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Obstructive Sleep Apnea (OSA) is exceedingly common but often under-treated.

Continuous positive airway pressure (CPAP) has long been considered the

gold standard of OSA therapy. Limitations to CPAP therapy include adherence

and availability. The 2021 global CPAP shortage highlighted the need to tailor

patient treatments beyond CPAP alone. Common CPAP alternative approaches

include positional therapy, mandibular advancement devices, and upper airway

surgery. Upper airway training consists of a variety of therapies, including

exercise regimens, external neuromuscular electrical stimulation, and woodwind

instruments. More invasive approaches include hypoglossal nerve stimulation

devices. This review will focus on the approaches for modifying upper airway

muscle behavior as a therapeutic modality in OSA.
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Introduction

OSA overview and underlying pathogenic mechanisms

Obstructive sleep apnea (OSA) is a common and heterogeneous condition that affects

up to one billion individuals globally (1). OSA left untreated is associated with severe

comorbidities, including diabetes mellitus (2), coronary artery disease (3), increased risk

of stroke (4), congestive heart failure (5), atrial fibrillation (6), and possibly death (7).

While continuous positive airway pressure (CPAP) is the gold standard, adherence is highly

variable (8). The 2021 global CPAP shortage highlighted the need for different approaches to

OSA management (9). Conventional approaches to those who are CPAP intolerant include

positional therapy, weight loss, oral appliances, and upper airway surgery (10). Our lab and

others are attempting to understand the pathophysiological drivers of OSA to personalize

therapeutic options (11). The OSA traits (endotypes) will not be reviewed extensively here

but include: (1) excessively collapsible upper airways, (2) inadequate muscle compensation,

(3) ventilatory control instability (high loop gain), and (4) low respiratory arousal threshold

(ArTH) (12). This review will focus on studied modalities for improving upper airway

dilation as potential OSA treatments. We will examine the role of upper airway training

and electrical stimulation of the upper airway muscles and nerves as therapeutic options for

OSA (13). Notably, drug therapy for improving upper airway motor output is also an active

area of investigation but is beyond the scope of this review (14–16).
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Overview of the respiratory upper airway

The upper airway consists of 23 pairs of muscles, including

dilators, protrudors, retractors, and the intrinsic muscles of the

tongue (17, 18). These muscles are state-dependent, meaning that

their activity level tends to decrease with sleep onset (19), especially

with rapid-eye movement (REM) sleep (20, 21). Concerning OSA

pathogenesis, genioglossus is the best studied of these muscles

due to its ease of access [i.e., with electromyography (EMG)

wires] (22).

However, multiple upper airway dilators and constrictors

are important in the upper airway response to flow-limited

breathing during sleep (23). Indeed, the superior, middle, and

inferior pharyngeal constrictor muscles constrict and decrease

airway caliber during times of increased airway volume (such

as during inspiration), but have dilatory action when airway

volumes are low (such as at the end of an apnea) (23).

The pharyngeal retractors styloglossus and hyoglossus, while

typically known for decreasing airway caliber on their own, may

have a synchronous effect with genioglossus to promote upper

airway patency (24). The peripharyngeal muscles as well as the

intrinsic muscles of the tongue are also important in maintaining

luminal patency amidst flow limitation (25, 26). Additionally,

the muscles of the soft palate palatoglossus, palatopharyngeus,

levator palatini, tensor palatini in addition to other muscle groups

are important in combatting obstructive events of the upper

airway (27).

Upon sleep onset, the upper airway relies on chemoreceptive

cues, mechanical load, and lung volume afferent cues to drive firing

patterns for each breath cycle (22). There is a negative pressure

reflex, in which inspiratory negative pressure across the upper

airway increases genioglossus output (28). This reflex is generally

attenuated during sleep compared to wakefulness, but is augmented

during supine sleep vs. recumbent (28, 29). Both mechanical

loading and elevated pCO2 increase upper airway dilator output,

with an additive effect when these two stimuli are combined (22).

