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Following animated discussions in the 1990–2010 period concerning the validity and poten-
tial application of Pb isotope data to yield information on ancient metallurgy, recently lead
isotope analysis has been extensively applied with alternate success and difficulty to the early
stages of copper/lead/silver/tin metal flow in the Central Mediterranean area, arbitrarily de-
fined as including Italy, the Mediterranean Islands, and the surrounding regions for compar-
ison purposes. A wealth of data are now available in the literature, many of them interpreted
within local contexts and limited geographical extension, and often within a shifting concep-
tual modeling frame. A brief review of the recently published data indicate that the metal flow
in prehistory and protohistory is far more dynamic than presumed on the basis of the tradition-
ally assumed archaeological models. It is suggested that the isotopic tracers, if correctly ap-
plied and interpreted, may substantially help in decoding the metal exploitation and trade
patterns at different scales, from the local links between mines and smelting sites to wider re-
gional or long-distance trades. The abundant dataset available are however in need of thor-
ough interpretation in terms of wider archaeological and archaeo-metallurgical questions,
possibly by the use of advanced statistical methods and unconventional data mining protocols.
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INTRODUCTION

Lead isotope (LI) analysis (LIA) is conceptually rooted on the radiogenic isotopes techniques
commonly used in geology and petrology to decode the age of formation of rocks, including
the age of the Earth and of meteorites, providing clues on the age and evolution of the entire Solar
System (Faure and Mensing 2005; Allègre 2008). Rocks and ore deposits that were generated
following the common lead hypothesis (Sinha and Tilton 1973) can be chronologically discrim-
inated based on the position of their measured Pb isotope ratios on the well-modeled universal
decay curve of radiogenic elements (Cumming and Richards 1975; Stacey and Kramers 1975;
Albarède et al. 2012). This concept was first brilliantly proposed as a method to distinguish
the geological origin of archaeological metals in the mid-sixties (Brill and Wampler 1965,
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1967; Grögler et al. 1966). After more than a century of chemical analyses of ancient metals
(see the extensive historical accounts in: Rehren and Pernicka 2008; Pernicka 2014; including
the projects of systematic chemical analyses of ancient metals carried out in Halle and Stuttgart),
the transfer of the concepts of isotope geology to archaeometallurgy represented a substantial ad-
vancement in the field of metal provenancing.

LIA were first systematically carried out on silver ores and objects, mostly from the Eastern
Mediterranean and the Aegean area by the joint effort of the Oxford and Heidelberg researchers
(Chamberlain and Gale 1980; Gale et al. 1980; Wagner et al. 1980). The subsequent application
of the method to copper and copper-based alloys (Gale and Stos-Gale 1982), and especially the
skilled combination of lead isotope ratios and trace element patterns, opened the way to the pos-
sibility of reliably relating metal artefacts to the specific ore deposits from which they could have
originated, something that had been quite elusive with chemical methods alone. The trace ele-
ment pattern measured on the metal does preserve some chemical information of the ores of
which it was made (Pernicka 1999). However, as a matter of fact, chemical analyses by them-
selves mostly fail to provenance metals due to large chemical heterogeneities in ore deposits
and variable fractionation of chemical elements among ores, slag, and metal in reducing proce-
dures performed with different smelting processes and conditions. Metal refining, alloying,
remelting and mixing may also complicate interpretation and often make reliable provenancing
impossible by trace element analysis alone. There is ample discussion in the literature about this
issue, and it will not be continued here, so the reader is invited to peruse the discussions in
Pernicka (2014) and Radivojević et al. (2019), and the cited literature on the subject.

