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We report a measurement of cumulants and correlation functions of event-by-event proton multiplicity
distributions from fixed-target Au+Au collisions at

√
sNN = 3 GeV measured by the STAR experiment. Protons

are identified within the rapidity (y) and transverse momentum (pT) region −0.9 < y < 0 and 0.4 < pT <

2.0 GeV/c in the center-of-mass frame. A systematic analysis of the proton cumulants and correlation functions
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up to sixth order as well as the corresponding ratios as a function of the collision centrality, pT, and y are
presented. The effect of pileup and initial volume fluctuations on these observables and the respective corrections
are discussed in detail. The results are compared to calculations from the hadronic transport UrQMD model as
well as a hydrodynamic model. In the most central 5% collisions, the value of proton cumulant ratio C4/C2 is
negative, drastically different from the values observed in Au+Au collisions at higher energies. Compared to
model calculations including lattice QCD, a hadronic transport model, and a hydrodynamic model, the strong
suppression in the ratio of C4/C2 at 3 GeV Au+Au collisions indicates an energy regime dominated by hadronic
interactions.

DOI: 10.1103/PhysRevC.107.024908

I. INTRODUCTION

One of the main goals of the Beam Energy Scan (BES)
program at the BNL Relativistic Heavy Ion Collider (RHIC)
is to study the nature of the QCD phase diagram in a
two-dimensional phase space spanned by temperature and
baryonic chemical potential (μB). Experimental data from
RHIC and the Large Hadron Collider (LHC) in collision en-
ergies where μB approaches zero have provided evidence of a
quark-gluon plasma (QGP) [1–4]. In this region where μB ≈
0 MeV, lattice QCD (LQCD) predicts a smooth crossover
from a QGP phase to a hadronic state [5,6]. The QGP matter
has been found to hadronize at temperatures close to the lattice
QCD estimated transition temperature at μB = 0 MeV [7,8].

In the region where μB is finite, the nature of the transition
to QGP matter is less understood. Various models favor a
first-order phase transition [9], which requires the existence
of a critical endpoint. Ideally, near the critical point, the cor-
relation length could grow. Provided that the signal of the
critical point develops as fast as the system expands, the criti-
cal point could be experimentally measured. The higher-order
event-by-event fluctuations of conserved quantities such as net
charge, net baryon, and net strangeness are expected to be
sensitive to the correlation length ξ , and thus may serve as
indicators of critical behavior [10–13]. A general expectation
of the critical-point-induced fluctuations is that the net-baryon
higher-order cumulant ratios (e.g. C4/C2) oscillate with colli-
sion energy [14–16]. In heavy-ion collisions, however, effects
of finite size and limited lifetime of the hot nuclear system
may put constraints on the significance of signals [17–19].
Here, cumulants are a set of quantities which provide an
alternative to moments of a probability distribution. Their
definitions can be found at Sec. II C.

At small μB, LQCD calculations have predicted positive
cumulant ratios of C4/C2 and negative ratios of C5/C1 and
C6/C2 in the regime where the QGP is expected to exist. The
results suggest that a critical point below μB < 200 MeV is
unlikely [20]. The first phase of the RHIC Beam Energy Scan
program (BES-I), conducted in 2010–2014, covered energies
from

√
sNN = 7.7 GeV to

√
sNN = 200 GeV and generated

several results on directed and elliptic flows which suggest
a change in the equation of state of QCD matter [21–23].
Recently, a study from BES-I [24,25] has shown a nonmono-
tonic behavior of the cumulant ratio C4/C2 of the net-proton
multiplicity distributions in central Au+Au collisions as a
function of energy with a significance of 3.1σ . These results
from BES-I inspired a BES-II program which focuses on the

collision energy region between 3-20 GeV (750 > μB > 200
MeV). BES-II combines both collider and fixed-target config-
urations of the STAR experiment to investigate in detail the
change of behavior and understand the nature of the phase
transition [26].

When studying the higher-order cumulant ratios, it is es-
sential to demonstrate that in the absence of critical behavior,
the ratios are consistent with the expectations from the non-
critical baseline. The expectation for the C4/C2 ratio under
Poisson statistics is unity, though the measured net-proton
C4/C2 ratio within the experimental kinematic acceptance
is expected to show a reduction due to the baryon number
conservation [27,28]. This reduction is expected to increase
with decreasing collision energy for fixed kinematic accep-
tance [29]. Previously, the HADES Collaboration reported a
measurement of the proton C4/C2 ratio in central Au+Au
collisions at

√
sNN = 2.4 GeV consistent with unity within

large uncertainties [30]. More data at the low collision energy
are needed to quantitatively interpret the collision energy de-
pendence of the (net-)proton fluctuation.

It was also pointed out that the experimentally mea-
sured multiplicity distributions suffer sizable contributions
from fluctuating collision volume. This effect, often called
volume fluctuation (VF), is due to a weak correlation be-
tween the measured reference multiplicity and the initial
number of participants. It is shown in the study [31], us-
ing a hadronic transport model in

√
sNN = 3 GeV Au+Au

collisions, that the centrality resolution for determining the
collision centrality using charged particle multiplicities is
not sufficient to reduce the initial volume fluctuation effect
for higher-order cumulant analysis within current experi-
mental acceptance. Therefore, to better understand the VF
effect, it is important to systematically perform measurements
within various kinematic windows and different collision
centralities.

Regarding the acceptance dependence (pT and rapidity)
of cumulants and ratios, it was pointed out in Ref. [32] that
there may be two qualitatively different regimes: �y � �ycorr

and �y � �ycorr, where �y is the width of the kinematic
acceptance in rapidity and �ycorr is the range of the pro-
ton correlations in rapidity. When �y � �ycorr, one expects
the cumulant ratios to approach the Poisson limit at �y ∼
〈N〉 → 0. Alternatively, one expects the correlation functions
to become rapidity independent as �y becomes wider. In the
�y � �ycorr regime as �y increases, cumulants are expected
to grow linearly for the uncorrelated contributions while the
cumulant ratios are expected to saturate for any physical cor-
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relations. Therefore, the rapidity and transverse momentum
dependence of proton cumulants and correlation functions are
important in the search for signatures of criticality. It should
be noted that the acceptance dependence could be sensitive to
nonequilibrium effects [33,34], smearing due to diffusion, and
hadronic rescattering in the expansion of the system [35].

In this paper, we report the cumulants and correlation func-
tions of proton multiplicity distributions in Au+Au collisions
at

√
sNN = 3 GeV, the lowest energy of the STAR fixed-target

program. The paper is organized as follows: Sec. II describes
the experimental setup, data sets, and analysis details includ-
ing corrections, systematic uncertainties, and the effect of
volume fluctuation. Section III presents the proton multiplic-
ity cumulants, correlation functions, and their corresponding
ratios. This includes the acceptance and energy dependence of
the cumulant ratios. In addition, the data are compared to var-
ious model calculations. Finally, we summarize our findings
from this analysis in Sec. IV.

