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ABSTRACT
We obtain explicit estimates on the stability of the unique continu-
ation for a linear system of hyperbolic equations. In particular, our
result applies to the elasticity system and also the Maxwell system.
As an application, we study the kinematic inverse rupture problem
of determining the jump in displacement and the friction force at
the rupture surface, and we obtain new features on the stable
unique continuation up to the rupture surface.
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1. Introduction

The unique continuation property for a differential operator P states the following: given
an open set X � R

nþ1 and a small subset U � X, if Pu¼ 0 and ujU ¼ 0, then u¼ 0 in X.
Holmgren’s Theorem states that for operators with analytic coefficients, the local version
of the unique continuation property holds across any non-characteristic hypersurface. For
operators with only smooth coefficients, the local unique continuation across a hypersur-
face holds if the hypersurface satisfies a pseudoconvexity condition [1]. Such pseudocon-
vexity condition cannot be dropped due to the existence of counterexamples given by [2].
For operators with coefficients that are analytic in part of the variables, for instance, the
wave operator with coefficients analytic in time, Tataru proved in the seminal paper [3]
that the local unique continuation property holds across any non-characteristic hypersur-
face, which leads to a global unique continuation result in optimal time. Tataru’s unique
continuation theorem is crucial for the Boundary Control method in solving inverse
problems for linear equations, see for example [4–10]. The unique continuation for linear
systems of hyperbolic equations was studied in [11], and the result can be applied to the
time-dependent classical elasticity system and the Maxwell system.
We are interested in the stability of the unique continuation: if Pu is small in X and

u is small in U, then u is small in X. Inspired by Tataru’s ideas in [12], the quantitative
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stability of the unique continuation for the wave operator was obtained by [13,14] and
[15] independently. An explicit stability of the unique continuation on Riemannian mani-
folds with boundary was recently obtained by [7], with U being a subset of the boundary.
In this paper, we study the explicit stability of the unique continuation for a linear system
of hyperbolic equations on Riemannian manifolds with boundary, with U being an interior
open subset of the manifold. In particular, our result provides an explicit stability of the
unique continuation for the classical elasticity system and the Maxwell system.

1.1. Main results

We consider a linear system of hyperbolic equations on R� R
n of the type

Piui þ LiðDu, uÞ ¼ fi, i ¼ 1, :::,m, (1.1)

where Pi is the wave operator with time-independent wave speed vi:

Pi ¼ @2
t � viðxÞ2Dg , Dg ¼

Xn
j,k¼1

gjkðxÞDjDk þ
Xn
j¼1

hjðxÞDj þ qðxÞ, (1.2)

and Li are linear functions of Duk, uk (k ¼ 1, :::,m) with time-independent L1ðRnÞ coef-
ficients. We denote by kLk1 the maximum over i of the L1ðRnÞ-norms of the coeffi-
cients of Li. Assume that vi 2 C1ðRnÞ, vi > 0, gjk 2 C1ðRnÞ and hj, q 2 C0ðRnÞ: We write

u ¼ ðu1, :::, umÞ, f ¼ ðf1, :::, fmÞ,
and denote

kuk2L2ðXÞ ¼
Xm
i¼1

kuik2L2ðXÞ, kuk2H1ðXÞ ¼
Xm
i¼1

kuik2H1ðXÞ:

In particular, it was shown in [11] that the elasticity system and also the Maxwell sys-
tem can be written in the form of hyperbolic equations (1.1).
On a Riemannian manifold (M, g), we consider wave operators (1.2) with coefficients

gjk locally given by the Riemannian metric g. More precisely, the matrix ðgjkÞ is the
inverse of the Riemannian metric ðgjkÞ in local coordinates. In particular, one can con-
sider Dg to be the Laplace-Beltrami operator on (M, g). Our main result is the following
explicit stability estimate for the unique continuation for the system (1.1).

Theorem 1.1. Let ðMn, gÞ be a compact, orientable, smooth Riemannian manifold of
dimension n � 2 with smooth boundary @M, and U be a connected open subset of M
with smooth boundary @U. Assume �U \ @M ¼ ;. Suppose u ¼ ðu1, :::, umÞ, ui 2
H1ðM � ½�T,T�Þ is a solution of the system of hyperbolic equations (1.1) with f ¼
ðf1, :::, fmÞ, fi 2 L2ðM � ½�T,T�Þ. Let v ¼ miniinfx2MviðxÞ > 0 be the minimal wave
speed in M. If

kukH1ðM� �T,T½ �Þ � K0, kukH1ðU� �T,T½ �Þ � e0,

then there exist constants h0,C, c > 0 such that for any 0 < h < h0, we have

kukL2ðXvðhÞÞ � C exp ðh�cnÞ K0

log 1þ h�1K0
kf kL2ðM� �T,T½ �Þþh�2e0

� �� �1
2

:
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The domain XvðhÞ is defined by

XvðhÞ ¼ ðx, tÞ 2 ðM nUÞ � �T,T½ � : vT � vjtj � dðx,@UÞ >
ffiffiffi
h

p
, dðx,@MÞ > h

n o
, (1.3)

where d denotes the Riemannian distance of M. The constants h0,C depend on n,m,T, v,
maxikvikC1 ,kLk1 and geometric parameters; c is an absolute constant.
Theorem 1.1 will be proved in Section 3, using the technical tools developed in

Section 2, in particular Proposition 2.7. An illustration and a brief discussion of the
domain XvðhÞ can be found in Figure 1 below and Remark 2.

Theorem 1.1 yields the following stable continuation result on the whole manifold.

Corollary 1.2. Let ðMn, gÞ be a compact, orientable, smooth Riemannian manifold of
dimension n � 2 with smooth boundary @M, and U be a connected open subset of M
with smooth boundary @U. Assume �U \ @M ¼ ;. Suppose u ¼ ðu1, :::, umÞ, ui 2
H1ðM � ½�T,T�Þ is a solution of the system of hyperbolic Equations (1.1) with f ¼
ðf1, :::, fmÞ ¼ 0. Assume T > 2ðdiamðMÞ þ 1Þ=v, where v ¼ miniinfx2MviðxÞ > 0 is the
minimal wave speed in M. If

kukH1ðM� �T,T½ �Þ � K0, kukH1ðU� �T,T½ �Þ � e0,

then there exist constants be0,C, c > 0 such that for any 0 < e0 < be0, we have
kukL2ððMnUÞ� �T

2,
T
2½ �Þ � Cð log j log e0jÞ�c,

where C is independent of e0, and c depends only on n. Furthermore, for any h 2 ð0, 1Þ,
by interpolation,

kukH1�hððMnUÞ� �T
2,
T
2½ �Þ � Cð log j log e0jÞ�hc:

Figure 1. An illustration of domains in 1þ 1 dimension. The rectangle in the middle is U� ½�T , T�:
In the case of wave speeds vi � 1, the domain enclosed by the solid blue lines is the optimal
domain, and the domain enclosed by the red lines is XvðhÞ defined in (1.3). The distance between
the blue and red lines is of order

ffiffiffi
h

p
: In general, if the wave speeds are not constant, the domain

XvðhÞ can be significantly smaller than the optimal domain. For instance, in the case of two equa-
tions with v1 � 1 and v2 � 2, the dashed blue lines enclose the optimal domain for the scalar wave
equation with wave speed 2, while the domain XvðhÞ, propagating according to the slower speed, is
still enclosed by the red lines.

288 M. V. DE HOOP ET AL.



1.2. Kinematic inverse rupture problem

Next, we apply our results to an elasticity system to study the kinematic inverse rupture
problem of determining the jump of particle velocity across the rupture surface and the
friction force, see [16]. Inverse problems for elasticity systems have been extensively
studied in various settings, for example, inverse source problems [17–19], inverse obs-
tacle scattering [20–22], seismic inverse scattering [23], and see, for example, [24–33]
for inverse boundary value problems of determining the elastic body, [34,35] for inverse
problems for nonlinear elastic wave equations, and [36–39] for identifying inclusions or
cracks.
In our setting, let M3 � R

3 be a compact domain of dimension 3 with smooth
boundary representing the solid Earth. Let Rf be a (2-dimensional) smooth rupture sur-

face satisfying Rf \ @M ¼ ;:
The seismic wave u is modeled by the following equation of motion

q@2
t u�r 	 ðKT0

: ruÞ ¼ 0 in M n Rf , (1.4)

where KT0

is the prestressed elasticity tensor. In the case of isotropy and hydrostatic

prestress T0 ¼ �p0I, the prestressed elasticity tensor KT0

has the form

KT0

ijkl ¼ kdijdkl þ lðdikdjl þ dildjkÞ � p0ðdijdkl � dildjkÞ: (1.5)

In such case, the Eq. (1.4) has the form of the classical elasticity system which can be
written as the system of hyperbolic Eq. (1.1). With our stability results on the unique
continuation for the system (1.1), we can determine the displacement u on both sides
of the rupture surface, and the friction force sf , see Section 4.

Figure 2. Rupture surface Rf: The set V is the observation domain. The figure is motivated by the Hi-
net seismograph network1 in Japan. Hi-net seismic stations have seismometers installed in boreholes
with varying depths. Note that the figure is not to scale.

