAP) (Supplementary Figures 1M–R). The mature progenitor
derived astrocytes (PDA) were used for further experiments. At
least three different fetal tissues were used for the study.
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Human primary brain microvascular
endothelial cells

Primary human cerebral cortex microvascular endothelial cells
(Passage 3, 12 CPD in vitro, ACBRI 376) were procured from
Cell Systems (Kirkland, WA 98034, USA). Brain microvascular
endothelial cells (BMECs) were cultured in Complete Classic
Media (Kirkland, WA 98034, USA Cat#4Z0-500) supplemented
with culture boost (Kirkland, WA 98034, USA Cat#4CB-500) and
antibiotics- penicillin-streptomycin and gentamycin. Cells were
grown in Attachment Factor (Kirkland, WA 98034, USA Cat#4Z0-
210) coated culture-ware. Media was changed every 2 days and
cells were split (> 80% confluent) with Passage Reagent Group
(Kirkland, WA 98034, USA Cat#4Z0-800). Cultured hBMECs were
found to be immunopositive for characteristic VE-Cadherin and
ZO-1 (Supplementary Figures 2A–F). Cells were used at passage
8–12 for different assays.

Establishment of contact-based human
blood-brain barrier model system using
co-culture of primary progenitor derived
astrocytes and primary brain
microvascular endothelial cells

For BBB monoculture and/or co-culture, Polyester (PET)
(3.0 µm pore, 12 mm diameter, collagen-coated, Corning Life
Sciences, ME, USA Cat# 3462) Transwell inserts were used. For
establishing co-culture and mimic the in vivo microenvironment,
the astrocytes and hBMECs were seeded in close proximity. For
that transwell inserts were inverted and a new external well was
created using a small piece of sterile elastic silicon tubing. The
luminal side was sealed with smaller enclosed silicon tubing to
avoid leakage of media. A total of 35,000 PDAs were seeded
onto the abluminal side of inserts and were allowed to adhere
for 5–6 h in CMEM. The inserts were inverted back to its
upright position after removing the tubing gently, and cells
were allowed to grow for 24 h in CMEM. Next day, 75,000
transfected (with empty vector or ZIKV E-protein) BMECs were
seeded onto the luminal side and both cell types were allowed
to grow in ECs media for 24 h and were harvested for different
assays (Supplementary Figure 3A). Cells grown on transwell
membrane were found to be immunopositive for astrocytic marker
(GFAP) and endothelial marker (VE-Cadherin) (Supplementary
Figures 3B–E). In contact-based co-culture of BBB, astrocytes were
able to extend their processes towards hBMECs grown on the
luminal side as shown by the expression of GFAP in the total
protein isolated from the luminal side of transwell (Supplementary
Figures 3F–G).

Immunocytochemistry

Experiments were performed in eight-well and/or four-well
Permanox chamber slides. Cells were seeded at 20,000 cells/well
and 50,000 cells/well, respectively. Cells were fixed with 4%
paraformaldehyde (PFA) for 20 min, followed by three washes
with 1X PBS. Blocking and permeabilization was done with 4%

BSA and 0.3% Triton-X-100. Cells were probed with respective
primary antibodies overnight at 4◦C: anti-ZO-1 (1:500, Invitrogen,
San Diego, CA, USA, Cat# 61-7300), anti-VE-Cadherin (1:500,
Abcam, Cambridge, UK, Cat# ab33168), anti- Occludin (1 µg/ml,
Invitrogen, San Diego, CA, USA, Cat# 40-4700) anti- GFAP
(1:2,000, Dako, USA, Cat# Z0334), anti-GFP (1:2,000, Abcam,
Cambridge, UK, Cat# ab290) and anti-Vimentin (1:2,000, Santa
Cruz, USA, Cat# sc-6260). Cells were washed three times with
1X PBS and incubated with suitable fluorophore tagged secondary
antibodies for 1 h (1: 2,000, Invitrogen, San Diego, CA, USA).
Cells were washed with 1X PBS before mounting, using hard
set mounting media containing DAPI (Vector Labs, Burlingame,
CA, USA). A total of 6–7 random images were taken using
AxioImager.Z1 microscope (Zeiss, Germany) from each group by
person blinded to the experimental groups The image analysis was
done using ImageJ software (NIH, USA).

