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Abstract 

This paper introduces the novel concept of fixture capability measure to determine fixture layout for the best assembly process yield by optimizing 
position of locators and reference clamps to compensate stochastic product variations and part deformation.  This allows reducing the risk of 
product failures caused by product and process variation. The method is based on three main steps: (i) physics-based modelling of parts and 
fixtures, (ii) stochastic polynomial chaos expansion to calculate fixture capability, and (iii) fixture capability optimisation using surrogate 
modelling.  The methodology is demonstrated and validated using the results of an aerospace wing sub-assembly joined by riveting technique.  
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of 48th CIRP Conference on MANUFACTURING SYSTEMS - CIRP CMS 2015. 
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1. Introduction and Motivation 

Fixtures are used to accurately locate and securely hold 
parts during machining, assembly and joining operations to 
ensure that quality requirements are achieved. Fixture design 
is one of the most important tasks during process design 
phase of a new product development as it involves the 
definition and layout of locators and restraining blocks which 
provide support to the parts being assembled, and as a result 
highly affect assembly process capability and the final 
product quality. 

Over the years, researchers have addressed different issues 
related to the fixture design: fixture planning, fixture 
configuration, and fixture construction. In the fixture 
planning stage, issues related to number and type of locators 
and orientation of fixture, are addressed. The fixture 
configuration stage determines the layout of a set of locators 
and clamps. Finally, the fixture construction stage involves 
the 3D CAD modelling of fixture components with the 
definition of contact surfaces with the work-piece [1]. This 
papers deals with the problem of optimizing the fixture layout 
for assembly processes of compliant sheet-metal parts. The 
optimum fixture layout design (which falls under the domain 
of fixture configuration) aims to calculate the optimum 

locator and clamps location, which satisfies given quality 
requirements on critical key performance indicators (KPIs). 
It has been reported that only 60-70% of Right-First-Time is 
reached during the design phase [2]. Failures not predicted 
during the design phase can appear during ramp-up, which in 
turn, require engineering changes thus leading not only to 
significant cost increase (‘Rule of 10’) but also cause delay 
in the launch of a new product. Moreover, most of the 
engineering changes [3], after the fixture design release, are 
triggered by geometrical and dimensional variation of parts 
being assembled. For example, for a single closure panel 
fixture around a hundred engineering changes are made after 
design release. For each change the fixture design has to be 
revised, verified and validated and finally, design needs to be 
updated, leading to further cost increases and production 
launch delays. However, research on fixture layout design for 
compliant sheet-metal parts is limited due to lack of part 
variation stochastic model (“non-ideal” part model) which 
has capability to expand the current ideal-part CAD/CAM 
models to emulate real parts variation at early design stage. 
Moreover, existing research has focused on the development 
of methods under the assumption of ideally rigid parts. 
Therefore, “3-2-1” locating scheme has been analysed both 
for single- and multi-station assembly systems [1,4]. 
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Subsequently, more sophisticated models have been 
introduced aiming to model both part compliancy (“N-2-1” 
locating scheme) and part-to-part interactions. Recently, a 
more comprehensive methodology has been reported in [5], 
where a special-purpose finite element software, called 
EAVS (Elastic Assembly Variation Simulation), is 
implemented to simulate variation propagation in panel 
assembly. This involves using time-intensive Monte Carlo 
(MC) simulations which leads to several weeks of 
computational time when dealing with medium to large sub-
assemblies as used in body-in-white automotive applications. 
Li et al. [6] improved the approach for robust fixture design 
optimisation by using response surface methodology. 
Production data were employed to model part variability and 
“non-ideal” CAD models were created by running FEM 
simulations. Then prediction and correction method was used 
to determine the fixture locating layout. For some assembly 
processes, such as (remote) laser welding or riveting, fixtures 
have to additionally maintain a proper part-to-part fit-up to 
satisfy quality constraints. This implies that fixture layout 
needs to be optimized not only for a single product variation, 
but for a production batch, as to accommodate stochastic part 
variation as coming from real manufacturing process. Li et 
al. [7] calculated the optimum fixture layout with normally-
distributed product variation, as obtained based on 
production data. 

Table 1. Literature review table on fixture layout optimisation. 

