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Abstract. Human protein interaction prediction studies occupy an important place in systems biology. The 
understanding of human protein interaction networks and interactome will provide important insights into the 
regulation of developmental, physiological and pathological processes. In this study, we propose a method 
based on feature engineering and integrated learning algorithms to construct protein interaction prediction 
models. Principal Component Analysis (PCA) and Locally Linear Embedding (LLE) dimensionality 
reduction methods were used to extract sequence features from the 174-dimensional human protein sequence 
vector after Normalized Difference Sequence Feature (NDSF) encoding, respectively. The classification 
performance of three integrated learning methods (AdaBoost, Extratrees, XGBoost) applied to PCA and LLE 
features was compared, and the best combination of parameters was found using cross-validation and grid 
search methods. The results show that the classification accuracy is significantly higher when using the linear 
dimensionality reduction method PCA than the nonlinear dimensionality reduction method LLE. the 
classification with XGBoost achieves a model accuracy of 99.2%, which is the best performance among all 
models. This study suggests that NDSF combined with PCA and XGBoost may be an effective strategy for 
classifying different human protein interactions. 

1. Introduction  

Proteins are the main performers of cellular activities in 
living organisms and are involved in various aspects of 
organism growth and reproduction such as cell signaling, 
metabolism, apoptosis and necrosis, and regulation of 
gene expression[1]. Proteins do not exist in isolation in an 
organism and exert their biological properties alone, but 
they interact with other proteins in some way to drive or 
trigger certain biochemical reactions together and 
synergistically exert their biological properties. Therefore, 
it is necessary to classify and predict protein interactions. 
However, there are many studies on protein interaction 
classification prediction, and previous studies have used 
traditional low-throughput techniques to detect protein 
interactions, such as mass spectrometry, nuclear magnetic 
resonance, chromatographic electrophoresis, and other 
methods[2]; however, no matter which research method is 
used, almost all of them discuss and study the 
macroscopic factors, while the microscopic factors of 
amino acid sequences are rarely studied. Although the 
study of macroscopic factors is representative and 
comprehensive, microscopic factors are also extremely 
important for the overall assessment of protein 
interactions. Therefore, this paper suggests that 
characterization (PCA, LLE dimensionality reduction 
methods) and integrated learning methods (XGBoost) can 
be used to study the complex compound properties of 
protein interactions. The following studies and 
contributions are made in this paper. 

(1) Sample data were obtained and preprocessed. Positive 
samples were collected from the Human Protein 
Reference Database[3] (HPRD, version 2007) and 
negative samples were obtained from Swiss-Prot 
(http://www.expasy.org/sprot/, version 57.3). After 
obtaining the data, it was necessary to process the 
abnormal data to ensure the comparability of the final data.  
(2) Protein feature extraction method to select the study 
features of the samples. Numerical protein sequences 
contain correlated noise and redundant feature 
information to some extent. Linear (PCA) and nonlinear 
dimensionality reduction (LLE) techniques are used to 
select high-frequency influences, reduce redundancy, 
shorten training time, and reduce losses, and then various 
tests are used to determine the existence of significant 
effects among variables. 
(3) XGBoost was built based on python 3.7.3 environment 
for demonstration and analysis. After the preliminary 
preparation work is completed, the quantitative indicators 
and selected data are used as training samples and test 
samples for the follow-up work. 
The research method used in this paper is to select sample 
data to build an algorithmic model for protein interaction 
prediction and to use XGBoost to predict the overall 
evaluation of real estate, which achieves the following 
three main innovations: first, to study the degree of 
influence of microscopic factors of amino acid sequences 
on the overall classification of protein interactions, and to 
find the best combination of parameters using cross-
validation and grid search methods; second, to use 
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characterization and XGBoost to achieve the overall 
classification of protein interactions; finally, to fill the gap 
in the field of overall protein interaction classification 
prediction beyond macroscopic factors. 

2. Related Work 

Currently, more mature and well established studies on 
microscopic factors of amino acid sequences, such as 
yeast two-hybrid screening technique[4], fluorescence 
resonance energy transfer technique[5], phage display 
technique[6], and tandem affinity purification 
technique[7] are used to detect protein interactions. 
However, such conventional methods can only identify a 
very small number of protein interactions, are not 
applicable to all proteins of the organism, and the 
accuracy of the identification results is not high[8]. 
Therefore, there is a need for a computational prediction 
method that can support efficient and highly accurate 
protein interactions. The sequence and idea of the search 
is shown in Figure 1. 