Immunofluorescence staining of hBMECs and astrocytes
cultured on permeable PET membrane was performed as described
(Agrawal et al., 2013). Transwell inserts were washed twice with
cold 1X PBS. Cells on the membrane were fixed with cold methanol
(−20◦C) for 10 min followed by washing with cold 1X PBS thrice.
Membrane was then released from the transwell apparatus using
a scalpel blade into a 24-well plate. Cells were incubated with
immunofluorescence (IMF) buffer (20 mM HEPES, pH7.5, 0.1%
Triton-X-100, 150 mM NaCl, 5 mM EDTA and 0.02% sodium
azide) for 5 min at room temperature (RT). Blocking was done with
2% normal goat serum (Vector Laboratories, Cat# S-1000) in IMF
buffer for 10 min at RT. Cells were washed thrice with IMF buffer
for 10 min and probed with respective primary antibodies: anti-
VE-Cadherin (1:500, Abcam, Cambridge, UK, Cat# ab33168) and
anti-GFAP (1:500, Millipore, USA, Cat# 636562) for 1 h at RT. Cells
were then washed with IMF buffer thrice for 15 min and incubated
with suitable fluorophore tagged secondary antibodies (1: 2,000,
Invitrogen, San Diego, CA, USA). Cells were washed thrice with
IMF buffer for 15 min and stained with Hoechst 33342 (Invitrogen,
San Diego, CA, USA, Cat# R37605) in 1X PBS for a minute and
rinsed with 1X PBS. Membranes were mounted on glass slides using
aqueous mounting media (Biomeda Corp., Foster City, CA, USA,
Cat# M01) and covered with coverslips. Images were acquired with
Nikon confocal microscope model A1 HD25 at 100X objective.

Transient expression of ZIKV E protein

Full length ZIKV E protein cloned in pCAGIG-IRES-GFP
expression vector was a kind gift from Dr. Shyamala Mani (IISc,
Bangalore, India) also used in previous studies (Bhagat et al., 2018,
2021). Cells (80% confluent) were transfected using lipofectamine
3000 (Invitrogen, San Diego, CA, USA, Cat# L3000008) according
to the manufacturer’s protocol. Cells were harvested after 24 h
transfection for further experiments (Supplementary Figure 4).
Empty vector was used as control.

Transendothelial electrical resistance
(TEER) assay

Endothelial resistance was measured to assess BBB integrity
of BMECs in monoculture as well as in co-cultured PDA and
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BMECs on transwell inserts. TEER was measured using Millicell
ERS-2 electrical resistance instrument (Millipore, USA). After
24 h, co-culture was established and measurements were done.
Final calculations were done by multiplying TEER values with
the area of insert membrane (1.1 cm2). TEER values of E protein
transfected BBB culture were compared with monoculture/co-
culture transfected with empty vector.

Transendothelial permeability assay

Progenitor derived astrocytes (PDA) and BMECs grown on
PET transwell inserts were used to assess endothelial permeability.
Dextran-FITC (M. W. 3000-5000) (Sigma, USA, Cat# FD4) was
added to the upper compartment of insert at a final concentration
of 50 µg/ml. The inserts were incubated at 37◦C in dark for
30 min. Samples were then removed from the lower compartment
for measuring fluorescence intensity using microplate fluorometer
(Ex 480 nm and Em 530 nm, Tecan, USA).

Western blotting

Protein extract was isolated using sodium dodecyl sulphate
(SDS) lysis buffer [50 mM Tris Buffer (pH 7.5), 150 mM sodium
chloride, 50 mM sodium fluoride, 1 mM EDTA (pH 8.0), 2% SDS,
10 mM sodium borate, 1 mM sodium orthovanadate, protease
inhibitor tablets (Roche, Basel, Switzerland, Cat# 11836170001)].
Protein concentration was estimated using 4% copper sulfate and
bicinchoninic acid (Sigma, USA, Cat#B9643). Protein samples were
separated by 8–12% SDS-PAGE. Proteins were then transferred
onto nitrocellulose membrane (MDI, India), followed by 2 h
blocking with 5% skimmed milk at room temperature (RT). The
blots were incubated with respective primary antibodies: anti-
ZIKV-E protein (1:2000, GeneTex, Cat# GTX133314), anti-ZO-1
(1:2,000, Invitrogen, Cat# 61-7300), anti-VE-Cadherin (1:2,000,
Abcam, Cat# ab33168), anti-Occludin (1:500, Invitrogen, Cat#
OC-3F10), anti-GFAP (1:60,000, Dako, USA, Cat# Z0334), anti-
Vimentin (1:10,000, Santa Cruz Biotechnology, USA, Cat# sc-
6260), and anti-β-actin (1:40,000, Sigma Cat# A3854), overnight
at 4◦C. The blots were washed with 1X TBST thrice for 5 min
and then incubated with HRP- conjugated secondary antibodies
(1:4,000, Vector Labs, Burlingame, CA, USA) for 1–2 h at RT.
The blots were then washed using 1X TBST five times for 5 min.
Protein was detected using chemiluminescence reagent (Millipore,
Bedford, MA, USA, Cat# WBKLS0500) and imaged using Nine
Alliance mini-HD UVITEC (Cambridge, UK). Protein bands so
obtained were densitometrically quantified using ImageJ software
(NIH, USA).

