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Wheat crop is subjected to various biotic and abiotic stresses, which affect crop

productivity and yield. Among various abiotic stresses, drought stress is a major

problem considering the current global climate change scenario. A high-yielding

wheat variety, HD3086, has been released for commercial cultivation under

timely sown irrigated conditions for the North Western Plain Zone (NWPZ) and

North Eastern Plain Zone NEPZ of India. Presently, HD3086 is one of the highest

breeder seed indented wheat varieties and has a stable yield over the years.

However, under moisture deficit conditions, its potential yield cannot be

achieved. The present study was undertaken to transfer drought-tolerant QTLs

in the background of the variety HD3086 using marker-assisted backcross

breeding. QTLs governing Biomass (BIO), Canopy Temperature (CT), Thousand

Kernel Weight (TKW), Normalized Difference Vegetation Index (NDVI), and Yield

(YLD) were transferred to improve performance under moisture deficit

conditions. In BC1F1, BC2F1, and BC2F2 generations, the foreground selection

was carried out to identify the plants with positive QTLs conferring drought

tolerance and linked to traits NDVI, CT, TKW, and yield. The positive homozygous

lines for targeted QTLs were advanced from BC2F2 to BC2F4 via the pedigree-

based phenotypic selection method. Background analysis was carried out in

BC2F5 and obtained 78-91% recovery of the recurrent parent genome in the

improved lines. Furthermore, the advanced lines were evaluated for 2 years

under drought stress to assess improvement in MABB-derived lines. Increased

GWPS, TKW, and NDVI and reduced CT was observed in improved lines. Seven

improved lines were identified with significantly higher yields in comparison to

HD3086 under stress conditions.
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Introduction

Wheat is the most important food grain grown worldwide as

well as in India. On average, 35% of the world’s population depends

on wheat as their staple food (IDRC, 2010). More than two-thirds of

the world’s wheat is used for human consumption, while one-fifth is

used for animal feed (Grote et al., 2021). It is estimated that a 60%

increase can be expected in the consumption of wheat-based

products by 2050 due to an expanding global population and

food demand. In order to meet global demand, wheat yields need

to be increased by 1.6% per year (Tilman et al., 2011). However, the

average yield of wheat worldwide is much lower than its potential

(Asseng et al., 2020; Rashid et al., 2022). Due to change in climatic

conditions, wheat crop faces challenges like biotic and abiotic stress,

which significantly reduce crop yield. New diseases and pests have

been posing a significant threat to wheat production; coupled with

increasing drought and heat stress due to changing environmental

conditions (Gupta et al., 2010). Among abiotic stresses, recurrent

drought has a major impact on agriculture through alteration in the

phenology of crops and changes in diseases and insect dynamics,

which ultimately reduces the potential yield (Daryanto et al., 2016;

Nalley et al., 2018). Currently, 70% of the wheat-growing area

worldwide experiences moisture deficiency stress (Portmann et al.,

2010); nearly 50% of the wheat grown in developing nations is rain-

fed, receiving an average of 600 mm of precipitation per year, with

occasional lows of 350 mm. Additionally, only 1-2 irrigations are

given to 66 - 80% of the wheat grown in irrigated conditions, which

results in a reduction in yield (Joshi et al., 2007). It is anticipated

that annual precipitation will fall by 4–27% in various parts of the

world and the temperature will hike by 1.5°C as a result of global

warming over the next 10 years (IPCC, 2021). These two abiotic

stresses hamper production because they frequently coexist

throughout the grain-fil l ing stage in dry or semi-arid

environments (Wardlaw and Willenbrink, 2000; Sallam et al.,

2015). Wheat crop yield loss due to heat and drought can reach

up to 86% and 69%, respectively (Prasad et al., 2011; Yang et al.,

2021). Drought is an inadequacy of water, including precipitation

and stored soil moisture, required for crop growth, both in terms of

distribution and quantity, which results in a restricted expression of

the genetic yield potential (Sinha et al., 1986).

The North Western Plains Zone and North Eastern Plains Zone

of India together contribute 78 MT of wheat production in an area

of 21 mha. In recent years, the ICAR-Indian Agriculture Research

Institute (IARI) has contributed several high-yielding wheat

varieties, including HD2967 and HD3086, which together account

for 40% of the nation’s total wheat-grown area. In Indo-Gangetic

plains, the high-yielding wheat variety HD3086 has been made

available for commercial production under timely sown, irrigated

conditions. It alone accounts for 11.6% of the wheat varieties indent

and 34% of breeder seed indent in India (https://seednet.gov.in/).

Due to its adaptability and higher yield, the breeder seed

requirement for this variety is growing every year. However, its

potential yield is reduced under moisture deficit stress conditions.

According to previous reports, 68-70% of arable Indian land is

under drought stress, especially in the wheat growing belt, including
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NWPZ and NEPZ, due to erratic rainfall and depleting stored water

content (Mondal et al., 2017) leading to reduced wheat yield.