2.1 Genome-based prediction methods 
So far, various computational prediction methods for 
protein interactions such as phylogenetic profiles[9], gene 
fusion events[10] and gene neighborhoods have been 
proposed by previous authors. Among them[11], Zhong et 
al[12] found some interaction relationships between 
proteins with matching or similar phylogenetic profiles by 
calculating the phylogenetic profiles of 4290 proteins in 
E. coli; meanwhile, Souza et al[13] proposed a protein 
interaction prediction method based on identifying gene 
fusion events in the complete genome and found that gene 
fusion could predict protein interactions. Since all the 
above methods have their own shortcomings, such as the 
phylogenetic profile method requires the prior 
construction of the phylogenetic profile of the species, the 
construction of the phylogenetic profile is tedious, and the 
frequency of gene fusion events is very low, so the 
genomic-based prediction methods cannot be widely used. 

2.2 Structure-based prediction methods 
With the accumulation of protein structure information, 
some researchers have proposed computational prediction 
methods for protein interactions based on protein 
structure information. In 2002, Finn et al[14] proposed a 
protein interaction prediction method that simulates 3D 
structure information of known proteins, which can score 
all possible proteins interacting between two protein 
families and predicts whether there is an interaction 
relationship between these proteins; In 2013, LUO et 
al[15] proposed a protein interaction prediction method 
based on protein 3D structures and showed that the 
method obtained good prediction performance and 
speculated that the reason for the good performance of the 
method might be the use of homology models and the 
exploitation of proximity and distance geometric 
relationships between proteins. In 2022, Liu et al[16] 
predicted protein interactions based on support vector 
machines and amino acid index distribution of protein 

sequences and obtained 94% accuracy. Although the 
above methods provide a new way to protein interaction 
prediction, these methods need to ensure that the prior 
information of the protein is reliable and are limited by 
the prior information of the protein structure, so these 
methods cannot be widely used. 

 

Fig. 1. Protein Interaction Research Methods. 

2.3 Sequence-based prediction methods 
Compared with the a priori information of proteins, the 
amino acid sequences of proteins have accumulated more 
rapidly in recent years. The amino acid sequences of 
proteins contain rich information and directly determine 
the secondary and tertiary structures of proteins[17]. 
Therefore, the study of proteomics based on amino acid 
sequences has gradually become a widely adopted 
approach by scholars for subcellular localization, protein 
structure-function prediction and protein interaction 
prediction[18]. 

3. Research Methods 

3.1 Data acquisition and preprocessing 
In the data set, only human proteins were collected 
according to the following requirements: (1) only human 
proteins were collected; (2) sequences annotated with 
ambiguous or uncertain subcellular location terms (e.g., 
"potential," "probable," or "by similarity") were excluded; 
(3) sequences annotated with two or more positions were 
excluded; (4) sequences with "fragment" annotations 
were excluded, and sequences with less than 50 amino 
acid residues in sequence length were removed. "); (3) 
exclude sequences annotated with two or more positions; 
(4) exclude sequences annotated with "fragments" and 
remove sequences with less than 50 amino acid residues 
in sequence length. After the above process, a total of 
2184 human proteins were collected from six different 
subcellular organelles (cytoplasm, nucleus, endoplasmic 
reticulum, Golgi apparatus, lysosome and mitochondria). 
By randomly pairing these proteins with other proteins in 
different subcellular organelles, a total of 36,480 negative 
pairs were generated. 
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3.2 Feature selection  
Dimensionality reduction in machine learning is achieved 
by mapping the high-dimensional space data to a low-
dimensional space representation, which is divided into 
linear and nonlinear mappings, and PCA[19] is commonly 
used in linear mappings and LLE[20] in nonlinear 
mappings. Therefore, we use PCA by characterizing the 
covariance matrix with the aim of reducing the 
dimensionality of the data while maintaining the 
maximum contribution of the data set to the variance. 
Using the idea of data dimensionality reduction, a 
multivariate analysis method is used to transform multiple 
indicators into a few less comprehensive indicators with 
the loss of less data information. Each principal 
component is a linear combination of the original 
variables, which are not correlated with each other, and 
the principal component analysis takes the variance as the 
measure of information and takes the components with 
large cumulative contribution as the principal components. 
LLE is a data dimensionality reduction method based on 
stream shape learning[21], and stream shape can be 
understood as embedding a subspace in a high-
dimensional Euclidean space. We used LLE to perform 
protein sequence feature extraction on the encoded results 
to ensure that the topology of the original data is 
maintained after dimensionality reduction. The features 
are extracted again from the encoded amino acid 
sequences of NDSF to reduce the computational 
complexity. Since the encoded sequence vector has 174 
dimensions, we roughly chose the range of vector 
dimensionality scaling based on the interpretable variance 
plotted as dimensionality. The optimal data dimension 
was found precisely by repeating the experiment. 