Quantitative real-time PCR

Total RNA was extracted from transfected samples using
TRIZOL (Ambion, TX, USA Cat# 15596018) according to the
manufacturer’s protocol. cDNA was synthesized from RNA using
high-capacity cDNA reverse transcription kit (Applied Biosystems,
Austin, TX, USA, Cat# 4368814) as per the manufacturer’s
instructions. RT-PCR was performed using SYBR Green master
mix (Applied Biosystems, USA, Cat# 4367659) using specific

primers for IL-6, IL-8, IL-1β, CCL2, CCL5, CXCL10, ICAM-1,
VCAM-1, PTGS2, GFAP, Vimentin, and GAPDH, as mentioned in
the Supplementary Table 1. The cycling conditions used were 95◦C
for 10 min (1 cycle), 95◦C for 20 s, 58◦C for 20 s, and 72◦C for
30 s (40 cycles).

Cytokine bead array

Human brain microvascular endothelial cells (hBMECs) and
astrocytes were transfected with ZIKV E-protein and respective
empty vector (control) for 24 h, followed by collection of
supernatants. To determine cytokine and chemokine levels,
supernatant was incubated with cytokine beads (CBA; Multiplex
magnetic bead-based antibody detection kits, BD Biosciences, CA,
USA, Cat# 551811) as per the manufacturer’s protocol. Incubated
complex was passed by flow cytometer, and represented data was
analyzed using the BD FACSDiva software.

Monocyte chemoattractant protein-1
(MCP-1)/CCL2 ELISA

Cells were transfected with ZIKV E protein and empty vector, as
control, for 24 h. Supernatant was collected to determine the levels
of MCP-1/CCL2 using commercial kit (BD Biosciences, CA, USA,
Cat# 555179) as per manufacturer’s protocol.

Extracellular glutamate release

Astrocytes were transfected with ZIKV E-protein and
respective empty vector (control) for 24 h, followed by collection
of supernatants. It was further processed for the detection of
glutamate release using glutamate determination kit (Sigma
Aldrich, USA, Cat# GLN1) as per manufacturer’s protocol.

Statistical analysis

Experimental results are represented as mean values ± standard
error of the mean. Each experiment was performed at least
three times to determine the significance of the means.
Comparison between experimental and control group was
analyzed using Student’s t-test. A level of p < 0.05 was considered
statistically significant.

Results

ZIKV E protein results in modulation in
BBB integrity and permeability

Human brain microvascular cells (hBMECs) have been
reported to show productive ZIKV infection (Papa et al., 2017;
Mutso et al., 2020; Zoladek et al., 2021). ZIKV infects and activates
hBMECs, however, the effects of its surface protein- envelope
are not explored. In the present study, we examined the effect
of ZIKV E protein on human brain microvascular endothelial
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cells (hBMECs) and astrocytes, and their resulting effect on BBB
integrity. hBMECs were subjected to 24 h transfection with ZIKV
E protein and compared with cells transfected with empty vector
(Supplementary Figure 4). To investigate the effect of ZIKV
E -protein on the integrity of endothelial barrier, quantitative
measurement of TEER was done in hBMECs monoculture
(Figure 1A). E-protein resulted in significant effect on the integrity
of BBB in monoculture of hBMECs, as shown by decreased TEER
values (from 151.5 to 135.6 �.cm2

± 2.082, p < 0.001) when
compared with empty vector control (Figure 1B). We also assessed
transendothelial permeability of BBB in monoculture toward
dextran-FITC upon exposure to ZIKV E protein. Monoculture
layer of BMECs showed small increased permeability to dextran-
FITC (1.098 ± 0.016, p < 0.01) upon exposure to ZIKV E protein
as compared to its control (Figure 1C). We further investigated the
impact of astrocytes on the integrity of BBB in a contact-based co-
culture (Figure 1D). Presence of astrocytes with hBMECs resulted
in higher TEER values compared to monoculture, suggesting that
contact-based BBB model gives greater stability. Albeit the transient
expression of ZIKV E protein in hBMECs, decrease in TEER
values (from 176.6 to 158.0 �.cm2

± 3.602, p < 0.01) were
observed in co-culture of BBB (Figure 1E). Co-culture model of
BBB also exhibited increased permeability toward dextran-FITC
(1.055 ± 0.006, p < 0.01) (Figure 1F). Permeability changes in BBB
were more prominent in monoculture, as presence of astrocytes in
the co-culture BBB model reflected greater barrier strength. These
findings indicate perturbed BBB integrity as seen by decreased
TEER values and increased permeability to dextran-FITC in both
hBMECs monoculture and co-culture of hBMECs and astrocytes
in response to E protein.

