PEMANFAATAN LIMBAH *SPENT BLEACHING EARTH* PADA STABILISASI TANAH – KAPUR UNTUK LAPISAN FONDASI BADAN JALAN DITINJAU TERHADAP KARAKTERISTIK KEMBANG-SUSUT

Hafidz Al-Alam¹⁾, Aprianto²⁾, Vivi Bachtiar²⁾

¹⁾Jurusan Teknik Sipil Fakultas Teknik Universitas Tanjungpura Pontianak ²⁾Dosen Teknik Sipil Universitas Tanjungpura Pontianak Email: alamhafidz12@gmail.com

ABSTRAK

Tanah adalah susunan dari mineral, bahan organik dan endapan-endapan yang relatif lepas (*loose*) yang terletak di atas batu dasar (*bedrock*). Stabilisasi tanah merupakan cara perbaikan tanah yang memiliki indeks plastisitas tinggi, daya dukung rendah, serta kembang susut yang tinggi dengan cara menambahkan suatu bahan ke dalam tanah tersebut. Tanah mengembang yaitu tanah yang memiliki pengembangan dan susut yang tinggi sehingga perlu dilakukan stabilisasi pada tanah ekspansif untuk memperbaiki tanah tersebut. Dalam penelitian ini tanah yang digunakan yaitu tanah di daerah Kecamatan Capkala, Kabupaten Bengkayang. Akan tetapi tanah tersebut dimodifikasi dengan *bentonite*, karena untuk sifat kembang susut sendiri dalam pengujiannya harus menggunakan tanah yang memiliki potensi pengembangan yang tinggi. Bahan pengikat yang digunakan dalam stabilisasi ini yaitu kapur sebesar 4% dan bahan aditif yang digunakan yaitu *Spent Bleaching Earth* (SBE) dengan variasi 5%, 10%, 15%, dan 20% dengan waktu pemeraman 0,7,14 hari. Sehingga stabilisasi tanah disini berperan sebagai alternatif pengurangan permasalahan pencemaran limbah ini. Setelah dilakukan pengujian fisis dan mekanis dengan bahan campuran tersebut didapatkan hasil bahwa nilai optimum berada pada variasi SBE 10% dan menurunkan potensi pengembangan dari yang tinggi menjadi rendah. Waktu pemeraman juga semakin menurunkan hasil dari pengujian.

Kata Kunci: Kembang Susut, Tanah, Spent Bleaching Earth, Stabilisasi.

ABSTRACT

Soil is an arrangement of minerals, organic matter and relatively *loose* deposits located on bedrock. Soil stabilization is a way of improving soil that has a high plasticity index, low carrying capacity, and high shrinkage by adding a material to the soil. Expanding soil is soil that has high development and shrinkage so it is necessary to stabilize the expansive soil to improve the soil. In this study, the land used was land in the Capkala District, Bengkayang Regency. However, the soil is modified with *bentonite*, because for the nature of shrinkage itself in the test must use soil that has high development potential. The binder used in this stabilization is 4% lime and the additive used is *Spent Bleaching Earth* (SBE) with variations of 5%, 10%, 15%, and 20% with a curing time of 0.7.14 days. So that soil stabilization here plays an alternative role in reducing this waste pollution problem. After physical and mechanical testing with the mixture, it was found that the optimum value was at a 10% SBE variation and reduced the development potential from high to low. The time of curing also further decreases the results from testing.

Keywords: Shrinkage, Soil, Spent Bleaching Earth, Stabilization.

I. PENDAHULUAN

Tanah merupakan himpunan mineral, bahan organik dan endapan-endapan yang relatif lepas. Tanah berperan penting karena merupan bagian dari fondasi dasar terhadap struktur bangunan gedung ataupun struktur lapisan fondasi bawah jalan, oleh karena itu sifat fisik tanah dan sifat mekanik tanah perlu dipahami secara baik. Pembangunan sebuah konstruksi juga mungkin dilakukan didaerah yang memiliki tanah yang bermasalah. Adapun permasalahan tersebut satu diantaranya adalah tanah kembang susut yang besar. Solusi dari permasalahan diatas dapat di lakukan dengan stabilisasi tanah.