Drought tolerance is a complex trait; expression is controlled by

polygenes and is influenced by various environmental factors

(Gupta et al., 2012; Farooq et al., 2014). The complex inheritance

mechanism of stress tolerance traits, limited genetic diversity of

yield components under stress conditions, and the dearth of

efficient selection techniques limit traditional breeding strategies

for developing drought-tolerant varieties (Gupta et al., 2012; Gupta

et al., 2017; Salarpour et al.),. An understanding of the genetic

architecture of drought-related traits and information on relevant

candidate genes/QTLs to develop drought-tolerant cultivars are

necessary. In the past, many QTLs/meta-QTLs for yield and

associated traits have been identified in wheat under drought

stress which accounts 19-59% of the phenotypic variance

(Quarrie et al., 2006; (Kirigwi et al., 2007; Shukla et al., 2015;

Tahmasebi et al., 2016; Salarpour et al., 2021; Gupta et al., 2017).

Apart from this, drought-related QTL mapping studies were also

conducted under drought stress (Salarpour et al., 2021 and

Salarpour et al., 2020) and heat stress conditions (Tahmasebi

et al., 2016) in wheat. Early heading and anthesis, canopy

temperature (CT), normalized difference vegetative index

(NDVI), water-soluble carbohydrates (WSC), and chlorophyll

content are key target agronomic and physiological traits for

enhancing wheat crop ability to withstand drought (Bayoumi

et al., 2008; Dolferus, 2014; Naeem et al., 2015; Afzal et al., 2017;

Shamuyarira et al., 2019; Sobhaninan et al., 2019). Due to the

complex inheritance pattern of drought tolerance, conventional

breeding for these traits is difficult and time-consuming, hence

schemes including quantitative trait loci (QTL) mapping and

marker-assisted breeding should be used (Bahari et al., 2014).

Additionally, it has been demonstrated that traditional breeding,

in conjunction with marker-assisted selection (MAS), is effective for

breeding complex traits, such as resistance to biotic and abiotic

stresses, in a variety of crops, including wheat (Bustos et al., 2001;

Gupta et al., 2010; Kumar et al., 2010; Kumar et al., 2011; Tyagi

et al., 2014). The wheat variety DBW43 is known to perform better

under moisture deficit conditions and also carries genes for leaf rust

and yellow rust resistance. Hence, in the present study, DBW43 was

used as a donor parent to transfer QTLs linked to component traits

of drought tolerance in the background of HD3086 using marker-

assisted backcross breeding (MABB).
Materials and methods

Plant materials and generation
of improved lines

In the present MABB scheme, drought-tolerant germplasm line

DBW43 was used as a donor parent, whereas HD3086 was used as

the recurrent parent. Recurrent parent HD3086 is a popular high-

yielding variety with a pedigree “DBW14/HD2733//HUW468”. It

has semi-erect growth (99-101cm), has a 143-day period to

maturity, and provides an average yield of 5.46 t/ha, but its
frontiersin.org
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potential yield is reduced under moisture deficit stress conditions.

However, the donor parent DBW43 is the introduced line from

CIMMYT, with pedigree “BABAX/Lr42//BABAX*2/3/VIVITSI”,

and is identified at IIWBR, Karnal. The variety has an erect

growth habit (110 cm) and is known to perform well under

moisture deficit conditions; it also shows resistance to some races

of yellow and leaf rust. Furthermore, DBW43 is a moisture deficit

stress and heat-tolerant germplasm line; it is highly resistant to

yellow and leaf rust and provides an average yield of 49 q/ha in RI

conditions (Harikrishna, 2017; Singh et al., 2016).

The F1 plant’s hybridity was tested to check true F1s based on

the presence of the hybrid band, using the linked SSR marker

Xgwm484. Xgwm484 was a polymorphic marker between parents

and also a linked marker with the QTL related to drought-tolerant

traits such as BIO, WSC, and Yield. True individual F1 plants were

backcrossed twice with the recurrent parent HD3086 to generate

BC1F1 and BC2F1. The following generations were handled by the

procedure shown in Figure 1. The scheme comprises selection in

each backcross generation, the foreground selection was performed

with SSR markers linked to targeted drought-tolerant QTL regions

(Table 1), followed by phenotypic selection (PS) for the plants

similar to the HD3086 recurrent parent phenome (RPP).

Foreground selection was undertaken in BC1F1, BC2F1, and BC2F2
(Table 2). In each step, foreground screening for QTLs was carried

out to select the plants before making backcross in F1 and BC1F1.