In many cases of OSA however, the efficacy of upper airway

dilators in maintaining pharyngeal patency is reduced (30). This

loss of efficacy is partly related to a decrease in the state-dependent

drive but also may emerge from an inadequate muscle output to

compensate for an excessively collapsible upper airway (20). The

importance of upper airway neuromyopathy has been debated, with

data somewhat mixed regarding whether observed abnormalities

are a cause or consequence of disease (31–35). There may also be

muscle asynchrony contributing to the loss of pharyngeal patency

in sleep (36). With consideration of the role of upper airway muscle

function in sleep apnea pathogenesis, a number of strategies have

been undertaken to improve upper airway performance in response

to flow-limited breathing.

Attempts at improving muscular dilation of
the upper airway

Myofunctional therapy for the treatment of OSA
While themechanisms of OSA pathogenesis are heterogeneous,

exercises for improving upper airway stability through muscle

training and improvement in passive pharyngeal properties [such

as the critical closing pressure (PCrit)] have been pursued

in clinical research (37). The ideal training regimen, training

method, and patient selection for improving OSA is yet to

be determined. Still, there may be an improvement in sleep

apnea severity, and daytime symptoms with dedicated upper

airway training regimens often referred to as myofunctional

therapy (MT), though the data is inconsistent (38). MT has

been predominantly studied in mild to moderate OSA (39). The

exercises prescribed are heterogeneous and the relativemechanisms

for these exercises to combat OSA are uncertain. There have

also been studies of MT in severe OSA, where MT appears less

effective but may serve as a CPAP adjunct (40). Exercises are

reported to target the soft palate, tongue, and external facial

muscles (38).

A common combination of the above exercises is appended

below (Table 1). Exercises are typically intensified over the course

of a 6-week training period.

Benefits and limitations of myofunctional therapy
In some randomized controlled trials (RCTs), MT

demonstrated improvements in polysomnographic measures

of sleep, including AHI and oxygen saturation parameters

(10). In a meta-analysis including observational studies, MT

elicited a 50% decline in the AHI among adults and a 62%

decline in the AHI among children (38). MT also demonstrated

improvements in secondary outcomes, including subjective

quality of life scores, Epworth Sleepiness Scale (ESS), snoring,

and CPAP compliance (38). The mechanism(s) of MT on AHI

reduction are heterogeneous and not fully delineated (10, 37).

Notably, MT has also been used as an adjunct to improve CPAP

adherence (41). However, a major limitation of MT is the lack

of standardization. Generalizability between MT studies remains

low due to variable inclusion criteria, follow-up protocols,

exercise regimens, and training devices (10). Additionally, the

mild severity of OSA within the available studies creates the

possibility of regression to the mean explaining some of the

positive reported results for MT. The ideal anatomy for MT

benefit, i.e., based on Mallampati/Friedman scores, for instance,

is unclear. The durability of effect of MT is also uncertain

(39). Barriers to adherence with MT are potentially related to

lack of patient engagement/understanding once they are in a

home setting and practicing MT exercises independently (42).

According to the European Respiratory Society guidelines, MT is

not recommended as a treatment unless patients are reluctant to

engage in surgical/mechanical strategies (43). Further research on

MT should focus on determining which exercises yield maximal

benefit, which patients benefit from MT, and which therapeutic

adjuncts can and should be added for an individual based on their

unique OSA traits.

According to the European Respiratory Society guidelines,

MT is not suggested as a standard treatment for OSA [43].

The guidelines recommend patients use CPAP instead of

MT (43). However, patients who are reluctant to engage

in surgical/mechanical strategies may find improvements

in their symptoms (43). These recommendations are
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TABLE 1 Representative MT regimen prescribed to patients with mild-moderate OSA.

Category Exercise name # seconds # repititions # sessions/day

Tongue 1 Tongue Press 5 5x 2

2 Stick Your Tongue Out 5 5x 2

3 Stick Your Tongue Out and Down 5 5x 2

4 Stick Your Tongue Out and Up 5 5x 2

Soft palate 1 Blowing with Resistance with Balloon 5 10x 2

2 Say “Ahhh” 10 10x 2

Throat and neck 1 Ceiling Swallow 5 10x 2

2 Going Up 10 10x 2

Jaw and lips 1 Lip Workout 10 10x 2

2 Jaw Resist 10 10x 2

3 Chewing

The regimen advances and is modified over a 6-week period. Adapted from Guimaraes et al. (37). This is solely meant for illustrative purposes, and the ideal MT training regimen is unclear.

conditional and are based off a low quality of evidence.

