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High pathogenicity avian influenza (HPAI) is a viral disease with devastating 
consequences for the poultry industry worldwide. Domestic ducks are a 
major source of HPAI viruses in many Eurasian countries. The infectivity and 
pathogenicity of HPAI viruses in ducks vary depending on host and viral factors. 
To assess the factors influencing the infectivity and pathogenicity of HPAI viruses 
in ducks, we compared the pathobiology of two HPAI viruses (H5N1 clade 2.3.2.1c 
and H5N6 clade 2.3.4.4e) in 5- and 25-week-old ducks. Both HPAI viruses caused 
mortality in a dose-dependent manner (104, 106, and 108 EID50) in young ducks. By 
contrast, adult ducks were infected but exhibited no mortality due to either virus. 
Viral excretion was higher in young ducks than in adults, regardless of the HPAI 
strain. These findings demonstrate the age-dependent mortality of clade 2.3.2.1c 
and clade 2.3.4.4e H5 HPAI viruses in ducks.
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1. Introduction

Avian influenza viruses (AIVs), members of the genus Influenza virus A of the family 
Orthomyxoviridae, are divided into subtypes based on the surface glycoproteins hemagglutinin 
(HA, H1-H16) and neuraminidase (NA, N1–N9) (1). The natural reservoirs of most AIVs are 
wild aquatic birds, especially those of the orders Anseriformes (ducks, geese, and swans) and 
Charadriiformes (gulls, terns, and waders). They play a major role in the evolution, maintenance, 
and dissemination of AIVs (2). Most AIVs in natural hosts are low-pathogenic avian influenza 
(LPAI) viruses that cause little or no disease in natural hosts and Gallinaceous poultry (3). 
However, novel high pathogenicity avian influenza (HPAI) viruses arise following the adaptation 
of the H5 and H7 subtypes in domestic poultry and cause significant illness or death (4). Since 
the detection of A/Goose/Guangdong/1/1996(H5N1) (Gs/GD) in domestic poultry in southern 
China, the descendant viruses have evolved into 10 genetically distinct hemagglutinin (HA) 
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clades (0–9) (5). Along with prolonged circulation in poultry, the 
predominant subclades of clade 2 H5 viruses were replaced by an 
antigenically distinct subclade, followed by 2.2 (6) and 2.3.2.1 (7), and 
further evolved into three subclades, 2.3.2.1a, 2.3.2.1b, and 2.3.2.1c 
(8), mainly in China and Southeast Asia. Various HPAI subtypes 
bearing the genetic backbone of the Gs/GD lineage H5 clade 2.3.4.4 
have been identified in domestic ducks since 2008 and have 
subsequently evolved into different subclades (9). Among them, clades 
2.3.2.1c H5N1 and 2.3.4.4b H5NX HPAI spread intercontinentally via 
wild migratory birds, causing earlier intercontinental waves (waves 2 
and 3a) and subsequent waves (waves 3b and 4), respectively (10).

Domestic ducks play a substantial role in the evolution, 
maintenance, and spread of Gs/GD HPAI. For example, novel 
genotypes of HPAI H5N1  in Bangladesh and HPAI H5N5 and 
H5N8 in China have been reported in domestic ducks, highlighting 
the role of domestic ducks as reassortment vessels for creating new 
genotypes of influenza viruses (11). Some studies have emphasized 
that domestic duck populations and transport could affect the 
prevalence and distribution of HPAI viruses, particularly in countries 
where ducks are the main food source. During the HPAI H5N1 
outbreaks from 2007 to 2009  in South and Southeast Asia, the 
population of domestic ducks was the main factor delineating areas at 
risk of HPAI H5N1 spreading in domestic poultry (12). For the novel 
introduction of clade 2.3.4.4 H5N8 viruses that occurred in South 
Korea in 2014, wild waterfowl migration and domestic duck density 
have shaped the epidemiology of H5N8 viruses (13). Under the 
unique fattening duck production system known as ‘foie gras’ in 
southwest France, the trade-related transport of fattening ducks 
contributed to the 2016–2017 epizootic of HPAI H5N8 in France (14).