The use of LI data to characterize and discriminate ore sources has some advantages, mostly
related to the frequent homogeneity, reproducibility, and well definable isotopic signal in a single
ore body, and to the generally assumed absence of fractionation of the lead isotopes during the
metallurgical processes (Stos-Gale and Gale 2009; Cui and Wu 2011). However, as abundantly
discussed in the literature, it is conceptually evident that (1) it is not possible to discriminate two
ore bodies having the same geological age on the isotopic character alone, and (2) although it is
possible to firmly establish that the measured LI ratios can exclude the origin of the metal from
isotopically non-compatible ores, it is not possible to firmly establish origin from a specific ores
unless all other sources can be excluded. The interpretation process, therefore, must involve
comparison with all possible sources, and in most cases it should also rely on complementary
chemical, geographical, geological, archaeological, or archaeo-metallurgical information (Baron
et al. 2014; Villa 2016). Besides the intrinsic limitations of the method, the pitfalls linked with
the use of limited databases and partial or biased contextual information were at the basis of
the fierce discussion on the validity of LIA during the last decades (summarized in: Pollard
2009, 2011, Pollard et al. 2014, Gale 2009, Cattin et al. 2009a, Killick et al. 2020). It is now gen-
erally agreed that the interpretation of LI values must be geologically sound and considered in the
context of all the other material evidence in order not to incur into untenable conclusions, such as
the recent claim that Chinese bronzes originated in South Africa (Sun et al. 2016; Liu et al.
2018). As an example, the early interpretation of Scandinavian object data based on a limited
Alps-free database resulted in several erroneous conclusions (Ling et al. 2014), which were sub-
sequently recovered by the use of a more complete reference database (Melheim et al. 2018; Ling
et al. 2019; Nørgaard et al. 2019).

In the 80s and 90s of last century, extensive projects consistently analyzing ores, metallurgical
waste, and metal objects were performed mostly by German and British teams focusing on South
East-Europe and the Balkans, on the Western Mediterranean and the Aegean, on Anatolia and the
Levant, most notably on the Arabah Valley. As the result, vast syntheses of ore and metal LI data
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were reported for Cyprus (Gale et al. 1997; Stos-Gale et al. 1997), Bulgaria (Pernicka et al. 1997;
Gale et al. 2000), or Serbia (Pernicka et al. 1993). These fundamental investigations resulted in
the core of the existing LI reference databases of ores and objects, routinely employed during
archaeo-metallurgical investigations for comparison of LI data and provenance interpretation.
The most cited, publicly available, and thus widely employed LI database is certainly OXALID
(oxalid.arch.ox.ac.uk/, Stos-Gale and Gale 2009), although virtually each research group built on
the core data from the literature by adding LI data measured on subsets of local ores (see for ex-
ample: the British Isles, Rohl and Needham 1998; the Alps, Artioli et al. 2016a; Scandinavia,
Ling et al. 2013; or Iberia: Arribas and Tosdal 1994, Hunt-Ortiz 2003, Klein et al. 2009, Santos
Zalduegui et al. 2004). The large amount of LIA published for the Iberian peninsula in the last
decades is remarkable, especially for prehistoric copper mines with radiocarbon chronology
(a compilation of available geological data can be found in Montero-Ruiz 2018). Again, the issue
concerning the completeness of the reference database will not be discussed here in detail, al-
though it is worth reminding that a careful control of the geological and mineralogical signifi-
cance of the employed dataset is mandatory (Artioli et al. 2016a). Inquiries of available
databases are generally performed by simple graphical and visual estimation of matching be-
tween the measured LI ratio on the objects and the LI reference fields of the ores. However the
use of more quantitative assessments such as Euclidean distances in the 3D isotopic space
(Stos 2009) and/or probability calculation by kernel density estimation (KDE: Baxter et al.
1997, De Ceuster and Degryse 2020) is highly recommended. Because of the large overlap in
ore fields and because of the large amounts of data present in the literature, reliable provenancing
will need in the future more sophisticated and flexible algorithms, possibly rooted in the rigorous
geochemical and geological modeling of the time evolution of isotopic curves (Albarède et al.
2012; Killick et al. 2020). As an example, the fitting of the measured LI ratios on the objects
along or across the isotopic evolution curve of the ores may give clues between different inter-
pretation models (Angelini et al. 2019). Provenance analyses of course are just the starting point
that should lead to the comprehension of more complex socioeconomic processes resulting in the
observed metal diffusion (Rehren and Pernicka 2008; Armada et al. 2018; Radivojević et al.
2019).