ZIKV E protein dysregulate expression of
tight junction and adherens junction
proteins in hBMECs

To investigate the molecular drivers of disrupted BBB induced
by ZIKV E protein, we investigated the effect of ZIKV E
protein on expression of tight junction and adherens junction
proteins which are crucial in establishment and maintenance of
BBB integrity. hBMECs were transfected using ZIKV E protein
expression vectors for 24 h and then harvested for further
experimentation. We studied the expression of endothelial junction
proteins, VE-Cadherin, ZO-1 and Occludin by Western blotting.
Western blotting results showed reduced levels of endothelial
ZO-1 (0.724 ± 0.080, p < 0.05), VE-Cadherin (0.630 ± 0.081,
p < 0.01), and Occludin (0.806 ± 0.075, p < 0.05) proteins in
ZIKV E-transfected hBMECs as compared to control cells which
were transfected with empty vector (Figures 2A–D). We further
investigated the effect of E protein on localization of endothelial
junction proteins. We performed immunofluorescence analysis and
observed radical changes in expression and perturbed localization
of ZO-1 (0.859 ± 0.035, p < 0.05), VE-Cadherin (0.594 ± 0.066,
p < 0.01), and Occludin (0.551 ± 0.145, p < 0.05) at the cell
membrane in E-protein transfected cells compared to control
(Figures 2E–M). These findings suggest that ZIKV E protein
modulates the properties of hBMECs by altering expression and
localization of endothelial junction proteins.

ZIKV E protein induces inflammation in
hBMECs

Blood-brain barrier (BBB) disruption enables inflammatory
response at the injury site enabling the recruitment of immune cells,
thereby, exacerbating the pro-inflammatory scenario and resulting
in local inflammation (Clé et al., 2020; Huang et al., 2020). We
investigated effect of E protein on the endothelial homeostasis,
by studying the expression of IL-6, IL-8, IL-1β, CCL2, CCL5,
CXCL10, ICAM-1, VCAM-1, and PTGS2 genes in E protein and
vector control transfected cells. Upregulation of genes involved
in inflammation such as IL-6 (1.393 ± 0.098, p < 0.05), IL-8
(1.307 ± 0.083, p < 0.05), IL-1β (1.868 ± 0.187, p < 0.01), CCL2
(1.937 ± 0.196, p < 0.01), CCL5 (1.207 ± 0.079, p < 0.05), and
CXCL10 (1.504 ± 0.113, p < 0.01) was observed (Figures 3A–
F). Interestingly, genes involved in immune cell recruitment, cell
adhesion molecules (CAM) ICAM-1 (1.762 ± 0.254, p < 0.05),
VCAM-1 (2.067 ± 0.197, p < 0.01), and angiogenesis, PTGS2
(1.720 ± 0.133, p < 0.001) were also significantly upregulated
(Figures 3G–I). In addition to this, we examined the secretion of
key proinflammatory cytokines IL-6 and IL-8 in the extracellular
milieu of hBMECs transfected with E -protein. Increased secretion
of IL-6 (1.417 ± 0.102, p < 0.01) and IL-8 (1.065 ± 0.019,
p < 0.01) was observed as compared to control cells (Figures 4A–
C). However, there was no difference in levels of IL-1β, IL-
12p70 and TNF-α (data not shown). Our findings show perturbed
endothelial homeostasis in response to E protein which can further
modulate the expression and localization of tight junction and
adherens junction proteins.