The clinical signs and mortality of HPAI viruses vary. In ducks, 
depending on various factors, including viral strains and pre-immune 
status. Some strains of HPAI viruses induce subclinical infection that 
can facilitate the spread and persistence of HPAI viruses (15–19) 
Mortality among ducks naturally infected with the HPAI virus was 
first reported in Italy (20), and Asian-origin H5N1 viruses have caused 
mortality in wild and domestic ducks (21). In contrast, different 
pathogenicities in ducks have been observed between distinct strains 
of HPAI viruses in several previous studies. The Hong Kong H5N1 
HPAI isolates in 1997 caused limited pathogenicity in ducks (22), but 
the 2002 HPAI isolates caused increased mortality and systemic 
infections in ducks (23). Comparison studies showed differences in 
pathogenicity between two H5N1 HPAI isolates from Egypt in 2007 
and 2008 (24) and two H5N6 HPAI isolates from Korea in 2016. 
However, host factors, especially age at infection, which possibly 
affects pathogenicity, have not been fully understood in recent clades 
of the HPAI virus. This study aimed to assess the factors influencing 
the infectivity and pathogenicity of HPAI viruses in ducks. 
We compared the pathobiology of two HPAI viruses (H5N1 clade 
2.3.2.1c and H5N6 clade 2.3.4.4e) in 5- and 25-week-old ducks.

2. Materials and methods

2.1. Viruses

We used two HPAI viruses, A/duck/Korea/ES2/2016 (H5N6, ES2) 
clade 2.3.4.4e and A/chicken/Vietnam/NCVD-KA435/2013 (H5N1, 
KA435) clade 2.3.2.1c, for experimental infection. The viruses were 

kindly provided by the Animal and Plant Quarantine Agency of Korea. 
Viruses were inoculated into 9–11 days old specific-pathogen-free 
embryonated chicken eggs, and allantoic fluids were harvested after 
2–3 days of incubation at 37°C. The virus was aliquoted and stored in 
a −70°C deep freezer for further experiments. The titration endpoints 
for each virus were calculated using standard methods (25).

2.2. Animals

We used 37 five-week-old domestic ducks and 40 25-week-old 
domestic ducks obtained from the Moran Food & Breeding Company 
(Eum-Seong, Republic of Korea). All oropharyngeal and cloacal swabs 
were negative for influenza virus infection based on the real-time 
reverse transcription-polymerase chain reaction (rRT-PCR) (25). 
Before the viral challenge, all ducks were confirmed to be seronegative 
for anti-AIV antibodies using a commercial emzyme-linked 
immunosorbent assay (ELISA) kit (Bionote, Korea). All ducks used in 
this study were housed in self-contained isolation cages in a controlled 
environment at the ABSL-3 facility at Konkuk University to maintain 
biosafety and biosecurity barriers. All animal procedures were 
reviewed, approved, and supervised by the Institutional Animal Care 
and Use Committee (IACUC) (no. KU1840, KU18193), and the 
Institutional Biosafety Committee (No. KUIBC-2018-10, KUIBC-
2019-05) at Konkuk University.

2.3. Experimental design

Five-week-old (n = 27) and 25-week-old (n = 36) ducks were 
divided into two groups. Each group was inoculated with the ES2 
virus (n = 13 for younger ducks and n = 14 for older ducks) or the 
KA435 virus (n = 18 for each age group). Six 5-week-old and eight 
25-week-old ducks were used as negative controls. To evaluate the 
mean bird infectious dose (BID50) and mean bird lethal dose (BLD50), 
we divided each age group into three groups (4–6 ducks). Ducks were 
inoculated intranasally with 104, 106, or 108 50% egg infective doses 
(EID50) of the viruses, hereafter referred to as low, medium, and high 
doses, respectively. Ducks were observed daily for clinical signs and 
mortality after the challenge for 14 days. To detect and quantify viral 
shedding, oropharyngeal and cloacal swabs were collected at 3, 5, 7, 
10, and 14 day-post-challenge (dpc) and submerged in 1.5 ml PBS. Sera 
were collected from the birds 14 d after infection to verify 
seroconversion. A commercial competitive ELISA kit (Bionote, Korea) 
was used to detect anti-AIV antibodies targeting nucleocapsid protein 
(NP) according to the manufacturer’s instructions. Ducks were 
considered infected if they were seroconverted by 14 dpc or had 
detectable viruses, along with clinical signs and mortality.