In the last two decades, the number of LI investigations of ores and metal objects has substan-
tially expanded. Many ore bodies in Europe and beyond have been actively surveyed, sampled,
and characterized from the mineralogical, geochemical, and isotopic point of views. The avail-
able LI databases of ore deposits now encompass most of Continental Europe from Iberia to
Poland, the British Isles, Scandinavia, most of the Mediterranean Islands such as Balearic
Islands, Sardinia, Crete (for most of the European and Mediterranean deposits, see the extensive
reference list in Ling et al. 2014). Data are also available for the major deposits in the African
countries facing the Mediterranean such as Morocco, Tunisia, and Egypt (see for example
Skaggs et al. 2012). LI data are available also for areas beyond Anatolia and the Levant, such
as for example the Arabian Shield, Oman, Iran, and Armenia. Asian deposits are also being ex-
tensively mapped (Hsu and Sabatini 2019). Despite the fact that specific small areas where ores
are present still need systematic survey and LI characterization (for example Slovenia, Albania,
Corsica), a large scale overview of European geology shows that there is a satisfactory coverage
of virtually all major ore deposits. It is true that in antiquity, especially in prehistory, even small
and localized ore bodies could well be exploited for the extraction of metals that are uninteresting
from the point of view of modern industrial metallurgy. However, the LI signature of most
large-scale geological structures are known and available, so that during the interpretation of
the isotopic archaeo-metallurgical data it is possible in many cases to predict (from the model
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age of the formation) or assume (from the geological nature of the body) the likely isotopic char-
acter of the unsampled or unknown ores (Albarède et al. 2012). The issue is particularly relevant
in the discussion of the tin metal circulation in the Bronze Age Mediterranean Sea.

No further methodological issue will be discussed here, other than refreshing the recommen-
dation of the use of a robust database (i.e. geologically screened) when interpreting LI data. In
the following discussion separate ore databases containing LI data for Cu-containing minerals,
Pb-Ag containing minerals (essentially galena and argentiferous galenas) and Sn-containing min-
erals will be used for each specific application/interpretation. Furthermore, it is advised to use 3D
LI data referred to 204Pb (i.e. the use of 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb ratios as plotting
parameters) because they are consistent with the geological interpretation and modeling, and
more discriminating between the different ore sources (Killick et al. 2020). Some authors even
propose to use geological/geochemical parameters in place of the measured isotopic ratios (i.e.
μ, related to the 238U/204Pb content in the source; κ, related to the 232Th/238U ratio; and T, the
time of formation of the deposit; Albarède et al. 2012), although the T-μ- κ representations might
be hard to be accepted in the archaeological literature. Although complex geological histories
may prove difficult to model, especially when secondary processes involving input of radiogenic
components are active, it has been shown in practice that the expert application of model ages to
ore deposits may be an efficient way to discriminate metal sources (Desaulty et al. 2011), because
the age model relies on objective geological parameters concerning the common Pb composition
in the mantle and the 238U/204Pb composition in the crust (Stacey and Kramers 1975; Albarède
and Juteau 1984).

Archaeology is essentially predicated on the observation of change and difference, either in
time or space. Accordingly, this review will focus on the available evidence for metals and met-
allurgy in the Central Mediterranean, attempting a broad interpretation of the published LI data in
terms of (1) the chronology of metal diffusion in the area, and (2) the possible sources exploited
at different times, in relationship with the proposed models of the rise and diffusion of
metallurgy.

Because archaeological chronology may be very different even for geographically contiguous
areas, we will rely on a simplified time table based on absolute dates and referred to the Italian
chronology, as central in the Mediterranean context (Tab. 1), although of course it is hardly ap-
plicable to all local archaeological sequences. For example the period roughly related to the Bea-
ker event (appx 2700–2200BC, Olalde et al. 2018) corresponds to the Late Neolithic in Southern
France and Switzerland, the Late Eneolithic (or Late Copper Age, see: Pearce 2019) in Northern
Italy and in most of the Islands (Corsica, Sardinia, Sicily), and the Middle Bronze Age in several
of the Balkan countries. Obviously societal and cultural changes reflected in the archaeological
record take place at different times and with different paces in geographically distinct areas,
and metallurgy is not immune from this general rule (Diamond 1997; Pare 2000; Roberts and
Thornton 2014; Armada et al. 2018).

