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EEG-based emotion recognition through artificial intelligence is one of the major
areas of biomedical andmachine learning, which plays a key role in understanding
brain activity and developing decision-making systems. However, the traditional
EEG-based emotion recognition is a single feature input mode, which cannot
obtain multiple feature information, and cannot meet the requirements of
intelligent and high real-time brain computer interface. And because the EEG
signal is nonlinear, the traditional methods of time domain or frequency domain
are not suitable. In this paper, a CNN-DSC-Bi-LSTM-Attention (CDBA) model
based on EEG signals for automatic emotion recognition is presented, which
contains three feature-extracted channels. The normalized EEG signals are used
as an input, the feature of which is extracted by multi-branching and then
concatenated, and each channel feature weight is assigned through the
attention mechanism layer. Finally, Softmax was used to classify EEG signals.
To evaluate the performance of the proposed CDBA model, experiments were
performed on SEED and DREAMER datasets, separately. The validation
experimental results show that the proposed CDBA model is effective in
classifying EEG emotions. For triple-category (positive, neutral and negative)
and four-category (happiness, sadness, fear and neutrality), the classification
accuracies were respectively 99.44% and 99.99% on SEED datasets. For five
classification (Valence 1—Valence 5) on DREAMER datasets, the accuracy is
84.49%. To further verify and evaluate the model accuracy and credibility, the
multi-classification experiments based on ten-fold cross-validation were
conducted, the elevation indexes of which are all higher than other models.
The results show that the multi-branch feature fusion deep learning model based
on attention mechanism has strong fitting and generalization ability and can solve
nonlinear modeling problems, so it is an effective emotion recognition method.
Therefore, it is helpful to the diagnosis and treatment of nervous system diseases,
and it is expected to be applied to emotion-based brain computer interface
systems.
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1 Introduction

EEG is the overall reflection of nerve cells in the cerebral
cortex or scalp surface of electrophysiological activities in the
brain, which has the advantages of being non-invasive, easy to
use, portable, and other advantages. It is often used in sleep
staging, seizure detection and prediction, brain-computer
interfaces (BCIs) and other fields. Data-driven machine
learning or deep learning can simulate or even improve the
clinical diagnosis of EEG. Emotion is an important part of
human life, which reflects human emotions, thoughts,
behaviors and further affects physical and behavioral states
(Lu et al., 2020). Positive emotions can promote and enhance,
while negative emotions can weaken and reduce human behavior.
Severe negative emotion, such as depression, may cause serious
damage to the physical and mental health of patients. Emotion
plays a crucial role in all aspects, such as human communication
and decision-making. Therefore, understanding and analyzing
human emotions is very important, which can be used in many
fields, such as intelligent driving systems (Nakisa et al., 2018),
medical services (Mehmood et al., 2017), voice assistants (Liu
et al., 2017), robots (Dai et al., 2017) etc., When treating patients
with emotional problems, auto-recognition of real emotional
states can help doctor to provide better medical care. Several
psychological and physiological studies have found a strong
correlation between emotion recognition and brain activity
(Sammler et al., 2007; Mathersul et al., 2008; Knyazev et al.,
2010). Emotion can be recognized through physical activity, body
posture, speech, facial expression, etc. However, these external
signs are easy to be disguised or concealed, great impact by
subjective factors and it is difficult to reflect the true emotional
state of the heart. Physiological signals have the advantages of
universality, spontaneity and difficulty in disguising, which can
reflect the real emotional state more accurately.

Physiological signals can reflect the state of the central and
autonomic nervous systems (CNS and ANS) (Cannon, 1927) and
indicate a subject’s potential emotional response (Shu et al., 2018).
With advanced mobile computing technologies and miniaturized
wearable sensors, physiological signals can be continuously
monitored, which include electroencephalogram (EEG),
electrocardiogram (ECG), electromyogram (EMG), electrodermal
response (GSR), body temperature, respiratory rate (RR), and pulse
blood oxygen measurement. EEG signals have been shown to
provide important features for emotion recognition
(Petrantonakis and Hadjileontiadis, 2011), which has excellent
spatial and temporal resolution during emotional induction (Dale
and Sereno, 1993). EEG has the advantage of non-invasive, fast, and
economic. However, the complexity and nonlinearity of EEG signals
lead to the suboptimal processing effect of many traditional
methods, the steps of which contains feature extraction and
classification. According to the EEG signal characteristics,
obtaining the most prominent features is the most critical
step. Common feature extraction methods include time domain,
frequency domain, time-frequency analysis, and nonlinear analysis,
etc. However, traditional machine learning methods require
selecting electrode channels and manually extracting features,
which are tedious, time-consuming and laborious, and easily lead
to low accuracy of classification results. Deep learning has the

advantages of strong learning ability and portability (Chen et al.,
2021), thus EEG signal recognition and classification based on deep
learning has become an important research direction. Jaiswal and
Banka, (2017) proposed an artificial neural networks (ANN) model
for feature-based EEG signal classification, which used local gradient
patterns and neighborhood description patterns, and the final
classification accuracy is 99.82%. Zhang et al. (2018) proposed a
Spatial Temporal Recursive Neural Network (STRNN) for emotion
recognition, the results of which shows that STRNN performed
significantly better than SVM. Zheng and Lu (2015) used a short
Fourier Transform to extract density entropy of multichannel EEG
signals and used Deep Trust Network (DBN) to classify positive,
negative, and neutral emotions with 86.65% accuracy.