ZIKV E protein triggers inflammatory
response in astrocytes

Astrocytes are the major brain cell population and are known
to be highly permissible toward ZIKV infection. Because of
their involvement in BBB formation and its maintenance, we
investigated how ZIKV E protein impacts astrocytic activity. In
response to CNS infections, astrocytes undergo morphological and
functional changes pertaining to process known as “astrogliosis”
or “reactive gliosis” (Escartin et al., 2021). Reactive astrocytes are
characterized by increased levels of glial fibrillary acidic protein
(GFAP) and Vimentin (Pekny et al., 2015). Dysregulated release
of various soluble factor by reactive astrocytes also corroborates
toward neuropathologies (Dong and Benveniste, 2001). We
assessed the reactive state of astrocytes transfected with E protein
and empty vector as control, for 24 h. A remarkable upregulation
of GFAP (2.252 ± 0.432, p < 0.05) and Vimentin (1.990 ± 0.249,
p < 0.05) was revealed in Western blotting (Figures 5A–D).
Similar changes were also observed at the mRNA levels of GFAP
(1.313 ± 0.135, p < 0.05) (Figure 5E) and Vimentin (1.919 ± 0.169,
p < 0.01) (Figure 5F).

We further investigated the inflammatory response of
astrocytes toward ZIKV E protein expression. RT-qPCR showed
elevated levels of IL-6 (1.439 ± 0.039, p < 0.001) and IL-8
(1.326 ± 0.108, p < 0.05) after 24 h of ZIKV E protein expression
(Figures 5G, H). In addition, we also examined the secretion
of proinflammatory cytokines in the extracellular milieu of
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FIGURE 1

Effect of ZIKV E protein on BBB integrity. Schematic representation of monoculture BBB model establishment using hBMECs (A). hBMECs were
transfected with empty vector or ZIKV E-protein. TEER was measured after 24 h. Bar graph shows TEER values given in ohm.cm2 (B). Dextran-FITC
transendothelial permeability was assessed after 24 h of transfection. Bar graph shows relative fluorescence change (C). Schematic representation of
coculture BBB model establishment using hBMECs and astrocytes (D). hBMECs transfected with empty vector or ZIKV E protein were grown in
contact with astrocytes for 24 h followed by measurement of TEER values (E) and dextran-FITC transendothelial permeability (F). Data represents
mean ± SEM for at least three independent experiments. ∗∗p < 0.01, ∗∗∗p < 0.001 with respect to control.

astrocytes transfected with E protein. Increased secretion of IL-6
(1.418 ± 0.065, p < 0.01) and IL-8 (1.038 ± 0.005, p < 0.05)
was observed as compared to control cells (Figures 6A–C).

These findings strongly suggests that astrocytes exacerbated the
inflammation at the BBB site, in response to ZIKV E protein.
Furthermore, astrocytes actively contribute in maintaining
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FIGURE 2

Effect of ZIKV E protein on endothelial junction protein expression. hBMECs were transfected with ZIKV E protein and empty vector as control for
24 h. (A) Total protein was isolated and subjected to Western blotting against ZO-1 (B), VE-Cadherin (C), Occludin (D) antibodies. β-actin was used
as loading control. One representative blot is shown. Bar graphs shows relative protein expression in indicated groups. To assess localization of
junction proteins, transfected hBMECs were immunostained with ZO-1 (E,F), VE-Cadherin (G,H) and Occludin (I,J). Scale bar 20 µm. Bar graph
shows relative protein expression in indicated groups (K–M). Data represents mean ± SEM for at least three independent experiments. ∗p < 0.05,
∗∗p < 0.01 with respect to control.

glutamate homeostasis in the brain which is perturbed in the
reactive state of astrocytes, thereby pertaining to glutamate
excitotoxicity (Mahmoud et al., 2019). Hence, we wanted to study
secretion of glutamate from astrocytes after the ZIKV E protein
transfection. E protein transfected astrocytes resulted in increased
levels of glutamate in the extracellular milieu (1.337 ± 0.059,

p < 0.01) (Figures 6A, D). Monocyte chemoattractant protein
1 (MCP-1) is one of the most commonly expressed chemokine
expressed during CNS inflammation and is critical for monocyte
recruitment and migration, BBB alteration, hence propagating
inflammation (Sawyer et al., 2014). We checked the levels
of MCP-1 release in supernatant collected from transfected
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FIGURE 3

ZIKV E protein induces inflammation in hBMECs. Brain microvascular endothelial cells were transfected with empty vector and E protein for 24 h.
Total RNA was isolated and transcript levels of inflammatory cytokines and chemokines were measured using quantitative RT-PCR for IL-6 (A), IL-8
(B), IL-1β (C), CCL2 (D), CCL5 (E) and CXCL10 (F). Transcript levels of genes involved in modulation of adhesion molecules and angiogenesis-
ICAM-1 (G), VCAM-1 (H), and PTGS2 (I) were also measured. Bar graph shows relative transcript expression in indicated groups. Data represents
mean ± SEM for at least three independent experiments. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 with respect to control.
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FIGURE 4