2.4. Clinical scoring

Clinical scores were determined by applying the IVPI scoring 
system on ducks (26, 27). Ducks were observed daily for 14 days post 
infection. Birds were scored 0 if healthy, 1 if sick, 2 if severely sick, and 
3 if dead. Birds were considered ‘sick’ if one of the following signs was 
observed and considered ‘severely sick’ if more than one of the 
following signs were observed: respiratory involvement, depression, 
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diarrhea, cyanosis of the feet or mucosa, edema of face or head, and 
nervous signs. Clinical scores were calculated per group with an 
observation period of 10 days. When ducks were too sick or could not 
be urged to move, they were killed humanely and scored as dead.

2.5. Viral RNA quantification

Viral RNA from oropharyngeal and cloacal swabs was extracted 
from 200 μL of the supernatant using the MagNA Pure 96 extraction 
system (Roche, Manheim, Germany) according to the manufacturer’s 
instructions. The extracted RNA was quantified by real-time reverse 
transcription-polymerase chain reaction using previously described 
protocols (28). The Ct values were converted into infectious units 
equivalent to EID50/ml using a standard curve.

2.6. Statistical analysis

The Kaplan–Meier survival curve was constructed, and the 
Mantel–Cox log-rank test was used to compare the survival curves 
between the two age groups. An unpaired t-test was applied for 
normally distributed data; otherwise, the Mann–Whitney U test was 
used. All statistical analyses were performed using GraphPad Prism 
version 8.2.1 (GraphPad Software Inc., CA, USA). Statistical 
significance was set at p ≤ 0.05.

3. Results

3.1. Infectivity, mortality, and clinical signs

None of the negative control ducks of either age exhibited viral 
shedding, seroconversion, or clinical signs (Figure 1). In the groups 
inoculated with the KA435 virus, all 5-week-old ducks died, except for 
four out of six ducks challenged with the low dose. None of the 
5-week-old ducks had anti-AIV antibodies. All 5-week-old ducks in 
the medium- and high-dose challenge groups died within 6 days, with 
a mean death time (MDTs) of 3.8 days (Table  1). For the group 
infected with a low dose, two out of six ducks died within 6 days, and 
the MDT was 4 days. Ducks died before 4dpc did not show any clinical 
signs, while torticollis and incoordination started to appear after 4dpc 
on ducks that succumbed to death. The BID50 and BLD50 were 
104.5EID50. In contrast, none of the 25-week-old ducks challenged with 
the KA435 virus died while some ducks showed depression and 
respiratory involvement (Supplementary Figure 1A). Based on the 
serologic examination, all 25-week-old ducks challenged with the 
high-dose virus were seroconverted, followed by four out of six ducks 
in the medium-dose group and one out of six ducks in the low dose 
challenge group, resulting in a BID50 dose of 105.27EID50.

For the ES2 virus, the BLD50 of 5-week-old ducks was 105.26EID50, as 
three out of four ducks (high-dose), three out of five ducks (medium-
dose), and two out of four ducks (low dose) died after the challenge. 
Severe clinical signs, such as incoordination and torticollis, were 
observed in the four out of eight ducks died from the infection 
(Supplementary Figure 1B). A few ducks challenged with the ES2 virus 
survived and seroconverted, resulting in a lower BID50 (< 104.0EID50) 
than the BLD50. The MDTs of the younger ducks challenged with a 

high, medium, and low dose was 3.5, 6.7, and 4.7 days, respectively. 
Consistent with the KA435 virus, none of the 25-week-old ducks 
died after the challenge with the ES2 virus. No ducks showed 
incoordination or nervous signs, while six ducks showed 
depression or mild respiratory involvements. The morbidity rates 
of the high-, medium-, and low-dose challenge groups were 100% 
(five out of five ducks), 66.6% (four out of six ducks), and 16.6% 
(one out of six ducks), respectively, indicating that the BID50 of the 
ES2 virus in 25-week-old ducks was 105.27EID50.