3.3 Overview of XGBoost algorithm  
XGBoost is a gradient boosting algorithm (based on the 
integrated tree model, the boosting algorithm generates 
the weak learning model at each step based on the gradient 
direction of the loss function, which is called gradient 
boosting), XGBoost uses a stepwise forward addition 
model, except that after each iteration the weak learner is 
generated without computing a coefficient. The XGBoost 
algorithm reduces the risk of overfitting by adding a loss 
function with a regular term penalty to achieve weak 
learner generation, and instead of using the usual search 
method, the XGBoost algorithm directly uses the first-
order derivative and second-order derivative of the loss 
function by Taylor expansion, and improves the 
performance of the algorithm by pre-ranking and 
weighted quantile techniques. The performance of the 
algorithm is greatly improved. 
The difference of the XGBoost model is that it further 
increases the generalization ability of the model by 
customizing a set of loss functions with the help of Taylor 
expansions. Its gradient boosting tree based algorithm 
adds a regularization term to the objective function, which 
can reduce the complexity of the model and avoid 
overfitting, and its objective function are as follows. 

𝑂𝑏𝑗ሺ𝛷ሻ ൌ ∑ 𝑙ሺ𝑦௜, 𝑦పෝሻ
௡
௜ୀଵ ൅ ∑ 𝛺ሺ𝑓௞ሻ௞              (1) 

Ωሺ𝑓ሻ ൌ 𝛾𝑇 ൅
ଵ

ଶ
𝜆𝜔ଶ                              (2) 

where yi is the predicted value, Ω(fk) is the regular term, 
fk is the decision tree, T represents the number of leaf 
nodes, ω represents the proportion of leaf nodes, γcontrols 
the number of leaf nodes, and λcontrols the proportion of 
leaf nodes. 
The XGBoost algorithm performs an iterative operation 
as well as a second-order Taylor expansion during the 
solution of the objective function, as shown in (3) 

𝑂𝑏𝑗ሺΦሻ ൌ ∑ ቂ𝑙൫𝑦௜, 𝑦పෝ
ሺ௧ିଵሻ൯ ൅ 𝑔௜𝑓௧ሺ𝑥௜ሻ ൅

ଵ

ଶ
ℎ௜𝑓௧ଶሺ𝑥௜ሻቃ

௡
௜ୀଵ ൅ Ωሺ𝑓௧ሻ   (3) 

where equations (4) and (5) are the first-order and second-
order derivatives of the loss function, respectively. 

𝑔௜ ൌ 𝛼
௬ഢෞ
ሺ೟షభሻ𝑙൫𝑦௜, 𝑦పෝ

ሺ௧ିଵሻ൯                      (4) 

ℎ௜ ൌ 𝛼
௬ഢෞ
ሺ೟షభሻ

ଶ 𝑙൫𝑦௜, 𝑦పෝ
ሺ௧ିଵሻ൯                       (5) 

4. Experimentation and Analysis 

4.1 Experimentation Data and Environment  
To achieve numerical representation of amino acids, 20 
common amino acids were classified into seven 
categories according to B3LYP/6-31G in density 
generalization theory [] and molecular modeling methods, 
as shown in Table 1. 

Table 1. Amino acids are grouped based on dipole and side 
chain volume. 

Amino acid type Grouping 
Ala,Gly,Val 1 

IIe,Leu,Phe,Pro 2 
Tyr,Met,Thr,Ser 3 
His,Asn,Gln,Trp 4 

Arg,Lys 5 
Asp,Glu 6 

Cys 7 
 
Based on Python 3.7.3 environment, the quantified 
eigenvalues are used as input factors of NDSF to obtain 
174-dimensional vector output in this paper. All the 
XGBoosts selected in this paper use cross-validation and 
grid search methods to find the best combination of 
parameters (learning rating and n_estimator) so as to 
achieve parameter optimization. The models were 
evaluated by comparing their accuracy, loss rate, and 
AUC. From 36545 pairs of positive samples and 36323 
pairs of negative samples, 1~29236 pairs of positive 
samples and 1~29058 pairs of negative samples were 
selected as training samples, and 1~3709 pairs of positive 
samples and 7265 pairs of negative samples were selected 
as test samples to test the feasibility of the model. 
In order to evaluate the performance of the protein 
interaction prediction model based on amino acid 
sequences proposed in this paper, three widely used 
evaluation criteria, including Accuracy, Recall, and Loss, 
were used in this experiment, which were calculated by 
the following equations (6), (7), and (8). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
்௉ା்ே

்௉ା்ேାி௉ାிே
                      (6) 
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𝑅𝑒 𝑐 𝑎𝑙𝑙 ൌ
்௉

்௉ାிே
                              (7) 

𝐿𝑂𝑆𝑆 ൌ െሺ𝑦 𝑙𝑜𝑔ሺ𝑝ሻ ൅ ሺ1 െ 𝑦ሻ 𝑙𝑜𝑔ሺ1 െ 𝑝ሻሻ      (8) 

Where, TP(True Positives) denotes the number of times 
the initial positive samples are correctly predicted as 
positive by the model, TN(True Negatives) denotes the 
number of times the initial negative samples are correctly 
predicted as negative by the model, FP(False Positives) 
denotes the number of times the initial positive samples 
are incorrectly predicted as negative by the model, and 
FN( False Negatives) denotes the number of times the 
initial negative sample was incorrectly predicted as a 
positive sample by the model. y denotes the true label of 
the sample (1 or 0), and p denotes the probability that the 
model predicts a positive sample. 