More research on MT is necessary to provide confident

recommendations.

Upper airway training with woodwind
instruments

Over the past 20 years, it has been noted that woodwind

instrument playing may have a protective effect on OSA

(44). In 2006, Puhan noted that playing the didgeridoo, an

indigenous Australian instrument, improves the AHI compared

to controls (44). This study prompted the investigation of

other woodwind instruments for treating and preventing

OSA (45). In a study comparing wind instrument musicians

to string instrument musicians, no significant differences

in sleep efficiency or subjective sleep quality metrics were

noted (46).

Didgeridoo

The use of woodwind instruments such as the didgeridoo may

be beneficial in the treatment of symptomatic OSA. In a study

by Puhan and colleagues, didgeridoo practice showed significant

improvement in AHI, ESS, and partner sleep disturbance scores

(44). In a meta-analysis of the effects of musical interventions

in OSA, the didgeridoo was the most therapeutic musical

intervention in improving sleep-disordered breathing (45). This

findingmay be due to the unique nature of the didgeridoo requiring

circular breathing (45). Circular breathing is the vocalization of

a continuous tone while simultaneously inspiring through the

nose. This procedure is performed by expelling air through the

mouth and using the cheek muscles to create a reservoir of

air. Notably, however, in other instruments requiring circular

breathing, such as the bassoon, circular breathing in and of

itself has yet to be shown to be effective in treating OSA

consistently (47).

Puhan and colleagues, are the only research group to research

the effects of the didgeridoo on OSA thus far to our knowledge

(44). One major limitation of this study was the small sample size

of 25 participants and the lack of a rigorous control group. The

control group consisted of participants put on a waiting list. This

approach was viewed as easier than having participants practice

with a “sham” didgeridoo. A clear role of didgeridoo playing in

OSA treatment is not defined (48).

Other woodwind instruments

Subsequent studies have separated instruments into single-

reed, double-reed, high-brass, and low-brass instruments (48).

Single reed instruments (clarinet, saxophone) include a single piece

of cane that vibrates when sound is introduced. In contrast, double

reed instruments (bassoon, oboe, English horn) have two pieces of

cane that vibrate and a narrower aperture. Low brass includes tubas

and sousaphones. High brass includes trumpets and French horns.

Of the instruments noted, the double reed appears to improve

AHI and daytime symptoms consistently, with more hours spent

playing corresponding to greater AHI reduction (48). Ward et al.

argued that the narrower aperture of double reed instruments and

requisite air pressure were comparable to high-brass instruments

(30–42 mmHg vs. 13–42 cmH2O) and thus did not explain the

differences in efficacy across the woodwinds. Additionally, benefit

in OSA treatment was not seen in non-wind instrumentalists

(48). Rather, they speculated that the differences in efficacy were

attributable to the differences in muscle activation patterns across

the instruments (48). Circular breathing does not have a clear

and consistent role in improving the AHI (47). Although, the

extent of circular breathing and requisite practice requirement

of the didgeridoo may be greater than in other instruments and

thus involve a more intensive circular breathing practice (48).

While woodwind instruments may be helpful for sleep apnea,
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which instruments to use and how to implement them remains

uncertain (49).

Electrical stimulation of the upper airway
Electrical stimulation of the upper airway has included both

external stimulation of upper airwaymuscles and direct stimulation

of nerves supplying the upper airway. Current devices for external

and internal (surgical) stimulation of the upper airway muscles and

nerves, respectively, are shown in Figure 1.

External submental electrical stimulation

External stimulation of the upper airway dilator muscles has

recently become a clinically significant modality in treating mild

OSA. Devices like eXcite OSA and TESLA offer symptom relief

for primary snoring and OSA (50, 51). External stimulation of

upper airway muscles has come about through various approaches,

predominantly focused on nighttime tongue stimulation.