1High sensitivity seismograph network Japan (https://www.hinet.bosai.go.jp).
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Informal formulation of result
Let M3 be the solid Earth with smooth boundary, and Rf be a smooth rupture surface.
We observe the seismic wave u on the time interval ½�T,T� on an open subset V �
M n Rf (see Figure 2). Then for sufficiently large T, we can determine the displacement u
on both sides of the rupture surface and the friction force sf , with explicit estimates in
suitable norms.
A precise formulation is given in Theorem 4.3 and Corollary 4.4. The tangential jump of

particle velocity across the rupture surface signifies the slip rate identified as a vector field.
We write s for this quantity. In other words, s is the tangential component of

_u½ �þ� :¼ @tðuþ � u�Þ, u6 :¼ lim
h!06

uðz þ hn, tÞ, z 2 Rf ,

where n is a unit normal of the rupture surface. The tangential component sf of the
(dynamic) traction s at the fault surface is the friction force. The traction is

s ¼ n 	 T0 þ s1ðuÞ þ s2ðuÞ,
where s1ðuÞ and s2ðuÞ are defined by (4.11) below, and n 	 T0 is the contribution from
the known, static prestress T0: The normal component

rn ¼ n 	 s
of this traction stands for the normal stress. The slip rate and normal stress are related
to the friction force through a friction law of the form

sf ¼ Fðs, rnÞ:
It is typically assumed that the friction force sf and slip rate s are aligned, that is, paral-
lel. Several choices of F have been introduced in the geophysics literature. Examples
include the Slip Law and Aging Law in Rate- and State-dependent Friction. It is com-
mon practice to invoke a simpler, linear slip-weakening model to describe friction dur-
ing a rupture when afterslip is not considered, see for example [40].
The friction law Fðs, rnÞ in general is given in terms of a few (presumably time-inde-

pendent) parameter functions, and is typically a nonlinear integral operator. In the geophys-
ics literature this is expressed by introducing a state-variable function, see [41] for the case
of rate- and state-dependent friction. The unique continuation provides the slip rate s, nor-
mal stress rn and friction force sf : After fixing a parametric form of the friction law F, the
inverse friction problem concerns the (conditional) recovery of the mentioned parameter
functions in F. The inverse friction problem with one earthquake can be considered as a
single measurement inverse problem for the parameters in F. In the case of Rate- and
State-dependent Friction, an ordinary differential equation determines a map from slip rate
and normal stress to state-variable function that is also given in terms of a few parameter
functions. We note that the regularity of solutions restricts the allowable mapping property
of the friction “coefficient” in the Amontons–Coulomb law that is widely applied.
We plan to analyze the inverse friction problem in a follow-up paper. To facilitate

this, in view of nonlinearity of F, we give stability results for the unique continuation
problem in Sobolev spaces that are Banach algebras, see Corollary 4.4 and Remark 4
below.

290 M. V. DE HOOP ET AL.



2. Unique continuation for system of hyperbolic equations

Consider the system of hyperbolic equations on R� R
n,

Piui þ LiðDu, uÞ ¼ fi, i ¼ 1, :::,m, (2.1)

where Pi is the wave operator (1.2) with time-independent wave speed vi, and Li are lin-
ear functions of Duk, uk (k ¼ 1, :::,m) with time-independent L1ðRnÞ coefficients. More
precisely,

LiðDu, uÞ ¼
Xm
k¼1

Xn
l¼0

Li;klðDlukÞ þ Li;kuk, (2.2)

where Li;kl, Li;k 2 L1ðRnÞ: We assume vi 2 C1ðRnÞ, vi > 0, gjk 2 C1ðRnÞ and hj, q 2
C0ðRnÞ:
We will frequently use the following notations. Denote

kLik1 :¼ max max
k,l

kLi;klkL1ðRnÞ, max
k

kLi;kkL1ðRnÞ
n o

, kLk1 :¼ max
i
kLik1: (2.3)

We write

u ¼ ðu1, :::, umÞ, f ¼ ðf1, :::, fmÞ:
Denote by k 	 k0 the L2ðRnþ1Þ-norm and by k 	 k1 the H1ðRnþ1Þ-norm. Recall the
weighted norm

kuik21,s :¼ s2kuik20 þ kDuik20 : (2.4)

We denote

kuk20 ¼
Xm
i¼1

kuik20, kuk21,s ¼
Xm
i¼1

kuik21,s:

Let AðD0Þ be the pseudo-differential operator with symbol aðn0Þ, where a 2 C1ðRÞ is a
smooth function. It is formally defined as

AðD0Þw :¼ F�1
n0!taðn0ÞF t0!n0

w,

where F ,F�1 stand for the Fourier transform and its inverse. In particular, we consider

the operator e��D2
0=2s,

e��D2
0=2sw :¼ F�1

n0!te
��n20=2sF t0!n0

w:

It can also be understood as an integral operator in the time variable with the ker-

nel ðs=2p�Þ1=2e�sjt0�tj2=2�:
Let C be a conical subspace of the cotangent bundle T


R
nþ1, and let Cy0 be its fiber

at y0 2 R
nþ1: We recall the definition of a strongly pseudoconvex function in C

(Definition 2.4 in [42]). A C2 real-valued function / is called strongly pseudoconvex in
C with respect to a partial differential operator P at y0 if

Re �p, p,/f gf gðy0, nÞ > 0 on pðy0, nÞ ¼ 0, 0 6¼ n 2 Cy0 ,

and
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1
is

pðy, nþ is/
0 ðyÞÞ, pðy, nþ is/

0 ðyÞÞ
n o

ðy0, nÞ > 0,

for any 0 6¼ n 2 Cy0 satisfying pðy0, nþ is/
0 ðy0ÞÞ ¼ 0, s > 0: Here p denotes the prin-

ciple symbol of P, and 	, 	f g denotes the Poisson bracket.
When P is a second order operator, the last condition above is void for non-charac-

teristic functions with respect to P. In particular, we will later consider the following
type of function

wðt, xÞ ¼ ðT � jx� zjÞ2 � t2,

which is non-characteristic in ðt, xÞ 2 R� R
n : wðt, xÞ > 0

� �
with respect to the wave

operator with constant wave speed 1, where T> 0 and z 2 R
n are fixed.

In the coordinate y ¼ ðt, xÞ 2 R� R
n, the conormal bundle over R

nþ1 with respect
to the foliation x ¼ const is

N
F :¼ ðy, nÞ 2 T

R

nþ1 : n ¼ ðn0, n1, :::, nnÞ, n0 ¼ 0
� �

:

The conormal bundle over a subset K � R
nþ1 (with respect to the foliation x ¼ const) is

N

KF :¼ ðy, nÞ 2 N
F : y 2 K

� �
: (2.5)

2.1. Local estimates

Let us recall the following Carleman estimate in [3].

Theorem 2.1 (Tataru). Let X be an open subset of R� R
n and P be the wave operator

with time-independent coefficients. Let y0 2 X and w 2 C2,qðXÞ for some fixed q 2 ð0, 1Þ,
such that wðy0Þ ¼ 0, w

0 ðy0Þ 6¼ 0 and S ¼ y 2 X : wðyÞ ¼ 0
� �

is an oriented hypersurface
non-characteristic at y0 2 S:
Then there exist j > 0 and a real-valued quadratic polynomial /, such that / is

strongly pseudoconvex in the conormal bundle over Bjðy0Þ with respect to P, with the
property that /ðy0Þ ¼ 0 and

y : wðyÞ � 0
� � � y : /ðyÞ < 0

� � [ y0f g in Bjðy0Þ: (2.6)

As a consequence, there exist constants �0, s0,C,R, such that for � < �0 and s > s0, we have

ke��D2
0=2ses/uk1,s � C s�1=2ke��D2

0=2ses/Puk0 þ C e�sj2=4�kes/uk1,s,
whenever u 2 H1

locðXÞ satisfying Pu 2 L2ðXÞ and suppðuÞ � BRðy0Þ:
To begin with, we derive a Tataru-type estimate for the hyperbolic system (1.1).

Proposition 2.2. Let X be an open subset of R� R
n. Let y0 2 X and w 2 C2,qðXÞ for

some fixed q 2 ð0, 1Þ, such that wðy0Þ ¼ 0, w
0 ðy0Þ 6¼ 0 and S ¼ y 2 X : wðyÞ ¼ 0

� �
is an

oriented hypersurface non-characteristic at y0 2 S. Suppose u ¼ ðu1, :::, umÞ, ui 2 H1ðXÞ
is a solution of the hyperbolic system (1.1) with fi 2 L2ðXÞ:
Then there exist constants j, �0, s0,C,R and a real-valued quadratic polynomial /, as

determined in Theorem 2.1, such that the following estimate holds for � < �0 and s > s0,
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ke��D2
0=2ses/uk1,s � C s�1=2ke��D2

0=2ses/f k0 þ C e�sj2=4�kes/uk1,s,
as long as suppðuÞ � BRðy0Þ:
Proof. We apply Theorem 2.1 to each component ui with the hyperbolic operator Pi,

ke��D2
0=2ses/uik1,s � C s�1=2ke��D2

0=2ses/Piuik0 þ C e�sj2=4�kes/uik1,s:
We only need to estimate the first term on the right-hand side,

ke��D2
0=2ses/Piuik0 � ke��D2

0=2ses/ðfi � LiðDu, uÞÞk0
� ke��D2

0=2ses/fik0 þ kLk1
Xm
k¼1

ke��D2
0=2ses/ukk0

þ kLk1
Xm
k¼1

ke��D2
0=2ses/Dukk0:

For sufficiently large s, the second term on the right can be absorbed into the left-hand
side when we sum over i. It suffices to estimate the last term,

ke��D2
0=2ses/Dlukk0 � kDlðe��D2

0=2ses/ukÞk0 þ ke��D2
0=2sðDle

s/Þukk0
� ke��D2

0=2ses/ukk1 þ ke��D2
0=2sðsDl/Þes/ukk0,

where we have used the fact that ½Dl, e��D2
0=2s� ¼ 0 for all l ¼ 0, 1, :::, n: Since / is a

quadratic polynomial, we know (see (2.303) in [8])

e��D2
0=2s, sD/ðyÞ

h i
¼ � Hess/ð0ÞðD0, 0, :::, 0Þe��D2

0=2s,

which gives

ke��D2
0=2ses/Dlukk0 � ke��D2

0=2ses/ukk1 þ sk/kC1ke��D2
0=2ses/ukk0

þ �k/kC2ke��D2
0=2ses/ukk0:

Combining the estimates above and summing the inequalities over i ¼ 1, :::,m, for suffi-
ciently large s (and � < 1), one can absorb all unwanted terms on the right-hand side
into the left-hand side. The proposition is proved. w

Next, we use Proposition 2.2 to derive a local stability estimate for the lower temporal
frequencies for the hyperbolic system (1.1), similar to Theorem 1.1 in [14].

Notations
Let b 2 C1

0 ðRnþ1Þ, 0 � bðnÞ � 1 be supported in jnj � 2 and equal to 1 in jnj � 1: Let
AðD0Þ be a pseudo-differential operator with symbol a 2 C1

0 ðRÞ, 0 � a � 1, where a is
supported in ½�2, 2� and equal to 1 in ½�1, 1�:
Let w,/, y0, j,R, (R < j=2) be as stated in Theorem 2.1. As Proposition 2.5 in [14],

one can choose d > 0 sufficiently small such that (see Figure 3)

y : wðyÞ � 0
� � \ y 2 Bjðy0Þ : /ðyÞ � �8d

� � � BRðy0Þ: (2.7)

Let v 2 C1
0 ðRÞ, 0 � v � 1 be a localizer be supported in ½�8d, d� and equal to 1 in

½�7d, d=2�: In particular, we choose the functions b, a, v from the Gevrey functions of
class 1=a for a fixed a 2 ð0, 1Þ:
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Lemma 2.3. Let X be an open subset of R� R
n. Let S ¼ y 2 X : wðyÞ ¼ 0

� �
be an ori-

ented C2,q hypersurface which is non-characteristic in X, and y0 2 S, w
0 ðy0Þ 6¼ 0. Let b 2

C1
0 ðRnþ1Þ be a Gevrey localizer of class 1=a for a fixed a 2 ð0, 1Þ as defined above.

Suppose u ¼ ðu1, :::, umÞ, ui 2 H1ðXÞ is a solution of the hyperbolic system (1.1) with fi 2
L2ðXÞ. Assume u satisfies

suppðuÞ � y : wðyÞ � 0
� � \ X: (2.8)

Then there exist constants R, r, c0, c1 > 0 such that the following holds.
For l � 1, if for some constant C0 > 0,

kukH1ðB2Rðy0ÞÞ � C0, kf kL2ðB2Rðy0ÞÞ � C0,

����A D0

l

� 	
b

y� y0
R

� 	
f

����
L2
� C0 exp ð�laÞ,

then there exists a constant C1 > 0 independent of l such that����A D0

x

� 	
b

y� y0
r

� 	
u

����
H1

� C1 exp ð�c1l
a2Þ, 8 x � la=c0:

Here c0, c1 are independent of l,C0:

Proof. We follow the proof of Theorem 1.1 in [14]. Denote

b0 :¼ b
y� y0
R

� 	
: (2.9)

Consider the functions

�ui :¼ vð/Þb0ui, �u ¼ ð�u1, :::, �umÞ: (2.10)

where / is the quadratic polynomial determined in Proposition 2.2. The function �u is
supported in B2Rðy0Þ, and satisfies

Figure 3. Setting of Lemma 2.3.
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Pi�ui ¼ vð/Þb0Piui þ Pi, vð/Þb0½ �ui

¼ vð/Þb0fi � vð/Þb0LiðDu, uÞ þ Pi, vð/Þb0½ �ui:
Since Li is a linear operator, by (2.2),

LiðD�u, �uÞ ¼ vð/Þb0LiðDu, uÞ þ
Xm
k¼1

Xn
l¼0

Li;klDlðvð/Þb0Þuk:

Hence �u satisfies the equations

Pi�ui þ LiðD�u, �uÞ ¼ vð/Þb0fi þ Pi, vð/Þb0½ �ui þ
Xm
k¼1

Xn
l¼0

Li;klDlðvð/Þb0Þuk: (2.11)

Then we apply Proposition 2.2 to �u ¼ vð/Þb0ui for the hyperbolic system (2.11),

C�1 s1=2ke��D2
0=2ses/�uk1,s � ke��D2

0=2ses/vð/Þb0f k0 þ
X
i

ke��D2
0=2ses/ Pi, vð/Þb0½ �uik0

þ kLk1
X
k,l

ke��D2
0=2ses/Dlðvð/Þb0Þukk0 þ s1=2e�sj2=4�kes/�uk1,s:

(2.12)

By definition (2.9), we see that suppðb0Þ � B2Rðy0Þ � Bjðy0Þ, in view of R < j=2: Thus
the conditions (2.7) and (2.8) imply

suppðuÞ \ suppðvð/ÞÞ \ B2Rðy0Þ � BRðy0Þ: (2.13)

Since b0 ¼ 1 in BRðy0Þ, we have ½Pi, vð/Þb0�ui ¼ ½Pi, vð/Þ�ui in B2Rðy0Þ, and the follow-
ing holds everywhere:

Pi, vð/Þb0½ �ui ¼ Pi, vð/Þ½ �b0ui: (2.14)

Moreover, the conditions (2.6) and (2.8) imply

suppðv0 ð/ÞÞ \ suppðb0uÞ � y : �8d � /ðyÞ � �7d
� �

, (2.15)

where v
0 ð/Þ denotes the derivative of vð/Þ:

The second term on the right-hand side of (2.12) can be estimated using (2.14) and
(2.15) as follows,

ke��D2
0=2ses/ Pi, vð/Þb0½ �uik0 ¼ ke��D2

0=2ses/ Pi, vð/Þ½ �b0uik0
� Ce�7sdkuikH1ðB2Rðy0ÞÞ:

(2.16)

We note that the constant C here also depends on d,R: For the third term on the right-
hand side of (2.12), notice that vð/ÞðDlb0Þuk ¼ 0 due to (2.13). Hence by (2.15),

ke��D2
0=2ses/Dðvð/Þb0Þuik0 ¼ ke��D2

0=2ses/v
0 ð/Þb0uik0

� Ce�7sdkuikL2ðB2Rðy0ÞÞ:
(2.17)

For the fourth term on the right, note that the parameter d can be chosen such that
8d < j2=4�: Since / � d in the support of vð/Þ, the last term is bounded by

s1=2e�sj2=4�kes/�uk1,s � s3=2e�8sdesdk�ukH1 � Ce�6sd: (2.18)
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The first term on the right-hand side of (2.12) can be estimated by repeating the proof
of Lemma 2.6 in [14]. This show that there is c> 0 such that

ke��D2
0=2ses/vð/Þb0f k0 � Ce2sd�cla , (2.19)

Note that here we replaced f with b0f using (2.13) and the fact that suppðf Þ � suppðuÞ:
Combining the estimates (2.16)–(2.19), we obtain

s1=2ke��D2
0=2ses/vð/Þb0uk1,s � Ce2sdðe�cla þ e�8sdÞ, (2.20)

for sufficiently large s > s0:
The estimate (2.20) has the same form as (2.7) in [14]. Then one can follow the rest

of the proof there. Here, we sketch the outline of the proof. The first part is to extend
the estimate (2.20) to the upper complex plane. More precisely, consider

NðsÞ :¼ ke��D2
0=2ses/vð/Þb0uk2H1 , s 2 C: (2.21)

One needs to show that there is ~c > 0 so that in the region

RðlÞ :¼ z 2 C : jzj � ~cla, Imz � 0f g,
the following holds:

Nð�izÞ � Cð1þ jzj2Þe�10dImz: (2.22)

There is ~c > 0 such that the inequality (2.22) is true for z ¼ is 2 RðlÞ when s > s0, as
follows from (2.20). The estimate can be immediately extended to z ¼ is 2 RðlÞ, 0 �
s � s0, as s0 can be put into the constant C. To extend the estimate to the whole upper
complex plane, one needs a complex analysis argument using the Phragmen–Lindel€of
principle, see Lemma 2.7 in [14].
The second part is to estimate

FðyÞ :¼ A
bD0

la

� 	
ðgð/ÞuÞðyÞ, (2.23)

with b > 0 to be determined. Here gðsÞ :¼ g1ðs=dÞ, where g1 of Gevrey class 1=a is a
localizer supported in ½�4, 1� and equal to 1 in ½�3, 1=2�: By our construction, vð/Þ ¼ 1
on suppðgð/ÞuÞ, and hence gð/Þu ¼ gð/Þvð/Þu: The function F can be written as an
integral over R :