The BC2F1 plants were also screened for drought-tolerant QTLs,

and the selected plants were subjected to selfing to generate BC2F2
progenies. Furthermore, the selected homozygous BC2F2 progenies

for targeted QTLs were advanced via pedigree-based phenotypic

selection up to BC2F4 generation. The advancement of improved

lines was done in New Delhi during the main season and in off-

season nurseries such as Wellington and Lahul-Spiti. In each
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advanced generation, the phenotypic selection was done to

achieve maximum recovery of the recurrent parent phenome. The

selected BC2F4 and BC2F5 lines were tested for two years for

tolerance to moisture stress in field conditions. The BC2F5
individuals that performed better than the recurrent parent for

targeted traits were advanced to seed multiplication for nomination

under the MABB trials of the All India Coordinated Research

Projects (AICRP).
Foreground selection

The techniques outlined by Hospital and Charcosset (1997)

were used for foreground selection. The linked QTLs to drought-

tolerant traits such as NDVI, CT, CC, DH, and Yld were used in

MABB. SSR markers linked to these QTLs were validated using the

RIL population generated by a cross between HI1500 x DBW43

(Harikrishna, 2017). The QTL Qndvi6.iari-4A with the phenotypic

variance of 14% (R2 = 0.14) linked to SSR marker Xwmc617, a CT

and TKW related meta QTL ‘MQTL24’ located on 3A linked to SSR

marker Xwmc640 with PV of 14.01%, and a biomass, WSC, and

yield-related QTL located on 2D linked to SSR marker Xgwm484

with a PV of 9.45% (Yang et al., 2007; Pinto et al., 2010; Kadam

et al., 2012; Acuñ-Galindo et al., 2015; Gu et al., 2015; Harikrishna,

2017) were used in this study to transfer respective traits.

Genomic DNA was isolated from fresh leaf tissue using the

CTAB procedure, DNA was quantified using a Nanodrop, and

purity was tested using 0.8% agarose gel electrophoresis with l
DNA as a standard. PCR reaction was performed with a volume of

15 µl comprising 30-40 ng of template DNA, 5 pmol of each primer,

0.05 mM dNTPs, and 10X PCR buffer (10 mM Tris, pH 8.4, 50 mM

KCl, 1.8 mMMgCl2, and 0.5 U of Taq DNA polymerase) (Bangalore
FIGURE 1

Schematic workflow of marker-assisted backcross breeding of HD3086*2/DBW43; the crossing pattern, season, and location of advancement and
steps followed in each season are given in the figure.
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Genei Pvt. Ltd., India). SSR markers from the Xgwm and Xwmc

series were used to perform PCR amplification of the template DNA

(Table 1). The amplified product was resolved in gel electrophoresis

using 3% Agarose SFR gel and observed on Gel documentation

systems (Supplementary Figure 1).
Background analysis

To identify plants with the maximum recovery of the recurrent

parent genome (RPG), selected BC2F5 lines along with parents were

genotyped utilizing hybridization-based Wheat Breeder’s 35K

Axiom Array SNP chips of the Affymetrix GeneTitanR system.

This array contained 35,143 SNPs that were evenly dispersed

throughout the wheat genome. However, after filtering for

monomorphic alleles, minor allele frequency (MAF), and missing

data, a total of 3706 polymorphic SNPs were chosen between

parents DBW43 and HD3086 and were used for background

analysis. Using the GGT 2.0 (Graphical Geno Typing 2.0)

software, the background recovery of the recurrent parent was

graphically visualized (Van Berloo, 2008). The following formula

was used to determine the recurrent parent’s contribution to the

background of MABB-generated lines:

G = [(B + 1/2A) × 100]/N

were,

N = total number of parental polymorphic markers screened

B = number of markers showing homozygosity for recurrent

parent allele

A = number of markers showing heterozygosity for

parental alleles.
Screening for leaf rust resistance at the
seedling stage

In each backcross population, HD3086*2/DBW43 and parents

were tested at the seedling stage for resistance to P. triticina races 77-5

and 77-9 using Single Race Testing (SRT) at IARI New Delhi and

IARI Regional Station, Indore. Seedlings, at approximately 8–10 days

old were inoculated with spores/suspension early in the evening.

After inoculation, seedlings were raised under a humid glass chamber

for 36 hours and maintained an ambient temperature of 23 ± 2°C and

85% relative humidity. Leaf rust resistance was scored for each race

using the 0–4 modified Stakman Scale (Roelfs, 1992; Table 3). The

disease reaction was recorded 12–14 days after the inoculation.
Screening of genotypes at the adult stage
for leaf and yellow rust resistance

Field screening for leaf and stripe rust was done in each

backcross generation at IARI, New Delhi during the main season,

and in off seasons at Wellington and Shimla. “Agra local”, a rust-

susceptible landrace, served as the infector and was planted around

the experimental plots after every 20 rows of backcross population

were planted for screening. The lines under testing were sprayed
T
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with a mixture of urediospores from the prevalent stripe and leaf

rust pathotypes to create artificial rust epiphytotic. To guarantee

uniform disease propagation, rust-infected pots were positioned in

fields between the experimental materials. The infected leaves of the

susceptible host were suspended in water containing urediniospores

(5.6 g/ha) and 0.75 l/ml Tween20 (surfactant) following the method

described by Imtiaz et al. (2003). According to the modified Cobb

scale provided by Peterson et al. (1948), the disease severity (DS)

and infection response (IR) were recorded at the reproductive stage.

