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Abstract. As a neurological disease, dystonia mainly has symptoms including muscle stiffness, dyskinesia, 
tremor, muscle spasm, etc. Dystonia score plays an important role in targeted auxiliary diagnosis, treatment 
plan design, and follow-up evaluation of patients. In this paper, the feature information of brain lateralization 
is extracted from electroencephalography (EEG) signals by clustering method, while information on time 
domain, frequency domain, and time sequence are extracted from EEG signals and electromyography (EMG) 
signals. Various deep-learning models are used to predict dystonia scores. Experiments show that this method 
can effectively predict dystonia based on the quantitative indicators extracted from few-shot neural signals. 
The methodology in this paper can help doctors judge the disease more accurately, make personalized 
treatment plans, and assist in monitoring the treatment effect. 

1. Introduction 

Muscle spasticity is a common symptom in many 
neurological disorders, such as stroke, multiple sclerosis, 
and cerebral palsy [1]. Accurate assessment of muscle 
spasticity is crucial for effective treatment planning and 
monitoring. However, the current clinical methods for 
assessing muscle spasticity are subjective and rely on the 
observation of physical signs and symptoms. Recent 
advances in the field of neurophysiology have provided 
new opportunities for objective assessment of muscle 
spasticity using electroencephalography (EEG) and 
electromyography (EMG) signals [2, 3]. 
In recent years, the development of new technologies such 
as deep learning has led to exciting breakthroughs in the 
field of neural signal processing, with numerous high-
impact studies published in recent years. For example, 
deep learning has been applied in brain-computer 
interfaces (BCIs), disease diagnosis, gesture recognition, 
and other areas, with promising results [4-6]. While in 
EEG analysis, deep learning has been used to decode 
brain signals and translate them into commands for 
external devices [7]. Deep learning with convolutional 
neural networks is used for EEG decoding and 
visualization [8]. While in EMG analysis, deep learning 
has been used to estimate limb movement and predict 
human-machine interaction [9, 10]. Overall, these high-
impact studies demonstrate the great potential of deep 
learning in improving the accuracy and efficiency of 
neural signal processing and suggest that it will play an 
increasingly important role in the development of future 
neural signal processing technologies. Due to the limited 
acquisition tools for neural signal processing and fewer 
data available for analysis, neural signal analysis mainly 
focuses on few-shot deep learning [11, 12]. 

Lateralized brain characteristics have important 
implications for the diagnosis and treatment of 
neurological disorders such as stroke, epilepsy, and 
spasticity. The identification of asymmetrical patterns in 
brain activity can help in the early detection of these 
disorders and aid in the development of targeted 
interventions [13]. Therefore, brain lateralization 
characteristics are an important indicator of neurological 
disorders. 
Mapping brain asymmetry refers to the study of the 
differences in function and structure between the left and 
right hemispheres of the brain. There are various 
techniques used to map brain asymmetry, including 
functional magnetic resonance imaging (fMRI), 
electroencephalography (EEG), and transcranial magnetic 
stimulation (TMS). 
Therefore, the random oversampling method is used in 
this paper to enhance the data for the few-shot data set, 
which extracts the brain lateralization features from the 
local field potentials (LFP) of the left and right brain STN 
and GPi nuclei of the subjects by K-Means clustering 
method. Meanwhile, features of the time domain, 
frequency domain, and time sequence are extracted from 
the electroencephalography (EEG) and electromyography 
(EMG) signals of the subjects. Combining the brain 
lateralization features and other signal features of the 
subjects, it makes deep learning prediction for dystonia 
scores through Linear Regression, RNN, and LSTM. 

2. Problem Setting 

The dystonia score is a valuable tool for healthcare 
providers to evaluate and manage muscle spasticity. It 
helps to optimize the patient's treatment plan by providing 
a baseline for the assessment of muscle spasticity and 
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monitoring the effectiveness of the treatment plan. The 
dystonia score is an important component of the 
comprehensive care plan for patients with muscle tone 
disorders.  
Therefore, this study uses the deep learning method to 
extract features of the time domain, frequency domain, 
and brain lateralization to predict dystonia scores with the 
help of local field potential (LFP) and electromyography 
(EMG) signals of STN and GPi nuclei in patients’ left and 
right brains. (Fig.1) 

 

Fig. 1 Research Pipeline 

3. Model 

Three deep learning models are applied in this study. 