Stabilisasi tanah adalah cara perbaikan dari sifat tanah yang memiliki indeks plastisitas tinggi, daya dukung rendah, serta pengembangan yang besar dengan cara menambahkan suatu bahan ke dalam tanah tersebut. Dalam penelitian ini penulis menggunakan stabilisasi kimia, sehingga menimbulkan reaksi antara tanah dengan bahan pencampurnya dan bahan campuran yang digunakan seperti abu terbang, semen, kapur dan juga zat aditif. Adapun bahan pengikat yang digunakan yaitu kapur dan bahan aditif yang digunakan yaitu Spent Bleaching Earth (SBE). Bentonite berfungsi sebagai bahan tambahan untuk memperbesar pengembangan tanah karena memiliki mengembang jika terkena air.

Bentonite digunakan dengan bahan tertentu untuk memperbaiki sifat dari bentonite itu sendiri. Adapun bahan yang dapat digunakan yaitu kapur. SBE merupakan limbah yang di hasilkan dari penggunaan bleaching earth (BE) untuk pemurnian minyak kelapa sawit. SBE sendiri mempunyai kandungan asam fosfat yang terbentuk karena proses degumming yang terbawa oleh minyak ke unit bleaching.

Berdasarkan penjelasan tujuan dilakukan penelitian ini yaitu mengetahui pengaruh penggunaan *bentonite*, kapur dan bahan SBE pada stabilisasi tanah. Penggunaan bahan tersebut digunakan untuk meningkatkan dan memperbaiki sifat tanah. Penelitian tersebut ditinjau dari sifat kembang susut ataupun nilai pengembangan (swelling) tanah.

II. METODOLOGI DAN PUSTAKA Lokasi Penelitian

Sampel tanah yang diuji dalam penelitian diambil di daerah Kecamatan Capkala, Kabupaten Bengkayang. Pengujian dan pemeriksaan sampel tanah dilakukan di Laboratorium Mekanika Tanah Fakultas Teknik Universitas Tanjungpura Pontianak.

Stabilisasi Tanah

Stabilisasi tanah yaitu usaha memperbaiki dan memperkuat sifat-sifat tanah seperti kestabilan volume, kekuatan daya dukung, permeabilitas tanah.

Kepadatan Tanah

Uji kepadatan tanah yang digunakan yaitu kepadatan ringan yang berfungsi untuk kadar air optimum dan berat kering tanah maksimum yang dipadatkan.

Berat Jenis

Merupakan perbandingan dari berat butir tanah dan berat air suling dengan isi yang sama dari suhu yang telah ditetapkan.

Batas Atterberg

Batas atterberg diuji untuk mendapatkan nilai batas cair dan batas plastis tanah. Indeks Plastisitas (IP) merupakan interval kadar air yang dimana tanah masih dalam kondisi plastis, dan juga menyatakan jumlah relative lempung di dalam tanah.

Tabel 1. Nilai Indeks Plastisitas terhadap Potensial Pengembangan (Sumber : Chen, 1975)

Indeks Plastisitas (%)	Potensial Pengembangan
0-15	Rendah
15-35	Sedang
35-55	Tinggi
>55	Sangat Tinggi

Analisa Gradasi

Dilakukan dengan analisa hidrometer yaitu untuk menentukan pembagian dari butiran tanah yang lewat saringan no.200 dan Analisa saringan digunakan untuk menentukan pembagian ukuran butir suatu contoh tanah.

Aktivitas Tanah

Nilai aktifitas tanah (A) digunakan untuk mengetahui berapa besar nilai keaktifan dari tanah lempung yang diuji guna mengetahui seberapa besar potensi pengembangan tanah lempung tersebut.

CBR Soaked (Pengujian Pengembangan)

Pengujian pengembangan (metode CBR) ini untuk mengetahui potensi pengembangan dari tanah. Potensi mengembang (*swelling potential*) yaitu kemampuan mengembang tanah yang dinyatakan dalam persentase mengembang.