ZIKV E protein induces release of proinflammatory cytokines in hBMECs. Schematic representation of experimental setup (A). Brain microvascular
endothelial cells were transfected with empty vector or E protein for 24 h. Supernatants collected from transfected cells were subjected to cytokine
bead array for measurement of inflammatory cytokines IL-6 (B) and IL-8 (C). Data represents mean ± SEM for at least three independent
experiments. ∗∗p < 0.01 with respect to control.

astrocytes. Results showed elevated levels of MCP-1 (2.002 ± 0.354,
p < 0.05) (Figures 6A, E). These findings indicate astrocytes
being essential site of ZIKV infection potentiates inflammation
in its reactive state when exposed to ZIKV E protein. These
results suggest that astrocytes play role in altering integrity of
endothelial barrier.

ZIKV induced reactive astrocytes alter
expression of endothelial proteins

As astrocytes and BMECs mutually interact with each other via
soluble factors and enhance barrier properties (Chang et al., 2015),
we assessed whether E protein transfected “reactive astrocytes”
influence the expression of endothelial junction proteins. To
address this question, the supernatant from transfected astrocytes
was collected after 24 h and mixed with equal proportion of
fresh endothelial media. hBMECs were then treated with astrocyte-
conditioned media (ACM)- empty vector and/or E- protein,
respectively.

E protein exposure resulted in significant reduction in
endothelial junction proteins- ZO-1 (0.641 ± 0.096, p < 0.01), VE-
Cadherin (0.877 ± 0.196, p = 0.553), and Occludin (0.660 ± 0.075,
p < 0.05) (Figures 7A–E). These results were further corroborated
by our findings from contact-based co-culture model of BBB.
Transfected hBMECs grown in direct contact with astrocytes
were harvested after 24 h to check expression of endothelial
junction proteins. Results showed prominent reduction in ZO-1
(0.554 ± 0.099, p < 0.01), VE-Cadherin (0.563 ± 0.102, p < 0.05),
and Occludin (0.413 ± 0.262, p < 0.05) (Figures 8A–E). These
results strongly emphasize how mutual interaction of astrocytes
and BMECs play important role in maintaining BBB integrity, as

both cell types were found to be vulnerable to ZIKV E protein
exposure.

Discussion

Our study aimed at the investigation of role of principal surface
protein of Zika virus i.e., envelope (E) protein on the characteristic
properties of cells comprising the BBB, and delineate the molecular
mechanisms for the same. While the majority of work in the
field has primarily focused on monoculture BBB model systems,
we employed a two-dimensional model consisting of hBMECs
and astrocytes to recapitulate the in vivo physiological conditions
of BBB. This model allowed us to better mimic the complex
interactions and dynamics between these cell types, providing a
more comprehensive understanding of BBB. In our study we have
employed two in vitro model systems of BBB- (1) monolayer of
primary hBMECs cultured on transwell and (2) a contact-based co-
culture of primary hBMECs and human neural stem cell derived
astrocytes cultured on either side of transwell apparatus. Using both
of our model systems we found that exposure of E protein to the
BBB model resulted in significant modulation of BBB integrity and
endothelial permeability. Although the changes in permeability of
hBMECs were relatively small, these changes had notable effects on
the activation state of hBMECs. In our study, we have employed
dextran-FITC dye (4kDa) to assess the endothelial permeability,
however, there are other low molecular weight dyes available which
might provide additional insights into the permeability of small
molecules across the BBB. Furthermore, previous studies have also
shown that ZIKV does not induce significant disruptions on BBB
integrity but rather affects activity and function of BMECs and
astrocytes (Mladinich et al., 2017; Papa et al., 2017; Alimonti et al.,
2018). These findings highlight the importance of investigating
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FIGURE 5

ZIKV E protein triggers astrogliosis. Progenitor derived astrocytes were transfected with empty vector or E protein for 24 h. Total protein was isolated
and subjected to Western blotting against markers for astrocyte reactivity, GFAP (A) and Vimentin (B). β-actin was used as loading control. One
representative blot is shown. Bar graph shows relative protein expression in indicated groups (C,D). To assess the transcript levels, total RNA was
isolated and subjected to quantitative RT- PCR for GFAP (E), Vimentin (F), IL-6 (G), and IL-8 (H). Data represents mean ± SEM for at least three
independent experiments. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 with respect to control.