COPPER AND COPPER ALLOYS

Concerning the wider picture of the rise of copper metallurgy, there are two major lines of think-
ing (Pearce 2015; Montero-Ruiz and Murillo-Barroso 2017). The first one is based on the diffu-
sionist paradigm following Childe and Wertime, arguing for a single origin of the metallurgical
knowledge and technology in the Near East or Anatolia (Roberts et al. 2009). The second one
favors Renfrew’s idea (Renfrew 1969) of multiple centers of copper metallurgy, located in the
Near East (Iran, Tal-i Iblis, late 6th millennium BC: Caldwell 1968, Pigott and Lechtman
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2003), the Balkans (Serbia, Belovode, 5000–4650BC: Radivojević et al. 2010), and Iberia
(Spain, Cerro Virtud, 4900–4450BC: Ruiz-Taboada and Montero-Ruiz 1999) because of the
early dates of archaeological evidence. With no claim to resolve the issue, we should keep these
models in mind when interpreting the LI data available for the Central Mediterranean area. The
selected focus on the Central Mediterranean (Italy, the Mediterranean Islands in the Tyrrenian
area, and the neighbouring regions) wishes to investigate the role of this region as a key hub in-
volved in different, and sometimes multiple, cultural and economic exchanges. The subtle inter-
play among the socio-economical frame, the technological knowledge, and the exploitation of
different sources of metal around the Mediterranean at different times is still there to be
deciphered.

One of the problems in decoding the rise and diffusion of metallurgy in the broad Central
Mediterranean region is that the already scarce archaeological evidence has been poorly charac-
terized by modern archaeometric tools, and part of the information is sometimes flawed by mis-
interpretation. For example, if we examine the early metallurgical evidences often reported for
the early fourth millennium, we can find systematic citations of Lipari (Acropolis: Bernabò Brea
and Cavalier 1980) as evidence of the presence of copper slags (see for example: Cocchi Genick
1994, Pessina and Tiné 2008, Dolfini 2014a), and Grotta della Monaca (Calabria: Larocca 2005,
Quarta et al. 2013) as copper mine. As a matter of fact, the Lipari slag has been recently analysed
and found to be the product of pyrotechnology unrelated to metallurgy (Martinelli et al. 2016),
and the Calabrian cave was constantly used in prehistoric times to obtain iron and copper pig-
ments (Larocca 2010), though there is no evidence of extractive metallurgy. Reporting these sites
in the maps of early copper metallurgy severely overemphasizes its importance in the South of
Italy and Sicily, which are remarkably devoid of copper resources from the geological point of
view. Similarly, the most promising evidence of primary or secondary copper metallurgy
(slag, raw metal, technical ceramics) in Central and North Italy (Botteghino di Parma: Maffi
et al. 2014) has not been fully analysed. In the late fifth millennium and early fourth millennium
most of the metal circulating in Northern Italy is in the form of awls, pin, wires, besides a number
of copper axes, mainly skeuomorphs of polished stones axes (Pearce 2007, 2015). Although
there are yet no LIA of the axes, several copper awls and pins of the fourth millennium from
Northern Italy have been isotopically characterized (Fig. 1). Invariably, all objects are made of

Figure 1 LI ratios measured for Northern Italian awls and pins of the fourth millennium BC: Arene Candide (Campana
et al. 1996), Tana della Mussina (Tirabassi 2013; Canovaro et al. 2020), Alba (Venturino Gambari 2002; Angelini et al.
2020). The data are compared with broadly coeval materials from literature: the awl from Wallerfing, Germany (Höppner
et al. 2005), Bulgarian awls, pins and borers (Pernicka et al. 1997; Gale et al. 2000), Serbian awls and borers (Pernicka
et al. 1993). [Colour figure can be viewed at wileyonlinelibrary.com]
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Balkan copper, except maybe the punch from the Arene Candide cave (Campana et al. 1996),
which will be discussed below in detail. Comparison of the Northern Italian awls with the Ser-
bian and Bulgarian awls, pins, and borers available in the literature (Pernicka et al. 1993;
Pernicka et al. 1997; Gale et al. 2000) clearly shows that the Balkan deposits were already
heavily exploited. Balkan copper was thus diffusing in the whole of Northern Italy, as shown
by the LI data measured on the available awls of the fourth millennium found in Alba (Venturino
Gambari 2002; Angelini et al. 2020) and Tana della Mussina (Tirabassi 2013; Canovaro et al.
2020). The LI data distribution (Fig. 1a,b) clearly indicates that no copper from the
South-Eastern Alps or from Tuscany was yet circulating in Northern Italy in this early period.
Possibly this hypothesis could be extended to the Alpine area, based on the LI data measured
on the German awl found in Wallerfing (Höppner et al. 2005), which is also made of Balkan cop-
per. The LI data reported for the awl found at the Arene Candide cave, Western Liguria
(Campana et al. 1996), is anomalous. It was tentatively interpreted to be compatible with Alpine
or Swiss ore deposits, but actually the LI data do not really fit with any known copper deposit
present in the database and only have a mild isotopic affinity with some Catalan deposit. On
one hand, the accuracy of these old TIMS data should be checked with modern multi-collector
techniques, because 204Pb could be rather hard to measure, especially in early eneolithic copper
samples, which are frequently very poor in lead (see for example Artioli et al. 2017). This is
exactly the case of the Arene Candide punch that is reported to have no lead within the sensitivity
limits of X-ray fluorescence spectrometry (Stos-Gale in Campana et al. 1996). On the other hand,
some of the Bulgarian awls carry an isotopic signal extending the Bulgarian ore field
towards higher 206Pb/204Pb and 207Pb/204Pb values (Fig. 1), so it is also possible that some radio-
genic Balkan ores are missing from the database. The issue clearly needs more data to be
resolved.