Tabel 2. Klasifikasi Derajat Ekspansif (Sumber : Seed et al.1962 dalam Das,1995)

Swelling Potensial (%)	Swelling Degree
0-1,5	Low
1,5-5	Medium
5-25	High
>25	Very High

Tekanan Mengembang

Tekanan mengembang (swelling pressure) adalah tekanan yang dibutuhkan untuk menjaga tanah agar tanah tidak mengembang.

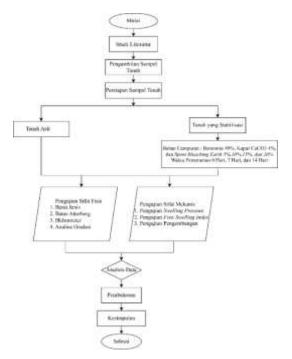
Tabel 3. Hubungan Tekanan Mengembang Dengan Potensi Pengembangan (Sumber : Garcia-Iturbe 1980)

Swelling Potential	Swelling Pressure (kg/cm2)
Low	< 2
Medium	2 - 4
High	4 - 7
Very High	> 7
7 8	

Pegembangan Bebas (Free Swelling Index)

Free swelling index adalah pengujian tanah yang bertujuan untuk mengetahui tingkat pengembangan tanah yang berada didalam air destilasi dan kerosene dalam 24 jam atau lebih.

Tabel 4. Klasifikasi Derajat Ekspansif (I.S 2720 Part

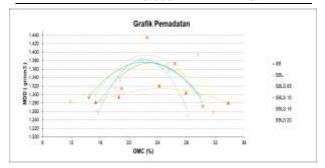

40, 1977)		
Free Swell Indeks (%)	Degree of Expansiveness	
< 20	Low	
20 - 35	Moderate	
35 - 50	High	
> 50	Very High	

Alat dan Bahan

Menggunakan tanah yang diambil dari daerah capkala, dan bahan tambah lainnya berupa *bentonite*, kapur, dan *spent bleachiing* earth. Alat yang digunakan berupa alat pengujian dari sifat fisis tanah dan pengembangan tanah.

Tabel 5. Variasi Campuran Tanah

Campuran	Kode	Curing Time (Hari)
Tanah Disturbed	S	0,7,14
Tanah <i>Disturbed</i> + Kapur 4%	SL	0,7,14
Tanah Disturbed + Bentonite 40%	SB	0,7,14
Tanah Disturbed + Bentonite 40% + Kapur 4%	SBL	0,7,14
Tanah Disturbed + Bentonite 40%+ Kapur 4% + SBE 5%	SBLS 05	0,7,14
Tanah <i>Disturbed</i> + <i>Bentonite</i> 40%+ Kapur 4% + SBE 10%	SBLS 10	0,7,14
Tanah <i>Disturbed</i> + <i>Bentonite</i> 40%+ Kapur 4% + SBE 15%	SBLS 15%	0,7,14
Tanah Disturbed + Bentonite 40%+ Kapur 4% + SBE 20%	SBLS 20%	0,7,14



Gambar 1. Diagram Alir Penelitian

III. HASIL DAN PEMBAHASAN Pengujian Pemadatan

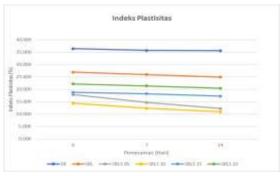
Tabel 6. Hasil Pengujian Pemadatan

Kode	OMC (%)	MDD (gr/cm ³)
S	21,500	1,391
SL	20,200	1,422
SB	24.500	1.313
SBL	23.200	1.368
SBLS 05	22.000	1.382
SBLS 10	22.500	1.393
SBLS 15	22.700	1.377
SBLS 20	23.000	1.374

Gambar 2. Grafik OMC dan MDD Pemadatan

Dapat dilihat dari grafik, nilai MDD optimum terletak pada variasi SBLS 10 dan paling rendah pada variasi SB. Untuk kadar air meningkat sampai pada variasi SBLS 20.