The survival curves of different age groups inoculated with the 
same dose of the virus were compared using the log-rank test 
(Figure 1). The survival curves of the groups inoculated with high and 
medium doses of the KA435 virus showed significant differences 
(p = 0.001 and p = 0.0014, respectively, Figure  1A; 
Supplementary Figure 2) in the survival rate between 5-week-old and 
25-week-old ducks. Adult ducks that received a high-dose of the ES2 
virus were significantly less likely to exhibit mortality than young ducks 
with the same challenge dose and strain (p = 0.0148, 
Supplementary Figure 2). In addition, the survival curves of groups 
inoculated with the same doses of KA435 and ES2 viruses were 
compared (Supplementary Figure  3). These data demonstrated 
significant differences between the two viruses only at medium doses 
using the log-rank test (p = 0.008, Supplementary Figure 3). Young 
ducks inoculated with a medium-dose of the KA435 virus had a 
significantly lower estimate of survival than young ducks inoculated 
with the same dose of the ES2 virus. No statistically significant 
difference was observed between the survival curves for the other 
two doses.

FIGURE 1

Survival curves of 5-week-old ducks challenged with low, medium, 
or high doses of H5N1 2.3.2.1c HPAI virus (A) and H5N6 2.3.4.4e HPAI 
virus (B). The Kaplan–Meier survival curve was constructed using 
Prism 8.2.1, with data from the 63 subjects’ mortality records. The 
Mantel–Cox log-rank test evaluated significance (p  <  0.05).
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3.2. Viral shedding

Oropharyngeal (OP) and cloacal (CL) swabs collected from virus-
inoculated ducks at different time points were analyzed using 
quantitative rRT-PCR to measure viral shedding. The mean viral titer 
of OP swabs on each swab day was consistently higher than that of CL 
swabs for both viruses. In general, virus shedding peaked at 3 dpc and 
then gradually declined, regardless of the dose and virus strain, except 
for the 25-week-old ducks inoculated with a low dose of ES2. For 
high- and medium-dose groups inoculated with KA435, 5-week-old 
ducks shed more virus than 25-week-old ducks in both OP and CL 
routes at 3 dpc (Figure 2, p < 0.001 for OP-high, OP-medium, and 
CL-medium, and p < 0.01 for CL-high). Virus shedding was also 
higher in 5-week-old ducks challenged with high and medium doses 
of ES2 at 3 and 5 dpc (Figure 3; p < 0.001 for OP-high, medium at 3 
dpc, and p < 0.01, for the others). Therefore, for the ducks that were 
confirmed to be infected, 5-week-old ducks shed significantly higher 
amounts of the virus via the OP and CL routes than 25-week-old 
ducks, regardless of the virus strain.

4. Discussion

Previous natural and experimental infection studies have shown 
that HPAI-infected wild and domestic waterfowls present no to mild 
clinical signs (15–19). For example, early Hong Kong H5N1 HPAI 
isolates from 1997 showed limited pathogenicity in ducks (22). 
However, the continuous evolution of HPAI viruses has increased their 
lethality in various bird species, including ducks. Many previous 
studies have demonstrated that HPAI viruses induce varied 
pathogenicities in ducks. Unlike the 1997 H5N1 HPAI isolates, the 
novel 2002 HPAI isolates caused systemic infection in ducks, with high 

virus titers and pathology in multiple organs, causing neurological 
dysfunction and death (23). Mortality in wild and domestic ducks is 
caused by many Asian-origin HPAI H5N1 viruses (21). Recently, mass 
die-off cases of tufted ducks (Aythya fuligula) were reported in the 
Netherlands (29, 30) and Germany (31) from 2016 to 2017, and high 
wild bird mortality was observed in coastal and other water-rich areas 
of the Netherlands between October 2020 and June 2021 (32). In this 
study, the ES2 virus, which belongs to clade 2.3.4.4e, had a lower BID50 
and higher BLD50 in 5-week-old ducks than KA435, which belongs to 
clade 2.3.2.1c HPAI clade. Recent studies have reported that the 
molecular changes associated with the unusual lethality of HPAI 
viruses in ducks are related to the PA and PB1 genes of the H5N1 virus 
(33), PA and NS genes of clade 2.3.4.4 H5N6 virus (34), and PB2, NP, 
and M genes of clade 2.3.4.4 H5N8 virus (35). However, the underlying 
mechanisms have not been identified.