3.1 Linear Regression 
The linear regression is a basic model widely used in data 
analysis and machine learning, which describes the linear 
relationship between independent variables and 
dependent variables by fitting a straight line (or a 
hyperplane in high-dimensional space) [14]. 

3.2 Recurrent Neural Network (RNN) 
A recurrent neural network is a neural network model that 
can deal with sequence data, which has a recursive 
structure in time and can take the output of the previous 
time as the input of the current time, so as to capture the 
time sequence information in sequence data [15]. 

3.3 Long Short-Term Memory (LSTM) 
A long short-term memory network is a recurrent cyclic 
neural network, which can effectively avoid the gradient 
disappearance or explosion when processing long-term 
sequence data, so as to better capture the long-term 
dependence in sequence data [16]. 

4. Experiment 

4.1 Data Pre-Processing  

4.1.1 Feature extraction of time domain and 
frequency domain: 

The data set includes the basic personal information, 
dystonia score, local field potential (LFP) and 
electromyography (EMG) signals of STN and GPi nuclei 
of the left and right brain of 12 patients, among which the 
dystonia score was selected by BFMDRS (Burke-Fahn-
Marsden dystonia rating scale) scale. For each subject, 
four time zones were selected with 50000 signal data in 
each time zone, altogether 200000 signal data. For each 

time zone, four features of time domain were extracted 
from electromyography (EMG) signals of left and right 
brain STN, GPi nuclei, and local field potential (LFP) 
respectively. Besides, four frequency domain features 
were extracted by Fourier transform.  

4.1.2 Feature extraction of brain lateralization: 

Considering the importance of brain lateralization 
features, the following proposals are put forward by this 
study innovatively. Brain lateralization features are 
extracted to concat them with feature vectors of the time 
domain and frequency domain as feature input vectors of 
each subject. According to Formula 1, four cosines of 
local field potentials (LFP) of brain STN and GPi nuclei 
at about 200,000 signal points are calculated for each 
subject, which represents the lateralization feature values 
at each moment. Then, all cosines are clustered into four 
categories by K-Means clustering, and the signal 
probabilities in four categories of each subject are 
calculated as the extracted lateralization features of the 
brain. The arrangement of the four probabilities is based 
on the clockwise order of the four clusters in the two-
dimensional plane after PCA dimensionality reduction.  
To sum up, each subject extracted 52-dimensional feature 
vectors as input.  

4.1.3 Data Enhancement:  

Because the training of this study is few-shot, random 
oversampling is used to expand the training set, so that the 
neural network can learn more information. According to 
the number of oversampling, it is divided into three levels 
(level 1: 8-24, level 2: 24-48, level 2: 24-48) to reduce the 
influence of uncorrelated features on model training by 
enriching uncorrelated features.  

4.2 Model Training 
The size of the original sample set is 12, the number of 
training samples is 8, and the number of test samples is 4. 
Linear Regression, RNN, and LSTM are selected for 
training, with 1e-5, 1e-4, 1e-3, 1e-2, and 1e-1 set as the 
learning rates respectively. Meanwhile, the number of 
network layers is 2-4 and the hidden size is 64-96 for 
training. According to the loss convergence with the 
experiment, 2600 rounds are trained when the learning 
rate is 1e-5, and 2000 rounds are trained at other learning 
rates. In addition, in order to compare the training results 
of RNN and LSTM models, learning rate = 1e-2, layer = 
4, and hidden size=128 are set for training according to 
the pre-experimental results. At the same time, timing 
information is added and the data of each subject in four 
time zones are input into the model as timing data in turn 
for training.  

4.3 Model Validation 
After each epoch training, log (mse_loss), log (mae_loss), 
mse_loss std, and mae_loss_std of the test data set are 
calculated. Finally, the average value is calculated as the 
test set loss result of this training.  
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5. Experiment Results and Analysis 

5.1 Comparison of Internal Results of Three 
Models 

 

Fig. 2 Results of Linear Regression  

As for the linear model which is simple with a small 
number of parameters, the number of layers and hidden 
units have little effect on loss. When the learning rate is 
1e-1 (Fig. 2a), loss shows the same trend in level 1 and 
level 3, but the trend is opposite in level 2. When the 
learning rate is 1e-4 and 1e-5 (Fig. 2d and Fig. 2e), the 
loss is larger and not affected by the number of 
oversampling, which may fall into the local optimal 
solution due to the low learning rate. As for the linear 
model, the learning rate is between 1e-3 and 1e-2, and the 
suitable oversampling number is about level 2.  

