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Conditional Injective Flows for Bayesian Imaging
AmirEhsan Khorashadizadeh , Konik Kothari, Leonardo Salsi , Ali Aghababaei Harandi ,

Maarten de Hoop , and Ivan Dokmanić , Member, IEEE

Abstract—Most deep learning models for computational imag-
ing regress a single reconstructed image. In practice, however,
ill-posedness, nonlinearity, model mismatch, and noise often con-
spire to make such point estimates misleading or insufficient. The
Bayesian approach models images and (noisy) measurements as
jointly distributed random vectors and aims to approximate the
posterior distribution of unknowns. Recent variational inference
methods based on conditional normalizing flows are a promising
alternative to traditional MCMC methods, but they come with
drawbacks: excessive memory and compute demands for moderate
to high resolution images and underwhelming performance on
hard nonlinear problems. In this work, we propose C-Trumpets—
conditional injective flows specifically designed for imaging prob-
lems, which greatly diminish these challenges. Injectivity reduces
memory footprint and training time while low-dimensional latent
space together with architectural innovations like fixed-volume-
change layers and skip-connection revnet layers, C-Trumpets out-
perform regular conditional flow models on a variety of imag-
ing and image restoration tasks, including limited-view CT and
nonlinear inverse scattering, with a lower compute and memory
budget. C-Trumpets enable fast approximation of point estimates
like MMSE or MAP as well as physically-meaningful uncertainty
quantification.

Index Terms—Amortized variational inference, Bayesian
imaging, computed Tomography, deep generative models, inverse
scattering, normalizing flows.

I. INTRODUCTION

IN BAYESIAN modeling of computational imaging prob-
lems, we assume that the (unknown) object of interest x and
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the observed measurements y are realizations of random vectors
X ∈ X and Y ∈ Y with a joint distribution pX,Y . This general
model includes the common setting of a deterministic forward
operator and additive Gaussian noise,

y = A(x) + ε, (1)

where

Y |X ∼ N (A(X), σ2I) (2)

as well as other relevant models like Y = Poisson(A(X), λ) or
even random or uncertain forward operators A.

Common machine-learning approaches to ill-posed inverse
problems yield point estimates, that is, they output a single
reconstruction. For example, training a deep neural network
fθ with the mean-squared error (MSE) loss E‖X − fθ(Y )‖2
approximates the minimum-mean-squared-error (MMSE) esti-
mator1 E[X|Y ] (the posterior mean) [1].

In many situations, however, a single point estimate can be
misleading or incomplete. For example, in radio interferometric
imaging which aims to reconstruct astronomical images from
radio telescope measurements, there can be multiple solutions
that fit the observed measurements; a now-famous example
is the imaging of a black hole [2]. This can happen for a
variety of reasons, all stemming from the ill-posedness of
the imaging problem. The posterior may be multimodal, in
which case the MMSE estimator blends the modes together
and maximum a posteriori estimate (MAP) (or posterior mode)
arg maxxpX|Y (x|y), returns only one of the many modes. Even
when the posterior is unimodal, providing a point estimate
when measurements have low signal-to-noise ratio does not
convey the amount of uncertainty in the estimate, thus requiring
cautious interpretation. As a remedy, uncertainty quantification
(UQ) on top of a reconstructed image can greatly help medical
professionals make more informed decisions or order additional
measurements in uncertain regions [3].

In Fig. 1 we use a toy problem to illustrate access to the
posterior can help in the presence of multiple modes. Both
standard point estimates look close to a “9,” but many posterior
samples look like “4”s. While innocuous on MNIST [4], such
failure modes come with risks in medical imaging.

Another approach is then to characterize the posterior pX|Y
upon observing y. Given the joint distribution pX,Y , com-
puting the posterior pX|Y generally involves intractable high-
dimensional integrations. A standard way to circumvent this
is by sampling methods such as Markov chain Monte Carlo

1Often called the regression function in machine learning and statistics.
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Fig. 1. Travel-time tomography with boundary sensors; we measure the wave
travel time between sensors in Fig. 6(c). The column x shows the ground
truth, the column y the pseudo-inverse of the forward operator applied to the
measurements. Conditional injective flows provide MMSE, surrogate MAP
(Section III-C) and physically meaningful uncertainty quantification (UQ).
Given no sensors in the top regions of the image, the trained C-Trumpet assigns
higher uncertainty to the top half of the domain. While both standard point
estimates look close to “9,” many posterior samples look like “4”s which
indicates the significance of posterior sampling for ill-posed inverse problems.

(MCMC) [5], [6]. These methods work well in low-dimensional
problems but become computationally intensive when used in
high-dimensional imaging tasks due to the need to compute the
forward operator many times [7]. An alternative is to perform
variational inference. This requires defining a tractable, param-
eterized family of distributions Q and choosing a q ∈ Q that is
“close” to pX|Y .

In this paper, we define a new class of approximate posteriors
Q using injective deep neural networks, suitable for imaging
problems. We build on the recently-proposed injective flows [8],
[9], [10] and conditional coupling layers [11]. Injective flows
map a low-dimensional latent space to a high-dimensional image
space using a sequence of injective functions whose inverses
(on the range) can be computed efficiently and exactly. They
combine the favorable aspects of GANs [12] and invertible
normalizing flows [13], [14], [15] in a way especially well-suited
for imaging problems. Indeed, modern GANs with the various
innovations in architectures and training protocols generate
subjectively high-quality high-resolution images [16], [17] and
can be trained relatively straightforwardly with a reasonable
compute budget but lack an exact, fast inverse and access to
(approximate) likelihoods. Normalizing flows have fast inverses
and enable fast and exact likelihood computation (although this
depends on the particular architecture), but they lack a low-
dimensional latent space thereby requiring large memory and
compute budget when training at higher image resolutions [18].
Injective flows have a low-dimensional latent space with a fast
and exact inverse on the range while maintaining a low compute
and memory budget.

Conditional normalizing flows [11] inherit the favorable
properties of their non-conditional counterparts—easy access
to the likelihoods and inverses of generated samples. They
were applied to inverse problems [19], [20] where they enable
posterior estimation, efficient sampling and even uncertainty
quantification. In this work, we propose conditional injective
flows termed C-Trumpets. While injective flows model image

datasets supported on low-dimensional manifolds, the range
of a C-Trumpet is a (potentially) different low-dimensional
manifold of posterior samples for each measurement. As we
show in Section IV, this makes them an effective model for
data distributions supported on fiber bundles with the base space
corresponding to the space of measurementsY , and in particular
effective models of posterior distributions in imaging inverse
problems. Moreover, thanks to a low-dimensional latent space,
they can be trained for high-dimensional data (256× 256) using
a single GPU while training conditional bijective flows at this
resolution requires significantly more memory.