Our data indicate that younger ducks are more susceptible to both 
the 2.3.2.1c and 2.3.4.4e challenge viruses. Our findings are consistent 
with those of other studies by Pantin-Jackwood et al. (36), Jang et al. 
(37), and Londt et al. (38), in that the younger the host age, the more 
severe the clinical signs and higher the mortality were observed, while 
variances existed in the degree of mortality rate and clinical signs in 
accordance with the strain challenge and age at infection. In other 
words, some strains of Gs/GD H5 HPAI viruses, such as A/chicken/
Hong Kong/220/97 (H5N1), A/Egret/HK/757.2/02 (H5N1), A/Duck/
Vietnam/218/05 (H5N1) (36), and A/Waterfowl/Korea/S57/2016 
(H5N6) (37), showed age-dependent pathogenicity in ducks. 
Age-related pathogenicity of HPAI has also been reported in turkeys 
(39), wild ducks (ruddy ducks, lesser scaups) (40), and humans (41), 
but not in broiler chickens (42). In a previous study, the BID50 and 
BLD50 of the ES2 virus in 2-week-old ducks were 103.0EID50 and 104.0 
EID50, supporting the younger the duck is, the more vulnerable it is to 
the HPAI virus (34). The challenged ducks exhibited higher viral titers 

TABLE 1 Mortality, morbidity, mean death time, BID50, and BLD50 of H5N1 clade 2.3.2.1C and H5N6 clade 2.3.4.4e in 5-week-old ducks and 25-week-old 
ducks.

Age Virus strain Dosea Morbidityb Mortalityc MDTd BID50
e BLD50

f

5-week-old 2.3.2.1c

A/chicken/Vietnam/

NCVD-KA435/

2013(H5N1)

High (108.0EID50) 6/6 6/6 3.8 104.5EID50 104.5EID50

Medium (106.0EID50) 6/6 6/6 3.8

Low (104.0EID50) 2/6 2/6 4

2.3.4.4e

A/duck/Korea/ES2/

2016(H5N6)

High (108.0EID50) 4/4 3/4 4.7 <104.0EID50 105.26EID50

Medium (106.0EID50) 5/5 3/5 6.7

Low (104.0EID50) 3/4 2/4 3.5

25-week-old 2.3.2.1c

A/chicken/Vietnam/

NCVD-KA435/

2013(H5N1)

High (108.0EID50) 6/6 0/6 NDg 105.27EID50 >108.0EID50

Medium (106.0EID50) 4/6 0/6 ND

Low (104.0EID50) 1/6 0/6 ND

2.3.4.4e

A/duck/Korea/ES2/

2016(H5N6)

High (108.0EID50) 5/5 0/5 ND <104.0EID50 >108.0EID50

Medium (106.0EID50) 4/5 0/5 ND

Low (104.0EID50) 4/4 0/4 ND

aDucks were inoculated intranasally with each dose of the viruses.
bNumber of infected ducks confirmed with viral shedding or seroconversion/number of inoculated ducks.
cNumber of dead ducks/number of inoculated ducks.
dMean death time in days.
e50% Bird infectious dose.
f50% Bird lethal dose.
gNot detectable.
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in the OP swabs than in the CL swabs in this study, consistent with 
previous studies using other HPAI viruses, including H5N1 viruses 
isolated in 2002 and 2004 (18), and H5N8 and H5N6 viruses isolated 
in South Korea in 2016 and 2017, respectively (19).

No mortality was observed in 25-week-old ducks, even at a high-
dose of inoculation, but excreted viruses, suggesting that adult ducks 
could play a significant role in the maintenance and spread of HPAI 
viruses. Also, ducks that showed viral shedding did not show any 
clinical signs, indicating their role as a silent reservoir of the virus. 
Innate immunity and receptor distribution are suspected to be factors 
affecting age-dependent pathogenicity. Studies on Pekin ducks suggest 
that higher body temperature and upregulation of innate immune-
related genes, including IFN-α, retinoic acid-inducible gene I (RIG-I), 
and IL-6  in spleens, could impact the age-related pathogenicity of 
several H5N1 HPAI viruses (36). In a pathogenicity study of the H5N6 
HPAI virus isolated in South Korea in 2016, cell damage-related genes, 
such as CIDEA and ND2, and the immune response-related gene 