 

Fig. 3 Results of LSTM  

LSTM model has more parameters and a complex gating 
structure, so the number of layers and hidden units has a 
great influence on loss. With the deepening network 
structure, loss tends to decline. The LSTM model is 
sensitive to the number of oversampling, and its structure 
can effectively solve the short-term dependency on RNN. 
However, as for the model structure compared with RNN, 
LSTM contains more parameters to learn, which 
dramatically reduces the learning speed of LSTM and is 
greatly affected by the number of training sets.  
When the learning rate is 1e-3-1e-5 (Fig.3 c-e), loss 
increases at levels 1, level 2, and level 3, which may result 
from the over-fitting caused by the increasing random 
over-sampling. When the learning rate is 1e-2-1e-2 
(Fig.3a-b), loss generally increases at levels 1-3 with an 

unstable trend, which may be the unstable convergence of 
loss led by the small learning rate. As for the lstm model, 
it is more appropriate to choose the learning rate between 
1e-3 and 1e-2 with the over-sampling number around 
level 1.  

 

Fig. 4 Results of RNN  

The RNN model, as a more complex deep learning model 
than a linear model, has more parameters and a complex 
network structure. The number of layers and hidden units 
has a great influence on loss (Fig.4). With the deepening 
network structure, loss shows a downward trend. RNN 
model is insensitive to the number of oversampling, and 
loss is almost unaffected in the level 1-3 stage. As for each 
RNN neuron, its parameters are always shared, so the 
random of oversampled repeated samples has no great 
impact on parameter learning and loss.  

5.2 Ablation Experiments  
In order to further compare the effects of lateralization on 
model training, ablation experiments are conducted 
(Table 1 S_N, Serial Number; H_S, Hidden Size; L, Layer; 
Lr, leaning rate; O_s, Over sampling; E, epoch; L_R, 
Linear Regression; L_B_F, Lateralized brain features). As 
for the linear model, the addition of lateralized features 
has a great influence on model training (A1-5, A1-5), 
which is greatly affected by the number of oversampling 
(A1, A2). Thus, it has a certain effect on the data 
enhancement of the few-shot linear model. However, the 
model is relatively simple, so the network depth has 
almost no influence on loss (A1, A3).  
As for the LSTM model, the addition of lateralization 
features has a certain effect on model training (B1-5, B1-
5), which is also affected by the number of oversampling 
(B1, B2). Besides, the network depth has a certain effect 
on model training (B1, B3).  
As for the RNN model, the addition of lateralization 
features has little effect on model training (C1-5, C1-5) 
and model training (C1, C2). In addition, the depth of the 
network has little effect on model training (C1, C3).  
Longitudinal comparison of the three models’ results 
show that the RNN model loss is smaller and the most 
stable, with its lateralization features reducing linear 
model and LSTM model loss to some degree. 
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Table 1. Results of Ablation Experiments 