While generating approximate posterior samples is important,
many applications still call for Bayesian point estimates such as
the MAP or the MMSE estimator, and it is convenient if those can
be computed with the same model. While it is clear (at least con-
ceptually) how to do it for the MMSE estimator—generate many
samples and average them—the MAP estimator is more elusive.
There are not many deep learning approaches to imaging which
compute (or approximate) the MAP estimator since the corre-
sponding training loss (purely formally) is the highly irregular
δ(x− x′) as opposed to the “nice” ‖x− x′‖2 [21]. (A notable
exception is amortized MAP for image super-resolution [22],
although it is limited to noiseless linear low-rank projections.)
We could in principle obtain a MAP estimate from C-Trumpets
via iterative maximization; however, that is slow and it is not
guaranteed to converge. We thus propose a modification of cou-
pling layers which results in a fixed volume change with respect
to the input. We use this newly designed layer to efficiently
approximate MAP estimators without the need to run an iterative
process or evaluate the forward operator.

Our main contributions can be summarized as follows:
� We define a class of deep learning models for amortized

variational inference called C-Trumpets, with a smaller
memory and compute footprint compared to bijective
flows; C-Trumpets can be trained on 256× 256 images
on a single V100 GPU in a day.

� The new flows include bespoke architectural innovations:
fixed-volume-change layers provide efficient MAP esti-
mates without iterative optimization, while skip connec-
tions improve the quality of the generated samples and
uncertainty quantification.

� We show that C-Trumpets outperform conditional bijective
flows in solving computational imaging problems includ-
ing nonlinear electromagnetic scattering, limited-view CT
and seismic travel-time tomography; C-Trumpets produce
much better posterior samples and uncertainty estimates
that are consistent with the physics of the forward operators
in various inverse problems.

� While standard injective flows parameterize manifolds and
are thus a natural (regularizing) choice when we believe
the manifold assumption holds, we show that conditional
injective flows can parameterize fiber bundles [23].

II. VARIATIONAL BAYESIAN INFERENCE

In this section we work formally and assume that all proba-
bility measures have a density; this allows us to simply present
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the main ideas. A training strategy suitable for distributions sup-
ported on low-dimensional manifolds is detailed in Section III.

We consider random vectors X ∈ X (representing the un-
known object) andY ∈ Y (representing the observed noisy mea-
surements). The posterior distribution pX|Y can be expressed as

pX|Y (x|y) =
pY |X(y|x)pX(x)∫
x pX,Y (x, y)dx

. (3)

In high-dimensional imaging applications, calculating∫
x pX,Y (x, y)dx is intractable. Moreover, the prior distribution
pX is unknown and needs to be estimated [24], [25].
MCMC-based sampling methods do not require access to∫
x pX,Y (x, y)dx but they are slow if one desires likely posterior

samples [7], [26]. An alternative to MCMC is to perform
variational inference [27], [28]: we define a parameterized class
of distributions

Q = {qθ ∈ P(X ) : θ ∈ Θ},
whereP(X ) is the space of probability distributions overX , and
we search for θ such that qθ is close to pX|Y . Examples of Q
include Gaussian mixtures and densities induced by generative
neural networks.

The remaining ingredients are a measure of “closeness” and a
fitting algorithm. In standard variational inference it is common
to use the Kullback–Leibler (KL) divergence as a measure of fit,

KL(q‖p) =
∫
X
q(x) log

(
q(x)

p(x)

)
dx

= EX∼q[log q(X)− log p(X)].

Given a measurement y, we choose qθ by solving either

θ∗rev(y) = arg minθ∈Θ KL(qθ‖pX|Y (· | y)),
or

θ∗fwd(y) = arg minθ∈Θ KL(pX|Y (· | y)‖qθ),
respectively called reverse and forward KL minimization [6],
[29]. The two estimates are in general different due to the
asymmetry of the KL divergence.

Minimizing the reverse KL requires computing the expec-
tation EX∼qθ log pY |X(y|X)pX(X). While pY |X is usually
asssumed known in imaging problems with a known forward
operator—in (2) it corresponds to additive Gaussian noise—
the prior distribution pX is unknown. Recently, normalizing
flows were used to estimate pX to then allow for downstream
minimization of the reverse KL divergence [2], [10], [30]. On
the other hand, minimizing the forward KL does not require
access to the prior distribution, the noise model or the forward
operator [31], [32].

Computing θ∗(y) in both forward and reverse KL formulation
involves solving a separate optimization problem for every new
measurement y. The reason is that qθ ∈ Q is a function of x
alone, not x and y, and we hope that for each y,

qθ∗(y)(x) ≈ pX|Y (x|y).
This separate optimization for every y may be inefficient if
implemented via standard iterative solvers.

We could, however, work directly with a family of conditional
distributions qθ(x|y) which depend on both x and y,

Qcond = {(x, y) �→ qθ(x|y) : θ ∈ Θcond},
where for each y, qθ(·|y) ∈ P(X ) is a probability distribution
over X .

We can now compute a conditional variational approximator
qθ(x|y) by minimizing the average KL divergence over all mea-
surements y: this procedure is known as amortized inference. It
leads to the following optimization problem:

θ∗ = arg minθ EY ∼pY
KL(pX|Y ( · |Y )‖qθ( · |Y ))

= arg maxθ EX,Y ∼pX,Y
log qθ(X|Y ). (4)

The key observation is that the population expectation over pX,Y

can now be approximated by an empirical expectation over the
training data {(x(i), y(i))}Ni=1.

The question that remains is: how to parameterize qθ(x|y) so
that we can 1) learn θ∗ efficiently from data, 2) easily obtain
conditional samples from qθ∗(x|y) ≈ pX|Y (x|y) for a given y,
and 3) efficiently compute standard point estimators such as the
MAP estimator? We answer this question in the remainder of
the paper by describing conditional injective flows called C-
Trumpets.

In a nutshell, we will define a family of neural networks
fθ(Z; y) where y is the conditioning input. The first argument,
Z, will be a standard Gaussian random vector over a low-
dimensional latent space, and the parameter θ adjusted so that
for each y, the random vector fθ(Z; y) is close in distribution
to X|Y = y. In other words, denoting the standard Gaussian
distribution by pZ , we will obtain qθ(· | y) as a pushforward of
pZ via fθ(z; y),2

qθ(·|y) = [fθ( · ; y)]# pZ . (5)

The approximate posterior samples can then be obtained in a
standard way as fθ(Z; y).