FðyÞ ¼
ð
R

ĝð�zÞðA bD0

la

� 	
e�iz/vð/ÞuÞðyÞdz, (2.24)

where ĝ denotes the Fourier transform of g. Then we change the integral over R to a
contour integral in the complex plane

F ¼ I1 þ I2, Ij ¼
ð
Cj

ĝð�zÞA bD0

la

� 	
e�iz/vð/Þu dz, j ¼ 1, 2,

where, writing ‘ ¼ 1ffiffi
2

p ~cla, C1 ¼ z 2 R : jzj � ‘f g and

C2 ¼ z 2 C : Rez ¼ 6‘, 0 � Imz � ‘f g [ z 2 C : jRezj � ‘, Imz ¼ ‘f g:
Note that C2 � RðlÞ: As g1 is of Gevrey class 1=a and supported in ½�4, 1�, there holds
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jĝð�zÞj � Ce4dImz�cjRezja (2.25)

for some c> 0. It follows that kI1kH1 � Ce�cla
2

for some c> 0. Moreover,

kI2kH1 � C
ð
C2

e4dImz�cjRezja
����A bD0

la

� 	
e��D2

0=2iz

����
BðH1Þ

ke��D2
0=ð�2izÞe�iz/vð/ÞukH1 jdzj,

where BðH1Þ is the space of bounded operators on H1: Now we apply (2.22) together
with the estimate ����A bD0

la

� 	
e��D2

0=2iz

����
BðH1Þ

� ecImz=b2 ,

that holds for some c> 0. This yields

kI2kH1 � C
ð
C2

e4dImz�cjRezjaþcImz=b2�5dImzjdzj � Ce�cla
2

for some c> 0 and large enough b > 0:

By combining the above estimates for I1 and I2 we get kFkH1 � Ce�cla
2

for large b,
which is very close to the claimed estimate. The final step of the proof is to replace the
cut off function gð/Þ with the cut off function bððy� y0Þ=rÞ: We omit the details of the
short proof and refer to [14], see the end of the proof of Theorem 1.1 there. w

2.2. Global estimates

Propagating the local estimate Lemma 2.3 yields a global estimate. To do this, we use
the same constructions as Assumption A4 in [13].

Assumption 2.4. Let X be a bounded connected open subset of R� R
n and u ¼

ðu1, :::, umÞ, ui 2 H1ðXÞ. Assume that there is a function w 2 C2,qðXÞ for some q 2 ð0, 1�,
such that in an open set X0 � X one has w

0 ðyÞ 6¼ 0 and piðy,w0 ðyÞÞ 6¼ 0 for all i and all

y 2 X0, where piðy, nÞ ¼ n20 � viðxÞ2
P

j,kg
jkðxÞnjnk is the principal symbol of the hyper-

bolic operator Pi in (1.2).
Assume that there exist values wmin < wmax and a connected nonempty set ! � X0

such that: suppðuÞ \ ! ¼ ;, and ; 6¼ y 2 X0 : wðyÞ > wmax

� � � !. Assume that wmin is

such that the open set Xa ¼ y 2 X0 � �! : wmin < wðyÞ < wmax

� �
is nonempty, connected

and satisfies distð@X0,XaÞ > 0:

Construction
Let R > r > 0 satisfying 2R < distð@X0,XaÞ: Under Assumption 2.4, we choose a max-
imal r=2-separated set in �Xa as follows. Take y1 to be a point where w achieves max-
imum in �Xa, and y2 to be a point where w achieves maximum in �Xa � Br=2ðy1Þ: In

general, let yj 2 �Xa be a point where w achieves maximum in �Xa � [j�1
l¼1Br=2ðylÞ:

Observe that y1 2 @! and yj is on the boundary of [j�1
l¼1Br=2ðylÞ [ !, since w has no crit-

ical point in X0 by assumption. See Figure 4. Repeat the procedure until it stops, and we
get a maximal r=2-separated set yjf gNj¼1

, also an r=2-net, in �Xa: Since yjf gNj¼1
is r=2-sepa-

rated, the total number N of points is bounded by

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 297



N � CðnÞ volðX0Þr�ðnþ1Þ: (2.26)

Denote uk,1 ¼ uk for k ¼ 1, :::,m, and define

uk,jþ1 :¼ 1� bj

 �

uk,j, bj :¼ b
2 y� yjð Þ

r

� 	
, j � 1, (2.27)

where b 2 C1
0 ðRnþ1Þ, 0 � bðnÞ � 1 is a localizer supported in jnj � 2 and equal to 1 in

jnj � 1: We write u	,j :¼ ðu1,j, :::, um,jÞ: The requirement 2R < distð@X0,XaÞ yields
[N
j¼1B2RðyjÞ � X0:

The next lemma is an iteration of Lemma 2.3, analogous to Theorem 2.7 in [13].

Lemma 2.5. Under Assumption 2.4, the points yj and functions uk,j ðj ¼ 1, :::,NÞ are
defined as above. Let b 2 C1

0 ðRnþ1Þ be a Gevrey localizer of class 1=a for a fixed a 2
ð0, 1Þ, as defined in Lemma 2.3. Suppose u ¼ ðu1, :::, umÞ, ui 2 H1ðXÞ is a solution of the
hyperbolic system (1.1) with fi 2 L2ðXÞ. Then there exist constants r, c0, c1, c2, c3,Cj such
that the following holds.
If for some l > c2,

kukH1ðX0Þ ¼ 1, kf kL2ðX0Þ � exp ð�laÞ,
then we can find l1 ¼ l, ljþ1 ¼ laj =c3, lj > 1, such that kuk,jkH1ðX0Þ � CðN, rÞ for k ¼
1, :::,m, and ����A D0

x

� 	
b

y� yj
r

� 	
uk,j

����
H1

� Cj exp ð�c1l
a2
j Þ, 8 x � laj =c0:

Proof. For j¼ 1, u	,1 ¼ u satisfies the support condition (2.8) in X0 for ~w ¼ w� wðy1Þ
due to Assumption 2.4. This can be argued as follows. For y 2 X0, uðyÞ 6¼ 0 shows y 2
X0 n ! by Assumption 2.4, which means either y 2 ðX0 n !Þ \ �Xa or y 2 ðX0 n !Þ n �Xa:

The former implies wðyÞ � wðy1Þ by our choice of y1. The latter implies either
ðHTML translation failedÞ or wðyÞ > wmax: However, the case of wðyÞ > wmax does not
happen due to Assumption 2.4:

Figure 4. Choice of points yj.
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y 2 X0 : wðyÞ > wmax

� � � ! � y 2 X0 : uðyÞ ¼ 0
� �

:

Let R, r be the constants determined in Lemma 2.3. Since
���A D0

l1

� �
b y�y1

R


 �
f
���
0
� kf k0 �

exp ð�la1Þ, applying Lemma 2.3 gives����A D0

x

� 	
b

y� y1
r

� 	
u

����
H1

� C1e
�c1la

2
1 , 8x � la1=c0: (2.28)

For j¼ 2, u	,2 ¼ ð1� b1Þu satisfies the following equation

Piui,2 þ LiðDu	,2, u	,2Þ ¼ ð1� b1Þfi � Pi, b1½ �ui �
Xm
k¼1

Xn
l¼0

Li;klðDlb1Þuk: (2.29)

This can be seen from (2.11) by replacing v, b0 with 1, 1� b1: Observe that Dlb1 is sup-
ported in Brðy1Þ � Br=2ðy1Þ where b y�y1

r


 � ¼ 1: Then by (2.28) and Lemma 2.3(b) in
[14], for l2 � la1=c0 and b � 3 to be determined later,����A bD0

l2

� 	
b

y� y2
R

� 	
ðDlb1Þui

����
0

¼
����A bD0

l2

� 	
b

y� y2
R

� 	
ðDlb1Þb y� y1

r

� 	
ui

����
0

� Cr�1

����A D0

l2

� 	
b

y � y1
r

� 	
ui

����
0

þ Ce�c4la2kuik0

� Cr�1e�c1la
2
1 þ Ce�c4la2 :

(2.30)

Similarly, ����A bD0

l2

� 	
b

y� y2
R

� 	
ðDsDlb1Þui

����
0

� Cr�2e�c1la
2
1 þ Ce�c4la2 : (2.31)

Since the coefficients Li;kl in (2.29) are time-independent, we have����A bD0

l2

� 	
b

y� y2
R

� 	
Li;klðDlb1Þuk

����
0

� CkLk1r�1e�c1la
2
1 þ CkLk1e�c4la2 : (2.32)

Recall from Lemma 2.3 in [14] that

c4 ¼ c4 bð Þ ¼ C a, vol BRð Þð Þ 1� 2
b

� 	a

� C a, n,Rð Þ 3�a, (2.33)

since b � 3: Thus we can treat c4 as a constant independent of b.
Next we estimate terms involving Du.����A bD0

l2

� 	
b

y� y2
R

� 	
ðDlb1ÞðDsuiÞ

����
0

�
����Ds A

bD0

l2

� 	
b

y� y2
R

� 	
Dlb1ð Þui

 !����
0

þ
����A bD0

l2

� 	
Ds b

y� y2
R

� 	
Dlb1ð Þ

� 	
ui

����
0

�
����A bD0

l2

� 	
b

y� y2
R

� 	
Dlb1ð Þb y� y1

r

� 	
ui

����
H1

:

þ
����A bD0

l2

� 	
Ds b

y� y2
R

� 	
Dlb1ð Þ

� 	
b

y� y1
r

� 	
ui

����
0

,
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where we have used the fact that ½AðD0Þ,Ds� ¼ 0, for all s ¼ 0, 1, :::, n: For the second
term on the right-hand side, we apply Lemma 2.3(b) in [14] just as before. The first
term on the right can be estimated as follows.����A bD0

l2

� 	
b

y� y2
R

� 	
ðDlb1Þb y � y1

r

� 	
ui

����
H1

¼
����A bD0

l2

� 	
b

y � y2
R

� 	
ðDlb1ÞA D0

l2

� 	
b

y � y1
r

� 	
ui

����
H1

þ
����A bD0

l2

� 	
b

y� y2
R

� 	
ðDlb1Þð1� A

D0

l2

� 	
Þb y� y1

r

� 	
ui

����
H1

� Cr�2

����A D0

l2

� 	
b

y� y1
r

� 	
ui

����
H1

þ Cr�1e�c4la2kuikH1 ,

where we have used Lemma 2.3(c) in [14] in the last inequality. Thus by (2.28), we obtain����A bD0

l2

� 	
b

y� y2
R

� 	
ðDlb1ÞðDsuiÞ

����
0

� Cr�2e�c1la
2
1 þ Cr�1e�c4la2 : (2.34)

Combining (2.31) and (2.34) yields����A bD0

l2

� 	
b

y � y2
R

� 	
Pi, b1½ �ui

����
0

� Cr�2ðe�c1la
2
1 þ e�c4la2Þ, (2.35)

where c1, c4 are independent of b, l: Moreover,����A bD0

l2

� 	
b

y � y2
R

� 	
ð1� b1Þfi

����
0

� kf k0 � e�la1 � e�la
2

1 : (2.36)

We assume c4 � 3�a without loss of generality, and choose b ¼ c4�1=a so that the require-
ment b � 3 is satisfied. The estimates (2.32), (2.35) and (2.36) show that the right-hand
side of (2.29) satisfies the assumptions of Lemma 2.3 for l ¼ c41=al2 with the choice

l2 ¼ min c�1
0 ,

c1
c4

� 	1
a

( )
la1: (2.37)

The support condition (2.8) is satisfied by u	,2 in X0 by choosing ~w ¼ w� wðy2Þ due to
Assumption 2.4. This can be argued in the same way as for u	,1, considering the fact that
u	,2 ¼ 0 on ! [ Br=2ðy1Þ by definition (2.27). Hence applying Lemma 2.3 to u	,2 gives����A D0

x

� 	
b

y� y2
r

� 	
u	,2

����
H1

� C2 exp ð�c1c4
ala

2

2 Þ, 8x � c4l
a
2=c0: (2.38)

In the same way, the estimates for all u	,j can be obtained by induction. We can choose
l ¼ l1 > c2 sufficiently large such that lj > 1 for all j ¼ 1, :::,N, where c2 depends on

N. Recall that N is bounded by (2.26). For the H1-norm of u	,j, we have

ku	,jkH1 ¼
�����
 Yj�1

k¼1

1� bkð Þ
!
u

�����
H1

� CNr�1:
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All relevant constants can be explicitly calculated as in Theorem 2.7 in [13]. In our
case, the constants additionally depend on m, maxikvikC1 and kLk1: w

Lemma 2.5 yields the following global stability estimate.

Proposition 2.6. Let X be a bounded connected open subset of R� R
n. Suppose u ¼

ðu1, :::, umÞ, ui 2 H1ðXÞ is a solution of the system of hyperbolic Equations (1.1) with f ¼
ðf1, :::, fmÞ, fi 2 L2ðXÞ. Assume Assumption 2.4 is satisfied. Then we have

kuk
L2 �Xað Þ � C

kukH1 X0ð Þ

log 1þ kukH1 X0ð Þ
kf kL2 X0ð Þ

� 	� 	h
,

where h 2 0, 1ð Þ is arbitrary. The constant C explicitly depends on the C2,q-norm of

w, infX0 jw
0 j, miniinfX0 jpið	,w

0 Þj, distð@X0,XaÞ, m, maxikvikC1 , kLk1, h and geometric
parameters.

Proof. Without loss of generality, assume kukH1ðX0Þ ¼ 1: If kf k0 � e�c2 , then the
inequality above satisfies trivially. Otherwise kf k0 ¼ e�la for some l > c2, where a 2
ð0, 1Þ is fixed. The estimates for the lower temporal frequencies follow from Lemma 2.5.
Higher temporal frequencies can be estimated uniformly in frequency. Then the log
-stability estimate follows by the same argument as Theorem 1.1 in [13]. w

In the same way, we also have the following stability estimate for multiple domains,
analogous to Theorem 1.2 in [13].

Proposition 2.7. Let X be a bounded connected open subset of R� R
n. Suppose u ¼

ðu1, :::, umÞ, ui 2 H1ðXÞ is a solution of the system of hyperbolic Equations (1.1) with f ¼
ðf1, :::, fmÞ, fi 2 L2ðXÞ. In X, we assume the existence of a finite number of connected
open subsets X0

j and Xj, j ¼ 1, 2, :::, J, a connected set ! and functions wj satisfying the

following assumptions.

(1) wj 2 C2,qðXÞ for some q 2 ð0, 1�; w0
jðyÞ 6¼ 0, piðy,w0

jðyÞÞ 6¼ 0 for all i, j and all y 2
X0

j , where pi denotes the principle symbol of the wave operator Pi in (1.2).

(2) suppðuÞ \ ! ¼ ;; there exists wmax,j 2 R such that ; 6¼ fy 2 X0
j : wjðyÞ > wmax,jg �

�!j, where !j ¼ X0
j \ ð[j�1

l¼1Xl [ !Þ:
(3) Xj ¼ y 2 X0

j � �!j : wjðyÞ > wmin,j

n o
for some wmin,j 2 R, and distð@X0

j ,XjÞ > 0:

(4) �Xa is connected, where Xa ¼ [J
j¼1Xj:

Then the following estimate holds for Xa and X0 ¼ [J
j¼1X

0
j :

kukL2ð�XaÞ � C
kukH1 X0ð Þ

log 1þ kukH1 X0ð Þ
kf kL2 X0ð Þ

� �� �h ,

where h 2 ð0, 1Þ is arbitrary. The dependency of the constant C is the same as
Proposition 2.6.
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3. Stability of the unique continuation on Riemannian manifolds

From Proposition 2.7, one can obtain an explicit stability estimate for the unique continu-
ation on Riemannian manifolds in a similar way as Theorem 3.3 in [13] or Theorem 3.1 in
[7]. The following is a proof of Theorem 1.1 which is analogous to Theorem 3.1 in [7].

Proof of Theorem 1.1. The proof is only a slight modification of the proof of Theorem 3.1
in [7]. We consider the submanifold M � U and its boundary has two (smooth) con-
nected components @M, @U: We take C ¼ @U in [7] and follow the proof of Theorem
3.1 in [7] by using Proposition 2.7. Notice that only the first condition in Proposition 2.7
is affected by the change of wave speed in the wave operator. Hence we only need to
check that the domains X0

j are non-characteristic with respect to Pi for all i.

The wj-functions constructed in [7] in the simplest form are

wjðx, tÞ ¼ ðT � dðx, zjÞÞ2 � t2,

where zj 2 M are fixed points. In our case of different wave speeds, one can choose the
wj-functions as follows:

~wjðx, tÞ ¼ ðT � v�1dðx, zjÞÞ2 � t2, for x 2 M, t 2 �T,T½ �, (3.1)

where

v :¼ min
i

inf
x2M

viðxÞ > 0: ði:e: the minimal wave speed in MÞ (3.2)

The domains X0
j can be similarly defined as suitable level sets

X0
j ¼ ðx, tÞ 2 M � �T,T½ � : ~wjðx, tÞ > h

n o
(3.3)

for some small positive parameter h.

Then it is straightforward to check that ~wj is non-characteristic in X0
j with respect to

all Pi. Namely, for any i,

�piððx, tÞ,r~wjÞ ¼ viðxÞ2
Xn
k,l¼1

gklð@xk ~wjÞð@xl ~wjÞ � j@t ~wjj2 ¼ viðxÞ2jrx
~wjj2 � j@t ~wjj2

¼ 4
viðxÞ2
v2

ðT � v�1dðx, zjÞÞ2 � 4t2

� 4~wjðx, tÞ > 4h,

where we have used the fact that jrxdðx, zjÞj ¼ 1 and

rx
~wj ¼ �2ðT � v�1dðx, zjÞÞv�1rxdðx, zjÞ:

Recall that the matrix ðgjkÞ in the wave operator (1.2) is the inverse of the matrix ðgjkÞ
that is the Riemannian metric in local coordinates.
In general, we can choose the wj-functions in the present case in a form similarly

modified from (3.30) in [7]:

wi,jðx, tÞ ¼ ðð1� nðdðx, @M [ @UÞÞ � nðq0 � dshðx, zi,jÞÞÞTi � v�1dshðx, zi,jÞÞ2 � t2, (3.4)

where n 2 C2,1ðR�0Þ is a decreasing function supported in ½0, h�, and dshð	, zi,jÞ is a
smoothening of a distance function. Differentiating wi,j with respect to x gives
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rxwi,j ¼ 2ðð1� nðdðx, @M [ @UÞÞ � nðq0 � dshðx, zi,jÞÞÞTi � v�1dshðx, zi,jÞÞ
ð�n0Tirxdðx, @M [ @UÞ þ n0Tirxd

s
hðx, zi,jÞ � v�1rxd

s
hðx, zi,jÞÞ:

By the construction in [7], rxdshðx, zi,jÞ and rxdðx, @MÞ are of opposite directions when

x is near the boundary. Since n0 � 0, the latter multiplier has length at least v�1: Thus

by the same calculation above for ewj, one can still show that the suitable level set of wi,j

is non-characteristic with respect to all Pi.
The additional coefficient v�1 can be understood as a time dilation by a factor of v.