Many researchers have devoted themselves to put forward
various algorithms to improve the accuracy of emotion
classification. For example, studies that selected representative
spatial and temporal information can greatly optimize the
classification of emotion, and studies that selected a minimum
number of channels to determine the emotional state of EEG
signals without compressing accuracy can be applied to portable
EEG interface implants. EEG signals are time-varying and
continuous, which is very useful for classifying emotional states.
Therefore, a good combination of spatial temporal combination
features can provide more information.

According to the characteristics of EEG signals and the
shortcomings of existing methods, this paper proposes a CNN-
DSC-Bi-LSTM-Attention (CDBA) model based on multi-branching
feature fusion, which can achieve the feature extraction, feature
selection and classification for emotional EEG. There are three
channels to extract spatial and temporal features, including
primary spatial features and advanced spatial features. According
to the importance of EEG features, attentionmechanisms are used to
give different weights to each feature. Finally, Softmax function is
used as a classifier to classify emotions and obtain triple or four
categories results. Compared to existing research, the innovations of
this paper can be summarized as follows:

(1) The use of raw EEG signals facilitates transplantation and
application to brain interfaces.

(2) Bi-LSTM, Depthwise Separable Convolution (DSC), and
Attention Mechanism are introduced to achieve high
performance and lower model overhead by combining
multiple features.

TABLE 1 Examples of the movie clips of Positive, Negative and Neutral
emotions (Duan et al., 2013; Zheng and Lu, 2015; Zheng et al., 2018).

Serial No Emotion label Film clips’ sources

01 Negative Back to 1942

02 Negative Tangshan Earthquake

03 Positive Flirting Scholar

04 Positive Lost in Thailand

05 Neutral World Heritage in China

06 Neutral A Bite of China
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(3) Extensive experiments were conducted on both SEED
datasets to verify and evaluate the model accuracy and
credibility.

The organizational structure of this paper is as follows: Section 2
describes the details of the data set, the classification model
architecture, and the overall framework of this paper. Section 3
introduces the results of this paper and compares them with other
models. Section 4 summarizes this paper and puts forward the future
research direction.

2 Materials and methods

2.1 Dataset

SJTU Emotion EEG Dataset (SEED) is provided by the BCMI
Laboratory of Shanghai Jiaotong University (Duan et al., 2013;
Zheng and Lu, 2015). The data of SEED was from EEG
recordings of 15 subjects. During the experiment, 15 Chinese
film clips (positive, neutral, and negative emotions) were selected

FIGURE 1
CDBA structure.

TABLE 2 Parameters of the CDBA architecture.

Type Number Size

Block 1

Conv1d 32 3 size*1 Step size

MaxPooling 1d 2 size*1 Step size

Block 2

Separable_Conv1d 32 3 size*1 Step size

MaxPooling 1d 2 size*1 Step size

Conv1d 32 3 size*1 Step size

MaxPooling1d 2 size*1 Step size

Block 3 Bi-LSTM 64

FC1 Dense 64

FC2 Dense 32 FIGURE 2
Two channels one-dimensional convolution.
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from a library of materials as stimuli used in the experiment. The
total duration of the experiment should be short. Otherwise, subjects
may feel tired. Film clips should be well understood, not clarified.
Clips should stimulate single-goal emotions. It shouldn’t contain
mixed emotions. Each film has been edited to create coherent
emotion and maximize emotional meaning. There were a total of
15 tests per experiment. Each clip is preceded by a 5-s reminder, 45 s
for self-assessment, and 15 s to rest after each clip in a session. The
order of screenings is such that two clips of the same emotion will
not be shown consecutively. In response to feedback, participants
were told to report their emotional reaction to each film clip by
completing a questionnaire immediately after viewing each
clip. SEED-IV (Zheng et al., 2018) was data from EEG
recordings of 15 subjects, and 72 film clips were carefully
selected for three experiments, which tended to induce feelings of
happiness, sadness, fear, or neutrality, as SEED did. Table 1 gives
some details of the film clips used in the SEED experiment.

Similarly, the DREAMER database (Gabert-Quillen et al., 2015;
Katsigiannis and Ramzan, 2017) consists of multichannel EEG
signals collected from 23 healthy subjects (9 women and
14 men). In this database, each subject’s mood was induced by
playing 18 movie clips. Each film clip considered nine emotional
categories, such as anger, fear, calm, entertainment, sadness,
surprise, disgust, happiness, and excitement. EEG signals were
recorded with 14 electrodes (using a standard 10–20 electrode
system) and sampled at 128 Hz.