the cellular responses and interactions within the BBB during
ZIKV infection, even in the absence of dramatic changes in barrier
integrity. We further investigated the molecular drivers of BBB
disruption induced by ZIKV E protein. We studied the effect
on expression of tight and adherens junction proteins which are
responsible for maintaining the junctional stability. Indeed, ZIKV
E protein altered expression of endothelial junction proteins–ZO-1,
Occludin and VE-Cadherin in both monoculture and co-culture
model systems. Previous studies also showed a downregulation of

tight junction protein expression in hBMECs infected with ZIKV
Asian strain (PRVABC9, Puerto Rico), when compared to African
strains (R103451 and MR 766) (Leda et al., 2019). Our study further
fills the lacunae of other in vitro components of BBB model as seen
by presence of astrocytes in contact with hBMECs. Our contact-
based two-dimensional model system of human origin provides a
more suitable and relevant in vitro platform for investigating the
effects of ZIKV proteins, which has not been previously reported.
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FIGURE 6

ZIKV E protein induced reactive astrocytes release proinflammatory cytokines, extracellular glutamate and MCP-1. Progenitor derived astrocytes
were transfected with empty vector or E protein for 24 h. Schematic representation of experimental paradigm followed (A). Supernatant collected
from transfected cells were subjected to cytokine bead array for measurement of inflammatory cytokines IL-6 (B) and IL-8 (C). Also, supernatant
collected from transfected astrocytes was subjected to measurement of extracellular glutamate release (D) and also subjected to ELISA for
measurement of MCP-1 (E). Data represents mean ± SEM for at least three independent experiments. ∗p < 0.05, ∗∗p < 0.01 with respect to control.

During viral invasion and BBB disruption BMECs function as
source of pro-inflammatory chemokines and cytokines (Daniels
and Klein, 2015). Hence, we tested the hypothesis if ZIKV E protein
has any influence on BMECs activation. Our experiments describe
activation of BMECs on E protein exposure, proinflammatory
cytokines and chemokines (IL-6, IL-8, IL-1β, CCL2, CCL5, and
CXCL10) which are known to alter BBB integrity upon CNS
infection are increased (Daniels and Klein, 2015; Wolf et al.,
2019; Alsaffar et al., 2020; Panganiban et al., 2020; Rodrigues de
Sousa et al., 2021). Proinflammatory cytokines IL-6 and IL-8 were
detected in the extracellular milieu of hBMECs transfected with
E protein. Other cytokines were not present in detectable limits
which could be attributed to their short half-lives and different time
kinetics. Along with increase in inflammatory molecules, BMECs
showed increased levels of other endothelial barrier disrupting
molecules such as CAM, ICAM-1 and VCAM-1. Increased CAM
levels are known to augment viral entry contributing in immune
cell infiltration and elevate inflammatory response at the site of
BBB (Al-Obaidi et al., 2018). Endothelium permeabilization is
one mechanism by which neurotropic viruses access the CNS
(Sips et al., 2012). Dysregulation of endothelial junction proteins,
increased expression of cell adhesion molecules and inflammatory
molecules can influence the viral access into the CNS without
completely disrupting the BBB (Verma et al., 2009). These changes

in molecular and cellular properties of BBB cells can create an
environment that facilitates viral entry into the CNS while still
maintaining some level of barrier function. Our findings are in
agreement with the previous studies showing ZIKV persistence in
hBMECs and potentially utilize the paracellular route to enter the
privileged neuronal compartments (Mladinich et al., 2017). Our
findings contribute to the growing body of evidence supporting the
ability of ZIKV to establish CNS infection by exploiting the cellular
mechanisms within the BBB.

Astrocytes are found to be major brain cell population
susceptible to ZIKV infection during fetal brain development
(Meertens et al., 2017). Their close contact with BMECs in
maintaining the neurovasculature makes them eminent during
viral infections (Zorec et al., 2019). Infected astrocytes are known
to show cytopathogenic effects in response to ZIKV infection and
act as reservoir for viral replication (Potokar et al., 2019). We
investigated how astrocytes in BBB respond in presence of ZIKV
E protein. Astrocytes transfected with E protein were found to
be highly reactive as reflected by increase in GFAP and Vimentin
expression. Astrocytes in their reactive state exhibited increased
transcript levels of pro-inflammatory cytokines like IL-6 and IL-
8 and extracellular release of IL-6 and IL-8. MCP-1 being an
important chemokine in the inflammatory events in viral invasion
was found to be increased when astrocytes were exposed to ZIKV
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FIGURE 7

Reactive astrocytes affect endothelial junction proteins in hBMECs. Astrocytes were transfected with empty vector and E protein for 24 h. Schematic
representation of experimental paradigm followed (A). Supernatants were collected and mixed with equal amount of fresh endothelial growth
media. Brain microvascular endothelial cells were exposed to the astrocyte-conditioned media for 24 h. (B) Total protein was isolated and subjected
to Western blotting against endothelial junction proteins- ZO-1 (C), VE-Cadherin (D), and Occludin (E). β-actin was used as loading control. One
representative blot is shown. Bar graphs shows relative protein expression in indicated groups. Data represents mean ± SEM for at least three
independent experiments. ∗p < 0.05, ∗∗p < 0.01, ns = not significant, with respect to control.