The initial attempts at electrically stimulating the upper airway

during flow-limited breathing were by Miki et al. (52). Using

submental electrodes and a microphone over the cervical trachea,

electrical stimulation of 15–40V at a frequency of 50Hz was

applied when tracheal breath sounds were<15% of tracheal sounds

during tidal breathing for 5 s (52). This study was in six patients and

showed decreased sleep apnea severity and increased stage III sleep

without associated arousals (52). This same group showed that

direct stimulation of genioglossus in anesthetized dogs decreased

upper airway resistance (53). Hillarp et al. later used submental

electrical stimulation in a single patient during apneic events. The

behavior of the upper airway was recorded using videoradiography

and showed that tongue base obstruction improved with submental

stimulation (54).

Edmonds et al. subsequently used a transcutaneous

neuromuscular stimulation device (TENS) to assess the efficacy of

concurrent submental and infrahyoid stimulation on OSA severity.

No significant reduction in AHI was noted (55). Additional

efforts entailing multi-site stimulation emerged in the following

years. Guilleminault attempted simultaneous submental and

transmucosal sublingual stimulation with a proprietary device

without significant change in OSA parameters (56). Schnall also

attempted simultaneous submental, paralaryngeal, and submucosal

stimulation using a horseshoe shaped electrode while measuring

pharyngeal resistance as the primary outcome measure. Only

sublingual resistance improved (57).

In 1999, Wiltfang et al. applied daytime submandibular

electrical stimulation to suprahyoid muscles by intra and extraoral

electrodes via a transcutaneous electrical nerve stimulation (TENS)

unit. After a 4-week training regimen (30min twice a day), the

researchers documented suprahyoid hypertrophy by ultrasound,

reduced respiratory disturbance index from 13.2 to 3.9/h, and

reduced oxygen desaturation index from 23 to 2.8/h. Despite these

improvements, this study did not materialize into an exportable

clinical protocol or novel device. Steier et al. used a commercially

available Neurotrac stimulator to elicit submental stimulation of

genioglossus during N2 sleep, with a resolution of upper airway

occlusion when activated (58). This work ultimately culminated

in the development of the transcutaneous electrical stimulation

(TESLA) device. TESLA, a device that utilizes TES, delivers a

continuous low-current electrical stimulation to the genioglossus

during sleep, which causes increased airway patency. TESLA

transmits an electrical current transcutaneously via dermal patches

in the sub-mandibular area.

In an RCT, TESLA accounted for multiple positive outcomes.

The AHI improved by a mean of 9.1 [95% confidence interval

(CI) 2.0, 16.2] events/h, and the 4% oxygen desaturation index

(ODI) improved by a mean of 10.0 (95% CI 3.9, 16.0) events/h

(51, 59). TESLA exhibited a 100% response rate for mild OSA

patients, while patients with moderate and severe OSA reported

a 46 and 29% response rate, respectively. While it is still not

understood which OSA patients are ideal candidates for TESLA,

early studies have identified some features associated with higher

success rates. Current inclusion criteria for TESLA include an AHI

of 5–35 events/h, a BMI of <32 kg/m2, CPAP intolerance, and

low adherence to MAD (60). Adverse effects of TESLA include

dry mouth, skin discomfort, and claustrophobia. No major adverse

events were reported.

During sleep, the TESLA system included external stimulation

of the “upper airway dilators” via 4 x 4 cm patches on the anterior

neck. This system appeared to reduce RDI, but which muscles are

activated with this program is unclear (59).

There is also the Kalinix device, but limited data have been

reported beyond a congress abstract with 20 patients. The authors

noted that 52% of individuals had a reduction in AHI, but the exact

change is unreported. Inclusion criteria were adults with AHI 15–

65 events/h and BMI < 32 kg/m2. No serious adverse events were

noted. Follow-up studies have not yet been reported (61).