II. EXPERIMENT AND DATA ANALYSIS

A. Data set and event selection

The dataset analyzed in this paper was collected in 2018 by
the Solenoidal Tracker at RHIC (STAR) using a fixed-target
configuration. The gold target of the thickness of 1.93 g/cm2

(0.25 mm) corresponding to a 1% interaction probability was
located 200.7 cm from the center of the Time Projection
Chamber (TPC) [36]. A beam, consisting of 12 bunches of
7 × 109 gold ions is circulated in the RHIC ring at a frequency
of 1 MHz with an energy of 3.85 GeV per nucleon.

Proton multiplicities were recorded in the TPC and time-
of-flight detectors (TOF) [37], which are located inside
STAR’s solenoidal magnet. The magnet provides a uniform
0.5 T field along the beam axis. A total of 1.4 × 108 Au+Au
events at

√
sNN = 3 GeV were used in this analysis. The

minimum bias events required a hit in either the Beam-Beam
Counter (BBC) [38] or the Event Plane Detector (EPD) [39]
and at least three hits in the TOF. To remove collisions be-
tween the beam and the beam pipe, event vertices are required
to be less than 1.3 cm from the Au target along the beamline
and less than 1.5 cm from the target radially from the mean
collision vertex from the TPC center along the beam line.
Events are also checked on the average of variables for differ-
ent run periods: charged particle multiplicity, vertex position,
and track’s pseudorapidity η (η = 0.5 × ln[ p+pz

p−pz
], where p

and pz are total momentum and its fraction in beam direction),
the distance of closest approach (DCA), and transverse mo-
mentum (pT). The outlier runs which deviate more than ±3σ

are excluded in the analysis, where σ is the standard deviation
of run-by-run distributions of variables listed above.

The Au+Au collisions are characterized by their centrality.
Here, the centrality is a measure of the geometric overlap of
the two colliding nuclei and can be determined by measur-
ing charged particle multiplicity in the TPC. To maximize
the centrality resolution and minimize the self-correlation ef-
fect [24,25,31,40], the reference multiplicity includes charged
particles except protons in the full TPC acceptance (TPC cov-
ers the pseudorapidity η of −2 < η < 0 in laboratory frame).

FIG. 1. Reference multiplicity distributions obtained from
Au+Au collisions at

√
sNN = 3 GeV data (black markers), Glauber

model (red histogram), and unfolding approach to separate single and
pileup contributions. Vertical lines represent statistical uncertainties.
Single, pileup, and single+pileup collisions are shown in solid blue
markers, dashed green, and dashed pink lines, respectively. The
0–5% central events and 5–60% mid-central to peripheral events
are indicated by black arrows. The ratio of the single+pileup to the
measured multiplicity distribution is shown in the lower panel.

Protons 3σ away from theoretical expectation are excluded by
a TPC particle identification cut. The antiproton production is
negligible at

√
sNN = 3 GeV and does not affect the central-

ity determination [p/p ∼ exp(−2μB/Tch ) < 10−6] [41]. The
reference multiplicity distribution in Fig. 1 is fitted with a
Monte Carlo Glauber model (GM) [42] coupled with a two-
component model [43]. The two-component model assumes
multiplicity n in nuclear collisions has two components which
are respectively proportional to the number of participants
Npart and the number of binary collisions Ncoll:

dn

dη
= (1 − x)npp

〈Npart〉
2

+ xnpp〈Ncoll〉, (1)

where x and npp denote the fraction of multiplicity from Ncoll

and the mean multiplicity measured in pp collisions per unit
of pseudorapidity due to Ncoll, respectively. Then the simu-
lated multiplicity per event is obtained to sample npp times the
negative binomial distribution [shown in Eq. (2), where μ is
the mean and is set to npp]:

P(x; μ, k) = �(x + k)

�(x − 1)�(k)

(
μ/k

1 + μ/k

)x 1

(1 + μ/k)k
. (2)

The fit is performed by minimizing a χ2 between the mea-
sured multiplicity and the GM from the reference multiplicity
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TABLE I. The uncorrected number of charged particles except
protons (Nch) within the pseudorapidity −2 < η < 0 used for the
centrality selection for Au+Au collisions at

√
sNN = 3 GeV. The

centrality classes are expressed in % of the total cross section. The
lower boundary of the particle multiplicity (Nch) is included for
each centrality class. Values are provided for the average number of
participants (〈Npart〉) and pileup fraction. The fraction of pileup for
each centrality bin is also shown in the last column. The averaged
pileup fraction from the minimum biased collisions is determined to
be 0.46%. Values in the parentheses are systematic uncertainty.

Centrality (%) Nch � 〈Npart〉 Pileup (%)

0–5 48 326 (11) 2.10
5–10 38 282 (8) 1.47
10–20 26 219 (8) 1.28
20–30 16 157 (7) 1.07
30–40 10 107 (5) 0.90
40–50 6 70 (5) 0.75
50–60 4 47 (5) 0.64

from 20 to 80. The parameters for the best fit are npp = 0.62,
x = 0.06, and k = 5.56. At reference multiplicities below
10, the data and the GM disagree due to peripheral event
trigger inefficiency. At multiplicities above 80, double col-
lision (pileup) events dominate the multiplicity distribution.
The collision centrality is determined by fitting the Glauber
calculation of charged particle multiplicity distribution to that
of data. According to the normalized distribution from the
Glauber model, one can extract the collision parameters such
as 〈Npart〉 and the fraction of the collision centrality, 0–5%, 5–
10%, ..., 50–60%. In addition to a pileup correction discussed
in Sec. II F, events above the reference multiplicity of 80 are
removed from the 0–5% centrality class. The selection cuts
for each centrality class, 〈Npart〉, as well as the pileup fraction
are shown in Table I.

B. Track selection, particle identification, and acceptance

The TPC measures both the trajectory and the energy loss
(dE/dx) of a particle. TPC spatial hits are fitted with he-
lices to determine the charge and momentum of each charged
particle. To ensure track quality, tracks are required to meet
selection criteria which are at least ten hits and more than
five dE/dx measurements. Additionally, to prevent double-
counting reconstructed tracks from a single particle, a selected
track is required to have more than 52% of the maximum
possible fit points, which peaks at 45 possible hits. To suppress
the contamination from spallation in the beam pipe and sec-
ondary protons from hyperon decays, a DCA < 3 cm criterion
is placed at the distance of the closest approach (DCA) in
three dimensions of the reconstructed track’s trajectory to the
primary vertex position. The results presented here are within
the kinematics −0.9 < y < 0 and 0.4 < pT < 2.0 GeV/c.

Particle identification (PID) is performed by measuring the
dE/dx and the time of flight in the TPC and TOF, respectively.
Figure 2(a) shows the 〈dE/dx〉 as a function of rigidity (the
ratio of total momentum over electric charge, |p|/q GeV/c)
for the positively charged tracks. To select proton candidates,
the measured values of dE/dx are compared to a theoretical
prediction [44] (red line). The quantity Nσ,p for charged tracks
in the TPC is defined as

Nσ,p = 1

σR
ln

〈dE/dx〉
〈dE/dx〉th

, (3)

where 〈dE/dx〉 is the truncated mean value of the track energy
loss measured in the TPC, 〈dE/dx〉th is the corresponding
theoretical prediction, and σR is the track length dependent
dE/dx resolution. The Nσ,p distribution appears as a standard
Gaussian distribution with a mean close to zero. The offset
from zero is measured as a function of momentum in 0.1
GeV/c bins and the Nσ,p distribution is recentered. The proton
tracks are selected within three standard deviations of the
recentered Nσ,p distribution (|Nσ,p| < 3.0).