Fixture model 

 

 

Stochastic model 

“3-2-1” locating 
scheme  

“N-2-1” locating 
scheme  

Monte Carlo 

simulations 

based on: 

Production 

data 
Li et al. (2010) [14] 

Cai et al. (2006) [5] 

Li et al. (2001) [12] 

Li & Shiu (2001) [13] 

Design  

data 
Lu & Zhao (2014) [11] 

Cai, (2008) [17] 

Camelio et al. (2004)[10] 

 Cai et al. (1996) [19] 

Surrogate models 

based on: 

Production 

data 

Phoomboplab & 

Ceglarek (2008) [1] 

Li et al. (2009) [6] 

Li et al. (2003) [15] 

Li et al. (2002) [7] 

Design  

data 
Kim & Ding (2004) [4] Proposed in this paper 

Table 1 summarizes the main methods developed over the 
years to optimize the fixture layout design. Some of the 
methods are mainly based on production data, making their 
applicability very limited during early-stage design when 
only CAD and tolerance specifications are available. This 
limitation has been partially overcome by stochastic models 
based on design data and relying on MC simulations. 
Although these methods provide accurate prediction of 
process capability, they are not suitable for handling complex 
fixture systems with high number of design parameters. To 
overcome the aforesaid limitations, this paper proposes a 
novel methodology for fixture layout design optimisation for 
a batch of compliant non-ideal parts by introducing the 
concept of fixture capability. Intuitively, fixture capability 
represents the capability of the fixture to deliver quality 

requirements under given product and process variations. The 
proposed fixture capability is a measure of the probability 
that a given fixture satisfies product quality requirements 
during production. The developed method is based on: (i) 
modelling of product/process variation using CAD/CAM 
data and tolerance specifications at early-stage design; (ii) 
integration of physics-based modeller with nested 
polynomial chaos; and (iii) robust fixture layout optimisation 
based on surrogate modelling. 

The rest of the paper is arranged as follows: Section 2 
presents the problem formulation; Section 3 summarizes the 
proposed methodology; lastly, industrial case study and final 
remarks are depicted in Sections 4 and 5, respectively. 

2. Problem Formulation 

The dimensional quality of a manufactured product is 
evaluated by its KPIs, which are delivered by key control 
characteristics (KCCs). In case of fixture design, KPIs 
correspond to functional key features measured on the final 
assembly/sub-assembly (such as gap and flushness, part-to-
part gap, spring-back deviations and/or residual stresses in 
automotive body assembly). KCCs refer to assembly process 
parameters, such as position of all locators and clamps. 

Let us assume that the set of KPIs and KCCs are grouped 
as in Eq. (1), where NKPI and NKCC are the numbers of KPIs 
and KCCs, respectively. 
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NiKPIKPIs
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                          (1) 

The objective of fixture layout design optimisation is to 
maximize the fixture capability in presence of stochastic 
manufacturing errors both at product and process levels. Let 
“ ” and ” ” be the stochastic and determinist parameters, 
respectively.  
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For instance, stochastic parameters (Eq. (2a)) represent 
manufacturing errors and/or uncertainty (i.e., part variation 
and production batch variation or tooling variation); 
whereas, deterministic parameters (Eq. (2b)) represent 
nominal design intent. Moreover, design constraints (DCs) in 
terms of lower (DCL) and upper (DCU) allowance limits (as 
defined by quality and design specifications) are defined for 
each KPIs and KCCs (Eq. (3)). 
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2.1. Variation Response Function 

In automotive and aerospace fixture assembly systems one 
leading challenge is the identification of the relationship 
mapping between input KCCs and output KPIs. Let Fi be the 
variation response function, defined as: 

, , 1,...,
iKPI i KCCs KCCs KPIF i N  (4) 

Eq. (4) indicates that having defined the Fi function, any 
stochastic variation of the output KPIs can be analytically 
calculated knowing the stochastic variation of the input 
KCCs along with the deterministic parameters. For example, 
when optimizing the fixture design for remote laser welding 
joining process, the input stochastic variation can be imputed 
to part variability ( KCCs), whereas the deterministic 
parameters ( KCCs) are clamps and locators, whose location 
and number need to be optimized to achieve a satisfactory 
part fit-up ( KPIs). This paper proposes a systematic 
methodology to efficiently estimate the variation response 
function by integrating stochastic polynomial chaos (PC) 
expansion [8] with analytical surrogate modelling. The 
concept of polynomial chaos expansion was originally 
proposed into the CAE/FEM simulation community for 
uncertainty quantification. However, to the best of our 
knowledge, to date, no research paper has been published to 
address the problem of fixture layout design optimisation. Eq. 
(4) can be approximated through a series of orthogonal 
polynomial functions, called chaos expansion of degree . It 
can be written as Eq. (5a), where t,i and Pt are the t-th PC 
coefficient and polynomial of degree “t”, respectively. 

,
0

, , 1,...,
PC
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N

KPI KCCs KCCs t i t KCCs KPI
t

P i N  (5a) 

NPC is the number of PC coefficients equal to: 

!
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N
N

N
 (5b) 

It can be proved that the polynomial series has a unique 
solution for given probability density functions (PDFs). For 
example, in case of Gaussian processes it can be proved that 
the orthogonal polynomials correspond to the normalized 
Hermite series [8].  