III. C-TRUMPETS: CONDITIONAL INJECTIVE FLOWS

For many natural and medical image classes, the posterior
distribution pX|Y is low-dimensional as its support is a subset
of the support of the prior distribution pX which is assumed
to concentrate close to a low-dimensional manifold [33], [34].
C-Trumpets (Fig. 2) are conditional injective normalizing flows
that map a low-dimensional latent space to a high dimensional
data space using an injective transformation for each condition-
ing sample. Injectivity guarantees that for each conditioning
sample the range of the network is a manifold. Moreover, the
efficiently-invertible layers facilitate training and inference. As
shown in Fig. 2, the proposed model has two subnetworks:
an injective generator gγ that maps a low-dimensional space
Z = Rd to the data space X = RD, d
 D, and a bijective
mapping hη : Z → Z maintaining dimensionality. The end-to-
end mapping is then given as,

fθ(z; y) = gγ(hη(z; y); y)

2For simplicity we lightly abuse notation by identifying a probability measure
and its density.
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Fig. 2. Conditional injective flows. Different measurements y1, y2 and y3 give different manifolds.

with learnable parameters θ = (γ, η).
C-Trumpets are inspired by non-conditional injective

flows [10] called Trumpets. They comprise a sequence of in-
jective [10] and bijective [15] revnet blocks. Each revnet block
consists of three components: activation normalization, (injec-
tive or bijective) 1× 1 convolution and affine coupling layer. It
is worth noting that all these components are non-conditional,
and we will later use conditional affine coupling layers to make
the generation process conditional.

1) activation normalization,

Forward: x =
z − μ

σ

Inverse: z = σx+ μ (6)

2) 1× 1 convolution with a kernel w,
1) Bijective version:

Forward: x = w ∗ z
Inverse: z = w−1 ∗ x (7)

2) Injective version:

Forward: x = w ∗ z
Inverse: z = w† ∗ x (8)

w is a 1× 1 convolutional filter, which is simply a matrix
multiplication along the channel dimension where w ∈
Rcin×cout andw† is the pseudo-inverse ofw (a non-square
matrix in the injective dimension-expanding case). We
note that w should obey the appropriate constraints to
guarantee injectivity [35]. We use LU decomposition in
matrix inversion, which significantly reduces training time
of the injective part of C-Trumpets (see Section S-I for
more details).

3) affine coupling layer

Forward: x1 = z1, x2 = s(z1) ◦ z2 + b(z2)

Inverse: z1 = x1, z2 = s(x1)
−1 ◦ (x2 − b(x1)),

where z = [z1, z2]
T and x = [x1, x2]

2. The mappings s
and b are respectively the scale and the shift networks.

In order to make the generative process conditional, we
adapt the conditional affine coupling layers proposed in [11].
Conditional affine coupling layers keep the advantages of a
regular flow model—fast inverses and tractable Jacobian com-
putations, while benefiting from the conditioning framework.
Since scale s( · ) and shift b( · ) networks are never inverted,
we can concatenate the features of the conditioning sample y
to their input without losing invertibility and tractable log det
Jacobian computation. Accordingly, s( · ) and b( · ) are replaced
by s( ·, cϕ(y)) and b( ·, cϕ(y)),

Forward: x1 = z1

x2 = s(z1, cϕ(y)) ◦ z2 + b(z2, cϕ(y))

Inverse: z1 = x1

z2 = s(x1, cϕ(y))
−1 ◦ (x2 − b(x1, cϕ(y))),

where z = [z1, z2]
T , x = [x1, x2]

T and cϕ( · ) represents the
conditioning network that extracts appropriate features from y.
We deploy conditional affine coupling layers in both injective
and bijective subnetworks of C-Trumpets.

A. Conditioning Network

The role of the conditioning network cϕ( · ) is to extract
features from conditioning samples y to be used by the affine
coupling layers. The architecture of the conditioning network
depends on the nature of the conditioning samples. When y is
structured as an image, we use convolutional layers; when it is
an unstructured 1D vector, we use fully connected layers, as for
example in class-based image generation (see Section S-III-A
in the supplemental materials) where the conditioning data are
one-hot class encodings. The output dimension of the condi-
tioning network is set to match the input dimension of the scale
and shift modules of the coupling layers. The weights of the
conditioning networks are trained jointly with the remaining
parameters in C-Trumpets via back-propagation using paired
training data. Further details about conditioning networks in all
numerical experiments are given in Sections S-II-B and S-III-A
in the supplemental materials.
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B. Skip Connections

The fact that we use expanding revnet layers allows us to
augment the architecture with elements that are not compatible
with the standard injective layers. The conditioning samples of-
ten have a pixel-wise dependency on target signals. For example,
in image inpaiting with a fixed mask location, the out-of-mask
pixels should be simply forwarded to the output. In order to not
re-learn these features, we introduce skip connections after every
revnet block between the measurements, y and the different
resolution levels of the injective subnetwork of C-Trumpets,

Forward: x = (1− S) ◦ rev(z; y) + S ◦ resize(y)

Inverse: z = rev−1
(
x− S ◦ resize(y)

1− S
; y

)
, (9)

where rev( · ) is the conditional revnet block, S is a learnable
matrix with entries between 0 and 1; S adjusts the amount of the
direct mixing of the measurements in the generated posterior
sample. We empirically find that skip connections help the
injective part of C-Trumpets converge faster and they yield better
reconstruction in several imaging problems.

C. Fast MAP Estimation Via Fixed Volume-Change Layers

MAP estimation traditionally requires an iterative solution of
a maximization problem. Deep neural networks for image recon-
struction are traditionally trained with an �p loss (p = 2 giving
the ubiquitous MSE loss and ultimately an approximation of the
MMSE estimator E[X|Y ]). There are, however, few attempts at
using deep neural networks to approximate the MAP estimate
in imaging, possibly because the associated “loss” would be a
tempered distribution δ(x− x′) [21]. While the MAP and the
MMSE estimates coincide when X and Y are jointly Gaussian,
they are in general different. For posteriors supported on a
low-dimensional manifold the MMSE estimate will generally
not lie on the manifold. (We show a qualitative manifestation of
this effect in Section V-D).

A notable deep-learning approach to amortized MAP infer-
ence for image super-resolution has been proposed by Sønderby
et al. [22]. However, their method is only applicable for super-
resolution in the ideal noise-free scenario. In this section, we
propose a new variant of affine coupling layers, which enables
us to obtain the MAP estimate instantaneously with a single
forward pass of the trained network. This method is exact when
used with bijective flows and approximate for injective flows
where it computes the MAP estimate of the pre-image samples
z′ in Fig. 2.

Consider a trained conditional normalizing flow model x =
f(z; y). The MAP estimate can be obtained by solving

xMAP = arg maxx log(pX|Y (x|y))

= arg maxx log(pZ(z))−
K∑

k=1

log | det Jfk |, (10)

where z = f−1(x; y). In principle, we can run an iterative maxi-
mization process to compute xMAP. In general, this may be slow

and it is not guaranteed to converge, even with multiple random
restarts.