Thus Theorem 3.1 in [7] gives the estimate in the following domain (see (2.6) in [7]):

XvðhÞ ¼ ðx, tÞ 2 ðM � UÞ � �T,T½ � : vT � jvtj � dM�Uðx, @UÞ >
ffiffiffi
h

p
, dM�Uðx, @MÞ > h

n o
,

where dM�U is the Riemannian distance of the submanifold M – U. Notice that
dM�Uðx, @UÞ ¼ dðx, @UÞ for any x 2 M � U, since any path from x to the interior of U
must cross @U: In (1.3), we actually used a smaller domain due to dM�Uð	, @MÞ �
dð	, @MÞ: We note that the factor v�1 is only added to one distance term in (3.4). The
other two distance terms there control how close this process approximates the optimal
domain and therefore a constant factor is inconsequential to the final error estimate.
Finally we turn to the data on U. In our case, Lemma 3.3 and 3.4 in [7] are not

necessary as we have the whole manifold M and functions ui 2 H1ðM � ½�T,T�Þ readily
available. We can simply take the functions ui on M and cut it off near @U in U. More
precisely, take a smooth function g : M ! R such that g¼ 1 on M – U, 0 � g � 1 on
U within distance h from @U , otherwise 0. Consider ~ui ¼ gui: Then ~ui satisfies the fol-
lowing equation similar to (2.11):

Pi~ui þ LiðD~u, ~uÞ ¼ gfi þ Pi, g½ �ui þ
Xm
k¼1

Xn
l¼0

Li;klðDlgÞuk ¼: ~fi:

It is clear that k~uikH1ðM�½�T,T�Þ � Ch�1kuikH1ðM�½�T,T�Þ, and

k~fikL2ðM� �T,T½ �Þ � kfikL2ððM�UÞ� �T,T½ �Þ þ k~fikL2ðU� �T,T½ �Þ

� kfikL2ðM� �T,T½ �Þ þ Ch�2kukH1ðU� �T,T½ �Þ:

Applying these estimates to the last step of the proof of Theorem 3.1 in [7] gives the
desired estimate. As for the dependency of the constant C, besides what is stated in the the-
orem, the constant also depends on geometric parameters: diamðMÞ, kRMkC4 , kS@MkC4 ,
kS@UkC4 , injðM � UÞ, rCATðM � UÞ, volnðMÞ, voln�1ð@MÞ, voln�1ð@UÞ: w

Remark 1. In Theorem 1.1, we only use H1-norm data on the interior domain U,
instead of the higher regularity H2,2-norm (see (2.7) in [7]) on a subset of the manifold
boundary used in [7]. The extra regularity in [7] were used to extend the data on the
boundary to an extension of the manifold. In our present case, we are avoiding this
issue by using data on an interior domain of the manifold. Nonetheless, the same
method is valid for the system of hyperbolic equations with data on the boundary,
which yields a similar log -type stability estimate with H2,2-norm boundary data.
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Remark 2. In particular, if all wave speeds vi � 1 (or a constant), the domain XvðhÞ
defined in (1.3), where we have quantitative estimates, can be arbitrarily close to the
optimal domain given by Tataru’s unique continuation theorem for the scalar wave
equation in [3], since h is a small parameter chosen in advance. Recall that the optimal
domain is known as the double cone of influence defined as

KðU ,TÞ ¼ ðx, tÞ 2 M � �T,T½ � : dðx,UÞ < T � jtj� �
:

However, if one wants the estimate in Theorem 1.1 to work closer to the optimal
domain, the cost is the constant exp ðh�cnÞ which goes up exponentially.
In the case of 1þ 1 dimension and vi � 1, the optimal domain and the domain

XvðhÞ are illustrated in Figure 1. In general, if the wave speeds are not constant, the
domain XvðhÞ, propagating according to the slowest speed, can be significantly smaller
than the optimal domain.

Theorem 1.1 yields the following estimate on the initial value.

Corollary 3.1. Let ðMn, gÞ be a compact, orientable, smooth Riemannian manifold of
dimension n � 2 with smooth boundary @M, and U be a connected open subset of M
with smooth boundary @U. Assume �U \ @M ¼ ;. Suppose u ¼ ðu1, :::, umÞ, ui 2
H1ðM � ½�T,T�Þ is a solution of the system of hyperbolic equations (1.1) with f ¼
ðf1, :::, fmÞ ¼ 0. Let v ¼ miniinfx2MviðxÞ > 0 be the minimal wave speed in M. If

kukH1ðM� �T,T½ �Þ � K0, kukH1ðU� �T,T½ �Þ � e0,

then for sufficiently small h, we have

kuð	, 0ÞkL2ðXvð2h,0ÞÞ � C
1
3h�

1
3 exp ðh�cnÞ K0

ð log ð1þ h K0
e0
ÞÞ16

:

The domain Xvðh, 0Þ is defined by

Xvðh, 0Þ ¼ x 2 M n U : dðx, @UÞ < vT �
ffiffiffi
h

p
, dðx, @MÞ >

ffiffiffi
h

pn o
: (3.5)

The constants C, c are independent of h, and their dependency is stated in
Theorem 1.1.

Proof. This directly follows from interpolation and the trace theorem. See the proof of
Corollary 3.9 in [7] for more details. w

Due to the Sobolev embedding theorem, Theorem 1.1 implies the following stable
continuation result on the whole manifold.

Proposition 3.2. Let ðMn, gÞ be a compact, orientable, smooth Riemannian manifold of
dimension n � 2 with smooth boundary @M, and U be a connected open subset of M
with smooth boundary @U. Assume �U \ @M ¼ ;. Suppose u ¼ ðu1, :::, umÞ, ui 2
H1ðM � ½�T,T�Þ is a solution of the system of hyperbolic equations (1.1) with f ¼
ðf1, :::, fmÞ ¼ 0. Assume T > 2ðdiamðMÞ þ 1Þ=v, where v ¼ miniinfx2MviðxÞ > 0 is the
minimal wave speed in M. If

kukH1ðM� �T,T½ �Þ � K0, kukH1ðU� �T,T½ �Þ � e0,
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then there exist constants h0,C, c > 0 such that for any 0 < h < h0, we have

kukL2ððMnUÞ� �T
2,
T
2½ �Þ � C exp ðh�cnÞ K0

ð log ð1þ h K0
e0
ÞÞ12

þ CK0h
1

nþ1:

Furthermore, for any h 2 ð0, 1Þ, by interpolation,

kukH1�hððMnUÞ� �T
2,
T
2½ �Þ � Ch exp ðh�cnÞ K0

ð log ð1þ h K0
�0
ÞÞh2

þ ChK0h
h

nþ1:

Proof. For T > 2ðdiamðMÞ þ 1Þ=v and h< 1, we see that

ðM n UÞ � �T
2
,
T
2

� 
� XvðhÞ [ N h,

where

N h :¼ x 2 M : dðx, @MÞ � h
� �� �T

2
,
T
2

� 
:

Theorem 1.1 gives the L2-estimate on XvðhÞ, and thus we only need to estimate the L2

-norm on N h: Apply the Sobolev embedding theorem (e.g. Theorem 4.12 in [43]) to
the space Mn � ½�T,T� which satisfies the uniform cone condition (Definition 4.8 in
[43]),

kuk
L
2ðnþ1Þ
n�1 ðM� �T,T½ �Þ

� CkukH1ðM� �T,T½ �Þ � CK0:

Then,

kukL2ðN hÞ � kuk
L
2ðnþ1Þ
n�1 ðM� �T,T½ �Þ

ðvolðN hÞÞ
1

nþ1 � CK0h
1

nþ1:

w

Proof of Corollary 1.2. Choose h such that the two terms on the right-hand side of the
L2-estimate in Proposition 3.2 are equal, and we get

h ¼ Cð log j log e0jÞ�c, (3.6)

for some constant c depending only on n, and for some constant C independent of h.
The condition h < h0 gives the choice for be0 :

be0 ¼ ð exp exp ðC�1h�1=c
0 ÞÞ�1: (3.7)

w

4. Application to fault dynamics

In this section, let M3 � R
3 be a compact domain of dimension 3 with smooth bound-

ary representing the solid Earth. Let Rf be a (2-D) rupture surface. Assume that Rf is

connected, orientable, smooth with Lipschitz boundary and Rf \ @M ¼ ;: The open set
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V is the observation domain satisfying V � M n Rf , see Figure 2. The set U is a con-
nected open subset of V satisfying �U � V: Then it follows that �U \ ðRf [ @MÞ ¼ ;:

4.1. Unique continuation to rupture surface

We apply our stability results in Sections 2 and 3 to seismic waves. For a concise for-
mulation we adopt the following setting.