FIG. 2. (a) 〈dE/dx〉 vs particle rigidity measured in the TPC; pion, kaon, proton, and deuteron bands are labeled. The proton is plotted in
red from the Bichsel formula. (b) Mass squared vs the particle rigidity measured in the TPC and TOF. Kaon, proton, deuteron, and helium-3
peaks are labeled. The red dashed lines indicate selection cuts by mass squared. (c) Analysis acceptance in transverse momentum vs proton
rapidity (y) in the center-of-mass frame Au+Au collisions at

√
sNN = 3 GeV. The black box indicates acceptance for rapidity −0.9 < y < 0

and momentum 0.4 < pT < 2.0 GeV/c. The red dashed box indicates a narrower rapidity window |y| < 0.1, the largest possible symmetric
rapidity window from this data set.
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Figure 2(b) shows the mass squared (m2) versus rigidity of
charged particles in the TPC and TOF. The m2 is given by

m2 = p2

(
c2t2

L2
− 1

)
, (4)

where p, t , and L are the momentum, time of flight, and path
length of the particle, respectively. The speed of light in vac-
uum is denoted by c. The protons are identified by selecting
charged tracks with mass-squared values in the range 0.6 <

m2 < 1.2 GeV2/c4. While the mass-squared cut provides high
proton purity, it introduces a 60% matching efficiency. The
proton purity is required to be higher than 95% at all rapidities
and momenta for the subsequent cumulant analysis.

Figure 2(c) shows the transverse-momentum versus rapid-
ity for protons selected in the TPC within |Nσ,p| < 3.0. The
tracks above a momentum of 2.0 GeV/c in the laboratory
frame are required to have a mass-squared cut. The kinematic
acceptance of the analysis (−0.9 < y < 0 and 0.4 < pT < 2.0
GeV/c) is indicated by a black box.

C. Definition of cumulants and correlation functions

Here, the definition of cumulants is provided. Let N be the
number of particles measured in each event. Then mean value
of N is given by 〈N〉 and δN = N − 〈N〉 is the deviation from
the mean value where the 〈.〉 symbol indicates the average
over events. The rth-order central moment of a distribution
is described by

μr = 〈(δN )r〉, r � 2. (5)

In terms of central moments, the cumulants are defined as

C1 = 〈N〉,
C2 = 〈(δN )2〉 = μ2,

C3 = 〈(δN )3〉 = μ3,

C4 = 〈(δN )4〉 − 3〈(δN )2〉2 = μ4 − 3μ2
2,

C5 = 〈(δN )5〉 − 10〈(δN )2〉〈(δN )3〉
= μ5 − 10μ2μ3,

C6 = 〈(δN )6〉 + 30〈(δN )2〉3

− 15〈(δN )2〉〈(δN )4〉 − 10〈(δN )3〉2

= μ6 + 30μ3
2 − 15μ2μ4 − 10μ2

3,

Cn = μn −
n−2∑
m=2

(
n − 1

m − 1

)
Cmμn−m, n > 3. (6)

The cumulants can also be expressed in terms of raw moments
[Eq. (A8) in Appendix A]. Some commonly used moments
and ratios are given as

M = C1, σ 2 = C2,

S = C3

(C2)3/2
, κ = C4

C2
2

, (7)

where M, σ 2, S, and κ are mean, variance, skewness, and kur-
tosis, respectively. The products Sσ and κσ 2 can be expressed

in terms of the cumulant ratios as

σ 2/M = C2

C1
, Sσ = C3

C2
, κσ 2 = C4

C2
. (8)

In case there are no intrinsic correlations among the mea-
sured particles, all ratios of the cumulants are unity, thus
Poisson statistics is a nontrivial baseline for experimentally
measured cumulant ratios.

The probability distribution of Poisson statistics is P(N ) =
λN e−λ/N!, where λ is an average of the number of measured
particles per event. The cumulants are equal to the mean value:
C1 = C2 = · · · = Cn = λ, where Cn is the nth-order cumulant.
Furthermore, all cumulant ratios equal 1. More discussion can
be found in Ref. [13] and Appendix B.

As discussed in Refs. [25,45], the cumulants Cr can be
algebraically converted to the integrals of the corresponding
multiparticle correlation functions. These integrated correla-
tion functions, also known as factorial cumulants, will be
simply called correlation functions (denoted by κi) hence-
forth. In terms of cumulants, the correlation functions up to
sixth order are

κ1 = C1,

κ2 = −C1 + C2,

κ3 = 2C1 − 3C2 + C3,

κ4 = −6C1 + 11C2 − 6C3 + C4,

κ5 = 24C1 − 50C2 + 35C3 − 10C4 + C5,

κ6 = −120C1 + 274C2 − 225C3 + 85C4

− 15C5 + C6. (9)

A compact form of the above equations can be seen in
Eq. (A11) of Appendix A.

We define Ci/C1 − 1, i = 1, 2, . . . as the reduced cumu-
lant ratio. The reduced cumulant ratio of different orders can
be displayed in terms of correlation function ratios as

C2

C1
− 1 = κ2

κ1
,

C3

C1
− 1 = 3

κ2

κ1
+ κ3

κ1
,

C4

C1
− 1 = 7

κ2

κ1
+ 6

κ3

κ1
+ κ4

κ1
,

C5

C1
− 1 = 15

κ2

κ1
+ 25

κ3

κ1
+ 10

κ4

κ1
+ κ5

κ1
,

C6

C1
− 1 = 31

κ2

κ1
+ 90

κ3

κ1
+ 65

κ4

κ1
+ 15

κ5

κ1
+ κ6

κ1
. (10)

It is clear that the nth-order reduced cumulant ratio is a
combination of all multiparticle correlation functions up to the
nth order.

D. Detector efficiency correction

In this analysis, the proton tracks are corrected for de-
tector inefficiency in the TPC and TOF. The TPC efficiency
is calculated by placing Monte Carlo tracks into a GEANT

[46] detector simulation. The GEANT detector response is
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FIG. 3. (a) TPC detector efficiency for protons measured from simulation in pT vs pseudorapidity. The shared z axis indicates track
efficiency. (b) TOF detector matching efficiency for protons measured in pT vs pseudorapidity.

mixed with the detector response from real data and a track
reconstruction process is performed. The TPC efficiency is
calculated by counting the fraction of successfully recon-
structed Monto Carlo tracks. Figure 3(a) shows the TPC
detector efficiency for proton tracks with respect to kinematic
acceptance (pT versus η). The TOF matching efficiency is
estimated directly from data by measuring the fraction of TPC
tracks that satisfy the TOF-matching criteria. Recall, a TOF-
matched proton candidate requires p > 2 GeV/c, |Nσ,p| <

3.0, and 0.6 < m2 < 1.2 GeV2/c4. Figure 3(b) shows TOF
matching efficiency for proton tracks in a window of pT versus
η. The detector efficiency corrections are performed on a
“track-by-track” basis [47,48], where the proton reconstruc-
tion efficiency as a function of pT and rapidity is applied as a
weight to each track.