S_N H_S L lr O_s e log(MSE) log(MAE) 
MSE 
std 

MAE 
std 

L_R RNN LSTM L_B_F 

A1 64 2 1.0E-01 8 2000 116.99 3.58 37.26 0.61 √   √ 
A2 64 2 1.0E-01 24 2000 76.74 3 14.95 0.26 √   √ 
A3 96 3 1.0E-01 8 2000 116.99 3.58 37.26 0.61 √   √ 
A4 96 3 1.0E-02 16 2000 69.32 2.8 15.33 0.23 √   √ 
A5 128 4 1.0E-03 32 2000 68.07 2.8 14.53 0.22 √   √ 
a1 64 2 1.0E-01 8 2000 129.88 3.98 39.28 0.62 √    
a2 64 2 1.0E-01 24 2000 99.35 3.46 24.63 0.44 √    
a3 96 3 1.0E-01 8 2000 129.88 3.98 39.28 0.62 √    
a4 96 3 1.0E-02 16 2000 68.92 2.81 14.72 0.22 √    
a5 128 4 1.0E-03 32 2000 68.53 2.81 14.56 0.22 √    
B1 64 2 1.0E-01 8 2000 64.83 2.83 14.07 0.25   √ √ 
B2 64 2 1.0E-01 24 2000 65.34 2.83 14.15 0.25   √ √ 
B3 96 3 1.0E-01 8 2000 64.81 2.83 14.06 0.25   √ √ 
B4 96 3 1.0E-02 16 2000 64.19 2.88 13.27 0.26   √ √ 
B5 128 4 1.0E-03 32 2000 65.56 2.83 14.33 0.25   √ √ 
b1 64 2 1.0E-01 8 2000 65.16 2.84 14.08 0.26   √  
b2 64 2 1.0E-01 24 2000 64.65 2.82 13.92 0.25   √  
b3 96 3 1.0E-01 8 2000 64.71 2.83 14.03 0.25   √  
b4 96 3 1.0E-02 16 2000 64.08 2.87 13.25 0.26   √  
b5 128 4 1.0E-03 32 2000 65.48 2.82 14.29 0.25   √  
C1 64 2 1.0E-01 8 2000 64.42 2.89 13.2 0.26  √  √ 
C2 64 2 1.0E-01 24 2000 64.42 2.89 13.2 0.26  √  √ 
C3 96 3 1.0E-01 8 2000 64.42 2.89 13.2 0.26  √  √ 
C4 96 3 1.0E-02 16 2000 64.42 2.89 13.2 0.26  √  √ 
C5 128 4 1.0E-03 32 2000 64.42 2.89 13.2 0.26  √  √ 
c1 64 2 1.0E-01 8 2000 64.42 2.89 13.2 0.26  √   
c2 64 2 1.0E-01 24 2000 64.42 2.89 13.2 0.26  √   
c3 96 3 1.0E-01 8 2000 64.42 2.89 13.2 0.26  √   
c4 96 3 1.0E-02 16 2000 64.42 2.89 13.2 0.26  √   
c5 128 4 1.0E-03 32 2000 64.42 2.89 13.2 0.26  √   

5.3 Results Comparison of Time Sequence 
Information  

 

Fig. 5 Comparison of Settings in LSTM 

 

Fig. 6 Comparison of Settings in RNN 

For LSTM (Fig. 5), four time zones are added as time 
sequence information, which makes the loss larger. 
Because each time zone is characterized by 50000 time 
samples, compared with the average value of 200000 time 
data in four time zones, it cannot reflect the characteristics 
of each sample well. Because the LSTM model preserves 
the information of the previous time series data, the 
inaccurate information will accumulate step by step, 
which makes the loss larger. Especially in level 3, the 
amount of inaccurate information increases, leading to a 
large increase in loss.  
In contrast, the RNN model cannot learn the long-distance 
dependency well, so adding inaccurate time sequence 
information has little effect on loss. On the contrary, due 
to the transmission of time sequence information, RNN 
learns more features of training samples, which reduces 
loss. (Fig. 6)  

5.4 Comparison of LSTM and RNN in Processing 
Time Sequence Data 

The two losses are almost equal when the timing 
information is added, and the loss is insensitive to the 
oversampling number.  
LSTM model can solve the gradient disappearance in the 
long sequence training, which makes the recurrent neural 
network have stronger memory performance to better deal 
with long sequence problems. However, only four time 
zones of data are selected in this study and the LSTM 
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model does not play a good role in dealing with long 
sequences, so the results of the two models are similar.  