Let us analyze (10) more closely. While the first term,
log(pZ(z)), has the highest value at z = μz (the mean of the
Gaussian), the second term has three components: activation
normalization, 1× 1 convolution, and the conditional affine
coupling layer. The first two components are linear layers with
data-independent Jacobians; their log dets are thus constant with
respect to x and can be omitted from (10). The log det of the
Jacobian of conditional affine coupling layers is

log(| det J(z)|) =
l∑

i=1

log(si(z1, cϕ(y))), (11)

where si( · ) is the ith element of the output of the scale network.
This term is in general data-dependent. In order to make it data-
independent, we propose to use the following activation for the
scale network,

sFVC(z, cϕ(y)) = exp(softmax(m(z, cϕ(y)))), (12)

where m( · ) is an arbitrary neural network and softmax(x) is
defined as

softmax(x)i =
exi∑l
j=1 e

xj

for i = 1, 2, . . ., l.

Then we have,

log(| det JFVC(z)|) =
l∑

i=1

log(siFVC(z1, cϕ(y))) = 1. (13)

The newly proposed layer has a data-independent log det Ja-
cobian, without losing expressivity, as verified empirically in
Sections V-B and V-C.

Now all terms in (10) are independent of x, so that

xMAP = arg max
x

log(pX|Y (x|y))

= arg max
x

log(pZ(z))

= f(μz; y); y), (14)

which is to say that the MAP estimate is obtained simply by
feeding the mean of the Gaussian base distribution into the
(bijective) flow.

While the proposed technique is exact for bijective conditional
flows, however the log det term for conditional injective flows
is given as

log pX|Y (x|y) = log pZ(f
†
θ(x; y))

− 1

2
log | det[Jfθ (f †θ(x; y))TJfθ (f †θ(x; y))]|.

(15)

and (15) cannot be decomposed into a sum of the log dets of its
constituent components. We can nevertheless use this technique
to obtain a MAP estimate in the intermediate z′-space as in
Fig. 2. Therefore, we obtain a surrogate of the end-to-end MAP
estimate and call it surrogate MAP and denote it as g†-MAP.
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D. Training Strategy

Thanks to simple, tractable inverses and log dets of layer
Jacobians, the parameters of normalizing flows can be fitted
via maximum likelihood (ML). However, as C-Trumpets have
a low-dimensional latent space, the likelihood is only defined
in the range of the injective generator. Since the weights of
the networks are initialized randomly, prior to training this
range does not contain the targets in the training set and their
end-to-end likelihoods are not defined. We thus split the train-
ing of C-Trumpets, fθ(z; y) = gγ(hη(z; y); y), into two phases,
following the method of Brehmer and Cranmer [9] for non-
conditional injective flows: (1) The MSE training phase where
we only fit the trainable parameters γ of the injective network
with the goal of adjusting the range of fθ to contain the training
data, and (2) The ML training phase where we optimize the
trainable parameters η of the low-dimensional bijective part,
maximizing the likelihood of the pre-image (through gγ) of the
training data.3

In the first phase, we optimize γ by minimizing

LMSE(γ) =
1

N

N∑
i=1

‖x(i) − gγ(g
†
γ(x

(i); y(i)); y(i))‖22, (16)

where {(x(i), y(i))}Ni=1 are the training samples and g† is
the layer-wise inverse of the injective subnetwork; therefore,
the projection operator on the range of gγ( · ; y) is given as
Pgγ (x; y) := gγ(g

†
γ(x; y); y). After training the injective net-

work for a fixed number of epochs, the range of the network
approximately contains the training data.

We now switch to the second phase: maximizing the likeli-
hood of the projected training samples in the intermediate space
(z′ in Fig. 2), {g†γ(x(i))}Ni=1, by minimizing the following KL
divergence over η (cf. Section II):

LML(η) =
1

N

N∑
i=1

(
− log pZ(z

(i)) + log | det Jhη
|
)
, (17)

where z(i) = h−1η (g†γ(x
(i); y(i)); y(i)) and pZ(z) is a standard

Gaussian distribution in Rd. In summary, this training strategy
first ensures that the range of the injective generator “interpo-
lates” the training data and then maximizes the intermediate
space likelihoods as proxies to the image-space likelihoods.
After training, sampling an approximate posterior sample for a
given y is performed by sampling a z from a normal distribution
and using the forward pass: xgen = gγ(hη(z; y); y).

IV. THE C-TRUMPETS SIGNAL MODEL

In this section we briefly discuss the geometric and topologi-
cal aspects of C-Trumpets. Readers who care mostly about the
practical aspects and numerical results may safely skip ahead to
Section V.

3For simplicity we denote all trainable parameters of the injective network,
including the weights of the conditioning networks and the skip connections by
γ, and all trainable parameters of the bijective network, including the weights
of the conditioning networks by η.

The primary motivation for introducing (non-conditional)
injective flows is to model data supported on low-dimensional
manifolds [9], [10], [35], [36]. It was empirically shown that for
common structured datasets these models are indeed simpler,
faster to train and generate higher quality samples than globally
invertible normalizing flows which maintain the same dimension
across all layers.

On the other hand, we introduce C-Trumpets from the point of
view of uncertainty quantification and posterior sampling rather
than geometrical and topological considerations about the class
of signals it models. It is nevertheless important to make this
class explicit, since this understanding will guide design choices
and circumscribe the range of problems in which C-Trumpets
are the right tool of choice.

For every (fixed) conditioning sample y, a C-Trumpet be-
comes a conditional flow modeling the corresponding condi-
tional distribution. Thus for every conditioning sample y the
range is a low-dimensional manifold

My = {fθ(z; y) : z ∈ Z}

with topology induced by the topology of the latent space (the
support of pZ). The range of a C-Trumpet as a function of z and
y then corresponds to the union of the family of these manifolds
indexed by y,

Rθ = {fθ(z; y) : z ∈ Z, y ∈ Y} =
⋃
y∈Y
My.

For a given (y, z) let

β(y) = {x : x = fθ(z; y), z ∈ Z},

denote the set of all possible signals x that could have caused the
observation y, or in other words the support of the distribution
pX|Y=y .

Let us now assume a slightly stronger condition than in-
jectivity of fθ in the first argument: that the Jacobian (with
respect to both z and y) of fθ has full rank dim(Z) + dim(Y).
Note that this does not guarantee global injectivity of the map
(z, y) �→ fθ(z; y), but it does imply that there is a (finite) collec-
tion of open sets {Ui} (thought of as neighborhoods inY) which
cover Y ,

⋃
i Ui = Y , such that fθ is injective onZ × Ui for all i

and in fact a homeomorphism between Z × Ui and β(Ui). The
signal model we just described is called a fiber bundle [23], [37].

Formally, a generic fiber bundle comprises sets (E ,B,Z)
called the total space (E), the base space (B), and the (typical)
fiber (Z), together with a surjective map π : E → B, with the
property that for each b ∈ B, there exists an open neighborhood
b ∈ Ui ⊆ B on which φ : Z × Ui → π−1(Ui) is a homeomor-
phism. The definition can be illustrated by a commutative dia-
gram [23],

(18)
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where proj : Z × Ui → Ui. We have the following correspon-
dence between the standard fiber bundle notation and the nota-
tion specific to C-Trumpets used in this paper:

C−Trumpets Fiberbundles
Rθ ←→ E
Z ←→ Z
Y ←→ B
β ←→ π−1

fθ ←→ φ.