2.2 Data pre-processing

The SEED dataset was tested in three stages for each subject. The
interval between each experiment was 1 week or more. This process
ensures a stable pattern of neural activity at different stages and in
different individuals. Record both facial video and EEG. Subjects sat

in front of large screens showingmovie clips. The data were collected
via 62 channels which are placed according to 10–20 system, down-
sampled to 200 Hz, a bandpass frequency filter from 0–75 Hz was
applied and presented as MATLAB “.mat” files. In total, 45 sessions
of EEG data was recorded. The labels are given according to the clip
contents (−1 for negative, 0 for neutral and 1 for positive). To test the
superiority of the model for emotional recognition, we used only the
original EEG signals of SEED and SEED-IV for test training. Due to
the large volume of data, we extracted 1,000 consecutive datasets
from each person in the experiment in the middle of each video
segment, so SEED and SEED-IV were extracted for 15 people ×
15 videos × 1,000 = 225,000 and 15 people × 24 videos × 1,000 =
360,000.

The same DREAMER was created by 23 subjects each watching
18 movie clips, producing 23 × 18 = 414 EEG files. Each subject was
given a score between 1 and 5 based on valence, arousal, and
dominance levels, and the Valence classifications was used as a
label in the paper. We extract 1,000 consecutive data sets from each
person in the experiment in the middle of each video clip, so the
extraction DREAMER is 23 people x 18 videos × 1,000 = 414,000.

2.3 The structure of CDBA model

The importance of each feature in the emotion classification is
different, a CDBAmodel for emotion recognition is proposed in this
paper. The structure of the CDBA model is shown in Figure 1.

It can be seen from Figure 1, the CDBA model can achieve the
feature extraction, feature selection and classification for emotional
EEG. There are three parallel channels to extract spatial and
temporal features, including primary spatial features and
advanced spatial features. The raw EEG signals are first
normalized and then input simultaneously to the three Blocks.
Block 1 consists of a convolution layer with ReLU activation

FIGURE 3
Convolution process of one-dimensional depthwise separable convolution.
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function, a max pooling layer, and a flatten layer. The reason for
choosing ReLU activation function is that it abandons complex
computation to improve the operation speed, which helps to solve
the convergence problem of deep networks. And it is more in line
with the characteristics of biological neurons and is easy to learn and
optimize. Block 2 added a deeply separable network to Block 1.
Depth separable convolution (DSCNN) can be divided into deep
and separable convolution, mainly obtains the interaction
information between physiological signal space and characteristic
channels. In the depth convolution part, all the connected channels
of each sample point are convolved. In the separable convolution
part, each sample point channel convolution is performed on the
basis of deep convolution. 64 unit Bi-LSTM and flatten layers are
used in Block 3, which is solves the long term dependence of cyclic
neural network RNN. The unique “gate” structure avoids gradient
explosion and gradient disappearance and has the advantage of
strong long term memory. Bi-LSTM considers forward and
backward time series information in the time dimension to make
the prediction more comprehensive and accurate. CNN is suitable
for extracting local spatial features, and Bi-LSTM combines
bidirectional time-series information to analyze emotional
characteristics more thoroughly from spatial-temporal
characteristics and improve the fit of predictive results. The
primary spatial features, the advanced spatial features and the
time series features are extracted from the three blocks,
respectively. And then they are concatenated together into a
sequence. The attention mechanism layer will weigh the
concatenated sequence, assign weight values to each channel,
further extract features and reduce dimensions through two fully
connected layers, and then categorize the final prediction results
through the Softmax function. Parameters of the CDBA architecture
are shown in Table 2.

2.3.1 Convolution neural network
CNN is a deep learning model that automatically learns to

classify objects from images, numbers or videos, which generally

consists of convolution, pooling and full connection layers. The
convolution layer contains 32 convolution nuclei and performs
convolution calculations on input signals. Then the non-
linearization of the convolution results is performed by using the
activation function. By optimizing the weight parameters of each
filter, the algorithm minimizes classification errors and can learn
from input data. The EEG data used in this paper is one-
dimensional, so only one-dimensional convolution neural
networks are used, the diagram of which is shown in Figure 2.
Rectifying linear activation units (ReLU) were used in the one-
dimensional convolution layer. The pooling layer, also known as the
down-sampling layer, performs pool operations on the output of the
convolution layer to preserve higher-level representation. The
advanced features are usually fed into the full connection layer
for final classification. Assuming the input is two-channel data, the
kernel is also a two-dimensional two-column filter, with the first
convolution output calculated as Eq. 1.

y0 � a0 × k0 + a1 × k1 + b0 × k2 + b1 × k3 (1)
The rest of the output is calculated by sliding the kernel in a vertical

direction, that is, time-stamp direction. Thus, vectors can be obtained
from each filter, which is connected by columns to obtain a two-
dimensional feature diagram and further processed by continuous
convolution operations. Through multiple convolution operations
until the abstract features of the signal are extracted.

2.3.2 Depthwise separable convolution
DSCNN can be divided into depthwise convolution and

pointwise convolution, which are mainly used for feature
extraction. A convolution kernel of depthwise convolution is
responsible for a channel, and a channel is convolved by only a
convolution kernel, and this process produces exactly the same
number of feature map channels as the input number. Point
convolution applies standard convolution operations to the
intermediate features using multiple 1 × 1 convolution cores to
obtain multiple outputs of the same height and width as the input

FIGURE 4
Bi-LSTM Structure and LSTM cell structure.
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data. Finally, the output of all the convolution kernels is spliced to
get its final output. Depthwise separable convolution can
significantly reduce the number of parameters and computation,
thus further improving the identification efficiency. Figure 3 shows
the one-dimensional convolution process for DSCNN.