The DS was expressed in percentage (0-100%) and the IR was

recorded as S (susceptible), MS (moderately susceptible), MR

(moderately resistant), and TR (trace).
Evaluation for drought tolerance traits

The selected backcross populations were evaluated for

agronomic and physiological parameters for two years at the

IARI experimental farm in New Delhi (280 40’N, 770 13’E,

MSL228m). In the year 2020-2021, parents (viz., HD3086,
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DBW43), three check varieties (viz., HI1500, GW322, and

BABAX), and the selected positive BC2F4 lines were evaluated in

an augmented design under irrigated conditions (IR) and

restricted irrigation (RI) conditions. Irrigated trials received a

total of six irrigations, whereas restricted irrigated trials received

only one irrigation (21 days after sowing, in addition to pre-

sowing irrigation) to induce terminal drought stress. The

experiment was conducted in the same field with a divider to

restrict irrigation water flow to the RI treatment. Weather data

during the growing season of wheat (November to March) during

2020-2021 and 2021-2022 are included in Supplementary

Table 1. A plot size of 0.63 m2 was maintained, in which each

plot consisted of three rows with a spacing of 23 cm between rows.

The BC2F5 lines, which had performed better in the previous

generation, were evaluated in RCBD (randomized complete block

design) using large plots of size 7.2 m2 (6 m x 1.2 m) under IR, RI,

and late sown (LS) conditions in the year 2021-22. The wheat crop

was raised using standard agronomic management techniques.

The “Wheat Physiological Breeding II: A Field Guide to Wheat

Phenotyping” (Pask et al., 2012) manual was used as the guide for
TABLE 2 Number of plants selected in each generation in HD3086*2/DBW43 population.

Generation No. of plants Foreground Selection

No. of plants selected

BC1F1 98 44 FS+PS

BC2F1 160 25 FS+PS

BC2F2 830 140 FS+PS

BC2F3 140 120 PS

BC2F4 120 42 BS+PS

BC2F5 10 7 PS

BC2F6 7 1 PS
frontie
FS, Foreground selection; PS, Phenotypic selection.
TABLE 3 Leaf rust scoring method according to modified Stakman scale (Roelfs, 1992).

Infection types Leaf rust response/reaction Disease response

0 No flecks or uredinia Immune

0; faint Hypersensitive flecks Highly resistant

; Hypersensitive flecks Highly resistant

1
Small uredinia with

necrosis
Resistant

2 Small to medium uredinia with necrosis Moderately susceptible

3 Moderate to large size uredinia with/without chlorosis, Susceptible

4
Very large

uredinia without chlorosis
Highly susceptible

X Mesothetic, a mixture of resistant pustule types Mesothetic

“+” Indicates slightly larger uredinia –

“-” Indicates slightly smaller uredinia –
If more than one kind of reaction is observed in a plant, they are written with consecutive scores, For example, if a plant has both 1 and 2 reactions, it is written as “1 2”. Similarly, if a line has; and
1 reactions, it is written as “; 1”
rsin.org
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the standard method of data collection in improved lines

(Supplementary Table 2). Agronomic traits like days to heading

(DH), days to maturity (DM), plant height (PH), plot yield (PY),

thousand kernel weight (TKW), and grain weight per spike (GWPS)

were recorded from each entry. Physiological parameters including

NDVI, CT, and soil plant analysis development (SPAD) chlorophyll

content were measured at three distinct stages, namely, the

vegetative stage (late boot stage, Z49), grain filling stage (early

milk stage, Z73), and grain maturity stage (late milk stage, Z85)

(Zadoks et al., 1974).
Statistical analysis

Descriptive statistics and analysis of variance were calculated for

BC2F4 individuals using an R package ‘augmented RCBD’ (Aravind

et al., 2021). Comparisons of individuals were conducted based on

adjusted mean calculated with the formula (Federer, 1961)

Vi = ui − bj Where

Vi is the Adjusted mean of ith variety

ui is the Unadjusted mean of ith variety

bj is jth block effect

Whereas the BC2F5 lines were planted in RCBD with three

replications, and the analysis of variance, Least Significant

Difference (LSD), and Coefficient of Variation (CV) were

calculated from MS Excel following standard procedure. The lines

that significantly performed better under moisture deficit stress

were identified.
Results

Development of backcross population
following foreground selection and
background analysis

Foreground selection for drought-tolerant QTLs
To transfer the drought tolerance QTLs, the recurrent parent