6. Conclusion 

Relevant features from the data of electroencephalogram 
and electromyogram of dystonia are extracted in few-shot 
samples to predict the score of the preoperative scale. 
In this study, features of the time domain and frequency 
domain are extracted from EEG and EMG signals. This 
study innovatively proposes to extract brain lateralization 
features from local field potentials (LFP) of STN and GPi 
nuclei of left and right brains as inputs of neural networks, 
predicting dystonia scores through the linear model, RNN, 
and LSTM models respectively. At the same time, four 
features of time domain are added to RNN and LSTM 
models as time sequence information for comparison. It is 
manifested that the addition of lateralization features 
influences Linear Regression and LSTM model training 
to some degree, which shows the effectiveness of 
lateralization feature extraction. Besides, LSTM and RNN 
models have more advantages in predictions related to 
time sequence data. 
Due to the limited training set, this study adopts a random 
oversampling method to expand the training set, which 
may lead to over-fitting. We can add noise to enhance the 
data of the training set to obtain better training results. In 
the aspect of adding time sequence information, we can 
sample more time sequence intervals and increase the 
influence of time sequence information on RNN and 
LSTM. In the aspect of feature extraction, we can conduct 
big data mining to further extract signal features. 
Predicting the score of the preoperative scale is to extract 
the relevant features from the data of 
electroencephalogram and electromyogram of dystonia in 
few-shot samples. 
The use of deep learning in predicting muscle tone 
disorder scores has shown promising results. However, 
there are opportunities for further expansion in this area. 
One potential avenue is to incorporate additional data 
sources, such as patient demographics or medical histories, 
to enhance the accuracy of the prediction model. Another 
possibility is to explore the use of different deep learning 
architectures, such as ResNet and U-Net, to improve the 
predictive power of the model. Additionally, the 
application of transfer learning, where a pre-trained model 
is fine-tuned for a specific task, may also be useful in 
improving the accuracy of the prediction model. Overall, 
the potential for using deep learning to predict muscle 
tone disorder scores is vast and there are many avenues 
for further exploration and development in this area. 

References 

1. Balint, B., et al., Dystonia. Nat Rev Dis Primers, 2018. 
4(1): p. 25. 

2. Biering-Sorensen, F., J.B. Nielsen, and K. Klinge, 
Spasticity-assessment: a review. Spinal Cord, 2006. 
44(12): p. 708-22. 

3. Oh, S.L., et al., A deep learning approach for 
Parkinson’s disease diagnosis from EEG signals. 
Neural Computing and Applications, 2018. 32(15): p. 
10927-10933. 

4. Cho, K., et al. Learning Phrase Representations using 
RNN Encoder-Decoder for Statistical Machine 
Translation. 2014. arXiv:1406.1078 DOI: 
10.48550/arXiv.1406.1078. 

5. Cristian Borges Gamboa, J. Deep Learning for Time-
Series Analysis. 2017. arXiv:1701.01887 DOI: 
10.48550/arXiv.1701.01887. 

6. Kiranyaz, S., et al. 1-D Convolutional Neural 
Networks for Signal Processing Applications. in 
ICASSP 2019 - 2019 IEEE International Conference 
on Acoustics, Speech and Signal Processing 
(ICASSP). 2019. 

7. Lawhern, V.J., et al., EEGNet: a compact 
convolutional neural network for EEG-based brain-
computer interfaces. J Neural Eng, 2018. 15(5): p. 
056013. 

8. Schirrmeister, R.T., et al., Deep learning with 
convolutional neural networks for EEG decoding and 
visualization. Hum Brain Mapp, 2017. 38(11): p. 
5391-5420. 

9. Xia, P., J. Hu, and Y. Peng, EMG-Based Estimation 
of Limb Movement Using Deep Learning With 
Recurrent Convolutional Neural Networks. Artif 
Organs, 2018. 42(5): p. E67-E77. 

10. Xiong, D., et al., Deep Learning for EMG-based 
Human-Machine Interaction: A Review. IEEE/CAA 
Journal of Automatica Sinica, 2021. 8(3): p. 512-533. 

11. Vinyals, O., et al. Matching Networks for One Shot 
Learning. 2016. arXiv:1606.04080 DOI: 
10.48550/arXiv.1606.04080. 

12. Ren, M., et al. Meta-Learning for Semi-Supervised 
Few-Shot Classification. 2018. arXiv:1803.00676 
DOI: 10.48550/arXiv.1803.00676. 

13. Corballis, M.C., Left brain, right brain: facts and 
fantasies. PLoS Biol, 2014. 12(1): p. e1001767. 

14. Fisher, R.A., Statistical Methods for Research 
Workers. 1992, Springer New York. p. 66-70. 

15. Rumelhart, D.E., G.E. Hinton, and R.J. Williams, 
Learning representations by back-propagating errors. 
Nature, 1986. 323: p. 533-536. 

16. Hochreiter, S. and J. Schmidhuber, Long Short-Term 
Memory. Neural Computation, 1997. 9(8): p. 1735-
1780. 

 

https://doi.org/10.1051/bioconf/20236101014, 01014 (2023)BIO Web of Conferences 61
FBSE 2023

5