Day-time electrical stimulation
Most of the previously mentioned stimulation devices involved

transcutaneous stimulation during sleep and included a broad

range of OSA severity. Transoral stimulation is a new modality

treating mild OSA and simple snoring in individuals with a BMI

< 35 kg/m2 (62). EXciteOSA, formerly known as Snoozeal, is

an oral device that activates the upper airway through electrical

stimulation. It includes three components: a control unit, a

washable mouthpiece, and a Bluetooth smartphone application.

Four electrodes supply the tongue with electrical stimulation. Two

electrodes lie on top of the tongue, and two sit below the tongue to

generate vertical and diagonal stimulation patterns.

Patients have full control over the intensity of electrical

stimulation using their smartphone. The device emits a series of

pulse-bursts over 20min. The frequency of stimulation changes

in a defined sequence throughout the treatment cycle. Phase 1

of the treatment includes 20min once per day, and phase 2

includes 20min twice per week, though phase 2 of therapy is often

individualized in clinical practice.

In the available clinical data, eXciteOSA showed significant

improvements in objective and subjective indices of OSA. The AHI

reported a mean reduction of 3.4 ± 5.0 events/h (95% CI 2.2–4.7)

from 10.2 to 6.8 events/h (p< 0.01). The oxygen desaturation index

decreased by 2.5 ± 4.6 events/h (95% CI 1.4–3.6) from 8.4 to 5.9
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FIGURE 1

(A) External stimulation devices which have been utilized in OSA treatment. Left to right, ExciteOSA, TESLA, and Kalinix devices. (B) Implantable upper

airway stimulation devices, including Genio, Inspire, and the Aura6000 device. IDE, Investigational Device Exemption. Image re-use permissions

granted where applicable (51, 86, 87).
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events/h (p < 0.01). Mean ESS reduced from 8.7 to 5.3 (reduction

of 3.4 ± 4.1; 95% CI 2.4–4.4; p < 0.01). Composite Pittsburg

sleep quality index (PSQI) decreased from 7.3 to 5.9 (reduction of

1.4 ± 2.8; 95% CI 0.7–2.1; p < 0.01). However, further study is

needed to identify the optimal patient population for this device.

Additionally, it remains unclear how therapy should be modified

(if at all) after the initial 6 weeks of treatment. A recent randomized

controlled trial has completed enrollment with reportedly favorable

results, but the results have not yet been made available to the

public. Possible side effects include drooling, tongue tingling, and

tooth discomfort (50).

It has been suggested that improving tongue endurance may

not influence OSA. In one study evaluating the effects of a six

weeklong tongue endurance program, no improvements in OSA

severity were detected (63). The exercise regimen did however

produce improvements in daytime sleepiness.

Surgical approaches to upper airway
stimulation—hypoglossal nerve stimulation

Hypoglossal Nerve Stimulators (HGNS) are surgically

implanted devices that apply electrical stimulation to the

hypoglossal nerve to control the movement of the tongue. HGNS

is an effective tool to treat OSA because it allows for control of

the genioglossus and hence pharyngeal volume. We will include

multiple HGNS devices on the market and in development in this

review, including the Inspire device, Apnex, Genio, and Aura6000.

Inspire

Inspire became the only FDA-approved HGNS after the

STAR trial in 2014. The initial feasibility study of this model

however, dates back to 2001 (64). The Inspire device is surgically

implanted into the upper chest, commonly on the right side,

and innervates the medial branch of the ipsilateral hypoglossal

nerve. Inspire contains three components: a respiratory sensing

lead, an impulse generator, and a stimulation lead. The respiratory

sensing lead detects the exact phase of the respiratory cycle

activating the impulse generator during inspiration. The impulse

generator sends an electrical impulse to the hypoglossal nerve

through the stimulation lead. Upon electrical stimulation of the

hypoglossal nerve, the tongue stiffens and protrudes. Inspire uses

both respirophasic and a fixed stimulation pattern. Electrical

stimulation strength is modulated with a remote control.

Benefits and limitations of Inspire

Observational studies have provided some evidence to establish

Inspire as a clinically efficacious device in treating OSA (65).

In the pivotal STAR trial, HGNS decreased AHI by 68%, from

an average of 29.3 events per hour to 9.0 events per hour (65).