Pengujian Berat Jenis


Tabel 7. Hasil Pengujian Berat Jenis

17 . 1.	Berat Jenis		
Kode	0	7	14
S	2,569	2,573	2,576
SL	2,596	2,614	2,623
SB	2,325	2,327	2,334
SBL	2,486	2,503	2,532
SBLS 05	2,267	2,278	2,291
SBLS 10	2,277	2,286	2,291
SBLS 15	2,268	2,272	2,272
SBLS 20	2,250	2,265	2,270

Pengujian Batas Atterberg

Tabel 8. Hasil Analisa Indeks Plastisitas

17 . 1.	Indeks Plastisitas (%)			
Kode	0	7	14	
S	21,937	21,710	20,394	
SL	10,452	9,737	8,134	
SB	36,437	35,708	35,612	
SBL	26,932	25,944	24,957	
SBLS 05	17,824	14,669	12,253	
SBLS 10	14,376	12,345	10,891	
SBLS 15	18,762	18,230	17,225	
SBLS 20	22,197	21,352	20,393	

Gambar 3. Grafik Hasil Analisa Indeks Plastisitas Dengan Variasi Kadar SBE pada waktu pemeraman

Berdasarkan grafik diatas didapatkan hasil bahwa tanah yang digunakan adalah tanah dengan 40% Bentonite memiliki nilai paling tinggi. Nilai indeks plastisistas akan menurun dengan ditambahkan campuran SBE pada variasi 10%. Waktu pemeraman juga berpengaruh untuk nilai indeks plastisistas dimana waktu pemeraman semakin lama akan semakin menurunkan nilai indeks plastisitas. Nilai indeks plastisitas terendah pada campuran 4% kapur dan 10%

SBE dengan masa pemeraman 14 hari dapat menurukan nilai tekanan potensi pengembangan sebesar 10,891% dimana berdasarkan tabel 4 termasuk *swelling potensial low*.

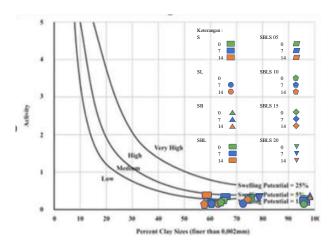
Hasil Klasifikasi Tanah

Tabel 9. Hasil Klasifikasi Menurut USDA

17 - 1 -	USDA			
Kode -	0 Hari	7 Hari	14 Hari	
S	Lempung Berlanau	Lempung Berlanau	Lempung Berlanau	
SL	Tanah Liat Berlanau	Tanah Liat Berlanau	Tanah Liat Berpasir	
SB	Lempung Berlanau	Lempung Berlanau	Lempung Berlanau	
SBL	Tanah Liat Berlanau	Tanah Liat Berlanau	Tanah Liat Berlanau	
SBSL 05	Tanah Liat Berlanau	tanah Liat Berpasir	Tanah Liat Berpasir	
SBSL 10	Tanah Liat Berpasir	Tanah Liat Berpasir	Tanah Liat Berpasir	
SBSL 15	Tanah Liat Berlanau	Tanah Liat	Tanah Liat	
SBSL 20	Tanah Liat Berlanau	Tanah Liat Berlanau	Tanah Liat Berlanau	

Tabel 10. Hasil Klasifikasi Menurut USCS

		USCS	
Kode —	0 Hari	7 Hari	14 Hari
S	MH	MH	MH
SL	OL	OL	OL
SB	MH	MH	MH
SBL	CL	CL	CL
SBSL 05	OL	OL	OL
SBSL 10	OL	OL	OL
SBSL 15	OL	OL	OL
SBSL 20	CL	CL	CL

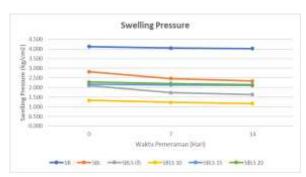

Tabel 11. Hasil Klasifikasi Menurut AASTHO

		AASHTO	
Kode	0 Hari	7 Hari	14 Hari
S	A-7-6	A-7-6	A-7-6
SL	A-7-5	A-5	A-5
SB	A-7-6	A-7-6	A-7-6
SBL	A-7-6	A-7-6	A-7-6
SBSL 05	A-7-6	A-7-6	A-7-6
SBSL 10	A-7-6	A-7-6	A-7-5
SBSL 15	A-7-6	A-7-6	A-7-6
SBSL 20	A-7-6	A-7-6	A-7-6