HD3086 was crossed with the donor parent DBW43, and BC1F1
progenies were produced. The true hybrid plants from the cross

were backcrossed with recurrent parent HD3086 to enhance the

recurrent genome portion in the progenies. A total of 98 BC1F1
plants were screened for the presence of different foreground

markers linked with QTLs of interest. Among them, 44 plants

were found to contain positive alleles for required QTLs and were

selected for the second round of backcrossing. To generate BC2F1,

the selected plants were again backcrossed with the recurrent parent

HD3086. Among 160 BC2F1 plants, 25 plants were positive for

targeted drought tolerant QTLs and were selfed to develop BC2F2
progenies. All the 830 BC2F2 plants obtained were grown

and homozygosity for the markers linked with donor QTLs was

identified from foreground selection. 140 BC2F2 homozygous plants

were selected via foreground selection with a different combination

of QTLs related to drought tolerance and were advanced up to

BC2F4 through pedigree-based phenotypic selection.
Frontiers in Plant Science 06
Background recovery of the recurrent
parent genome

Improved BC2F5 homozygous lines were subjected to

background analysis for recovery of the recurrent parent genome,

and eight lines were identified with maximum recovery of the

recurrent parent genome along with drought-tolerant QTLs from

the donor (Figure 2). The recurrent genome recovery of improved

lines ranged from 78%-91%, with an average recovery of 85.5%.

Improved lines had maximum visual similarity at the phenotypic

level with recurrent parent HD3086. Among these, two lines, viz.,

HD3086-7-1-210-26 and HD3086-3-15-174-22, had a maximum

recurrent parent genome recovery of 92% and 90%, respectively.

The targeted QTLs from the donor parent, which are spread over

3A, 4A, and 2D chromosomes, were transferred to the progenies

developed in this study (Figure 2).
Phenotypic screening for rust resistance

Single race testing (STR) for leaf rust resistance at the seedling

stage confirmed a similar susceptibility reaction of recurrent parent

HD3086 to that of check Agra local (3 3+) for both pathotypes, 77-5

and 77-9. However, donor parent DBW43 had a Highly Resistant

(HR) response (0); for pathotypes 77-5 and 77-9 (Table 4).

Furthermore, 15 BC2F5 drought-tolerant lines were subjected to

SRT for P. triticina pathotypes 77-5 and 77-9, of which 11 lines

showed resistance reactions (such as 3HR, 3R, and 5MR), and the

rest of the 4 lines displayed susceptible reactions at the seedling

stage. Among these improved lines, HD3086-5-1-189-24, HD3086-

6-6-209-25, and HD3086-13-10-279-34 showed a highly resistance

reaction, which is similar to the resistance of parent DBW43.

Backcross-derived lines (BC1F1, BC2F1, BC2F2) with positive

drought-tolerant QTLs and resistance to leaf and stripe rust were

advanced to the next generation. In BC2F3, the rust severity of

progenies was assessed along with the parents. The recurrent parent

HD3086 showed a severity of 60S DS for leaf rust, whereas

improved lines showed 0 to 20S DS. Improved lines for drought

tolerance and complete resistance to leaf and stripe rust were

selected in advanced generations.
Morpho-physiological performance of the
selected lines for drought tolerance

The improved lines from the cross HD3086*2/DBW43 carrying

drought tolerance QTLs were evaluated for 2 years under IR and RI

conditions. In the year 2020-2021, a total of 120 BC2F4 lines were

evaluated in an augmented design, among which, 42 lines were

found significantly superior to the recurrent parent and checks for

introgressed traits. Furthermore, these 42 superior BC2F4 lines were

evaluated for component traits of drought tolerance, and seven

improved lines superior to recurrent parent HD3086 and the

maximum recurrent parent phenome were identified. In the

current study, leaf chlorophyll index (LCI) in BC2F5 ranged from
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44.8 to 52.4, and approximately seven progenies outperformed the

recurrent parent HD3086 in terms of LCI. The NDVI value of these

selected lines ranged from 0.34 to 0.55, with a mean value of 0.45,

which is more than the mean value (0.32) of recurrent parent

HD3086 during the grain maturity stage. Eight progenies show

lower canopy temperature than the recurrent parent; the mean CT
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value was 32.8 °C and ranged from 32.1°C to 34.4°C. Similarly,

improved lines showed superior agronomic performance for the

traits like TKW, GWPS, and yield under RI conditions (Table 5).

The distinctiveness, uniformity, and stability (DUS) of selected

BC2F5 lines were assessed. Finally, 3 out of 10 progenies (viz.,

HD3086-6-6-209-25, HD3086-7-11-220-30, and HD3086-13-10-
FIGURE 2

Recurrent parent recovery of chromosomes 2D, 3A, and 4A; first two chromosomes indicate donor (red) and recipient (blue) chromosomes followed
by progeny. The red portion indicates donor genome segment; the blue portion indicates recipient genome segments. Chromosomal location and
donor segment linked to SSR markers Xgwm484, Xwmc640, and Xwmc617 are shown with circles.
TABLE 4 Screening of marker-assisted derived wheat genotypes for leaf rust races at IARI New Delhi and IARI regional station, Indore (BC2F5).