E. Centrality bin width correction

The proton cumulants are evaluated in an event-by-event
manner. To extract an averaged value of the cumulants from
a range of the measured reference multiplicities, or, in other
words, from a centrality bin, a proper procedure called cen-
trality bin width correction (CBWC) [49] method is applied.
The number of events from each multiplicity bin is used as a
weight in the averaging procedure. Figure 4 shows centrality
dependence of proton cumulants up to sixth order in Au+Au
collisions at

√
sNN = 3 GeV. The black circles show the

multiplicity dependence of the cumulants, while red circles
and blue squares are centrality binned cumulants with and
without CBWC, respectively. The CBWC is necessary to ex-
tract properly averaged cumulants in a given centrality bin.

F. Pileup correction

Double collisions (“pileup”), seen in Fig. 1, are the largest
source of background in the STAR fixed-target experiment.
Here, we discuss the correction technique [50] used to remove
the pileup statistically. The correction technique requires an
estimate of the pileup contribution as a function of reference
multiplicity. Thus, an unfolding method [51] used to estimate
the event-averaged pileup fraction is discussed.

The correction method assumes a pileup event is the su-
perposition of two independent single-collision events. Let
Pm(N ) be the probability distribution function to find an event
with N particles at multiplicity m. If the probability of a pileup
event at the mth multiplicity bin is αm, then Pm(N ) is

Pm(N ) = (1 − αm)Pt
m(N ) + αmPpu

m (N ), (11)

where Pt
m(N ) and Ppu

m (N ) are the single-collision and pileup
probability distribution functions, respectively.

The pileup events can be decomposed into the subpileup
event probability distribution function Psub

i, j (N ) as

Ppu
m (N ) =

∑
i, j

δm,i+ jwi, jP
sub
i, j (N ), (12)

where wi, j is the probability of observing the subevents
among all pileup events at multiplicity m, where m = i + j.
Additionally, the sum over i and j runs over non-negative
integers and

∑
i, j δm,i+ jwi, j = 1, where wi, j = w j,i.

Following the procedure outlined in Ref. [50], the single
collision moments can be recursively expressed in terms of
the measured moments of lower multiplicity bins as

〈Nr〉t
m = 〈Nr〉m − αmβ (r)

m

1 − αm + 2αmwm,0
, (13)

where β (r)
m is defined as

β (r)
m = μ(r)

m +
∑
i, j>0

δm,i+ jwi, j〈Nr〉sub
i, j , (14)

and

μ(r)
m =

{
2wm,0

∑r−1
k=0

(r
k

)〈Nr−k〉t
0〈Nk〉tm (m > 0),∑r−1

k=1

(r
k

)〈Nr−k〉t
0〈Nk〉t

0 (m = 0).
(15)

The correction requires both αm and wi, j to be deter-
mined with a high level of precision. Both parameters can be
expressed in terms of the multiplicity of the single collision
events T (m) as

wi, j = αT (i)T ( j)∑
i, j δm,i+ jαT (i)T ( j)

, (16)
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FIG. 4. Proton cumulants as a function of reference multiplicity (black circles) from
√

sNN = 3 GeV Au+Au collisions. Centrality-binned
results with and without centrality bin width corrections are represented by red circles and blue squares, respectively. Vertical dashed lines
indicate the centrality classes, from right to left: 0–5%, 5–10%, 10–20%. Data points in this figure are only corrected for detector efficiency
but not for the pileup effect, which will be discussed in a later section.

αm = α
∑

i, j δm,i+ jT (i)T ( j)

(1 − α)T (m) + α
∑

i, j δm,i+ jT (i)T ( j)
, (17)

where α is the total pileup fraction overall reference multiplic-
ities. Therefore, the accuracy of αm and wi, j is determined by
one’s ability to extract the single collision distribution from
the measured reference multiplicity.

For this analysis, an unfolding technique [52] is used
to estimate T (m). An overview of the unfolding procedure
and a closure test of simulated events can be found in
Ref. [51]. The unfolding is performed by generating both
a pileup distribution and single collision distribution from
Monte Carlo (toy-MC) events. The difference between the
toy-MC (single+pileup) distribution and the data multiplicity
distribution is measured and propagated back to the toy-MC
single collisions. The process is repeated until the toy-MC and
data agree. The bottom panel of Fig. 1 shows the ratio of the
data and toy-MC after 100 iterations. In the top panel of Fig. 1,
the single collision and pileup distributions are represented by
blue and green dashed lines, respectively. The procedure has
one free parameter, which is the total pileup probability α in
Eq. (15). The procedure is run for various α parameters and a
χ2 test is performed. The pileup probability α is determined
to be (0.46 ± 0.09)% for all events and (2.10 ± 0.40)% in
the 0–5% centrality class. With the unfolded single collision
distribution and the α parameter, the response matrix wi, j

can be simulated as shown in Fig. 5. As stated, wi, j is the
probability of observing a subpileup event at multiplicity m
with m = i + j. The pileup corrected cumulants are shown in
Fig. 6. Additionally, the event-averaged pileup corrected (red)
and uncorrected (blue) cumulants are displayed. For all cu-
mulants, only results from the top centrality class (0–5%) are
affected. Figure 7 shows the pileup corrected and uncorrected

FIG. 5. Correlation between reference multiplicity i and j from
single-collision events. The small panel at the top right corner is an
expanded plot with i < 7 and j < 7.

024908-8



HIGHER-ORDER CUMULANTS AND CORRELATION … PHYSICAL REVIEW C 107, 024908 (2023)

0

10

20

30

40

0-
5%

5-
10

%

10
-2

0%

0

20

40

0

50

100

150

0 20 40 60 80

0

200

400

600

800

1000

20 30 40 50 60
0.1�

0

0.1

3
10�

0 20 40 60 80

0

5

10

20 30 40 50 60
1�

0

1

3
10�

0 20 40 60 80
20�

0

20

40

60

80

20 30 40 50 60

10�

0

10

310�

Reference Multiplicity

C
um

ul
an

ts

1C 2C 3C

4C 5C 6C

without pileup
corr.
Wider bin
Fine bin

with pileup
corr.
Wider bin
Fine bin

3x10 3x10

FIG. 6. Proton cumulants as a function of reference multiplicity from
√

sNN = 3 GeV Au+Au collisions. Pileup corrected and uncorrected
cumulants as a function of reference multiplicity are represented by black circles and blue open squares, respectively. Red circles and blue-filled
squares represent the results of centrality binned data.

cumulant ratios. Similarly to the cumulants, the cumulant
ratios are only affected in the most central collisions. Pileup
correction will increase uncertainties in the high multiplicity
region, especially for reference multiplicity larger than 60. Af-
ter the pileup correction, higher-order cumulant ratios, C4/C2,
C5/C1, and C6/C2, are consistent with zero within uncertainty
for the most central multiplicity bins.