2.2. Fixture Capability 

The fixture capability, FC, represents the capability of the 
assembly fixture to deliver KPIs under given product and 
process variations. 

FC is maximized by enhancing the probability of 
satisfying all design constraints. Let Pr be the probability of 
satisfying the design constraints, for a given stochastic 
variation as in Eq. (6), where “PDF” stands for the 
probability density function. 

The fixture capability is then expressed as a cumulative 
probability index, as stated in Eq. (7). The reader can notice 
that Eq. (7) simplifies to the product of the individual 
probability values when the KPIs are stochastically 
independent. 

 

Fig. 1. Proposed methodology for fixture capability layout optimisation. 
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2.3. Fixture Layout Design Optimisation 

The fixture layout design optimisation problem is 
formulated as in Eq. (8), which states as follows: in order to 
obtain the optimum configuration of deterministic 
parameters ( KCCs), the fixture capability (FC) needs to be 
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maximized, for given stochastic variation ( KCCs) at product 
and process levels. 

: max ,

. . :

KCCs

KCCs

KCCs KCCs KCCs

( )
KCCs

FC

s t DCs
 (8) 

3. Proposed Methodology 

Fig. 1 shows the overall framework of the proposed 
methodology for fixture layout design optimisation. The 
main steps of the methodology are: 

3.1. STEP 1 & STEP 2 - Physics- & PC-based Kernel 

The key role is played by the nested inner- and outer-
loops, which allows calculating the PC coefficients based on 
least squares technique. The inner-loop handles the 
deterministic parameters for a given set of stochastic 
parameters, which are generated by the outer-loop. Eq. (5a) 
can then be re-written as Eq. (9a) for any couple (j, k), “j” 
being an arbitrary sample of the j-th stochastic parameters 
(whose arbitrary samples are Nouter), and “k” the k-th 
deterministic parameters (whose arbitrary samples are Ninner). 
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which leads to Eq. (10), where Ai,k (Nouter x NPC) is called 
weight matrix, whereas bi,k (Nouter x 1) is denoted as load 
vector. The number of samples (i.e., Nouter) needs to be bigger 
or equal to the number of unknown PC coefficients (i.e., NPC 
as in Eq. (5b)). 

,
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The over-sampling is necessary to make the system of 
linear equations in (10) over-determined (i.e., more 
equations than unknowns) and then solvable using the least 
squares method. 

Although input stochastic parameters can be arbitrarily 
assigned, it seems an attractive strategy to randomly sample 
them, based on the input PDF (1 as in Fig. 1). For example, 
for a given part being assembled, product variation can be 
assigned in the form of shape errors as defined by GD&T or 
ISO tolerance specifications. In this paper, we have 
implemented the morphing method, originally developed in 
[9]. 

This technique allows to parametrize any 3D complex 
geometry and to embed geometrical tolerance deviations for 
given probability distributions. Instances of the weight 
matrix are simply calculated (2) by evaluating the orthogonal 
chaos polynomials at the sampled stochastic parameters. 
Deterministic parameters are sampled as well (3). Uniform, 
random and/or space filling techniques (i.e., full factorial, 
fractional factorial, etc.) can be used. 

The physics-based modeller (4) plays a critical role to 
determine instances of the load vector, as formally defined in 
Eq. (4). For this purpose computer simulation CAT 
(Computer Aided Tolerancing) tools, such as 3D-DCS 
Compliant Modeller, EAVS, Robust Design and Tolerance 
(RT&D), and Tolerance Analysis of deformable Assembly 
(TAA) can be used to emulate part and fixture stack-ups. This 
paper uses Variation Response Method (VRM) [3] because 
of its advanced capability to automatically parametrize KCCs 
for given product and process variations, including: fixture 
constraints; compliancy of parts being assembled; and part-
to-part interaction. 

Having calculated the weight and the load vector, PC 
coefficients are then solved (5) by Eq. (10). In this paper, 
fixture capability (6) involves calculating the probability of 
satisfying design constraints, which relies on the PDFs of the 
given KPIs. Generally, even though the input stochastic 
parameters ( KCCs) have Gaussian distribution, the output 
PDFs related to KPIs cannot be approximated through a 
Gaussian function because of the non-linearity of the 
variation response function (i.e., Fi). Therefore, we have used 
kernel density estimation (KDE) to get a smooth PDF with 
few samples. It has: 

( )

( ) (z, ) ( )
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k k kN
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N h h

k N i N
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where h and  are the bandwidth and the probability kernel, 
respectively. NKDE is the number of samples randomly 
generated by Eq. (5a). 