Assumption 4.1. Suppose that there are two disjoint open subsets D1,D2 � M satisfying
D1 [ D2 � intðMÞ and Rf � @D1 \ @D2, such that the following condition holds.
ð
Þ For j¼ 1, 2, Mj ¼ M n Dj is a connected open subset of M with smooth

boundary.
Under Assumption 4.1, it follows that M1 \M2 contains an open set of M, and

Rf � @M1 \ @M2, M ¼ M1 [M2: (4.1)

In other words, the rupture surface Rf can be approached from both sides, and it can
be extended on either side into the boundary of a smooth submanifold. In practice one
can try to construct the subsets D1, D2 to be open topological (3-D) balls with smooth
boundary, such that their closures D1,D2 do not intersect @M: If such D1, D2 can be
constructed, then the condition ð
Þ is satisfied (Figure 5).
We consider function spaces on the disjoint union M1 tM2 instead of on M. We say

a function u 2 HsðM1 tM2Þ if ujMj
2 HsðMjÞ for j¼ 1, 2. We define the Hs-norm on

M1 tM2 by

kuk2HsðM1tM2Þ :¼
X2
j¼1

kujMj
k2HsðMjÞ, (4.2)

and for T> 0,

Figure 5. Rupture surface Rf under Assumption 4.1. The set U is a connected open subset of the
observation domain V satisfying �U � V:
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kuk2HsððM1tM2Þ� �T,T½ �Þ :¼
X2
j¼1

kujMj� �T,T½ �k2HsðMj� �T,T½ �Þ: (4.3)

The seismic wave u is modeled by the following equation of motion

q@2
t u�r 	 ðKT0

: ruÞ ¼ 0 in M n Rf , (4.4)

where the prestressed elasticity tensor KT0

is related to the in situ isentropic stiffness
tensor C by

KT0

ijkl ¼ Cijkl þ 1
2
ððT0Þijdkl þ ðT0Þkldij þ ðT0Þikdjl � ðT0Þildjk � ðT0Þjkdil � ðT0ÞjldikÞ,

and the operation : is defined as ðKT0

: ruÞij ¼
P

k,lK
T0

ijkl@luk in components. In the

case of isotropy and hydrostatic prestress T0 ¼ �p0I, the prestressed elasticity tensor

KT0

has the form

KT0

ijkl ¼ kdijdkl þ lðdikdjl þ dildjkÞ � p0ðdijdkl � dildjkÞ: (4.5)

In this case the Eq. (4.4) has the same form as the classical elasticity system in (A.1),
namely

q@2
t u� lDu� ðkþ lÞ rdiv uþ first order terms ¼ 0: (4.6)

Note that p0 appears in the first order terms of (4.6), see for example [44, Section 2.2].
We assume that

q, l, k, p0 2 C1ðM n Rf Þ are time-independent: (4.7)

Due to Lemma A.1, the Eqs. (4.4) with (4.5) can be written in the form of the system
of hyperbolic Eq. (1.1), and therefore our results in Sections 2 and 3 apply. We consider
the unique continuation in each smooth manifold Mj (j¼ 1, 2) with smooth boundary
assumed in Assumption 4.1. We observe on a connected open subset U � M1 \M2 sat-
isfying �U \ @Mj ¼ ;: Thus we can apply Corollary 1.2 to each manifold Mj with the
open set U.

Theorem 4.2. Let M3 (the solid Earth), Rf (the rupture surface) be defined at the begin-
ning of Section 4. Let Mj (j¼ 1, 2) be the submanifolds with smooth boundary as in
Assumption 4.1, and u ¼ ðu1, u2, u3Þ, ui 2 H2ððM1 tM2Þ � ½�T,T�Þ be a seismic wave
satisfying (4.4) with (4.5). We observe on a connected open subset U � M1 \M2 with
smooth boundary satisfying �U \ @Mj ¼ ;. Assume T > 2ðmaxjdiamðMjÞ þ 1Þ=v, where

v ¼ infM
ffiffiffiffiffiffiffiffi
l=q

p
is the minimal wave speed. If

kukH2ððM1tM2Þ� �T,T½ �Þ � K0, kukH2ðU� �T,T½ �Þ � e0,

then there exist constants be0,C, c such that for any 0 < e0 < be0, we have
kðu, div u, curl uÞkL2ððMjnUÞ� �T

2,
T
2½ �Þ � Cð log j log e0jÞ�c,

where C is independent of e0, and c is an absolute constant. Furthermore, for any h 2
ð0, 1Þ, by interpolation,
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kðu, div u, curl uÞkH1�hððMjnUÞ� �T
2,
T
2½ �Þ � Cð log j log e0jÞ�hc:

Proof. By Lemma A.1, the vector-valued function

F :¼ ðu, div u, curl uÞ
satisfies the system of hyperbolic Eq. (1.1). The bounds on the H2-norm of u give the

bounds

kFkH1ðMj� �T,T½ �Þ � K0, kFkH1ðU� �T,T½ �Þ � e0:

Then applying Corollary 1.2 yields the result. w

Remark 3. The constant C in Theorem 4.2 depends on the geometric parameters of Mj

assumed in Assumption 4.1.

The trace onto rupture surface
Recall that Assumption 4.1 indicates Rf � @M1 \ @M2: In the boundary normal neigh-
borhoods of M1, M2, the two sides of Rf are product spaces Rf � ½0, injðM1Þ=2� and
Rf � ½0, injðM2Þ=2�, where injðMjÞ is the injectivity radius of Mj. Theorem 4.2 gives an

estimate on the H1�h-norm of u on two sides of Rf , more precisely, on Rf �
½0, injðM1Þ=2� � ½�T=2,T=2� and Rf � ½0, injðM2Þ=2� � ½�T=2,T=2�: Hence the trace
theorem yields that the trace of u onto Rf is well-defined from both sides in HjðRf �
½�T=2,T=2�Þ for j 2 ð0, 1=2Þ: Namely, writing the trace of u onto Rf from the two
sides as

u6 :¼ lim
h!06

uðz þ hn, tÞ, z 2 Rf , (4.8)

the trace theorem and Theorem 4.2 yield that, for any j 2 ð0, 1=2Þ,
ku6kHj Rf� �T

2,
T
2½ �ð Þ � max

j
Cðj,MjÞkukHjþ1

2ððMjnUÞ� �T
2,
T
2½ �Þ

� Cð log j log e0jÞ�ð12�jÞc,
(4.9)

where C is independent of e0:

4.2. Kinematic inverse rupture problem

Now we show that we can determine the displacement, u, and traction, s1, on both
sides of the rupture surface Rf by the unique continuation. By implication, we obtain
the tangential jump of particle displacement, ½uk�þ� and friction force, sf :
On the (orientable) rupture surface Rf with unit normal vector n, the dynamic slip

boundary condition and the force equilibrium are satisfied (e.g. [45]), which gives

n 	 u½ �þ� ¼ 0,

s1ðuÞ þ s2ðuÞ½ �þ� ¼ 0,

sf � ðn 	 T0 þ s1ðuÞ þ s2ðuÞÞk ¼ 0,

on Rf ,

8>>><>>>: (4.10)
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with

s1ðuÞ ¼ n 	 ðKT0

: ruÞ,
s2ðuÞ ¼ �rR 	 ðuðn 	 T0ÞÞ,

(
(4.11)

both of which are linearly depending on u, and the surface divergence is defined by
rR 	 f ¼ r 	 f � ðrf 	 nÞ 	 n: Here the labels “þ” and “�” indicate the two sides of Rf ,
and the subscript k represents the tangential component with respect to Rf : On the
exterior boundary @M, with unit normal vector m of the domain M, we apply the
boundary condition

m 	 ðKT0

: ruÞ ¼ m 	 T0 ¼ 0:

In the above, T0 is known and we assume that the components of T0 are time-inde-

pendent smooth functions on M n Rf : Denote by u6, ðs1ðuÞÞ6, ðs2ðuÞÞ6 the traces of
u, s1ðuÞ, s2ðuÞ on the two sides of the rupture surface Rf , respectively.
With Theorem 4.2, we can solve the kinematic inverse rupture problem as follows.

Theorem 4.3. Let M3 (the solid Earth), Rf (the rupture surface) be defined at the begin-
ning of Section 4. Let Mj (j¼ 1, 2) be the submanifolds with smooth boundary as in
Assumption 4.1, and u ¼ ðu1, u2, u3Þ, ui 2 H2ððM1 tM2Þ � ½�T,T�Þ be a seismic wave
satisfying (4.4) with (4.5). We observe on a connected open subset U � M1 \M2 with
smooth boundary satisfying �U \ @Mj ¼ ;. Then for sufficiently large T, we can determine

u6 2 Hj Rf � �T
2
,
T
2

� � 	
, ðs1ðuÞÞ6, ðs2ðuÞÞ6, sf 2 Hj�1 Rf � �T

2
,
T
2

� � 	
,

for any j 2 0, 12

 �

:

Furthermore, if

kukH2ððM1tM2Þ� �T,T½ �Þ � K0, kukH2ðU� �T,T½ �Þ � e0,

then there exist constants be0,C, c such that for any 0 < e0 < be0, we have
ku6kHj Rf� �T

2,
T
2½ �ð Þ þ ksf � ðn 	 T0ÞkkHj�1 Rf� �T

2,
T
2½ �ð Þ � Cð log j log e0jÞ�c,

where C is independent of e0, and c depends only on j.