Hasil Analisa Aktivitas Tanah

Tabel 12. Hasil Analisa Aktivitas

Kode	Aktivitas		
	0	7	14
S	0,2252	0,2230	0,2096
SL	0,1457	0,1564	0,137
SB	0,3686	0,3627	0,3622
SBL	0,3668	0,3965	0,4193
SBLS 05	0,2782	0,2425	0,2066
SBLS 10	0,2258	0,2050	0,1850
SBLS 15	0,2486	0,2436	0,2329
SBLS 20	0,2807	0,2692	0,2588

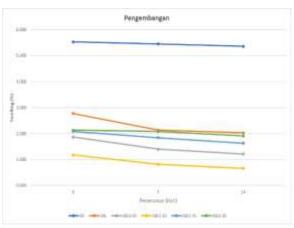

Gambar 4. Grafik Hasil Analisa Aktivitas Kadar SBE Dan Waktu Pemeraman

Dari grafik, menunjukan nilai aktivitas tanah semakin berkurang dengan adanya penambahan kadar SBE variasi 10% dan lamanya masa *curing*. Dengan menurunnya nilai aktivitas tanah maka semakin menurun pula potensi pengembangan tanah.

Pengujian Tekanan Mengembang

Tabel 13. Hasil Pengujian Swelling Pressure

Kode	Swelling Pressure (Kg/Cm ²)			
	0	7	14	
S	2,427	2,335	2,257	
SL	0,604	0,499	0,459	
SB	4,133	4,054	4,028	
SBL	2,821	2,467	2,335	
SBLS 05	2,099	1,732	1,640	
SBLS 10	1,338	1,233	1,168	
SBLS 15	2,178	2,139	2,112	
SBLS 20	2,283	2,204	2,152	

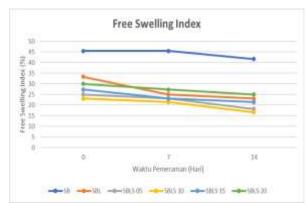

Gambar 5. Grafik Hasil Pengujian Swelling Pressure
Dengan Kadar SBE dan Waktu
Pemeraman

Berdasarkan grafik diatas didapatkan hasil bahwa tanah yang digunakan adalah tanah dengan 40% Bentonite memiliki nilai tekanan *mengembang* (swelling pressure) paling tinggi. Waktu pemeraman juga berpengaruh untuk tekanan mengembang. Nilai tekanan mengembang terendah pada campuran 4% kapur dan 10% SBE dengan masa pemeraman 14 hari dapat menurukan nilai tekanan mengembang (swelling pressure) sebesar 1,168 kg/cm² termasuk swelling potensial low.

Pengujian CBR Soaked (Pengembangan)

Tabel 14. Hasil Pengujian Pengembangan

Kode	Pengembangan (%)			
	0	7	14	
S	2,653	2,574	2,605	
SL	1.035	0.756	0,615	
SB	5,533	5,452	5,363	
SBL	2,773	2,134	2,027	
SBLS 05	1,865	1,399	1,212	
SBLS 10	1,174	0,817	0,663	
SBLS 15	2,083	1,839	1,630	
SBLS 20	2,133	2,082	1,908	


Gambar 6. Grafik Hasil Pengujian Pengembangan Dengan Variasi SBE Dan Waktu Pemeraman

Berdasarkan grafik diatas didapatkan hasil bahwa tanah yang digunakan adalah tanah dengan 40% Bentonite memiliki nilai pengembangan paling tinggi. Nilai pengembangan akan menurun dengan bertambahnya kadar SBE. Waktu pemeraman yang semakin lama, berpengaruh untuk menurunkan nilai pengembangan. Nilai pengembangan terendah pada campuran 4% kapur dan 10% SBE dengan masa pemeraman 14 hari dapat menurukan pengembangan menjadi 0,663% dimana berdasarkan tabel termasuk degree of ekpansion low.