Sl.no Progenies Rust race (77-5) Rust race (77-9) Reaction of genotypes

IARI RS, Indore IARI, New Delhi IARI RS, Indore IARI, New Delhi

1 HD3086 (Recipient parent) 33+ 3 2 3 3 Susceptible (S)

2 DBW43 (Donor parent) 0; 0 0; 0; Highly Resistant (HR)

3 HD3086-1-3-126-21 3 0 3 0 S

4 HD3086-3-15-174-22 ; 1 1 ; 2 ; R

5 HD3086-4-4-184-23 ; ; 1 ; 2 2 MR

6 HD3086-5-1-189-24 ; ; ; 1 HR

7 HD3086-6-6-209-25 ; 1 1 ; 1 ;1 HR

8 HD3086-7-1-210-26 0 1 2 ; 1 2 MR

9 HD3086-7-3-212-27 ; 1 1 ; 1- 1 2 R

10 HD3086-7-6-215-28 ; 1 1 2 ; 2 1 2 MR

11 HD3086-7-7-216-29 ; 1 ; ; 2 ; 1 R

12 HD3086-7-11-220-30 0; 2 3 1, 2 MS

13 HD3086-10-1-244-31 0 0, 1 3+ 0,; MS

14 HD3086-11-6-257-32 ; 2 1; ; 2 1 2 MR

15 HD3086-13-6-275-33 0; 1 2 3 ; 1 MR

16 HD3086-13-10-279-34 0; 0; ; 1 HR

17 HD3086-15-10-293-35 3+ 1 ; 2 0 S

18 Agra Local 3+ 3+ 3+ 3+ HS
HR, Highly resistant; R, Resistant; MR, Moderately resistant; MS, Moderately Susceptible; S, Susceptible; HS, Highly susceptible.
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279-34) showed lower performance than the recurrent parent, and

the rest of the seven progeny lines (viz., HD3086-1-3-126-21,

HD3086-3-15-174-22, HD3086-4-4-184-23, HD3086-5-1-189-24,

HD3086-7-1-210-26, HD3086-10-1-244-31, and HD3086-11-6-

257-32) performed better in both the years than recurrent parent

HD 3086. Furthermore, they were found to have a maximum

recovery of both RPG and RPP and were further nominated for

All India Coordinated Wheat Improvement Project (AICWIP)

trials (Figure 3). Recently, in 2022-23, the HD3086-7-1-210-26

derived line was proposed for national trials for testing

and further release for commercial cultivation under the

designation HD3470.
Discussion

Abiotic stress, particularly heat and drought, significantly

declines wheat productivity. The ability to absorb nutrients is
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significantly affected by drought stress, which results in stunted

growth and low yields in arid zones (Yasmin et al., 2019). Drought

stress causes DNA, lipid, and membrane damage as well as the

generation of reactive oxygen species in mitochondria, peroxisomes,

and chloroplasts, which ultimately leads to the destruction of plant

metabolism (Rashid et al., 2022). The majority of traits related to

better performance under drought stress, such as RWC, days to

heading, awn length, and spikelets per spike, had a positive

relationship with yield (Sobhaninan et al., 2019) and are

quantitatively inherited and governed by many genes/QTLs.

Thousands of QTLs for agronomic and yield-contributing traits

have been identified under different stress conditions in several

previous studies (reviewed in Pinto et al., 2010; Gupta et al., 2012;

Gupta et al., 2017; Shashikumara et al., 2020; Devate et al., 2022).

However, their particle utilization in plant breeding needs to be

emphasized with marker-assisted breeding programs. MABB is one

of the practical and affordable methods of marker-assisted selection

(MAS) that involves the transfer of desired traits from a donor
TABLE 5 Morpho-physiological characteristics of HD3086*2/HI1500 selected BC2F5 lines for component traits of drought tolerance under moisture
deficit stress condition.

S.no Selected
progeny

QTLs linked
trait

Chlorophyll
content

Canopy tempera-
ture (°C)

NDVI GWPS
(g)

TKW
(g)

YLD (q/
ha)