After or in parallel with this early phase of introduction of metal objects made with Balkan
copper, there is evidence of a period of intense metalwork whose center of gravity is Central
Italy (Dolfini 2014a; Dolfini 2014b). The objects are mostly related to the Rinaldone culture
but extending southward and northward with the Gaudo, and Remedello I cultures respectively
(Tab. 1). Based on the metal object occurrences, the rise and diffusion of this metallurgical phase
is arguably dated to the mid fourth millennium BC (Dolfini 2013), though the earliest fully inves-
tigated evidence of developed extraction and reducing metallurgy in Italy is the site of S. Carlo,
near Piombino, Tuscany (Artioli et al. 2016b), which has been radiocarbon dated to about
3200BC. Interestingly, the site shows a remarkably developed reduction technology leading to
the complete melting of the slag and a good efficiency of reduction and metal recovery. The tech-
nique is much more advanced with respect to what is reported elsewhere for “immature”
chalcolithic smelting technology (Bourgarit 2007). The LI investigation of the copper droplets
present in the S. Carlo metallurgical set of course match the signal of the nearby ores of the
Temperino Mine and surrounding mineralizations of the Tuscan domain (Dini and Boschi
2017). However more importantly they match closely the LI signal of the coeval Iceman copper
axe from Hausljabloch, Alto Adige (Artioli et al. 2017), and the axe from Zug-Riedmatt,
Switzerland (Gross et al. 2017). These results indicate that: (1) there is a developed copper met-
allurgy in the Tyrrenian coast of Central Italy in the last part of the fourth millennum BC, and (2)
the produced copper was moving as far North as Switzerland and Tyrol, although these finds rep-
resent at present the Northern most limit of diffusion.

Interestingly enough, the LI signal of the long-studied Ligurian mines (Libiola and Monte Lo-
reto: Campana et al. 1996, Maggi and Pearce 2005, Pearce 2007, Nimis et al. 2017) is very dif-
ferent from that of the Tuscan, West-Alpine, and French Massif Central ores (Artioli et al. 2013)
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and therefore easily recognizable. However, to date no measured object can be referred to the
Eastern Ligurian mines.

A LI signal compatible with Aegean ores has been reported for a flanged axe of Levantine ty-
pology in the Rinaldone context from Casetta Mistici (Anzidei et al. 2018) so that the object
should be considered an exotica. However, it should be remarked that the full isotopic data have
not been published, and no complete statistical analysis can be performed on the partially re-
ported LI ratios in order to confirm the suggested interpretation. Furthermore, the typology is
well known from the Levant, but there are no dated occurrences before the middle of the third
millennium BC, so its presence in a Rinaldone context is surprising and should be confirmed.
On the other hand, for the most part the copper metal forming the typical Rinaldone objects is
clearly compatible with the Tuscan ores (Dolfini et al. 2020), both in terms of Pb isotopes and
chemical composition. Interestingly, a few of the analysed objects from Central Italy are isotopi-
cally incompatible with the Tuscan signal, showing affinity with the ore deposits of the Western
Alps and even the ores of the French Massif Central. The data therefore indicate a remarkable
dynamics in the metal flow in the second part of the fourth millennium, indicating the arrival
of metalwork in Tuscany through what can be considered a “Tyrrhenian” circuit encompassing
Southern France, the Western Alps, Liguria, and Tuscany. This hypothesis may find support in
existing cultural links, such as the geographical distribution of the statue-menhir, which are pres-
ent in Southern France and Italy, and broadly fits proposed models of metallurgical diffusion in
the Central Mediterranean (Dolfini 2013). It would be extremely interesting to investigate
whether Sardinia and Corsica were included in this metal circuit (Melis 2014; Pearce 2018), be-
cause there is evidence that Sardinian silver was reaching the Italian Peninsula already in the
early fourth millennium (Venturino et al. 2018). Ongoing projects based on LI are aimed to better
define the area of diffusion of the Tuscan metal in the second half of the fourth millennium BC.
The analyses of the metal objects of well dated sites, such as the Remedello cemetery, Reggio
Emilia (Remedello Phase 1, De Marinis 2013), and Celletta dei Passeri, Forlì (Miari et al.
2017), among others, will be fundamental in clarifying the issue.