3.2. STEP 3 - Surrogate Model & Optimisation 

Fixture capability’s instances are generated for given input 
stochastic parameters and sampled deterministic parameters. 
Sampled parameters are used to train a surrogate model (7.1), 
analytically linking input stochastic parameters and 
deterministic parameters; adaptive polynomial fitting, spline 
or Kriging methods can be utilized for this purpose. 

The last step of the methodology involves the calculation 
of optimum deterministic parameters (7.2) through Eq. (8). 

4. Industrial Case study 

The proposed methodology has been applied with respect 
to an aerospace wing sub-assembly joined using riveting 
technique (see Fig. 2). The sub-assembly mainly consists of 
one large bended skin with three stringers joined by 
NAS1097AD4-4 rivets. All parts are made by Aluminium 
alloy (material thickness: 1.02 mm). 
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Fig. 2. Aerospace wing sub-assembly joined by riveting technique.  

The skin and the stringers are assembled on the fixture 
schematically, as shown in Fig. 2 which highlights all blocks 
and support elements. 

The attention of this study is oriented to the part-to-part 
gap between skin and stringer[1]. Indeed, excessive gap 
values may cause over-stress on the rivets because of 
unwanted elastic spring-back. Therefore, it is of interest to 
optimize the location of clamp[1] to clamp[3] so that the part-
to-part gap for all rivets (R[1] to R[11] – NKPI=11) is under 
the acceptable limit of 0.4 mm. Clamp[1] to clamp[3] are 
assumed as deterministic parameters and their position is 
limited to the translation along the longitudinal axis of 
stringer[1]. 

Stochastic part variation (Gaussian distributed with mean 
1.0 mm and standard deviation 0.5 mm) has been assumed 
for both skin and stringer[1]. Morphing mesh [9] has been 
implemented to model part variation. For this purpose 4 
control points (i.e., N KCC=4) have been used. The steps of the 
methodology are illustrated as follows. 

STEP 1 & STEP 2 - Physics- & PC-based Kernel 

Deterministic control parameters have been sampled using 
full factorial approach (3 levels for each deterministic 
parameter, which equals Ninner=27 (33)). 

The physics-based model has been developed using VRM 
simulation toolkit. Chaos expansion has been approximated 
using 2nd degree ( =2) polynomial, thus leading to Nouter=30 
(2 NPC). The total number of physics-based simulations 
solved for equals 810 (Nouter times Ninner). 
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Fig. 3. Surrogate model development (clamp[3]=30 mm). 
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STEP 3 - Surrogate Model & Optimisation 
The probability of satisfying the design constraints has 

been developed using Gaussian-based KDE estimation with 
adaptive bandwidth (NKDE=1000); whereas, adaptive 
polynomial surrogate model with leave-one-out cross 
validation has been used for surrogate model calculation. Fig. 
3 shows the calculated individual probability functions (Figs. 
3a-m) and the cumulative fixture capability (Fig. 3n). The 
constrained optimisation problem stated in Eq. (8) has been 
solved using Nelder-Mead algorithm. Table 2 shows the 
probability values related to the optimum fixture clamp 
layout: KCCs={56.1, 102.0, 45.2}. 

Table 2. Optimum fixture layout results. 

Pr,1 Pr,2 Pr,3 Pr,4 Pr,5 Pr,6 
0.99 1.00 0.99 0.99 1.00 1.00 
Pr,7 Pr,8 Pr,9 Pr,10 Pr,11 FC 
1.04 0.84 0.76 0.99 1.00 0.67 

5. Conclusions and Final Remarks 

This paper proposes a new methodology for fixture layout 
design optimisation of batch of compliant non-ideal parts by 
introducing the concept of fixture capability. The paper 
makes two contributions: (1) industrial - optimisation of 
product/process capability at design stage to reduce costly 
engineering changes at installation and commissioning; (2) 
research - development of a computationally efficient 
optimisation methodology which analytically evaluates 
fixture capability considering product/process variations. 
The results have several benefits.  First, the method can be 
applied in the early design stages, when no data are available 
(only CAD/CAM information and tolerance specifications 
are provided). Next, the approach is computationally efficient 
and can be used to optimize both single- and batch-of-part 
assembly. Finally, fixture capability is analytically estimated, 
thereby implying that critical design parameters are tracked 
and corrective actions can be taken to improve the assembly 
quality. The method has been applied in fixture layout 
optimisation for aerospace wing sub-assembly joined by rivet 
technique. However, it can also be beneficial for fixture 
layout optimisation for any assembly process involving 
sheet-metal parts. The proposed method goes beyond the 
state-of-art by developing an efficient methodology based on 
polynomial chaos expansion to optimize fixture design using 
design data; whereas, existing methods are mainly limited to 
expensive MC simulations using production data. This 
research will be further explored to model heterogeneous 
design tasks (such as, joining optimisation) to achieve both 
cost and cycle time improvement. 
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