Suppose the size of the input data is H ×W × C, in which H, W,
and C are the height, width, and number of channels, respectively. In
our experiment, W = 1. Each channel is deeply convoluted with a
convolution core of 3 × 3, the parameters of which are calculated as
shown in Formula (2)

Ndepthwise � H × W × C × 3 × 3 (2)

For point-by-point convolution, the output channel of the
feature map generated by deep convolution is expanded by M
convolution nuclei of 1 × 1 size. Formula (3) for calculating
point-by-point convolution parameters is:

Npointwise � H × W × C × 1 × 1 × M (3)

Therefore, the calculation of depth can be divided into
convolution weights of depth convolution and point convolution,
shown in Formula (4)

Nseparable � Nseparable +Npointwise � H × W × C × 3 × 3 +M( ) (4)

For standard convolution, the parameters are calculated as
follows, Formula (5)

Ns tan dard � H × W × C × 3 × 3 × M (5)
By comparing Formulas (4) and (5), it can be seen that the ratio

of standard convolution to parameter calculations of deeply divisible
convolution is (M × 9)/(M + 9) and the required parameters are
reduced by the use of depthwise separable convolution compared to
ordinary convolution (Hou et al., 2022).

The most important thing is that the depthwise separable
convolution can change the channel and region of the previous

common convolution operation. Convolution first considers the
region and then the channel. The separation of channels and regions
was achieved.

2.3.4 Bi-directional long short term memory (Bi-
LSTM)

A recurrent Neural Network (RNN) is a neural network that can
analyze data sequences relying on previous calculation result. This
leads to the possibility of gradient disappearance and the explosion
of RNN, limiting its availability in long input sequence analysis.
Therefore, we used Bi-directional Long Short Term Memory
Network (Bi-LSTM) in this paper, which is an improved circular
neural network and can learn long term information. Figure 4 shows
the structure of the Bi-LSTM network and LSTM cell structure.

The special structure of LSTM network avoids the long term
dependencies caused by complex repetitive chain modules. The
parameters of LSTM are shown respectively in Formulas (6–11).
The LSTM network consists of input gates, forgotten gates, and
output gates that update and delete information into storage units.
Cell state Ct and “gate” structures are key parameters of LSTM. In
particular, the forgotten Gate decides whether or not to delete past
information from the cell state. In these formulas, xt and ht-1 are
determined by the output of hidden layer and sigmoid activation
function σ, and W represents the corresponding weight matrix. b is
network bias. ft, it and Ot are the state of the forgotten gate, the input
gate and the output gate, respectively. Ct stands for the temporary
state of input at the moment of t, tanh () is the unit output.

ft � σ wf × ht−1, xt[ ] + bf( ) (6)
it � σ wi × ht−1, xt[ ] + bi( ) (7)

~Ct � tanh wc × ht−1, xt[ ] + bc( ) (8)
Ct � ft × Ct−1 + it × ~Ct (9)

ot � σ wo × ht−1, xt[ ] + bo( ) (10)
ht � ot × tanh Ct( ) (11)

FIGURE 5
Test results of CDBA model based on three-classifications.
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In a one-way long short term memory network, the network
does not consider the follow-up information and drives the
follow-up information by learning from the previous
information. However, in many cases, prediction often

requires sufficient contextual information to extract key
features. Unlike LSTM, which consists of two LSTMs that
send opposing messages in a looped diagram, the network
connects not only the past but also the future, making the

FIGURE 6
Test results of CDBA model based on four-classifications.

TABLE 3 The performance of CDBA model on three-category of task test sets.

Methods Accuracy (%) Precision (%) Recall (%) F1-score (%) MCC(%)

DNN 68.15 68.34 68.15 68.13 52.32

CNN 80.61 80.71 80.61 80.59 70.97

GRU 68.95 68.97 68.95 68.83 53.53

RNN 67.53 67.40 67.53 67.14 51.54

LSTM 88.77 88.77 88.77 88.77 83.15

Bi-LSTM 92.08 92.12 92.08 92.08 88.16

CNN-RNN 77.62 77.66 77.62 77.56 66.49

CNN-LSTM 94.69 94.70 94.69 94.69 92.04

CNN-Bi-LSTM 93.10 93.16 93.10 93.09 89.69

DSCNN-RNN 72.43 73.09 72.43 72.23 59.09

DSCNN-LSTM 94.03 94.04 94.03 94.03 91.05

DSCNN-Bi-LSTM 91.10 91.30 91.10 91.08 86.76

1D CAE 95.92 95.92 95.92 95.91 93.88

1D InceptionV1 87.72 87.89 87.72 87.70 81.68

Adaboost 54.29 55.03 54.29 53.99 31.86

Bayes 40.95 42.97 40.95 35.88 13.77

Decision Tree 79.38 81.06 79.38 79.47 69.78

XGBoost 95.12 95.21 95.12 95.12 92.73

CDBA (proposed model) 99.44 99.45 99.44 99.44 99.17

Frontiers in Physiology frontiersin.org07

Huang et al. 10.3389/fphys.2023.1200656

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1200656


model more robust. Bi-LSTM processes two LSTMs, which
consider the values before and after input and then combine
the outputs. In this way, for each piece of data, LSTM can learn
about the impact of previous data and the impact of subsequent

data. Therefore, unlike normal LSTM, the Bi-LSTM calculation is
performed by the values of two layers, which can learn long-term
dependencies and effectively compensate for disappearing
gradients (Zheng and Chen, 2021).