The situation is totally different if we look at LI signal of similar objects (awls, pins, rods)
dated to the third millennium BC (Fig. 2). All of the analysed objects from Northern Italy and
the Alpine region are made of South-Eastern Alpine copper, and comparison to the available data
on coeval awls from Switzerland (Saint-Blaise/Bains des Dames site: Cattin et al. 2009b) show

Figure 2 LI ratio measured for Northern Italian awls and pins of the 3rd millennium BC: Ponte Molino (Longhi and
Tirabassi 2019), Col del Buson (Angelini et al. 2011; Artioli et al. 2013), Peri (Angelini 2004), Arano (Pernicka and
Salzani 2011). The data are compared with Late Neolithic awls and rods from Switzerland (Cattin et al. 2009b).
[Colour figure can be viewed at wileyonlinelibrary.com]
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that the Swiss objects are made of copper from the several different sources that were active at
time, including the French Massif Central, Bohemia, and Slovakia. The fact that all analysed Ital-
ian objects are made of South Alpine copper indicates that the systematic and massive exploita-
tion of the South-Eastern Alpine chalcopyrite ores is essentially coincident with or slightly
preceding the Beaker event (in Italian Cultura Campaniforme, Tab. 1). This is supported by
the evidence derived from the distribution and large amount of copper smelting slags found in
the Trentino and Alto-Adige area, mainly in the Valsugana Valley, the Adige Valley, and Isarco
Valley (Artioli et al. 2015). All of the slag sites are dated to just before or coinciding with the
Beaker event, and most of them were still active in the transition to the Early Bronze Age. Not
surprisingly, virtually all the analyzed Northern Italian objects of thef South-Eastern Alpine cop-
per (see Fig. 6 and Table 3 of Artioli et al. 2016a).

Based on the absence of slag or known metallurgical sites, in the Southern Alpine region there
seems to be apparently a negligible or even no copper production during the Early Bronze Age
(EBA). In the Aegean, there is apparently a similar net decrease in copper production during
the second millennium. In the words of Bassiakos and Tselios (2012): “Several sites located in
various islands of the Aegean, such as Thassos, Kythnos, Seriphos, Siphnos, Parapola and others,
proven (archaeologically and technologically) to be third millennium copper production centres
exploiting local ore-sources, appear to be inoperative, with few exceptions, during the 2nd millen-
nium”. However, if the available data for EBA objects found around the Lake of Garda (Pernicka
and Salzani 2011) are plotted (Fig. 3), the LI signal shows a South Eastern Alpine signature for
most of them. The data were not interpreted at the time of publication, because by then the data
for South Alpine ores (Nimis et al. 2012) had not yet been published. The interesting aspect is
that in the EBA object we start observing a chemical and isotopic complexity that was not present
in Eneolithic objects. On one side the objects made of pure copper or arsenical copper bear the
typical signature of the Valsugana ores (Calceranica, Vetriolo). The diffuse presence of arseno-
pyrite in the Valsugana ore district is fully consistent with the indication derived from the isoto-
pic ratios. However, the isotopic signal of the objects made of typical falhore-derived copper (i.e.
containing Ag, Sb, As, Ni) is also compatible with the Southern Alpine ores (Fig. 3), whereas
there is minimal compatibility with the typical falhores of the Inn Valley in Tyrol (Höppner
et al. 2005). This is surprising because there are few falherz-type ores in the Southern Alps (no-
tably the tetrahedrite-based deposits in Carnia (yellow circles in Fig. 3), including Monte
Avanza, and the Montagiù deposit in Trentino, Nimis et al. 2012). For all of them there is no