Fiber bundles model a variety of situations in imaging, sci-
entific computing, and physics. In CryoEM we can see the 3D
rotation group as a bundle of circles over the 2-sphere, which
leads to denoising algorithms [38], [39]. Symmetries for the
forward operator (for example in phase retrieval) naturally split
the data space into equivalence classes that can be modeled as
fiber bundles. More generally, any many-to-one machine learn-
ing task is well-modeled by a fiber bundle [23]. We also mention
natural connections with gauge equivariance and geometric deep
learning [40].

That said, our aim here is to identify a natural assumption we
make when modeling data with a conditional generative model,
analogously to how unconditional generative models are natu-
rally compatible with data that lives close to a low-dimensional
manifold. Continuing the analogy, just like manifolds are used to
regularize ill-posed inverse problems, we imagine fiber bundle
models can be used as regularizers with additional structure even
when the data only approximately lives on a fiber bundle.

Fiber bundles model spaces that are locally product spaces but
may have non-trivial topology globally. An example of a space
that is globally a product space is the cylinder E = S1 × [0, 1]
with the base space being the circle B = S1 and all fibers
being translates of the line segment Z = [0, 1]. The projection
π associates to each point x ∈ E its position along the base
circle; π−1 takes a position along the base circle and returns the
corresponding line segment. The same B and Z can generate a
rather different space—the Möbius band—which is globally not
a product space.4

Thus (under appropriate conditions) the range of a C-Trumpet
is locally homeomorphic to a product space (it is a product space
up to a stretch), even though it globally need not be depending on
the topologies of Z and Y . The requirement that φ be a homeo-
morphism on Ui implies that (locally) the fibers do not intersect.
This can of course only hold if dim(Y) + dim(Z) ≤ dim(X )
and the appropriate conditions on the Jacobian are satisfied, but
in any case it gives a useful intuition for the kind of problems
and datasets that admit modeling by C-Trumpets.

We show that C-Trumpets can indeed model simple low-
dimensional fiber bundles: an embedded solid5 torus in Fig. 3(a)
and a solid Möbius band with elliptic cross-sections (fibers)
in Fig. 3(b). As shown in Fig. 3, the conditioning samples for

4To explain this mathematically we would need to introduce the transition
maps and the fundamental group, which is beyond the scope of our sketch.

5By a “solid” torus we refer to a bundle whose fibers are disks. Modeling a
standard torus is challenging with coupling layers which can only be defined
starting in dimension 2. Even in this case their expressivity is limited so this
low-dimensional example is only meant as illustration.

Fig. 3. Two examples of fiber bundles: Torus and elliptic Möbius as fiber
bundles over the base circle.

Fig. 4. Samples on fiber bundles generated by a C-Trumpet; in both (a) and
(b) the base manifold S1 is sampled every 6◦.

both the torus and the elliptic Möbius are taken to live on the
base circle (y ∈ [0, 2π)). For each angle y, C-Trumpets generate
samples from a distribution on the disk for the torus and an
elliptical disk for the elliptic Möbius band. Accordingly, we
train C-Trumpets with latent dimension two. Fig. 4 demonstrates
the generated samples by C-Trumpets; we sample the resulting
models in increments of 6◦ to make the fiber bundle structure
clear.

V. EXPERIMENTAL RESULTS

We start by showcasing how C-Trumpets provide MMSE,
MAP and uncertainty estimates in a variety of imaging inverse
problems. The MMSE estimate, E[X|Y = y], is approximated
by averaging a fixed number of posterior samples from a C-
Trumpet fitted to the training data. The MAP estimate can be
efficiently approximated using fixed volume-change layers in
Section III-C, without iterative maximization over x. Finally,
we compute the uncertainty estimate (UQ) through a simple
pixel-wise standard deviation as

̂MMSE =
1

K

K∑
k=1

fθ(zk; y),

UQ =

√√√√ 1

K

K∑
k=1

|fθ(zk; y)− ̂MMSE|2, (19)

where | · |2 is applied to each pixel. In all experiments, we use
K = 25 posterior samples to approximate the MMSE and UQ
estimates (we find that the quality of MMSE and UQ saturate
for a higher number of posterior samples).
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TABLE I
PERFORMANCE COMPARISON OF MMSE ESTIMATES BETWEEN C-TRUMPETS

AND THE ANALYTICAL SOLUTION OBTAINED FROM 20; C-TRUMPETS PRESENTS

MMSE ESTIMATES CLOSE TO THE ANALYTICAL SOLUTION, WHICH SHOWS

THE EFFECTIVITY OF THE PROPOSED METHOD

We experiment with limited-view computed tomography
(CT), nonlinear electromagnetic inverse scattering [41], and (lin-
earized) seismic travel-time tomography [42]. Additional eval-
uations on popular compressed-sensing-style benchmarks—
denoising, inpainting, super resolution and random masking—
are given in Section V-C.

We compare C-Trumpets with two different types of condi-
tional bijective flows, C-INN [11] and C-Glow [43]. C-INN used
conditional coupling layers for the first time, while C-Glow has
a rather different architecture by using two parallel bijective
flows for simultaneously modeling the target and conditioning
samples. In order to emphasize the importance of an expansive
injective model over a bijective one, we build a comparison
baseline model, C-Rev, which consists of the bijective portion
of C-Trumpets with latent-space dimension equaling that of the
image data, i.e., hη(z, y). Finally, in Section V-D, we visually
compare the MMSE and MAP estimates for several ill-posed
inverse problems.

A. Gaussian Random Fields

We choose realizations of Gaussian random fields (GRF) as
instances of pX(x) where we have access to exact posterior dis-
tributions. We compare the quality of the posterior approximated
by C-Trumpets with the true posterior obtained by analytical so-
lution. The closed-form posterior distribution pX|Y (x|y) where
y = Ax+ n, x ∼ N (μx,Σx) and n ∼ N (0, λ2I) as follows,

pX|Y (x|y) = N (μx|y,Σx|y),

μx|y = μx +ΣxA
T (AΣxA

T + λ2I)−1(y −Aμx),

Σx|y = Σx − ΣxA
T (AΣxA

T + λ2I)−1AΣx. (20)

We consider GRFs in resolution 64× 64, λ = 5× 10−3, and
let A be the mask operator that replaces a 32× 32 patch at the
center of the image with zeros. We train C-Trumpets over 60000
training samples. In Fig. 5 (second to fifth columns), we show
the MMSE estimate followed by three posterior samples, and
finally the UQ obtained from both the analytical solution (20)
and C-Trumpets. MMSE and UQ are computed over 500 random
posterior samples. We compare the MMSE estimates obtained
from C-Trumpet and the analytical solution (20) against the
ground truth. In Table I we find that C-Trumpet performs sim-
ilar to the analytical solution in both SNR and SSIM metrics.
Since the analytical posterior distribution is Gaussian, MAP and
MMSE estimators are equal. We find that the MAP and MMSE
estimates obtained from C-Trumpet are quite close: an SNR of
44.43 dB hinting at the efficacy of our way of computing MAP
estimates.