Pengujian Pengembangan Bebas (Free Swelling Index)

Tabel 15. Hasil	Pengujian	Free	Swelling	Index

Kode	Free Swelling Index (%)			
	0	7	14	
S	26,667	26,667	25,000	
SL	7,692	7,692	7,692	
SB	45,455	45,455	41,667	
SBL	33,333	25,000	23,077	
SBLS 05	25,000	23,077	18,182	
SBLS 10	23,077	21,429	16,667	
SBLS 15	27,273	23,077	21,429	
SBLS 20	30,000	27,273	25,000	

Gambar 7. Grafik Hasil Pengujian Free Swelling Index Dengan Variasi SBE dan Waktu Pemeraman

Berdasarkan grafik diatas didapatkan hasil bahwa tanah yang digunakan adalah tanah dengan 40% bentonite memiliki nilai free swelling index paling tinggi. Nilai free swelling index akan menurun dengan bertambahnya kadar SBE 10%. Waktu pemeraman yang paling lama dapat menurunkan nilai free swelling index. Nilai free swelling index terendah didapatkan 4% kapur dengan campuran SBE 10% dengan masa pemeraman 14 hari dapat menurukan nilai free swelling index sebesar 7,692% dimana termasuk degree of expansiveness low.

IV. KESIMPULAN

Dapat disimpulkan bahwa berdasarkan hasil pemadatan dengan kapur CaCO₃ 4% dan variasi kadar *Spent Bleaching Earth* (SBE) 5%,10%,15% dan 20% didapatkan nilai kepadatan tanah maksimum (MDD) meningkat dari tanah modifikasi dengan kadar optimum pada kadar SBE 10%. Tetapi, untuk kadar air optimum (OMC) pada tanah terus meningkat dengan bertambahnya persentase kadar SBE.

Berdasarkan pengujian batas atterberg, pengembangan tanah, swelling pressure, free swelling index pada tanah disturbed yang ditambahkan bentonite menaikkan nilai indeks plastisitas dan menaikan kategori potensi pengembangan menjadi potensi pengembangan tinggi.

Berdasarkan pengujian untuk indeks plastisitas tanah, pengembangan tanah, swelling pressure, dan free sweeling index dengan bentonite 40% ditambah kapur 4% dan variasi kadar spent bleaching earth (SBE) 5%,10%,15%, dan 20% didapatkan bahwa nilai pengujian di atas akan semakin menurun dengan bertambahnya persentase kadar SBE sampai 10% SBE. Dengan nilai yang menurun maka semakin menurun pula potensi pengembangan tanah.

REFERENSI

Badan Standarisasi Nasional. 2017. SNI 8640-2017 Persyaratan Perencanaan Geoteknik. Badan Standarisasi Nasional. Jakarta.

Bowles, J. E. (1991). Sifat-Sifat Fisis Dan Geoteknis Tanah (Mekanika Tanah). Jakarta.

Das, Braja M. 1995. *Mekanika Tanah 1*. Erlangga. Jakarta

Direktorat Jendral Bina Marga. 2018. SPESIFIKASI UMUM 2018 UNTUK PEKERJAAN JALAN KONSTRUKSI JALAN DAN JEMBATAN (REVISI 2).

Hardiyatmo, H. C. 1992. *Mekanika Tanah I.* Yogyakarta: Gadjah Mada University Press

Hardiyatmo, H. C.. 2013. *Stabilisasi tanah untuk perkerasan jalan*. Gadjah Mada University Press. Yogyakarta

IS: 2720 (Part 40) 1977. Tentang Determination of Free Swell Index of Soils

Utami, Gati Sri dkk. 2016. Pengaruh Penambahan Bentonite dan Semen dalam Proses Stabilisasi Tanah Dasar (Subgrade). Institut Teknologi Adhi Tama Surabaya