G. Effects of volume fluctuation

Physics results will be discussed for a given event cen-
trality class. Since the physics of higher-order cumulants and
their ratios are supposed to be sensitive to collision dynam-
ics including the centrality, it is important to understand the
correlation between the experimentally measured reference
multiplicity distribution and the extracted class of collision
centrality. It is well known that quantum fluctuations in par-
ticle production and fluctuation of the participating nucleon
pairs will affect the final centrality determination, especially
at low-energy collisions. The microscopic hadronic transport
model UrQMD (v3.4) [53,54], which does not contain critical
phenomena physics, has been used to show the volume fluctu-
ation effect. As an illustration, the UrQMD model results on
the correlation of the reference multiplicity and participating
nucleons Npart are shown in the left panel of Fig. 8. The right
panel shows the root-mean-square (RMS) values of the Npart

distribution at a given fixed reference multiplicity.

As one can see, the correlation is broad and the dispersion
(RMS) of Npart is as large as 30 in the mid-central collisions
for 3 GeV Au+Au collisions. Even in the most central 5%
collisions, the dispersion is in the range of 15. Primarily,
the large dispersion is due to the fluctuation of the Npart in
addition to the variation in the charged particle production for
a given pair of nucleons. The variation of the initial number
of participants for fixed reference multiplicity is also called
initial volume fluctuation (IVF) and its implications on the
results of the higher moments of proton distributions will be
discussed later in the paper. In fact, as indicated by the red
dashed lines in the plot(a), the top 5% central collisions are
largely different events with a small overlap.

The Npart distributions are not measurable experimentally
but obtained from the calculations of the Glauber and UrQMD
models. Figure 9 shows the distributions from both Glauber
(black solid line and red shaded area) and UrQMD (blue
solid line and blue dashed lines) models. The hatched ar-
eas correspond to various collision centralities determined
from the charged particle reference multiplicity. It is obvi-
ous that the overall distributions are quite different. Further,
the widths of the top 5% are dramatically different. As dis-
cussed in Refs. [55,56], the initial volume fluctuation can be
partly suppressed within the framework of the wounded nu-
cleons model (WNM) [57]. The WNM assumes that produced
particles in nucleus-nucleus collisions are generated from
inelastic scattered wounded nucleons. Each wounded nu-
cleon (or participating nucleon) is treated as an independent
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source and contributes to the total number of produced par-
ticles. However, the difference in the Npart distributions of
UrQMD and Glauber model would imply a strong model
dependence.

In order to demonstrate the effect of volume fluctuations,
a volume fluctuation correction (VFC) method proposed in
Ref. [56] has been applied to proton cumulants from the trans-
port UrQMD model. As seen in Fig. 9, the Npart distributions
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are different using different centrality determination methods.
As a result, there are sizable differences in the corrected pro-
ton cumulant results shown in Fig. 10, where black dots are
the ratios of proton cumulants from the UrQMD model. The

results of the corrected ratios, using Npart determined from the
UrQMD model directly or from Glauber fits to the charged
multiplicity distributions, done exactly as in data analysis in
the experiment, are shown by blue squares and red triangles,
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TABLE II. The centrality definition
determined by Npart in Au+Au collisions
at

√
sNN = 3 GeV from the UrQMD

model. The centrality definition is only
used in the UrQMD calculation.

Centrality (%) Npart �

0–5 342
5–10 307
10–20 240
20–30 180
30–40 129
40–50 88
50–60 55
60-70 31
70-80 15

respectively. Although the correction with the UrQMD Npart

is supposed to be the answer, the results with Glauber are
quite different except for the most central collisions. The
maximum effect, due to the volume fluctuations, is around
the mid-central centrality bins. This is qualitatively consistent
with the mid-central peak of the dispersion in Npart presented
in Fig. 8(b). The negligible impact on the most central Au+Au
events is due to the constraint of the total number of partici-
pating nucleons, Nmax

part = 394.
Calculations from the UrQMD model with the fixed

impact parameter range b � 3 fm, corresponding to the
top 5% collisions, were performed for the 3 GeV Au+Au
collisions. The result is shown as blue open crosses in Fig. 10.
As mentioned earlier, although the selection of centrality with
impact parameter or Npart (Table II) eliminated the IVF in the
model calculations, it is not experimentally measurable. In
addition, the approach collected a different class of events, as
shown in Figs. 8 and 9.

H. Statistical and systematic uncertainty

The statistical uncertainties are obtained using the boot-
strap approach [58] in which events are resampled with
replacement and the analysis is rerun. The bootstrap procedure
is repeated 200 times and the statistical uncertainty is the
standard deviation of the bootstrapped observable values, such
as the cumulants and their ratios.

The systematic uncertainty of the cumulant calculation can
be subdivided into three categories: pileup correction, cen-
trality determination (Table I), and track selection. The track
selection includes the track reconstruction requirements (TPC
spatial hits, DCA), the mass-squared cut, and the efficiency in
the TPC and TOF. The effect of lowering the dE/dx cut to
|Nσ,p| < 2 was tested but did not affect the final result.

To estimate the systematic uncertainty, the analysis was
repeated with different analysis requirements, which are out-
lined in Table III. The final total value is the quadratic sum of
uncertainties from centrality, pileup, and the dominant contri-
bution from TPC points, DCA, and PID m2 and efficiency ε.
The difference between the systematic analyses and nominal
analysis in C2/C1, C3/C2, and C4/C2 in 0–5% central Au+Au
collisions is listed in Table IV.

TABLE III. Sources, choices of nominal values, and their varia-
tions for systematic uncertainties in proton cumulant measurements
from the fixed-target Au+Au collisions at

√
sNN = 3 GeV. The

nominal values of Nch can be seen Table I.

Source Nominal Variations

Centrality Nch ±1
Pileup fraction 0.46% 0.37%, 0.55%

TPC spatial hits 10 12, 15
DCA (cm) 3.0 2.75, 2.5, 2.0
TOF m2 (GeV2/c4) (0.6, 1.2) (0.5, 1.3), (0.7, 1.1)
Efficiency (ε) ε ε × 1.05, ε × 0.95

III. RESULTS AND DISCUSSIONS

A. Experimental results

Experimental data of proton cumulants and their ratios as
a function of the reference multiplicity from 3 GeV Au+Au
collisions are shown in Figs. 11 and 12. The reference multi-
plicity dependence of data without initial volume fluctuation
correction is shown as grey open squares while data with
volume fluctuation correction using Npart distributions from
Glauber and UrQMD model are shown as black filled circles
and black open triangles, respectively. The centrality binned
results with CBWC are shown as blue open squares, red filled
circles, and orange filled triangles correspondingly. By defi-
nition, C1 is not affected by the volume fluctuation correction
while strong model dependence for higher order cumulants in
the initial volume fluctuation corrections is clear in the figure.