Fig. 5. Performance comparison between C-Trumpet and analytical solution
(true posterior) (20) in mask problem where the target signals come from a
Gaussian distribution; C-Trumpets present MMSE and UQ close to the analytical
solution.

Fig. 6. Sensing geometry for the various imaging problems explored in
Section V. The red regions show the locations of the sensors. In the case of CT
((a) and (b)), the line segments indicate that “sensors” measure entire projection
images as opposed to complex scalars in nonlinear scattering (d).

B. Computational Imaging

a) Limited-view CT: CT is a major medical imaging
modality. The corresponding inverse problem is to recover an
image from its integrals along straight lines, arranged in a
so-called sinogram. In limited-view CT (cf. cryo-electron to-
mography [44] and dental CT [45]), a contiguous cone of angles
is missing from the acquisition; Figs. 6(a) and (b), illustrate
vertical and horizontal missing cones of 60◦. As there are no
measurements in a vertical (horizontal) missing cone, we should
expect higher uncertainty in horizontal (vertical) components.
We use the filtered back projection (FBP) reconstruction as our
measurements y, and train on 40000 256× 256 samples from
the LoDoPaB-CT [46] dataset. The measurement SNR is set to
40 dB. In Fig. 7, we show posterior samples, g†-MAP, MMSE,
and uncertainty quantification (UQ) estimates from C-Trumpets.
The real-space UQ estimate shows higher uncertainty in the
vertical (horizontal) components where we have horizontal (ver-
tical) missing cone. This is consistent with our expectations from
the physics of CT.

We further show the UQ estimate in the Fourier domain
computed by averaging over the individual DFT bins. Quite
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Fig. 7. Limited-view CT in resolution 256× 256. The frequency-domain uncertainty estimate shows the log-scale standard deviation of DFT-bins. Alignment
with the theoretical prediction from the Fourier slice theorem signifies physically-meaningful uncertainty quantification; higher uncertainty (bright regions) inside
the missing cone.

pleasingly, this estimate aligns perfectly with the theoretical pre-
diction from the Fourier slice theorem; higher uncertainty (bright
regions) are indeed inside the missing cone while it is worth
emphasizing that C-Trumpets are not specifically designed for
the forward operator of the CT problem. Moreover, as expected,
there is higher uncertainty in higher frequency components (see
Fig. S3 in the supplemental materials for more samples). We
emphasize that C-Trumpets are the only conditional generative
architecture that gives such physically meaningful posterior
samples.

It is also worth mentioning that C-Trumpets model this 256×
256 resolution dataset with only 10M trainable parameters in
less than 24 hours of training time on a single NVIDIA V100
GPU. Due to memory constraints, we could simply not train
the baseline bijective models C-INN, C-Glow, and C-Rev on
256× 256 images. The large latent space dimension of these
models leads to very large memory footprints.

We can still compare our uncertainty estimates with these
models at a lower resolution of 64× 64. Fig. 8 shows such an
experiment at the SNR of 25 dB. In the first panel (second to
fifth row), we show MMSE estimates of different flow models
and three random posterior samples. We further provide UQ
estimates in real and Fourier space. As we can see, not only
do C-Trumpets outperform the conditional bijective flows in
terms of reconstruction quality (MMSE estimate) (see also
Table II) but they also give a more meaningful uncertainty es-
timate even in high noise. Bijective models generate significant
uncertainty outside the missing cone, indicating that they do
not learn a reconstruction map consistent with the physics of
CT.

TABLE II
PERFORMANCE OF MMSE ESTIMATE (COMPUTED OVER 25 POSTERIOR

SAMPLES) OF DIFFERENT MODELS ON SOLVING INVERSE PROBLEMS

AVERAGED OVER 5 TEST IMAGES

b) Electromagnetic Inverse Scattering: We consider the
non-linear electromagnetic inverse scattering problem as de-
scribed in [41]. We consider reconstruction of the finite num-
ber of parameters from the scattered fields. Although inverse
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Fig. 8. Performance comparison in limited-view CT with resolution 64× 64. The frequency-domain uncertainty estimate shows the log-scale standard deviation
of DFT-bins. The estimated log(fft(UQ)) by C-Trumpets aligns with the theoretical prediction from the Fourier slice theorem; higher uncertainty (bright regions)
inside the missing cone.

Fig. 9. Performance of C-Trumpets on nonlinear inverse scattering with εr = 6 with a full-view sensing geometry. Conditioning inputs are scattered fields.

scattering becomes well-posed and Lipschitz stable with con-
tinuous measurements [47],6 it is an ill-posed inverse problem
with finite number of measurements, which means that noise
in the measurements may translate to exponential errors in the
reconstruction [41]. Moreover, the problem becomes increas-
ingly non-linear as the relative permittivity of the objects being
imaged, εr, increases. In the first experiment, we use 36 incident
plane waves and 36 receivers, distributed uniformly around the
object with maximum permittivity of εr = 6 and dimension

6This paper considers 2D inverse scattering problem, 3D case is addressed
in [48].

20 cm× 20 cm. We work at the frequency of 3 GHz. and simulate
the measurements by solving the Helmholtz equation explained
in Section S-II-C in the supplemental materials. We add noise to
the measurements for a target measurement SNR of 30 dB. We
build a dataset of 64× 64 images of overlapping ellipses with
60000 samples.

Fig. 9 shows the performance of C-Trumpets where the scat-
tered fields are used as conditioning samples. This experiments
clearly shows that C-Trumpets can generate meaningful poste-
rior samples, even for a highly non-linear (εr = 6) and ill-posed
problem. Additional experiments with different contrasts εr and
conditioning schemes (scattered fields vs back projections) are
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Fig. 10. Performance comparison in electromagnetic inverse scattering (εr =
6, top-view, BP conditioned); C-Trumpets demonstrate more meaningful UQ
by assigning higher uncertainty in the bottom of the object (red regions), which
lacks measurements.

illustrated in Figs. S4, S5, S6, and S7 in the supplemental
materials.

In order to assess the performance of different conditional
flows in uncertainty quantification, we design another experi-
ment with 180 incident plane waves and 180 receivers only on
the top side of the object (Fig. 6(d)). In this setup, we expect
higher uncertainty in the lower part of the object.