Total
RPG
%

VS GFS VS GFS GMS VS GFS GMS

1 HD3086-1-3-
126-21

CT 49 50 25.6 30.3 32.9 0.78 0.65 0.34 1.24 33.5 44.18 78.31

2 HD3086-3-15-
174-22

NDVI, TKW,
YLD

50.5 51 24.9 28.8 32.5 0.79 0.73 0.48 1.63 38.1 49.58 89.81

3 HD3086-4-4-
184-23

NDVI, BIO,
YLD

44.8 48.9 25.3 30.6 34.4 0.77 0.7 0.45 1.61 34.8 45.57 86.47

4 HD3086-5-1-
189-24

BIO, GWPS 47.9 51.1 24.7 30 33.5 0.75 0.67 0.51 1.53 33.2 49.17 88.46

5 HD3086-6-6-
209-25

TKW, YLD 48.8 51.2 25.3 29.5 32.3 0.81 0.72 0.55 1.69 27.6 36.98 80.28

6 HD3086-7-1-
210-26

NDVI, TKW,
YLD

48.5 52.4 25.8 29.3 32.1 0.77 0.62 0.53 2.09 42.3 50.28 91.31

7 HD3086-7-11-
220-30

BIO 46.7 49.5 27.6 32.5 32.3 0.75 0.64 0.4 1.47 36 40.30 83.47

8 HD3086-10-1-
244-31

GWPS, CT 48.1 49.8 27.3 32.1 32.1 0.75 0.56 0.44 1.38 36.5 43.35 87.94

9 HD3086-11-6-
257-32

NDVI, TKW 48.6 49.6 27.1 30.3 33.5 0.78 0.69 0.45 1.83 32.7 46.54 83.75

10 HD3086-13-10-
279-34

CT, TKW 46.3 49.6 27.7 30.5 32.9 0.76 0.66 0.4 1.17 34.4 41.00 85.43

HD3086(RI) 48.5 49.8 29.1 31.3 33.2 0.78 0.61 0.32 1.01 30.4 42.66

HD3086(IR) 49.4 52.6 22 31.3 32 0.79 0.72 0.54 1.65 44.6 62.60

DBW43(RI) 50.1 52.3 26 30.5 31.9 0.75 0.66 0.5 1.58 36.5 49.86

DBW43(IR) 51.2 52.5 22.7 28.6 31.6 0.76 0.7 0.58 2.01 39.7 53.88

Mean 47.98 50.43 26.37 30.48 32.80 0.77 0.66 0.45 1.52 34.67 44.96

LSD at 5% 2.93 2.84 1.39 1.33 2.18 0.03 0.03 0.02 0.09 1.95 2.32
frontie
LSD, Least Significant Difference. NDVI, Normalized Difference Vegetation Index; GL, Grain Length; GWPS, Grain Weight Per Spike; TKW, Thousand Kernel Weight; YLD, Yield; RPG,
Recurrent Parent Genome; RI, Rainfed; IR, Irrigated; VS, Vegetative stage; GFS, Grain Filling Stage; GMS, Grain Maturity Stage.
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parent to an elite recurrent parent, with minimum changes in the

recurrent parent’s genetic background (Collard and Mackill, 2008;

Bapela et al., 2022). MAS has been utilized frequently in bread

wheat for the introgression of traits, including disease resistance

and quality enhancement (Kumar et al., 2010; Malik et al., 2015;

Shah et al., 2017; Sharma et al., 2021). However, a small number of

studies have previously transferred QTLs for promising wheat

varieties to increase drought tolerance and yield under moisture

deficiency conditions (Merchuk-Ovnat et al., 2016; Rai et al., 2018;

Gautam et al., 2020; Todkar et al., 2020; Sunilkumar et al., 2022).

Wheat variety HD3086 is the choice of millions of farmers in Indo-

Gangetic plains; its potential yield is reduced under restricted

irrigation (RI) conditions. To achieve this, the current study

aimed to transfer QTLs linked to component traits of drought

tolerance in the genetic background of HD3086 through MABB.

Foreground selection was carried out in BC1F1, BC2F1, and

BC2F2 using the markers linked to QTLs for component traits of

drought tolerance, such as NDVI, CT, TKW, and yield. NDVI

sensor enables quick ground-level measurements of crops with the

resolution required to characterize the canopy for its biomass,

nutrient content, leaf area, and green area indices (Prasad et al.,

2011). The SPAD meter measures leaf chlorophyll index via light

transmittance that is differentially observed by chlorophyll and

estimates leaf chlorophyll content and nitrogen content (Weier

and Herring, 2000; Araus et al., 2008). DH, CT at the grain filling

stage, and TKW are the most commonly used traits as indirect

selection to improve yield under drought and heat stress

(Tahmasebi et al., 2014). Similarly, Kernel number, grain yield,

and chlorophyll content have been found to co-localize with regions
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controlling other drought adaptation traits, such as canopy

temperature, and lead to deeper root system development and

help in greater water absorption under stress (Pinto et al., 2010;

Pinto and Reynolds, 2015; Diab et al., 2008; Olivares-Villegas et al.,

2008). Therefore, in our study, three QTLs (BIO, WSC, and YLD:

Xgwm484; CT and YLD: Xwmc617; TKW, CT, DM (MQTL24):

Xwmc640) associated with component traits of drought tolerance

were successfully transferred in the genetic background of HD3086

using MABB and phenotypic selection. The presence of

introgressed QTLs located on wheat chromosomes 2D, 3A, and

4A explained a phenotypic variance from 9.45% to 14.01%

previously validated in our lab using the RIL population HI1500

x DBW43, Harikrishna (2017) and other independent studies

(Kadam et al., 2012; Acuña‐Galindo et al., 2015; Gu et al., 2015).