The ODI score decreased by 70%, from 25.4 events per hour

to 7.4 events per hour (65). Secondary outcomes, including the

Functional Outcomes of Sleep Questionnaire (FOSQ) and ESS, also

showed improvement (65). This trial was followed by a therapy-

withdrawal study which randomly assigned responders to withhold

HGNS temporarily. Results from this study showed responders

taken off HGNS returned to baseline in both AHI and ODI.

When HGNS was re-initiated, the AHI and ODI returned to post-

treatment standards (65). The most comprehensive data set on

HGNS is the ADHERE Registry, which includes patient-level data

for individuals who have undergone HGNS. Analysis of this data

set further confirms the significant therapeutic effects of HGNS on

both objective and subjective measures of OSA (66). This registry

now includes nearly 5,000 patients with longitudinal data.

Patient selection for Inspire is based on criteria informed by the

STAR trial (65). Indications for implantation include moderate to

severe OSA with CPAP intolerance or refusal. Patients must have

a BMI < 32 kg/m2; <25% central/mixed apnea events, and an

AHI between 15 to 65/h (65). Contraindications for HGNS include

a complete concentric collapse of the soft palate (65). Candidacy

requirements for HGNS devices are still evolving.

HGNS appears well-tolerated, but 1/3 of patients have been

deemed non-responders long-term (66). To optimize patient

selection for HGNS, Op de Beek examined OSA endotypes and

noted that those with a higher arousal threshold, greater muscle

compensation, and lower loop gain had a higher chance of HGNS

success (67). Conversely, patients with low muscle compensation

and mild collapsibility were noted to have lower HGNS success

rates (67). Additionally, higher baseline AHI, lower BMI, and

older patient age appear to be associated with a greater reduction

in AHI with HGNS (68). These results suggest diagnosing the

non-anatomical characteristics of OSA may play a critical role in

prescribing HGNS (67).

From an anatomic perspective however, complete palatal and

complete tongue base collapse, but not complete lateral pharyngeal

wall collapse as assessed by drug-induced sleep endoscopy

(DISE) are associated with greater AHI reduction following

HGNS implantation (69). Additionally, tongue morphology during

stimulation is important for maintaining airway patency (70).

Tongue protrusion and maintenance of tongue shape is associated

with increased airflow, whereas anterior movement with increases

in tongue height are associated with decreased airway patency

(70). Lastly, both the extrinsic and intrinsic muscles of the

tongue appear to be activated by HGNS, with the milieu of

muscles activated depending on cuff position, voltage intensity, and

pattern of stimulation (71). Thus, there is tremendous complexity

underpinning patient selection, therapy optimization, and non-

anatomic traits in generating an optimum response to HGNS.

Apnex

One of the initial HGNS device studied was the Apnex device

(72). This device has a single stimulation lead and two respiratory

sensing leads (73). Cuff placement is on the main branch of

the hypoglossal nerve, distal to the branches innervating tongue

retractors (determined intraoperatively through stimulation). This

device was reported to be well-tolerated and significantly reduced

AHI, particularly in those with a BMI< 35 kg/m2 (73). This device,

however, is no longer actively studied and is not clinically available.
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Genio

Genio is a bilateral HGNS device produced by Nyxoah (74).

Genio provides stimulation to both branches of the hypoglossal

nerve (65). This device requires a single midline submental incision

with placement of paddled electrodes over bilateral distal medial

hypoglossal nerve branches. The preferential selection of the

distal branches reportedly activates genioglossus alone without

the recruitment of adjacent muscles (74). An external, submental

stimulator is placed on an adhesive, disposable patch to activate

the cuffs (74). The stimulator must be recharged daily but has

the advantage of not having an implanted battery. The Genio

does not have respiratory sensing leads and delivers stimulation

via adjustable, pre-programmed rates and duty-cycles in order to

match the patient’s breathing frequency. The BLAST OSA study

was pivotal for this device (74). Inclusion criteria were adults 21–

65 years old, AHI 15–65 events/h, BMI < 32 kg/m2, and fewer

than ten central events/h on PSG (74). This study did not meet

its primary endpoint of an AHI reduction of 15 events/h, but AHI

was significantly reduced from 23.7 ± 12.2 to 12.9 ± 10.1 and

ESS from 11.0 ± 5.3 to 8.0 ± 5.4 (74). Quality of life metrics and

bed-partner-reported snoring were also considerably reduced. No

serious adverse events were reported (74).