Fig. 10 illustrates the performance of C-Glow, C-Rev and C-
Trumpets for εr = 6. We use a simple back projection (BP) [49]
as conditioning measurements y. In the first panel (from the sec-
ond row to the fifth row), we show MMSE estimates of different
flow models: C-Trumpets perform better than bijective flows
(see also Table II). As expected, however, the reconstructions
are not as good as in the previous experiment since we only
have measurements on one side of the domain. We see that
C-Trumpets again provide meaningful uncertainty estimates,
with more uncertainty in the lower part of the object (red regions
in the UQ panel correspond to higher uncertainty).

c) Seismic Travel-Time Tomography (NS): We work with
the linearized seismic tomography operator as described in [42].
Here we are given travel times of a seismic wave between each
sensor pair in a network of NS sensors placed on the ground.
The travel times are assumed to linearly depend on the “slow-
ness” map which is taken to be an MNIST image [4]. We use
NS = 10 sensors on the boundary of the lower part of the domain
which yields 33 measurements as shown in Fig. 6(c). We use
the pseudo-inverse of the measurements y as the conditioning
samples and work at the SNR of 40 dB. Fig. 11 compares the
performance of C-Trumpets and C-Rev. In the first panel, the
second and the third rows show MMSE estimates of C-Rev
and C-Trumpets. C-Trumpets outperform C-Rev in both MMSE
estimate and posterior sampling (see also Table II). Furthermore,

Fig. 11. Performance comparison in seismic travel-time tomography with 10
sensors. C-Trumpets demonstrate better posterior samples and MMSE estimate,
both models assign higher uncertainty in top of the image (black regions) which
lacks measurements.

given no sensors (Fig. 6(c)) in the top regions of the image (or
slowness map), we would expect higher uncertainty there. The
UQ column shows that estimates from C-Trumpets assign higher
uncertainty to the top half of the domain compared to C-Rev.
Additional results are shown in Fig. S8 in the supplemental
materials.

C. Image Restoration

In this section, we compare C-Trumpets with models on
various image restoration tasks. Similarly as in computational
imaging problems, each task requires training a different model
but once trained, the model can be used instantaneously for
arbitrary measurements y. We consider four standard restoration
tasks: (i) Image denoising: We train a model to generate plausible
clean images given a noisy image at an SNR of−1 dB; (ii) Image
super resolution (f ): Generate high-resolution images given
an image downsampled by a factor of f along each axis; (iii)
Random mask (p): The degradation process replaces every pixel
with zero with probability p; and (iv) Mask (s): The degradation
process replaces an s× s patch of the image with zeros.

We used the 8-bit RGB CelebA [50] dataset with 80000
64× 64 training samples. Fig. S2 in the supplemental materials
compares the performance of flow models on different image
restoration tasks. Table II further gives the SNR and SSIM of
the MMSE estimate. C-Trumpets consistently outperform other
conditional bijective flows. The difference in the performance
of C-Rev and C-Trumpets suggests that the low-dimensional
latent space of C-Trumpets acts as an effective regularizer
in the restoration mapping, fθ. C-Trumpets also provide a
meaningful uncertainty quantification. For example, although
the forward operator is random in the random mask problem,
C-Trumpets still capture a meaningful uncertainty estimate by
assigning higher uncertainty inside the masked region (see
Fig. S2d).



KHORASHADIZADEH et al.: CONDITIONAL INJECTIVE FLOWS FOR BAYESIAN IMAGING 235

Fig. 12. MMSE and g†-MAP estimations in different inverse problems; the
proposed g†-MAP estimate gives much sharper reconstruction than MMSE.

In order to assess the memory requirements of the different
models, we compare the number of trainable parameters used
for training over 64× 64 RGB images: C-INN: 13 M, C-Glow:
14 M, C-Rev: 22 M and C-Trumpets: 4 M. We did not have
sufficient resources to train bijective models over 256× 256
images but it is clear that the differences in the memory footprint
at that resolution would be further exacerbated.

D. MAP vs MMSE for ill-Posed Inverse Problems

Fig. 12 demonstrates the MMSE, g†-MAP and a random
posterior sample for four types of ill-posed inverse problems.
The MMSE estimate is obtained by averaging over 25 posterior
samples. Although the MMSE estimate is the optimal recon-
struction in terms of the �2-error, we see from Fig. 12 that it is
often blurry, especially when the true posterior is multi-modal;
g†-MAP estimates are sharper. Moreover, as the MMSE estimate
is obtained by averaging over the posterior samples, it is not
generally on the manifold, while the g†-MAP estimate is always
on the manifold.

VI. RELATED WORK

There is by now a very large body of work on solving in-
verse imaging problems using deep neural networks. On the
supervised regression end of the spectrum arguably the most
important architecture is the U-Net [51]. It has been applied
with great success to a variety of imaging problems including
CT [1], magnetic resonance imaging (MRI) [52] and electro-
magnetic inverse scattering [53]. Its success may be attributed
to the particular multiscale structure [54], [55] which matches
both the physical description of the imaging problems and the
representation of the involved image classes. Many alternatives
have been proposed for specific problems where the assumptions
that make the U-Net a natural choice do not hold, for example
for wave-based problems [56], [57].

On the other hand, trained generative models have been shown
to be effective priors [58], [59] in ill-posed inverse problems that
can be trained in an unsupervised manner. Normalizing flows
in particular were used to approximate MAP estimates using
iterative optimization [59], [60]. However, normalizing flows
are bijective, requiring large memory and compute budget even
at moderate resolution. Moreover, they lack a low-dimensional
latent space which has been shown to effectively regularize the
inversion. Brehmer and Cranmer [9] proposed the first injective
model for densities supported on low-dimensional manifolds.
Kothari et al. [10] proposed injective flows with significantly op-
timized compute and memory requirements which were shown
to outperform earlier variants of injective and bijective flows in
computational imaging problems.

A variety of methods have been proposed for Bayesian imag-
ing. The latter aims to approximate posterior distribution and / or
the various point estimators related to the posterior. The authors
of [61] consider a convex log-likelihood function for posterior
distribution around the MAP estimate, which is suitable for mod-
eling unimodal posteriors. Normalizing flows have been pro-
posed as variational approximators to the posterior distribution
for a given measurement [2]. The authors of [10], [30] propose to
train a flow model to approximate the posterior corresponding to
a prior which is also modeled using a flow model. More recently,
pre-trained GANs were used in conjunction with MCMC to
generate posterior samples in non-linear inverse problems [25].
The authors of [62], [63] use a style-GAN generator [16] to
regularize ill-posed inverse problems and generate posterior
samples. All these methods train a new generative model or run
an iterative process for every measurement, which makes them
slow when applied to multiple reconstructions. Further, training
for each conditioning sample requires many calls to the forward
operator. To tackle these issues, one may consider amortized
inference to make the generative models conditioned based on
the measurements.