For higher-order cumulants, a maximum difference be-
tween results with and without VFC is seen around mid-
central Au+Au collisions, and the difference slightly depends
on the order of the cumulants. In the most central bin, the cor-
rected and uncorrected proton cumulants Ci (i > 3) are very
similar. One can see that cumulants show strong multiplicity
dependence. Rapid decreases are seen from mid-central (5–
10%) to most central collisions (0–5%) in C3 to C6. And in the
high reference multiplicity region (>50) there is an increase
with multiplicity. Indeed, as one can see, in the central colli-
sion region, 0-5% and 5-10%, the values of C4 to C6 (Fig. 11)
and corresponding ratios (Fig. 12) change from positive to
negative and to positive value again at the multiplicity larger
than 60. Again, when multiplicity is larger than 50, the VFC
shows no effect on either the proton cumulants (C4,C5, and C6

in Fig. 11) or their ratios (C4/C2,C5/C1, and C6/C2 in Fig. 12).
In later discussions, the experimental data will be com-

pared with model calculations. For the UrQMD model, around
8 × 107 events are produced in Au+Au collisions at

√
sNN

= 3 GeV with the cascade mode. The same kinematic cuts
and centrality bins used in the data analysis are applied in
the model calculations. The collision centrality is determined
using the charged particle multiplicity excluding protons in
the acceptance of the TPC, the same procedure as used in the
data analysis. The CBWC procedure is also applied to get the
properly weighted centrality binned model results.

The UrQMD model calculations as a function of reference
multiplicity are shown in Fig. 13. Cumulants show a strong
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TABLE IV. Main contributors to systematic uncertainty to the proton cumulant ratios: C2/C1, C3/C2, and C4/C2 from 0–5% central 3 GeV
Au+Au collisions. The first row shows the values and statistical uncertainties of those ratios. The corresponding values of these ratios along
with the statistical uncertainties are listed in the table. The final total value is the quadratic sum of uncertainties from centrality, pileup, and the
dominant contribution from TPC hits, DCA, TOF m2, and detector efficiency. Clearly, this analysis is systematically dominant.

C2/C1 C3/C2 C4/C2 C5/C1 C6/C2

Source 1.218 ± 0.001 0.954 ± 0.005 −0.845 ± 0.086 −7.104 ± 2.163 128.752 ± 51.401

Centrality 0.014 0.041 0.042 2.330 23.967
Pileup 0.002 0.017 0.242 3.519 50.990

TPC hits 0.002 0.015 0.241 5.334 115.492
DCA 0.008 0.037 0.784 15.688 302.049
TOF m2 0.003 0.009 0.050 0.643 10.324
Efficiency 0.011 0.023 0.272 0.277 49.774

Total 0.018 0.058 0.822 16.246 307.259

dependence on reference multiplicity. The strong multiplicity
dependence in the higher order of the proton ratios is very
similar to that observed in experimental data; see Fig. 12.
Stronger variations are seen in the higher order ratios.

B. Collision centrality dependence

In this section, we discuss the centrality dependence of
the proton cumulants and correlation functions along with
the corresponding ratios. Assuming that collisions are a

superposition of independent sources, one expects the cumu-
lant values to increase with 〈Npart〉. The centrality classes are
related to the average number of participating nucleons 〈Npart〉
shown in Table I.

Figures 14 and 15 show proton cumulants and correla-
tion functions as a function of 〈Npart〉 with VFC using two
different models. In the cumulant and correlation function
ratios, the corrections suppress the large values of cumulant
ratios in mid-central and peripheral collisions. In addition, one
observes large variations in the VF corrected results between
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represented by black and gray bars, respectively. UrQMD predictions are depicted by gold bands.

the UrQMD and Glauber models. However, as can be seen
in these figures, in the most central 0–5% Au+Au collisions,
the difference for higher order ones (Ci, i > 2) between data
without the VFC and with the VFC using different model
inputs is small. This implies that the results of cumulants as
well as the correlation functions in the most central collisions
are least affected by the volume fluctuations. Because of the
strong model dependence, starting from Fig. 16 the VFC
method is not adopted and the results from 3 GeV experimen-
tal data are only applied with pileup correction and CBWC.
For UrQMD results, only CBWC is applied.

Figure 16 shows the centrality dependence of the pro-
ton cumulants and their ratios extracted from the kinematic
acceptance −0.5 < y < 0 and 0.4 < pT < 2.0 GeV/c. The
experimental data are compared with the UrQMD calculations
(gold bands). As one can see, only C1 and C2 values increase
with 〈Npart〉. For the higher order cumulants (Ci, i > 2), the
cumulants increase with 〈Npart〉 (〈Npart〉 < 200) but change
rapidly in the more central centrality region. For all cumulant
ratios, the values are above unity in the peripheral and are
closer to unity for mid-central collisions. Figure 17 shows
the centrality dependence of the proton correlation functions
and ratios with the same acceptance as Fig. 16. The correla-
tion functions also deviate from a monotonic increase around
〈Npart〉 ≈ 200. The trends of cumulants and correlation func-
tions shown in Figs. 16 and 17 can be qualitatively reproduced
by the UrQMD calculations.

C. Rapidity and pT dependence

In this section, we discuss the rapidity and pT dependence
of the cumulants and cumulant ratios.

Figures 18 and 19 depict the rapidity (left panels) and
transverse momentum (right panels) dependence of ratios of
proton cumulants and correlation functions. Data from most
central (0–5%) and peripheral (50–60%) centrality classes are
shown in the figures. The measured rapidity window covers
ymin < y < 0, where ymin changes from −0.2 to −0.9, and
the pT window is 0.4 < pT (GeV/c) < pmax

T , where pmax
T is

varied from 0.8 to 2.0 GeV/c. Corresponding results from
the UrQMD calculations are shown as colored bands in the
figures.

As one can see, in the most central collisions, the cumulant
ratio C2/C1 in Fig. 18 remains above unity at all rapidities. The
C3/C2 ratio is slightly above unity for the smallest rapidity
window (ymin = −0.1) and decreases as the rapidity window
increases.

As expected, the C4/C2 ratio is close to unity in the smallest
rapidity window and seems to go back to unity with large
uncertainty when the rapidity window is larger than y = −0.5.
Similarly, the ratios of the correlation function in Fig. 19(e)
are also close to zero (Poisson baseline) at the smallest ra-
pidity window but show deviations from zero when it goes
to a larger rapidity window. These rapidity dependencies are
reproduced by the UrQMD calculations.
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FIG. 17. Same as Fig. 16 but for correlation functions and correlation function ratios of proton multiplicity distributions for Au+Au
collisions at

√
sNN = 3 GeV.

Overall, the results of the hadronic transport model
UrQMD calculations qualitatively reproduce both the rapidity
and transverse-momentum dependence. As discussed earlier,
in addition to the genuine collision dynamics in the model,
the effect of the volume fluctuations is also present in the
calculation.

D. Collision energy dependence of cumulant ratios

In the first order, taking the ratio of cumulants cancels
the effect of volume but not the fluctuations in volume.
Figure 20 depicts the collision energy dependence of the
cumulant ratios from 0–5% central (top panels) and 50–60%
peripheral (bottom panels) collisions. The new result of pro-
tons from 3 GeV Au+Au collisions data, shown as filled
squares, is compared to that of protons (open squares) and
net protons (filled circles) from Au+Au collisions at

√
sNN =

7.7–200 GeV.
UrQMD results with |y| < 0.5 for protons are shown as

gold bands while those for net protons are shown as green
dashed lines or green bands. At 3 GeV, the model result for
protons (−0.5 < y < 0) are shown as blue crosses. While the
net-proton ratios show a clear energy dependence, the proton
C2/C1 and C3/C2 ratios are relatively flat and around unity as
a function of collision energy except for the 3 GeV data. The
new proton data from 3 GeV do not follow this trend in the
most central collisions.