In the present study, a positive correlation between NDVI, LCI, and

TKW with yield and a negative correlation between CT and DH

with yield were observed. Similar correlation results were also

reported by Lopes and Reynolds (2012), Harikrishna et al. (2016),

and Ramya et al. (2016), indicating that productivity under

moisture deficit stress was improved by the increased

performance of component traits of drought tolerance, such as

NDVI, chlorophyll content, and canopy temperature depression. In

the current study, seven promising lines that perform better than

their recurrent parent under RI conditions were developed. The two

lines that possess QTL combinations for Biomass, TKW, and yield

showed a 15-17% improvement in yield over recurrent parent

HD3086. In a related earlier study by Rai et al. (2018), five

prospective varieties were developed in the background of

HD2733 by transferring NDVI, CT, and chlorophyll content
FIGURE 3

Improvement in grain yield of selected lines of HD3086*2/DBW43 derived BC2F5 population under moisture stress. Grain yield performance of
parental lines (HD3086 and DBW43) along with the improved lines are given in quintals per hectare.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1147200
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sunilkumar et al. 10.3389/fpls.2023.1147200
linked QTLs by MABB and were found to perform well under

rainfed conditions. Similar to this, wheat variety GW322 was

improved for traits such as NDVI, stay green, chlorophyll

content, and yield, and 18 superior BC2F3 drought-tolerant

progenies were identified in advanced generations of MABB-

derived lines (Todkar et al., 2020). In this study, along with

drought tolerance, lines were also screened for rust resistance in

each generation, and the final improved lines showing resistance to

both leaf and stripe rust were selected. The donor germplasm line

DBW43 has the Lr42 gene in their pedigree, and recurrent parent

HD3086 showed resistance to 78S84 and 46S119 pathotypes of

stripe rust (Singh et al., 2014); this might be the reason the drought-

tolerant improved lines in cross HD3086*2/DBW43 also showed

resistance to both leaf and stripe rust.

The potential applications of MAS in wheat have been

further expanded by the advent of high-throughput sequencing,

precision phenotyping, crop molecular physiology, and

computational tools. Wheat has the biggest genome size

(~16GB; Somers et al., 2004), and it is difficult to cover entire

genomic areas with uniformly spaced polymorphic SSR markers.

Background selection was performed using 35k SNPs in BC2F5
along with parents and identified plants with a maximum RPG

ranging from 78%-91%. SNPs are almost 300 times more cost-

effective than SSR markers for background analysis; therefore,

SNPs could be a better choice for background selection in MABB

(Khanna et al., 2015). Through the combination of phenotypic

selection and marker-assisted background selection, the genome

of the recurrent parent HD3086 recovered more quickly and to a

greater extent compared to the estimated average recovery

percentage. It has been observed in previous research that two

backcrosses with selection for RPP were sufficient for better

genome recovery in important cereal crops like wheat (Xu

et al. , 2017; Sharma et al. , 2021; Mallick et al. , 2022;

Sunilkumar et al., 2022), rice (Ellur et al., 2016; Grover et al.,

2020), and maize (Hossain et al., 2018; Zunjare et al., 2018). In

our study, two drought-tolerant improved lines, HD3086-7-1-

210-26 and HD3086-3-15-174-22, had maximum recovery rates

of 92% and 90%, respectively. Similar genome recovery rates, i.e.,

89.2% to 95.4%, were observed by Rai et al. (2018) in MABB for

drought tolerance QTLs in the background of HD2733. In a study

containing gene pyramiding of leaf rust resistance genes into an

elite cultivar, HD2687, 94.55% genome recovery rates in BC2

generations were observed by Bhawar et al. (2011). Similarly,

98.25% RPG recovery was observed in the transfer of gene LrTrk

from Triticum turgidum cv. Trinakria to hexaploidy wheat

variety HD2932 by Mallick et al. (2022) through MABB.
Conclusion

The current work demonstrates the back-crossing breeding

technique that combines phenotypic selection and marker-
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assisted selection to transfer QTLs related to drought tolerance in

the background of the well-known wheat variety HD3086. We have

successfully transferred three QTLs governing component traits

under drought, viz, NDVI, CT, BIO, WSC, YLD, TKW, and DM, to

develop improved lines that are performing well under drought

stress using the MABB scheme. The transfer of QTLs led to the

development of superior varieties in the genetic background of the

existing variety HD3086. We have identified seven superior lines

over the parent HD3086 under drought stress. The improved lines

with more than 90% genomic similarity with the recurrent parent

can be released as a superior variety over the existing variety

HD3086 under restricted irrigation conditions. Millions of

farmers in major wheat-growing regions choose wheat variety

HD3086 because of its excellent yielding ability and quality.

Furthermore, expanding the area of cultivation in NWPZ and

NEPZ with limited irrigations is made possible by improving this

variety for moisture deficit stress tolerance.
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