FIGURE 7
Test results of CDBA model based on five-classifications.

TABLE 4 The performance of CDBA model on four-category of task test sets.

Methods Accuracy (%) Precision (%) Recall (%) F1-score (%) MCC(%)

DNN 52.12 53.56 52.12 52.06 36.56

CNN 64.21 64.59 64.21 64.20 52.38

GRU 49.44 49.42 49.44 49.29 32.65

RNN 49.12 49.15 49.12 48.66 32.37

LSTM 75.83 75.93 75.83 75.78 67.83

Bi-LSTM 84.13 84.27 84.13 84.13 78.89

CNN-RNN 56.87 57.72 56.87 56.91 42.72

CNN-LSTM 87.68 87.71 87.68 87.68 83.59

CNN-Bi-LSTM 85.43 85.52 85.43 85.45 80.59

DSCNN-RNN 55.35 55.48 55.35 54.75 40.78

DSCNN-LSTM 88.87 88.87 88.87 88.87 85.17

DSCNN-Bi-LSTM 84.08 84.08 84.08 84.08 78.78

1D CAE 87.29 87.29 87.29 87.29 83.06

1D InceptionV1 78.06 78.17 78.06 78.07 70.77

Adaboost 37.49 37.52 37.49 37.41 16.69

Bayes 26.10 30.44 26.10 17.39 24.6

Decision Tree 88.46 88.63 88.46 88.50 84.65

XGBoost 87.23 87.34 87.23 87.24 82.99

CDBA (proposed model) 99.99 99.98 99.98 99.98 99.98
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2.3.5 Attention mechanism
Attention mechanism is a resource allocation mechanism that

mimics the attention of the human brain, which focuses on areas

that need concentration at a particular moment, reducing or even
ignoring attention to other areas for more detailed information. For
a given target, by generating a weighted summation of the input to

TABLE 5 The performance of CDBA model on five-category of task test sets.

Methods Accuracy (%) Precision (%) Recall (%) F1-score (%) MCC(%)

DNN 30.14 32.38 28.32 27.75 10.96

CNN 34.16 37.38 31.95 31.38 16.08

GRU 42.18 47.12 40.31 40.87 26.72

RNN 38.28 42.05 35.89 36.06 21.43

LSTM 37.71 42.92 35.85 35.62 21.39

Bi-LSTM 42.21 44.57 40.16 40.40 26.59

CNN-RNN 50.81 53.77 49.04 49.65 37.88

CNN-LSTM 62.10 63.31 61.26 61.92 52.09

CNN-Bi-LSTM 67.55 69.59 66.46 67.44 59.01

DSCNN-RNN 38.67 41.61 36.48 36.41 22.13

DSCNN-LSTM 38.27 40.17 37.23 36.93 22.34

DSCNN-Bi-LSTM 38.27 40.17 37.23 36.93 22.34

1D CAE 65.68 66.31 65.66 65.82 56.83

1D InceptionV1 32.86 38.14 30.77 30.24 14.47

Adaboost 34.66 34.63 32.70 32.64 16.76

Bayes 22.53 23.94 22.28 15.96 3.96

Decision Tree 65.66 67.11 65.00 65.72 56.63

XGBoost 74.97 76.39 74.40 75.14 68.41

CDBA 84.49 84.81 84.07 84.38 80.38

FIGURE 9
The accuracy of CDBAmodel based on ten-fold cross-validation
four-classification task.

FIGURE 8
The accuracy of CDBAmodel based on ten-fold cross-validation
three-classification task.
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identify which features in the input are important for the target and
which are not. The attention mechanism improves the accuracy of
the model by paying sufficient attention to the key information and

highlighting the impact of the key information by means of
probability distribution. It can effectively improve the time series
too long to lose information and replace the original method of
randomly assigning weights with probabilities.

2.4 Evaluation indexes

In this study, frequently used indicators in the classification were
used to assess the validity and robustness of our framework from
different perspectives including five indicators: accuracy, precision,
recall, F1-score, and Matthews’ correlation coefficient. These
evaluation indicators were defined as follows: TP, FN, TN, and
FP represent true positive, false negative, true negative, and false
positive, respectively.

accuracy � right

all
(12)

precision � TP

TP + FP
(13)

recall � TP

TP + FN
(14)

F1 − score � 2
1

precision + 1
recall

(15)

MCC � TP × TN − FP × FN�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ (16)

FIGURE 10
The accuracy of CDBAmodel based on ten-fold cross-validation
five-classification task.

TABLE 6 The performance of CDBA model based on ten-fold cross-validation (three-classification task).