Notably, both proton (open squares) and net-proton (filled
circles) cumulant ratios converge at collision energies below

20 GeV. This implies that in the high baryon density region
the antiproton production becomes negligible. At the center-
of-mass energy of 2.4 GeV, HADES reported the values
for proton cumulant ratios in 0–10% central Au+Au colli-
sions: C3/C2 = −1.63 ± 0.09(stat) ± 0.34(sys) and C4/C2 =
0.15 ± 0.9(stat) ± 1.4(sys) from |y| < 0.4, 0.4 < pT < 1.6
GeV/c [30]. While the value of C4/C2 from the HADES
experiment is consistent with the new 3 GeV data, the sign
of C3/C2 is opposite to what we observed here.

Except for the C3/C2 ratio from 3 GeV central collisions,
the UrQMD results reproduce the energy dependence trend
well for both proton and net proton; see green and gold bands
in the figure. For the peripheral 50–60% collisions, the C4/C2

ratio from 3 GeV is larger than that from higher energy
collisions, by a factor of 5. A rapid increase in the energy
dependence seems confirmed by the UrQMD model calcu-
lations; see both the blue cross and gold band in the figure.
In the 3 GeV most central collisions, unlike all higher energy
collisions, the value of C4/C2 is negative. The UrQMD model
calculations, again, reproduce the trend well: due to baryon
number conservation, the C4/C2 is dramatically suppressed in
the high baryon density region.

Hydrodynamic calculations are shown as red dashed lines
in Fig. 20 for the 0–5% Au+Au collisions. The hydrodynamic
evolution is made with the open-source code MUSIC (v3.0)
[59]. The initial condition is taken from Ref. [60] and the
particlization is given by the Cooper-Frye formula [61] with
the nonideal hadron resonance gas model [62]. At the grand
canonical limit, including both effects of excluded volume and
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√
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global baryon number conservation, the net-proton cumulants
are evaluated on the Cooper-Frye hypersurface. One may find
more details of the model calculations in Ref. [63]. Unlike
the commonly used transport model approach, here all cal-
culations, starting from initial condition to hydroevolution to
hadronization, are all performed using averaged ensembles.
Cumulant ratios C2/C1, C3/C2, and C4/C2 in hydrodynamic
calculations are all below unity. Interestingly, the UrQMD
results with a fixed impact parameter are also suppressed;
see open blue crosses. Qualitatively, the results from the fixed
impact parameter (b � 3 fm blue open crosses) UrQMD cal-
culations follow those of the hydrodynamic calculations (red
dashed lines) with a canonical ensemble.

The fact that the negative C4/C2 in the most central Au+Au
collisions at 3 GeV is reproduced by the hadronic trans-
port UrQMD model although C3/C2 is overpredicted implies
that the system is dominated by hadronic interactions. This
conclusion is also consistent with the measurements of the

collectivity of light hadrons [64] as well as the strange hadron
production [65] at the same collision energy.

Due to baryon number conservation, proton multiplicity
distributions are also modified by the formation of light nuclei
in the same collision [66]. The effect is especially strong in
the high baryon density region where the production of light
nuclei is expected to be relatively high [67]. The influence of
the light nuclei on the proton cumulants and their ratios will be
analyzed in the future when the yields of light nuclei become
available.

IV. SUMMARY AND OUTLOOK

In summary, we report a systematic measurement of cu-
mulants and correlation functions of proton multiplicities
up to the sixth order in Au+Au collisions at

√
sNN = 3

GeV. The data were collected with the STAR fixed-target
mode in the year 2018 at RHIC. The analysis includes the
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FIG. 19. As in Fig. 18 but for transverse-momentum and rapidity dependence of correlation function ratios of proton multiplicity
distributions for Au+Au collisions at

√
sNN = 3 GeV.

centrality, rapidity, pT, and energy dependence of these fluc-
tuation observables for proton multiplicities. Other important
effects which are relevant to low-energy fixed-target collisions
such as pileup and volume fluctuations are also discussed.

The protons are identified using the STAR TPC and
TOF with purity greater than 95%. The centrality selec-
tion is based on pion and kaon multiplicities in the full
acceptance of the TPC. The proton tracks are corrected
for detector efficiencies using a binomial response function.
The cumulant values are corrected for pileup contamina-
tion. The pileup fraction is determined to be (0.46 ± 0.09)%
for all events and (2.10 ± 0.40)% in the 0–5% centrality
class.

Due to a weak correlation between the measured refer-
ence multiplicity and the initial number of participants, a
considerable effect from the initial volume fluctuations is
expected. Except for the most central collisions, the effects
can be suppressed by implementing a model-dependent cor-
rection procedure [56]; however, the results are dependent
on the choice of model that provides Npart input for the
correction procedure. Interestingly, higher-order cumulant ra-
tios C4/C2, C5/C1, and C6/C2 in most-central events appear
least affected by volume fluctuations in the 3 GeV Au+Au
collisions.

The rapidity, transverse momentum, and centrality depen-
dence are shown for the proton cumulants and their ratios.
The UrQMD model reproduces the trends well, however,
it does not agree within uncertainties. Compared with data
from higher energy collisions, the

√
sNN = 3 GeV cumu-

lant ratios C2/C1, C3/C2, and C4/C2, except C3/C2 in central
collisions, are well reproduced by UrQMD calculations. This
is attributed to effects from volume fluctuations and hadronic
interactions. On the other hand, the data and results of both
UrQMD and hydrodynamic models of C4/C2 in the most
central collisions are consistent, which signals the effects of
baryon number conservation and an energy regime dominated
by hadronic interactions. Therefore, the QCD critical point, if
discovered in heavy-ion collisions, could only exist at energies
higher than 3 GeV.

New data sets have been collected during the second phase
of the RHIC beam energy scan program for Au+Au collisions
at

√
sNN = 3–19.6 GeV. The data sets will have extended

kinematic coverage and higher statistics. This will allow to
reduce the statistical uncertainties significantly and expand
the systematic analysis of both pT and rapidity dependence to
wider regions. These studies will be crucial in exploring the
QCD phase structure in the high baryon density region and
locating the elusive critical point.
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APPENDIX A

Here we provide a short summary of the use of gener-
ating functions in probability theory [68]. In the following
we will assume that all random variables take only discrete
non-negative values, i.e., X ∈ N.

Consider an empirical probability distribution pN of the
random variable X , say, the multiplicity distribution of pro-
tons, and construct a power series in variable w ∈ 〈0, 1〉 with
coefficients pN :

Q(w) = 〈wX 〉 =
∑
N=0

pNwN , (A1)

where 〈·〉 indicates the average. Obviously, knowing probabil-
ity generating function (pgf) Q(w), we can retrieve pN from
the derivatives Q(N ) at w = 0:

pN =
[

1

N!

dN Q(w)

dwN

]
w=0

= Q(N )(w = 0)

N!
. (A2)

Similarly, the factorial moments are its derivatives at
w = 1:

μ[r] = Q(r)(w = 1) =
∑
N�r

(N )r pN = 〈(X )r〉, (A3)

where (N )r = N (N − 1) · · · (N + r − 1) is the falling facto-
rial. Note that for multiplicity distributions μ[r] represents the
integral of the corresponding r-particle correlation functions.