4.2 Analysis of Effect and Efficiency 
In order to retain most of the information of the original 
features as much as possible, while avoiding the influence 
of correlation between serial features on the classification 
results. Before using PCA for dimensionality reduction, it 
is necessary to select the appropriate dimensionality and 
plot the interpretable variance as a function of 
dimensionality. There is usually an inflection point on the 
curve where the interpretable variance stops increasing 
rapidly, so 45 dimensions is chosen as the termination 
point, as in Figure 2. 

 

Fig. 2. Feature selection for PCA_NDSF. 

To maintain consistency, LLE also chooses 45 
dimensions as the termination point. 

 

Fig. 3. Comparison of the accuracy of models with different 
feature dimensions. 

Table 2. Comparison of test set and training set of integrated 
learning algorithms. 

  AdaBoost Etratress XGBoost 
  Train Test Train Test Train Test 

NDSF_LLE 
Loss 15.14 15.26 11.45 1.30 0.22 4.58 
Acc 87.86 87.74 95.43 98.71 98.74 98.70 

Recall 86.93 86.81 99.92 98.53 98.81 98.90 

NDSF_PCA 
Loss 14.01 14.78 11.45 1.32 0.91 1.19 
Acc 87.00 86.00 99.01 98.98 99.32 99.29 

Recall 87.13 87.15 98.77 98.73 99.10 98.54 

 
In the NDFS coding method, the integrated learning 
XGBoost algorithm combined with PCA and LLE shows 
a trend of increasing and then decreasing accuracy of the 
model in the range of 0 to 45 dimensions. The best 
performance is achieved when it is reduced to 35 
dimensions. The comparison of model accuracy in 
different feature dimensions is shown in Fig. 3. the 
difference between LLE and PCA is only within 2%. 
Feature extraction of protein sequence data can 
effectively retain sufficient information, remove 
redundant data, and reduce training time, while obtaining 
data accuracy of up to 99.2%, which has practical 
application value. 
This study uses random search to achieve the best 
parameter settings, then follows the principle of taking 
smaller combinations of parameters at a time, and finally 
sets a reasonable range of parameter values to achieve the 
training of the model. After selecting the optimal 
dimensionality reduction method, the results of the three 
integrated learning methods are compared, as shown in 
Table 2 for the comparison of the test set and training set 
of the integrated learning algorithm. Among the 
integrated algorithm models in this study, by comparing 
the prediction models constructed by Bagging (AdaBoost, 
XGBoost) and Boosting approaches (Extratrees), we 
further find that XGBoost has better prediction results, 
and the accuracy of the training and test sets of the 
NDSF_PCA model based on the XGBoost classifier 
highest reached 99.32% and 99.29%, respectively, with 
loss rates of 0.91% and 1.19%, and recall rates of 99.10% 
and 98.54%, respectively. 
In the NDSF_PCA_XGBoost model, the accuracy 
reached 99.2%, the best performance among all models, 
and the best results were achieved on loss, recall, and acc. 
The results illustrate that using the gradient boosting 
algorithm based on learning classification and regression 
tree (CART) to calculate the complexity of each tree leaf 
node and to minimize the loss of finding the best 
prediction score, thus avoiding overfitting the learning 
model, effectively controlling the complexity of the 
model and improving the model accuracy. 

4.3 Summary and Conclusions 
Through the above study, this paper demonstrates that the 
prediction model constructed using the integrated learning 
method XGBoost has better classification results and can 
effectively identify positive and negative protein 
interaction effects, proving that our model approach is 
efficient and usable. 
Meanwhile, the extraction of features should not be 
neglected. The scientific selection of microscopic factors 
affecting amino acid sequences is a prerequisite for 
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constructing an ideal model for the overall assessment of 
protein interactions by extracting protein sequence 
features from the coded results by two dimensionality 
reduction methods, PCA and LLE. In this study, we also 
found that the integrated learning method achieves better 
prediction results for highly unbalanced data, and the 
complexity of the model is effectively controlled because 
the algorithm can avoid over-fitting of the learned model. 
With the continuous improvement of various algorithms, 
the research work based on feature engineering and 
XGBoost has laid a good foundation for protein 
interaction prediction studies. 
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