Methods Accuracy (%) Precision (%) Recall (%) F1-score (%) MCC(%)

DNN 66.42 66.87 66.42 66.33 49.86

CNN 73.86 74.07 73.86 73.82 60.92

GRU 66.35 66.72 66.35 66.17 49.80

RNN 66.05 66.31 66 65.93 49.29

LSTM 87.69 87.76 87.69 87.68 81.58

Bi-LSTM 92.68 92.70 92.68 92.67 89.03

CNN-RNN 73.03 73.31 73.02 72.98 59.70

CNN-LSTM 93.28 93.29 93.27 93.28 89.92

CNN-Bi-LSTM 92.17 92.19 92.17 92.17 88.28

DSCNN-RNN 70.57 70.93 70.58 70.49 56.07

DSCNN-LSTM 92.96 92.98 92.96 92.96 89.46

DSCNN-Bi-LSTM 89.74 89.77 89.75 89.74 84.64

1D CAE 92.07 9,212 92.06 82.88 88.13

1D InceptionV1 82.27 82.60 82.27 82.25 73.58

Adaboost 52.63 53.38 52.64 52.35 29.35

Bayes 41.79 42.23 41.79 38.82 13.75

Decision Tree 81.08 81.08 81.08 81.08 71.62

XGBoost 90.69 90.91 90.69 90.69 86.14

CDBA (proposed model) 99.40 99.41 99.40 99.40 99.11
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3 Experimental results and analysis

3.1 Experimental setup

In this experiment, to prevent a high correlation of EEG data and
to make the results more reasonable and accurate, the experimental
on SEED dataset was divided into 80% (12 individuals, training set)
and 20% (3 individuals, testing set), and the experimental on
DREAMER dataset was divided into18 individuals training set
and 5 individuals testing set. The experiment conducted
150 rounds of training using the Adam optimizer, with the Batch
size set at 1,024. To further verify the performance of the model, a
10-fold cross-validation experiment was performed which used
mean values as the model evaluation criteria. While ensuring the
same data distribution between the training and test sets, setting all
pre-training data to the same random seed, randomly scrambling,
and transferring to the network model. CDBA and other
comparative network models were implemented and modeled
using the same parameter settings on GeForce RTX 2080Ti.

3.2 Single test result of CDBA model

To verify the classification performance of the proposed CDBA
model in EEG emotion detection, the model was combined with Deep
Neural Network (DNN), Convolution Neural Network (CNN), Gated

Recurrent Unit (GRU), Recurrent Neural Network (RNN), Long Short
Term Memory Network (LSTM) and Bi-directional Long Short Term
Memory Network (Bi-LSTM). And their combined models CNN-
RNN, CNN-LSTM, CNN-Bi-LSTM, DSCNN-RNN, DSCNN-LSTM
and DSCNN-Bi-LSTM. 1D Convolutional Auto-Encode (CAE) is
composed of two convolutional layers replacing the fully connected
layers, and the symbols of the input are down-sampled to provide a
potential representation of smaller dimensions. 1D InceptionV1 is
compared. 1D InceptionV1 is the replacement of InceptionV1 two-
dimensional convolution nuclei with one-dimensional convolution
nuclei. In addition to comparing the model to other deep learning
models, we compared it to four popular traditional machine learning
types: Adaboost, Bayes, Decision Tree and XGBoost. Traditional
machine learning methods have also been widely used in many
computer fields. Traditional machine learning feature extraction
relies on manual methods that are simple, efficient and explainable
for particularly simple tasks. The advantage of deep learning is that
features can be extracted automatically. The CDBAmodel validates test
set results on a three, four and five category task, as shown in Figures
5–7. As can be seen from these figures, the CDBA model has fast
convergence speed and good performance.

The results of the validation experiments for the triple-category and
four-category test sets are shown in Tables 3, 4, with three classification
labels representing positive, neutral and negative emotions, respectively.
Four categories of labels represent feelings of happiness, sadness, fear
and neutrality. Of all the comparisonmodels, the CDBA presented here

TABLE 7 The performance of CDBA model based on ten-fold cross-validation (four-classification task).

Methods Accuracy (%) Precision (%) Recall (%) F1-score (%) MCC(%)

DNN 49.85 50.37 49.85 49.70 33.32

CNN 62.46 62.77 62.46 62.43 50.05

GRU 47.80 48.35 47.81 47.67 30.59

RNN 46.35 47.08 46.33 45.57 28.89

LSTM 74.21 74.33 14.11 74.21 65.66

Bi-LSTM 81.49 81.59 81.50 81.49 75.36

CNN-RNN 54.99 55.74 54.99 54.73 40.29

CNN-LSTM 83.65 83.70 83.64 83.65 78.21

CNN-Bi-LSTM 82.20 82.25 82.20 82.20 76.29

DSCNN-RNN 54.99 55.74 54.99 54.73 40.29

DSCNN-LSTM 81.15 81.18 81.15 81.14 74.88

DSCNN-Bi-LSTM 79.98 80.08 79.97 79.97 73.34

1D CAE 83.20 83.26 83.20 83.20 77.63

1D InceptionV1 73.31 73.96 73.30 73.24 64.64

Adaboost 35.93 36.00 35.93 35.82 14.61

Bayes 25.77 28.84 25.77 17.34 16.60

Decision Tree 74.10 74.11 74.10 74.10 65.47

XGBoost 80.57 80.81 80.57 80.61 74.15

CDBA (proposed model) 99.51 99.51 99.51 99.51 99.36
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TABLE 8 The performance of CDBA model based on ten-fold cross-validation (five-classification task).