Conditional versions of generative adversarial networks
(GANs) [12], [64] and variational autoencoders (VAEs) [65],
[66] rely on injecting conditioning data into the different layers
of the generator model. However, the lack of access to the
posterior distribution make conditional GANs difficult to be
used in inference tasks. On the other hand, VAEs provide lower
bounds on likelihoods of generated samples. While these bounds
can be made tighter by importance weighting [67], C-Trumpets
allow one to compute exact end-to-end likelihoods via stochastic
estimation, as well as to obtain fast exact values of likelihoods
before the high-dimensional expansion. These generative mod-
els also suffer from mode collapse and training instabilities.
Conditional normalizing flows were introduced in [11] to es-
timate the posterior by modifying the scale and shift terms of
the coupling layers. The authors of [19] additionally make the
mean and covariance of the base Gaussian distribution depend on
the measurements. More recently, [68] proposed to append the
measurements to all layers of the Glow network [15] in order
to enable greater information flow from conditioning data to
the generated samples. A different approach to conditioning the
flow models has been developed by [43], [69], benefitting from
two parallel flow models for simultaneously modeling of target
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and conditioning samples. All these conditional normalizing
flows are bijective mappings from latent space to the target
domain for each measurement. It is worth mentioning that all
these models can be used in the bijective part of C-Trumpets to
exploit their advantages in posterior modeling. On the side of
theory, Puthawala et al. [36] establish universality of density and
manifold approximation of injective flows such as those in [9],
[10].

VII. LIMITATIONS AND CONCLUSIONS

We proposed C-Trumpets, a conditional injective flow model
that enables amortized inference with approximate posteriors
that live on low-dimensional manifolds. Our proposed model is
considerably cheaper to train in terms of memory and compute
costs compared to the regular conditional flows. The experi-
ments we performed indicate that C-Trumpets generate better
posterior samples and more accurate uncertainty estimates over
a variety of ill-posed inverse problems. The proposed fixed-
volume-change coupling layers enable us to approximate the
sharp MAP estimates instantaneously after training. High com-
putational demands of training bijective flows at high resolution
have thus far impeded their wider adoption in computational
imaging workflows. The comparably lightweight memory foot-
print of C-Trumpets together with physically-consistent UQ
makes them an attractive architecture for imaging problems
where characterizing uncertainty is paramount.

Limitations: C-Trumpets have several limitations that war-
rant discussion. The latent space dimension in C-Trumpets is
chosen arbitrarily and it may be quite different from the true
dimension of the posterior support. Recent work [70] proposes
an injective flow architecture that estimates the dimension of the
data manifold. Similar ideas may extend to C-Trumpets but for
the moment we rely on rules of thumb rather than principled
choices. Another limitation is that it is not straightforward to
estimate the likelihoods of samples generated by C-Trumpets
(cf. Section III-C), the reason being that the Jacobian deter-
minant of compositions of maps between spaces of different
dimension cannot be written as a product of Jacobian deter-
minants of the constituent maps. Likelihood estimates can still
be obtained by sampling but that is considerably slower than
what is possible with bijective flows. Recently, Ross et al. [71]
proposed an injective generator which provides access to the
exact likelihood of the generated samples, but the constraints
they impose on the architecture in order to enable this feat
seem to severely limit expressivity. The design of an injective
model that is at once expressive, lightweight, and gives fast exact
likelihoods remains an open problem. On the theoretical side,
further studies are needed to characterize the types of posterior
distributions that can be modeled by C-Trumpets, especially
with fixed-volume-change layers. The important open question
is that of universality of C-Trumpets as models of conditional
distributions. Finally, Siahkoohi et al. [72], [73] fully exploit the
depth-independent memory complexity of normalizing flows to
handle high-dimensional data. This strategy can also be used in
C-Trumpets to further improve memory efficiency and apply the
model to super high-dimensional imaging problems.
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based imaging,” in Proc. Adv. Neural Inf. Process. Syst., H. Larochelle, M.
Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds., vol. 33. Red Hook,
NY, USA: Curran Assoc., Inc., 2020, pp. 8318–8329.

[58] A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed sensing using
generative models,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 537–546.

[59] M. Asim, M. Daniels, O. Leong, A. Ahmed, and P. Hand, “Invertible
generative models for inverse problems: Mitigating representation error
and dataset bias,” in Proc. 37th Int. Conf. Mach. Learn. Res., 2020,
pp. 399–409.

[60] J. Whang, Q. Lei, and A. Dimakis, “Compressed sensing with invertible
generative models and dependent noise,” in Proc. Int. Adv. Conf. Neural
Inf. Process. Syst. Workshop Deep Learn. Inverse Problems, 2020.

[61] A. Repetti, M. Pereyra, and Y. Wiaux, “Scalable Bayesian uncertainty
quantification in imaging inverse problems via convex optimization,”
SIAM J. Imag. Sci., vol. 12, no. 1, pp. 87–118, 2019.

[62] S. Bhadra, U. Villa, and M. A. Anastasio, “Mining the manifolds of
deep generative models for multiple data-consistent solutions of ill-posed
tomographic imaging problems,” 2022, arXiv:2202.05311.

[63] R. V. Marinescu, D. Moyer, and P. Golland, “Bayesian image reconstruc-
tion using deep generative models,” 2020, arXiv:2012.04567.

[64] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., 2014, vol. 27.

[65] K. Sohn, H. Lee, and X. Yan, “Learning structured output representation
using deep conditional generative models,” in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 3483–3491.

[66] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” in Proc.
Int. Conf. Learn. Representations, 2014.

[67] Y. Burda, R. Grosse, and R. Salakhutdinov, “Importance weighted autoen-
coders,” in Proc. Int. Conf. Learn. Representations, 2015.

[68] Y. Lu and B. Huang, “Structured output learning with conditional gener-
ative flows,” in Proc. AAAI Conf. Artif. Intell., 2020, pp. 5005–5012.

[69] A. Pumarola, S. Popov, F. Moreno-Noguer, and V. Ferrari, “C-flow: Con-
ditional generative flow models for images and 3D point clouds,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 7949–7958.

[70] M. Zhang, Y. Sun, S. McDonagh, and C. Zhang, “Flow based models for
manifold data,” 2021, arXiv:2109.14216.

[71] B. Ross and J. Cresswell, “Tractable density estimation on learned mani-
folds with conformal embedding flows,” in Proc. Adv. Neural Inf. Process.
Syst., 2021, vol. 34.

[72] A. Siahkoohi, G. Rizzuti, M. Louboutin, P. A. Witte, and F. J. Herrmann,
“Preconditioned training of normalizing flows for variational inference in
inverse problems,” 2021, arXiv:2101.03709.

[73] A. Siahkoohi, G. Rizzuti, R. Orozco, and F. J. Herrmann, “Reliable
amortized variational inference with physics-based latent distribution cor-
rection,” Geophysics, vol. 88, no. 3, pp. 1–137, 2023.

[74] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, 2015.

[75] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: A large-scale
speaker identification dataset,” Interspeech, 2017.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