E protein. MCP-1 is also known to regulate BBB permeability as
brain endothelial cells express MCP-1 receptor, CCR2 (Stamatovic
et al., 2003, 2005). Glutamate homeostasis was also perturbed
resulting in increased levels of glutamate in the extracellular milieu
of transfected astrocytes. These present findings indicate that
activated astrocytes play crucial role in disruption of BBB integrity
during the course of ZIKV infection. Furthermore, our co-culture
BBB model system closely mimicked the physiological environment
where both the cells were in mutual contact and their individual
contributions to the BBB pathophysiology was studied in response
to ZIKV E protein.

The attained neurotropic nature of ZIKV makes it capable to
infect almost all types of brain cells−microglia, neural progenitor
cells and astrocytes; resulting in severe consequences during fetal
brain development (Bhagat et al., 2018, 2022; Quincozes-Santos
et al., 2023). The associated neurological complications due to
vertical transmission (from infected pregnant women to fetus)
mainly involves miscarriages, impaired fetal growth or fetuses
born with congenital Zika syndrome (CZS) (van der Linden et al.,
2016). Studies have demonstrated incidence of ZIKV infection
post-breaching the blood-placental barrier and blood-brain barrier
(Chiu et al., 2020). Clinical studies indicated prevalence of cognitive
abnormalities like seizure disorders and motor impairments in
children born with CZS (Satterfield-Nash et al., 2017; van der

Linden et al., 2018). As the membrane fusion and subsequent
entry of the virus is facilitated by E protein, it proves to be
a conducive target for drug therapy and vaccine development
(Giraldo et al., 2020; Hu et al., 2021). Our previous lab studies
have focused on how ZIKV E protein perturbed the miRNA
circuitry of human fetal neural stem cells (fNSCs) pertaining to
cell cycle arrest and inhibition of proliferation (Bhagat et al.,
2018, 2021). This strongly highlights the fact that E protein
plays eminent role in pathogenicity of the virus. In addition,
endothelial dysfunction has been also reported due to ZIKV
NS1 protein bystander effects. NS1 protein has been shown to
destabilize VE-Cadherin complex and promoted disruption of
claudin 5 (CLDN5) affecting the endothelial integrity (Rastogi and
Singh, 2020; Bhardwaj and Singh, 2021). To further accentuate the
findings resulting from single ZIKV structural protein, our study
further requires the validation that can be performed in human
ZIKV microcephalic brain tissues. Also, even though we tried
to closely mimic the physiological environment by establishing
a contact -based model of hBMECs and astrocytes, our present
study will be benefitted from in vivo ZIKV animal models to
better understand the corroborated effects of ZIKV E protein.
Altogether, our study concludes that ZIKV E protein compromises
the BBB maintenance. Our findings implicates that the envelope
protein of ZIKV dysregulates the properties of hBMECs which
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FIGURE 8

ZIKV E protein expression in hBMECs affects endothelial proteins in BBB of astrocytes and hBMECs. Transfected hBMECs were grown in contact with
astrocytes for 24 h on transwell apparatus to form co-culture of BBB. Schematic representation of experimental paradigm followed (A). (B) Total
protein was isolated from the luminal side of transwell and subjected to Western blotting against endothelial junction proteins- ZO-1 (C),
VE-Cadherin (D), and Occludin (E). β-actin was used as loading control. One representative blot is shown. Bar graphs shows relative protein
expression in indicated groups. Data represents mean ± SEM for at least three independent experiments. ∗p < 0.05, ∗∗p < 0.01 with respect to
control.

may aid in release of viral particles into the parenchyma without
causing complete disruption of BBB. The altered state of BBB
results from the dysregulated state of endothelial junction proteins
and activated state of BMECs, resulting in an inflammatory
cascade. In addition to this, astrocytes were also found to be
susceptible and reactive toward exposure of E protein, thereby
influencing the BBB integrity suggesting a potential mechanism
in ZIKV-mediated BBB dysregulation through direct contact with
hBMECs.
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