Methods Accuracy (%) Precision (%) Recall (%) F1-score (%) MCC(%)

DNN 30.64 66.04 26.84 24.79 10.24

CNN 34.23 35.59 30.94 30.14 15.56

GRU 40.54 42.47 38.31 38.51 24.18

RNN 37.23 39.82 34.57 31.40 19.77

LSTM 36.87 39.24 34.62 34.45 19.51

Bi-LSTM 42.81 45.55 40.72 41.02 27.32

CNN-RNN 46.68 48.04 45.06 45.58 32.24

CNN-LSTM 59.14 59.74 58.51 58.79 49.41

CNN-Bi-LSTM 66.93 67.69 66.39 66.70 58.27

DSCNN-RNN 39.57 41.38 37.30 36.37 22.55

DSCNN-LSTM 58.38 59.23 57.50 57.95 47.31

DSCNN-Bi-LSTM 58.30 59.45 57.43 57.72 47.19

1D CAE 66.55 67.36 65.90 66.28 57.76

1D InceptionV1 33.34 38.12 30.07 28.72 14.54

Adaboost 32.95 32.72 29.73 28.87 13.72

Bayes 21.88 21.19 21.11 13.76 2.24

Decision Tree 77.81 77.60 77.55 77.58 71.96

XGBoost 69.93 71.64 68.93 69.88 61.90

CDBA (proposed model) 82.30 82.50 81.95 82.16 77.63

TABLE 9 Ablation experiments of CDBA model based on ten-fold cross-validation (three-classification task) and (four-classification task).

Data set Methods Accuracy (%) Precision (%) Recall (%) F1-score (%) MCC(%)

SEED Block1 99.16 99.17 99.16 99.16 98.75

SEED Block2 98.72 98.73 98.72 98.72 98.09

SEED Block3 99.32 99.33 99.32 99.32 98.99

SEED Block1 + Block2 98.58 98.58 98.57 98.58 97.87

SEED Block1 + Block3 99.38 99.39 99.38 99.38 99.08

SEED Block2 + Block3 99.35 99.35 99.35 99.35 99.03

SEED CDBA 99.40 99.41 99.40 99.40 99.11

SEED-IV Block1 98.92 98.93 98.92 98.92 98.57

SEED-IV Block2 97.85 97.86 97.85 97.85 97.14

SEED-IV Block3 99.24 99.24 99.24 99.24 99.00

SEED-IV Block1 + Block2 97.72 97.73 97.72 97.72 96.97

SEED-IV Block1 + Block3 99.34 99.34 99.34 99.34 99.12

SEED-IV Block2 + Block3 99.26 99.26 99.26 99.26 99.02

SEED-IV CDBA (proposed model) 99.51 99.51 99.51 99.51 99.36
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performed best in three categories, with 99.44% accuracy, 99.45%
precision, 99.44% recall, 99.44% F1-score, and 99.17% MCC. The
four categories were 99.99% accuracy, 99.98% precision, 99.98%
recall, 99.98% F1-score and 99.98% MCC. The 1D CAE model was
95.92% accuracy, 95.92% precision, 95.92% recall, 95.91% F1-score, and
93.88% MCC for all three categories of tasks. The DSCNN-LSTM
model had 88.87% accuracy, 88.87% precision, 88.87% recall, 88.87%
F1-score and 85.17%MCC across the four categories. These twomodels
are second only to CDBA models in the three and four classification
tasks. Of the four traditional machine learning models, XGBoost and
Decision Tree performed best in the three and four categories,
respectively, while Bayes performed worst in the three and four
categories.

The experimental results of five classifications on DREAMER
dataset are shown in Table 5, and the CDBA model is still the best
performance, with 84.49% accuracy, 84.81% precision, 84.07%
recall, 84.38% F1-score, and 80.38% MCC for all five categories
of tasks. Bayes method performs the worst. The results show that the
CDBA model proposed in this paper is superior to other models.
The three-block parallel structure can extract the characteristics of
the input signal simultaneously, and can extract the temporal and
spatial features from the original features, thus to improve the
accuracy of the model.

3.3 Ten-fold cross validation result of CDBA
model

We also validated the performance of each model with a 10-
fold cross-validation. The 10 cross-validation sessions divided
the dataset into 10 segments, with 9 as the training set, 1 as the
test set, and the mean value of the 10 cross-validation sessions as
an estimate of the algorithm’s accuracy. The results of the CDBA
model with 10-fold cross-validation are respectively shown in
Figures 8–10. Tables 6–8 show the results of the average 10-fold
cross-validation. Of all the comparison models, the CDBA model
presented here continues to perform best, with 99.40% accuracy,
99.41% precision, 99.40% recall, 99.40% F1-score, and 99.11%
MCC across all three categories of tasks. The four categories of
tasks were 99.51% accuracy, 99.51% precision, 99.51% recall,
99.51% F1-score, and 99.36% MCC. The five categories of tasks
were 82.30% accuracy, 82.50% precision, 81.95% recall, 82.16%
F1-score, and 77.63% MCC. The CNN-LSTM model was 93.28%