NR4A3 were dramatically induced in the lungs of infected 2-week-old 
ducks compared with those in the lungs of 4-week-old ducks (37). 
Age-dependent α-2,6 sialic acid expression variations among minor 
poultry species have been observed in ducks, geese, and turkeys (43). In 
turkeys, sialic acid receptor patterns change with age, which can result 
in variations in viral replication and tissue tropism. As poultry species 
age, the migration of lymphocytes to peripheral mucosa-associated 
lymphoid tissue (MALT) increases (44), which could lead to mortality 
in younger ducks and a higher inflammatory response against HPAI 
viral replication. Based on these studies, it is reasonable to hypothesize 
that variations in viral pathogenicity may arise from differences in 
innate immunity, immune response-related gene expression, and 
receptor expression according to age. Consequently, analyzing these 
factors in poultry, including ducks of different ages, can provide crucial 
data for comprehending the responses to viral infections.

Other host and environmental factors can also affect duck 
pathogenicity. In the case of host factors, as presented in this study, 

FIGURE 2

Oropharyngeal (OP) and cloacal (CL) virus shedding in 5- and 25-week-old ducks challenged with low, medium, or high doses of H5N1 2.3.2.1c HPAI 
virus. The dotted line indicates the detection limit (100.8345 EID50 equivalent/0.1  ml). The middle line among circles indicates the mean value and error 
bars indicate standard deviation. The black asterisks indicate that statistical analyses were conducted using an independent samples t-test. The grey 
asterisks indicated that statistical analyses were conducted using a Mann–Whitney U Test (**p  <  0.01; ***p  <  0.001).
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age at infection is a determinant factor for some strains in certain 
species; consistently, younger groups showed high pathogenicity (18, 
36–40). The presentation of the disease also varied by virus strain 
and duck species, with Muscovy ducks being more vulnerable than 
Pekin ducks (45), and pre-existing immunity by commercial 
vaccination (46) or immunosuppressive viral infections (47). 
Co-infections with other respiratory pathogens could influence the 
outcome of infection, as seen in previous studies using the duck 
hepatitis virus (48) and other subtypes of LPAI viruses (49). 
Infections and pathogenicity could also be  influenced by 
environmental factors, leading to higher virus concentrations and 
persistence, such as elevated virus levels due to ventilation and 
longer virus survival under favorable environmental conditions (50). 
Altogether, the pathogenicity of HPAI viruses depends on many 
factors, which could raise various patterns of disease, including the 
diverse onset of infections, clinical signs, and mortality. Further 

studies should be conducted to investigate the pathogenicity and 
related factors of recently circulating viruses to understand the 
mechanisms of the disease.

The pathogenicity of HPAI can be influenced by a range of factors, 
including viral characteristics and environmental conditions, as well 
as host physiology and immune response. In this study, we investigated 
the impact of age on the pathogenicity of two clades of HPAI viruses 
in ducks, in terms of mortality, infectivity, and level of virus shedding. 
Our results showed that younger ducks exhibited higher pathogenicity, 
as evidenced by increased mortality rates and viral shedding, 
compared to older ducks. The results obtained in this study may help 
gain insight into age-related differences in the transmission dynamics 
and disease patterns of viruses. The contrasting survival between 
younger and older ducks suggests that silent infection and 
transmission can occur in older ducks, indicating that active 
surveillance and risk assessment should be carefully implemented in 

FIGURE 3

Oropharyngeal (OP) and cloacal (CL) virus shedding in 5- and 25-week-old ducks challenged with low, medium, or high doses of H5N6 2.3.4.4e HPAI 
virus. The dotted line indicates the detection limit (100.8345 EID50 equivalent/0.1  ml). The middle line among circles indicates the mean value and error 
bars indicate standard deviation. The black asterisks indicated that statistical analyses were conducted using an independent samples t-test. The grey 
asterisks indicated that statistical analyses were conducted using a Mann–Whitney U Test (**p  <  0.01; ***p  <  0.001).
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aged ducks in the earlier stages of HPAI outbreaks to prevent them 
from spreading. In addition, since ducks can host a variety of avian 
influenza viruses as a natural reservoir species, older ducks with 
asymptomatic or mild infections can play a role in evolution of 
HPAIVs, potentially giving rise to new strains with altered 
pathogenicity or increased zoonotic potential. The precise mechanisms 
causing the higher virulence in young ducks remain unknown and 
warrant further investigation.
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