Figure 3 Plot of LI data of EBA objects from Pernicka and Salzani (2011). Figure of the objects and major elements
composition are from the same volume: Cu,As, arsenical bronze; Cu,Sn, tin bronze; Fhlz+Ni, Ni-containing fahlerz
copper; Fhlz+Sn, Sn-containing fahlerz copper. [Colour figure can be viewed at wileyonlinelibrary.com]
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evidence of prehistoric exploitation to date. Bearing in mind that absence of evidence is not ev-
idence of absence, the simplest way to explain both the measured isotopic and chemical signals is
either to assume an early extraction of the Southern Alpine falhore deposits, such as the Monte
Avanza one, or to invoke a mixing between the Valsugana chalcopyrite-arsenopyrite derived
copper and the falherz derived copper, probably from Slovakia or Tyrol. In either case, the LI
measurements are showing an unexpected dynamics and complexity in EBA copper metallurgy.
This chemical complexity remains a constant in the Eastern Alpine area for most of the
Bronze Age.

The systematic lack of copper smelting slag in the Alpine area is even more evident for the
Middle and Recent Bronze Age (approximately 1600–1300BC), a period in which the mas-
sively produced Southern Alpine copper is flowing to the plains South of the Alps and also
toward Scandinavia (Ling et al. 2019). The apparent lack of smelting evidence compared to
the massive amount of copper objects dated to MBA-RBA could be substantially reduced
by recent new chronological evidence of the known slag heaps in the Southern Alps (Pearce
et al. 2019). Although it is not the focus of this paper, it is worth reminding that the recent
results stemming out of LI investigations are gradually contributing to change our picture of
the copper and bronze trades in Continental Europe (Radivojević et al. 2019), specifically
showing a rather unexpected Southern Alpine origin for most of the Scandinavian copper. De-
spite the scarcity of LI data for the Central Mediterranean Bronze Age, there is a growing ev-
idence that Alpine copper was flowing southward to the Venetian plain and the Po Valley
(see for example: Cupitò et al. 2015; Vicenzutto et al. 2015; Angelini et al. 2015a), toward
East into Friuli Venezia Giulia (Canovaro et al. 2019), and even found its way down to
the metal workshops of Southern Italy and possibly to Greece and the Eastern Mediterranean
(Jung et al. 2011). The copper flow from the Southern Alps intensifies again in the Late
Bronze Age (LBA), related to the pervasive presence of smelting slag linked to the
Laugen/Luco culture (Cierny 2008; Addis et al. 2016, 2017; Pearce et al. 2019). Once more
the LI data help in drawing a clear picture of the territorial exploitations of the mines and the
links between the mines and the smelting sites (Addis 2013). Of course, in the LBA Northern
Italy is flooded by Alpine copper, as testified by the nature of the Frattesina metal (Angelini
et al. 2015b; Villa and Giardino 2019). We fully agree with the vision of Pearce et al. (2019)
that in the LBA Frattesina is “an important trans-shipment node between continental Europe
and the Mediterranean and a manufacturing site at the centre of the metals trade … rather
than subsidiary to Etruria mineraria”.

If we focus further South, along the East–West trading routes, the LBA copper production
seems to be dominated by Cyprus. All oxhide ingots found around the Mediterranean
(Cyprus, Crete, Sardinia) and dated between the 14th and the 11th century BC are consistent
with the known field of Cypriot ores (Fig. 4). They include the investigated ingots from the
renowned Uluburun and Cape Gelidonya shipwrecks, dated to about 1300BC and 1200BC,
respectively (Gale and Stos-Gale 1986, 2005; Stos-Gale et al. 1997; Gale 1999, 2005,
2011; Stos 2009). It is clear that in the Late Bronze Age, copper from Cyprus was massively
produced and traded in the Western Mediterranean and diffused as far as Sardinia, the North
coast of the Black sea, and Anatolia (see details in: Lo Schiavo et al. 2009, Kassianidou
2013), so that by the 13th century BC, Cyprus was certainly the main copper producer and
exporter throughout the Mediterranean sea. By the use of Cu isotopes it has also been pro-
posed that copper production in Cyprus shifted from oxidic ores to chalcopyrite (Jansen
et al. 2018), a commonly held assumption that is not possible to prove with Pb isotopes
alone. Thanks to the distribution of the ingots, the literary sources, and the amazing discovery
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of Bronze Age shipwrecks, it is possible to start picturing the fascinating and grand metal
trade in Bronze Age Mediterranean. Interestingly, similarly to what happens in the
South-Eastern Alps, in LBA the place that originates most of the traded copper is surprisingly
devoid of local metalwork (Papasavvas 2012), as if production and consumption were neatly
disjointed. This may be a warning that simple models assuming provenance from the mere
density in the geographical distribution of finds can be deceiving.