accuracy, 93.29% precision, 93.27% recall, 93.28% F1-score, and
89.92% MCC for all three categories of tasks. The 1D CAE model
was 83.20% accuracy, 83.26% precision, 83.20% recall, 83.20%
F1-score, and 77.63% MCC for all four categories of tasks. The
Decision Tree model was 77.81% accuracy, 77.60% precision,
77.55% recall, 77.58% F1-score, and 71.96% MCC for all five
categories of tasks. These two models were second only to CDBA
models in the three, four and five classification tasks. The worst-
performing model was the Bayes model, with 41.79% accuracy,
42.23% precision, 41.79% recall, F1-score of 38.82%, and MCC of
13.75% in the three-category task. The four-category task had an
accuracy rate of 25.77%, precision of 28.84%, recall rate of
25.77%, F1-score of 17.34%, and MCC score of 16.60%. The
five-category task had an accuracy rate of 21.88%, precision of
21.19%, recall rate of 21.11%, F1-score of 13.76%, and MCC score
of 2.24%. As can be seen from the results of single validation and
10-fold cross-validation, the model presented in this paper has
the best performance of all comparison models.

3.4 Ablation experiment

To validate the proposed CDBA model, we performed
ablation experiments on SEED and DREAMER datasets.
Feature extraction is a multi-channel structure, which is the
most important module in the whole model, so only the
feature extraction module is changed and the rest of the
module remains the same. Results from the SEED dataset
ablation experiments are shown in Table 9. It can be seen that
the classification performance of the model on both datasets
shows the same trend in channel selection. The Block3 model
performs best in single-channel triage and quadrangle tasks
based on ten-fold cross-validation, due to BI-LSTM’s expertise
in extracting time-series signature data such as EEG. Block1 and
Block2 perform best when combined with Block3 in dual
channels, as it extracts spatiotemporal features simultaneously.
Combining these two features, emotional recognition models
perform better. Ablation experimental performance in the
DREAMER dataset was similar to that in the SEED dataset as
shown in Table 10, but the Block1 + Block2 model performed best
in the two-channel model, suggesting that spatial features were
more pronounced for the DREAMER dataset. However, our
model is still the best of all ablation experimental comparison

TABLE 10 Ablation experiments of CDBA model based on ten-fold cross-validation (five-classification task).

Data set Methods Accuracy (%) Precision (%) Recall (%) F1-score (%) MCC(%)

DREAMER Block1 68.14 68.42 67.79 67.97 59.75

DREAMER Block2 61.98 63.45 61.30 61.84 52.00

DREAMER Block3 69.67 69.93 69.21 69.50 61.68

DREAMER Block1 + Block2 69.98 70.36 69.70 69.83 62.12

DREAMER Block1 + Block3 68.83 69.22 68.56 68.71 60.68

DREAMER Block2 + Block3 69.06 69.65 68.53 68.88 60.89

DREAMER CDBA (proposed model) 82.30 82.50 81.95 82.16 77.63
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models, which further proves the validity of the proposed
method.

4 Conclusion

Automatic emotion recognition is an important application area of
artificial intelligence. In this study, a multi-branching feature fusion
model based on an attention mechanism is proposed for EEG
emotional recognition network. The model framework includes
spatial feature extraction based on CNN and DSCNN, temporal
feature extraction based on Bi-LSTM, and feature weight allocation
based on attention mechanisms, and is then classified in a fully
connected layer. The method requires only normalized
preprocessing of the raw data, which is then fed into the CDBA
model to obtain the predicted results. For the three-class task, the
accuracy of the single test set was 99.44%, for the four-class task, the
accuracy of the single test set was 99.99%, and for the five-class task, the
accuracy of the single test set was 84.49%. The average ten-fold cross-
validation accuracy of the method was 99.40% for three classifications,
99.51% for four classification tasks and 82.30% for five classification
tasks. The experimental results show that the proposed multi-channel
feature fusion method has better accuracy than other single-channel
model and traditional machine learning model. This is because the
proposed CDBA model for EEG emotion classification can
simultaneously extract low-level spatial features, high-level spatial
features, and time-series features, and filter out the features with the
most significant expression of emotion through attention mechanisms.
And from the experimental results, it can be seen that the model
combining spatial features and time features will get better results than
the single model. Therefore, the CDBAmodel proposed in this paper is
the most suitable for emotion prediction compared with other models.
Physiological signals like EEG have the advantages of universality,
spontaneity, and difficulty in camouflage (Zali-Vargahan et al.,
2023), and human cognitive behavior and mental activity have a
strong correlation with EEG signals. Therefore, physiological signals
are a good choice to recognize emotions (Liu et al., 2020). The CDBA
model proposed in this paper provides a new idea for decoding human
emotions based on EEG, and can also be used for other EEG
classification tasks, such as sleep phase classification and motor
imagination. The model needs only simple preprocessing to obtain
high accuracy, and can be easily transplanted into EEG equipment. In
the future, we plan to identify and classify human emotions more
accurately by combining EEG, ECG, and EMT signals.
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