In a study comparing unilateral HGNS and bilateral HGNS, no

significant differences were detected in the AHI or ESS between the

two treatment groups (75). This evidence suggests bilateral HGNS

may be as a safe and effective as unilateral HGNS.

Aura6000

The Aura6000 is an emerging technology from LivaNova

(previously under ImThera). The Aura6000 does not have a

respiratory sensing component and assessment for concentric

collapse by DISE is not part of the clinical workflow (76). The

Aura6000 electrodes are placed in an unfasciculated portion of the

hypoglossal nerve, targeting multiple muscle groups in the fatigue-

resistant components of the posterior tongue (77). The rate of

serious adverse events appears to be comparable to Inspire (25).

The inclusion criteria for ongoing studies include adults over 22

with AHI 20–65/h and CPAP refusal or intolerance. Exclusion

criteria include BMI > 35 kg/m2, comorbid pulmonary, cardiac, or

renal disease, and detailed PSG exclusion criteria, most notably, the

presence of central or mixed apneas in >25% of AHI events (78).

Based on the recent THN3 trial, data at 12–15 months for enrolled

participants suggest that AHI is reduced by 42.5% percent within

their cohort (25).

Ansa cervicalis stimulation

Stimulation of the ansa cervicalis as a therapeutic target to treat

OSA can be used alone or in combination with HGNS (79). The

ansa cervicalis is a nerve plexus innervating the infrahyoid strap

muscles including the sternothyroid muscle. When activated, these

muscles create caudal displacement of the hyoid bone, resulting in a

stiffened upper airway (80, 81). In a small clinical study, stimulation

of the ansa cervicalis increased inspiratory airflow in patients with

severe OSA during DISE (79). Ansa Cervicalis Stimulation (ACS)

increases pharyngeal volume by increasing caudal traction of the

upper airway (82).

ACS may help overcome incomplete responses to HGNS (83).

The combined effect of tongue protrusion and tracheal traction

is likely synergistic (80). Early data on ACS are limited by small

sample size, low diversity of study population, and lack of data

accounting for end-expiratory lung volume (79). However, it has

been shown that ACS decreases PCrit and Popen (when nasal

pressure exceeds surrounding tissue pressure), with a significantly

greater improvement in Popen with bilateral vs. unilateral ACS

(84). It is challenging to compare HGNS and ACS due to

different stimulation patterns. Despite these limitations, ACS has

shown robust improvements in airway collapsibility and should be

further investigated.

Summary and future directions

There is a rich history of improving upper airway output as a

therapeutic modality in OSA (52, 78). Efforts have included MT,

woodwind instruments, external stimulation devices, and direct

nerve stimulation of varying regions of the hypoglossal nerve

and the ansa cervicalis. A comprehensive consensus statement

on non-PAP therapies was issued by the European Respiratory

Society in 2021. Notably, the quality of evidence for many non-

PAP interventions appears to be poor (43). Each intervention has

improved OSA with routine use, but it is unclear which patients

and endotypes benefit from each modality (85). We anticipate that

the future of OSA therapy will include tailoring interventions to

OSA traits and patient preferences, which will allow for optimum

therapeutic engagement. Despite being a relatively young field, with

<50 years of history, tremendous progress has been made in the

application of bench physiology to the bedside in the management

of OSA. Improving upper airway mechanics is just one approach,

but considerable nuance is involved in a task as seemingly simple

as stabilizing the pharyngeal airway. Similar granularity is required

in addressing the other endotypes as well. As such, the future of

our field includes precision medicine toward unique combinations

of endotypic traits, multiple lines of concurrent therapies, and

therapeutic adjustments as individual patient physiology evolves

(13). We view this challenge with great excitement and believe

tremendous opportunities to individualize patient care in OSA

lie ahead.
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