Moreover, the pgf Q(w) of the sum X1 + · · · + Xj of j
independent random variables equals the product of their pgfs,
Q(w) = F1(w) · · · Fj (w). If the number of summands j is a
random variable with the pgf G(w) and all Xi are equally
distributed with the pgf F (w) then the pgf of their sum is
compound function Q(w) = G[F (w)].

Substitution w = et into Eq. (A1) leads to another set of
generating functions.

The raw moment generating function (rmgm) of random
variable X ,

MX (t ) = 〈etX 〉 = 1 +
∑
r�1

μ′
rt

r

r!
, (A4)

is a power series in variable t with the coefficients μ′
r = 〈X r〉.

The connection between the raw μ′
r and factorial moments

μ[r] reads

μ′
r =

j∑
j=0

S(r, j)μ[ j]

=
r∑

j=0

1

j!

j∑
i=0

(−1)i

(
j
i

)
( j − i)rμ[ j], (A5)

where S(r, j) are the Stirling numbers of the second kind [68].
The central moments generating function (cmgm)

〈e(X−μ)t 〉 = e−μt MX = 1 +
∑
r�1

μrt r

r!
(A6)

allows extraction of the moments μr = 〈(X − μ)r〉 centered
about the mean μ′

1 = μ1 = μ.
The cumulant generating function (cgf)

KX (t ) = ln MX (t ) = 1 +
∑
r�1

Crt r

r!
(A7)

has coefficients Cr called the cumulants at t = 0.
The latter can be expressed via ordinary moments and vice

versa [68,69]:

Cr = μ′
r −

r−1∑
i=0

(
r − 1

i

)
Cr−iμ

′
i,

μ′
r =

r−1∑
i=0

(
r − 1

i

)
Cr−iμ

′
i. (A8)

Defining s = et , the factorial cumulant generating function
Kf (s) is

Kf (s) = ln MX (s). (A9)

Then factorial cumulants κr are derivatives of Kf (s) at s = 1.
The derivatives of s and t are given by

∂r

∂t r
s|s=1 = 1,

∂r

∂sr
t |t=0 = (−1)r−1(r − 1)!. (A10)

Using Eq. (A10), cumulants and factorial cumulants can be
expressed by each other. A compact form is

κr = 〈N (N − 1) · · · (N − r + 1)〉c, (A11)

where 〈·〉c ≡ Cr [47].
From the equality

KX+a(t ) = at + KX (t ), a = const., (A12)

it follows that for r � 2 the coefficients of t r/r! in KX+a(t )
and KX (t) are the same. Moreover, Eq. (A12) with a = −μ

yields that first three cumulants and moments are equal, Cr =
μr . Consequently, expressions for moments μr in terms of
cumulants Cr are obtained from Eq. (A8) by dropping all
terms with C1.

From Eqs. (A7) and (A4) it follows that the cumulant of
the sum X1 + X2 of two independent random variables X1 and
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X2 is equal to the sum of the cumulant of X1 and X2:

CX1+X2 (t ) = ln〈et (X1+X2 )〉 = ln〈etX1〉 + ln〈etX2〉. (A13)

Consider a superposition model of A + A collisions where
the average proton multiplicity 〈Np〉 as well as the cumulants
Cr are sums of contributions from elementary nucleon-
nucleon scatterings and are therefore proportional to one
another. Departure from linear behavior Cr ∼ 〈Np〉 in most
central collisions occurs when Nbin comes to its limit. Its
breakdown in noncentral collisions revealed first in higher-
order cumulants may signal transition to a regime dominated
by strong multiparticle correlations.

APPENDIX B

Here we discuss some examples of power series distribu-
tions (PSDs) with pgf of the form Q(w) = Z (λw)/Z (λ). Their
cumulants satisfy a simple recurrence relation [68]

Cr+1 = λ
dCr

dλ
, (B1)

making it possible to calculate higher-order cumulants starting
from known μ1 = μ[1] = C1. It is also worth mentioning that
Z (λ,V, T ) represents the grand canonical partition function at
fixed fugacity λ, volume V , and temperature T .

Poisson distribution (PD):

pN = e−λ λN

N!
,

Q(w) = e(−λ)(w−1),

Z (λ) = e−λ,

μ[r] = λr,

Cr = λ; (B2)

pN =
(

N + k − 1
k − 1

)
(1 − λ)kλk,

Q(w) =
(

1 − λ

1 − λw

)k

,

Z (λ) = (1 − λ)−k,

μ[r] = (k + r − 1)!

(k − 1)!

(
λ

1 − λ

)r

. (B3)

The negative binomial distribution (NBD) with parameters
k > 0 and 0 < λ < 1 is an example of distribution which is

overdispersed compared to the Poisson distribution which is
obtained as its limit k → ∞, λ → 0 with kλ/(1 − λ) fixed.

Equation (B3) with r = 1 yields μ[1] = C1 = kλ/(1 −
λ) ≡ kx. Plugging C1 into Eq. (B1) yields

C2 = C1(1 + x),

C3 = C2(1 + 2x),

C4 = C2(1 + 6x(1 + x)),

C5 = C2(1 + 2x)[1 + 12x(1 + x)]. (B4)

Thus Cr is a polynomial of order r in x with cumulant ratio
Cr/Cs independent of k.

The Conway-Maxwell-Poisson distribution (CMP)

pN = λN

(N!)ν
1

Z (λ, ν)
,

Z (λ, ν) =
∑
N=0

λN

(N!)ν
, (B5)

with parameters λ > 0, ν > 0 is used to model data which
is either underdispersed (ν > 1) or over-dispersed (ν < 1)
relative to the Poisson distribution (ν = 1).

Expressions for factorial moments and cumulants of the
CMP are rather cumbersome due to a complicated structure
of the pgf Z (λw)/Z (λ); see Eq. (B5). Nevertheless, a sim-
ple formula generalizing the result for factorial moments of
Poisson distribution [Eq. (B2)] exists for its underdispersed
version with r ∈ N [70]:

〈[(N )r]ν〉 = λr . (B6)

Our interest in CMP is motivated by the fact that for ν = 2
it represents a stationary solution of the kinetic master equa-
tion describing the production of charged particles which are
created or destroyed only in pairs due to the conservation of
their charge [71]. In this case Eq. (B6) yields

〈N2〉 = μ1 + μ[2] = λ, 〈N4〉 = λ(1 + λ), (B7)

which for λ � 1 leads to a factorization (decorrelation) of the
raw moment 〈N4〉 ≈ 〈N2〉 × 〈N2〉 connected to the underlying
two-particle character of the charge correlations.

The same limit λ � 1 but for arbitrary ν was used in
Ref. [70] to obtain the asymptotic expression for the cumu-
lants

Cr ≈ λ1/ν

νr−1
+ O(1),

Cr + 1

Cr
≈ 1

ν
. (B8)

Similarly to the case with ν = 1, Cr+1/Cr becomes a r-
independent constant which is bigger or smaller than 1 for
ν < 1 or ν > 1, respectively.
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