Proof. With the unique continuation, we determine the displacement u on both sides of

the rupture surface u6 defined by (4.8), and, hence, ½uk�þ�, the tangential jump of par-
ticle displacement across the rupture surface, and

ðs1ðuÞÞ6 :¼ lim
h!06

s1ðuÞðz þ hn, tÞ, z 2 Rf :

By implication, as T0 is known, we determine

ðs2ðuÞÞ6 :¼ lim
h!06

s2ðuÞðz þ hn, tÞ, z 2 Rf :

Thus we obtain ðs1ðuÞÞk,6 and ðs2ðuÞÞk,6 and, hence, sf :

The regularity of u6 was already discussed following Theorem 4.2, and the regularity
estimate was given in (4.9).
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For the regularity of sf , we recall the Hðk,sÞ-norm in R
nþ1 (see Definition B.1.10 in

[46]) defined as

kuk2ðk,sÞ ¼
ð
R

nþ1
jûðnÞj2ð1þ jnj2Þkð1þ jn0j2Þsdn, (4.12)

with respect to the coordinates y ¼ ðx0, xnÞ 2 R
n � R: Note that when s¼ 0, the Hðk,0Þ

-norm above is equivalent to the usual Hk-norm. In our case, the local coordinates can
be chosen as the boundary normal coordinate of Mj such that

@Mj ¼ xn ¼ 0f g, Pi ¼ @2
xn þ aiðy,D0Þ,

where Pi is the wave operator (1.2). Moreover, define �Hðk,sÞ ¼ ujxn>0 : u 2 Hðk,sÞ
� �

:

Recall also Theorem B.2.9 in [46] that allows us to trade smoothness from the tangential
variables to the normal variable: if u 2 �Hðk1,s1Þ and Piu 2 �Hðk2�2,s2Þ, then u 2 �Hðk,sÞ if k �
k2 and kþ s � kj þ sj, j¼ 1, 2.

Now consider the homogeneous system (1.1) with f¼ 0 and u 2 Hh for some h 2 R:

Suppose that the coefficients of Li are smooth. We aim to show that @xnujxn¼0 is well-
defined in a rough Sobolev space. Locally u 2 �Hðh,0Þ ¼ Hh and Piui ¼ �LiðDu, uÞ 2
�Hðh�1,0Þ: This is due to Du 2 Hh�1 and

kDuk2ðh�1,sÞ ¼
ð
R

nþ1
jnûðnÞj2ð1þ jnj2Þh�1ð1þ jn0j2Þsdn

� 1
2

ð
R

nþ1
jûðnÞj2ð1þ jnj2Þhð1þ jn0j2Þsdn ¼ 1

2
kuk2ðh,sÞ:

(4.13)

Thus ui 2 �Hðk,sÞ if k � hþ 1 and kþ s � h: In particular, ui 2 �Hðhþ1,�1Þ: For an estimate

on the norm, define X ¼ v 2 �Hðh,0Þ : kvkX < 1� �
where kvkX :¼ kvkðh,0Þ þ kPivkðh�1,0Þ:

It follows from the closed graph theorem that X is a Banach space. Then apply Lemma
A.2 with Y ¼ �Hðhþ1,�1Þ and Z ¼ �Hðh,0Þ, and using (4.13), we have

kuikðhþ1,�1Þ � Cðkuikðh,0Þ þ kPiuikðh�1,0ÞÞ
� Cðkuikðh,0Þ þ kDuikðh�1,0Þ þ kuikðh�1,0ÞÞ � CkuikHh :

(4.14)

In fact the constant in (4.14) depends only on the coefficients of Pi, Li, which can be
extracted from the proof of Theorem B.2.9 in [46]. Repeating the argument above for
all i ¼ 1, :::,m (which requires changing coordinates and using the coordinate invariant
versions of the spaces), we have u 2 �Hðhþ1,�1Þ: Then it follows from [46, Theorem B.2.7]

that @xnujxn¼0 is well-defined in Hh�3
2 as rough distributions if h > 1

2 , and combining
with (4.14),

k@xnujxn¼0kHh�3
2
� Ckukðhþ1,�1Þ � CkukHh : (4.15)

Since u 2 HhðMj � ½�T=2,T=2�Þ for any h 2 1
2 , 1

 �

by Theorem 4.2, the argument

above and (4.11) show that ðs1ðuÞÞ6 2 Hh�3=2ðRf � ½�T=2,T=2�Þ: The estimate on the
norm of ðs1ðuÞÞ6 is given by (4.15) and Theorem 4.2:

kðs1ðuÞÞ6kHh�3
2 Rf� �T

2,
T
2½ �ð Þ � Cð log j log e0jÞ�c: (4.16)
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For the regularity of ðs2ðuÞÞ6, since u6 2 HjðRf � ½�T=2,T=2�Þ for j 2 0, 12

 �

, then

ðuðn 	 T0ÞÞ6 2 Hj and hence ðs2ðuÞÞ6 2 Hj�1ðRf � ½�T=2,T=2�Þ by (4.11). The esti-
mate on the norm of ðs2ðuÞÞ6 is given by (4.9) and (4.13):

kðs2ðuÞÞ6kHj�1 Rf� �T
2,
T
2½ �ð Þ � Cð log j log e0jÞ�c: (4.17)

Thus sf 2 Hj�1ðRf � ½�T=2,T=2�Þ by (4.10), and the estimate on its norm directly fol-
lows from (4.16) and (4.17). w

Theorem 4.3 yields the following corollary by interpolation.

Corollary 4.4. Under the assumptions of Theorem 4.3, assume furthermore that

kukHsððM1tM2Þ� �T,T½ �Þ � K, for some s � 2:

Then there exist constants be0,C, c such that for any 0 < e0 < be0, we have
ku6kHr Rf� �T

2,
T
2½ �ð Þ þ ksf � ðn 	 T0ÞkkHr�1 Rf� �T

2,
T
2½ �ð Þ � Cð log j log e0jÞ�c,

for any r 2 1, s� 1
2


 �
, where C is independent of e0, and c depends only on r, s.

Proof. Since we assume ujMj�½�T,T� 2 HsðMj � ½�T,T�Þ for j¼ 1, 2, the trace onto Rf

from both sides u6 2 Hs�1
2ðRf � ½�T,T�Þ, and

ku6kHs�1
2ðRf� �T,T½ �Þ � CkukHsðMj� �T,T½ �Þ � CK: (4.18)

Moreover, it follows from (4.11) that s1ðuÞ, s2ðuÞ 2 Hs�1 in the boundary normal neigh-

borhood of Mj. Hence their traces ðs1ðuÞÞ6, ðs2ðuÞÞ6 2 Hs�3
2ðRf � ½�T,T�Þ, and the

norms are also bounded by CK: Therefore sf 2 Hs�3
2ðRf � ½�T,T�Þ by (4.10), and

ksf � ðn 	 T0ÞkkHs�3
2ðRf� �T,T½ �Þ � CK: (4.19)

Then the corollary follows by interpolating (e.g. [47, Theorem 6.4.5]) between (4.18),
(4.19) and Theorem 4.3. w

Remark 4. In particular, when s> 2, we obtain estimates from Corollary 4.4 for u6 on
Sobolev spaces that are Banach algebras, see [43, Theorem 4.39].
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Appendix A

Consider the classical elasticity system in a bounded domain X � R� R
3,
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q@2
t u� lðDuþrdiv uÞ � rðk div uÞ �

X3
j¼1

rl 	 ðruj þ @juÞej ¼ 0, (A.1)

for the displacement vector u ¼ ðu1, u2, u3Þ depending on ðt, xÞ 2 X: Assume the density q 2
C1ð�XÞ and the Lam�e parameters l, k 2 C2ð�XÞ:
Lemma A.1 (Lemma 5.1 in [11]). Let v ¼ div u, w ¼ curl u. Assume q 2 C1ð�XÞ and l, k 2
C2ð�XÞ. If u solves (A.1) then

q
l
@2
t u� Duþ A1ðu, vÞ ¼ 0,

q
2lþ k

@2
t v� Dvþ A2ðu, v,wÞ ¼ 0,

q
l
@2
t w� Dwþ A3ðu, v,wÞ ¼ 0,

where A1,A2,A3 are linear differential operators of first order with coefficients in C0ð�XÞ. Moreover,
when q, l, k do not depend on t, then the coefficients of Aj do not depend on t.

Note that this linear system of equations above satisfied by the vector ðu, div u, curl uÞ con-
sists of seven scalar equations. A similar result holds for the Maxwell system, see Lemma 4.1
in [11].

Lemma A.2 Let X � Y � Z be three Banach spaces. Suppose that there is a constant C0 > 0 such
that for all x 2 X and y 2 Y ,

kxkZ � C0kxkX , kykZ � C0kykY :
Then there is a constant C> 0 such that for all x 2 X,

kxkY � CkxkX:

Proof. Due to the closed graph theorem, applied to the inclusion map I : X ! Y, it is enough to
show that if xn ! x in X and xn ! y in Y then x¼ y. The continuous inclusions X � Z and Y �
Z imply that xn ! x and xn ! y in Z. Thus x¼ y. w
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