Despite the fact that copper started to be produced in Cyprus on a small scale as early as
the 17th century BC (Gale 1989), some of the earliest oxhide ingots found in Crete, especially
those from Hagia Triada, and dated to the Late Minoan IB period (appx. 1500–1450BC) are
not compatible with the Cypriot isotopic signal (Fig. 4, data from Table 22.2 of Stos-Gale
2011). As Noel Gale clearly stated following the early investigations: “At any rate, Cypriot
oxhide ingots were not coming to Crete in the period 1550-1450 B.C.; indeed Cypriot copper
was almost certainly not being cast into oxhide ingots as early as this. In this period oxhide
ingots were made elsewhere, though we know from our work on the Middle Cypriot site
Alambra that Cypriot copper was being used on a small scale as early as about 1800 B.C.”
(Gale 1989). Actually some of the Late Minoan IB oxhide ingots in Crete indeed do carry
the Cypriot isotopic signal (Stos-Gale 2011), testifying a dynamic metal trade from various
sources. However, the origin of the non-Cypriot copper in Crete has been the source of hot
debate because of the consequences on the interpretation of the Late Bronze Age copper
trade. The very low values of the measured LI ratio are compatible with rather old deposits,
incompatible with most of the Mediterranean ores including the Cambrian-hosted Pb-Zn de-
posits of Sardinia (Boni and Koeppel 1985) but compatible with the Precambrian ores in East-
ern Egypt, the Sinai and the Arabian Peninsula, including Oman. Interestingly, some of the
recently analysed copper finds from Funtana Cubierta, Sardinia, dated to the 13th

century BC (Montero-Ruiz et al. 2018), including several fragments of oxhide ingots, and a
few of the Sardinian objects analyzed by Begemann et al. (2001) all carry a non-Cypriot iso-
topic signal compatible with the Eastern deposits, mainly those of the Arabah valley. Despite
the substantial overlap between the LI values of the Sardinian and Arabah ores (Fig. 4), the
latter are preferred on the basis of closer Euclidean distances and trace element patterns (Mon-
tero-Ruiz et al. 2018). The fact that the Crete oxhide ingots carry the Arabian shield LI

Figure 4 Measured LI ratio for LBA oxhide ingots from Cyprus, Sardinia, Crete, and the Uluburun and Cape Gelidonya
shipwrecks (see text for details). [Colour figure can be viewed at wileyonlinelibrary.com]
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signature and that the Sardinian oxhide ingots carry the Arabah LI signal is once
more an indication of the previously unsuspected dynamics of the ancient Mediterranean cop-
per trade.

LEAD

LI are, of course, well-suited to decode the provenance of lead objects (Baron et al. 2006; Cattin
et al. 2009b), provided that metal from different sources is not mixed. As an example, we gath-
ered most of the available LI data on investigated Roman lead ingots from shipwrecks around the
Central Mediterranean (Fig. 5).

The plot of the lead ingots LI data is instructive, and much information can be derived:
1 It can be straightforwardly appreciated that the isotopic plots using the data relative to 204Pb

can discriminate very well among the major sources of Pb around the Mediterranean exploited
at the peak of the Roman Empire (Domergue 1990; Hirt 2010), here the major lead ore de-
posits of Sardinia, Iberia, France, and Greece are reported.

2 The investigated Pb ingots recovered around the Western and Central Mediterranean (see leg-
end of Fig. 5) indicate that the Carthago Nova district in Iberian Murcia was the major source
of lead at the time represented by the shipwrecks (between the end of the second century BC
and the middle of the first century AD). In this period the British, German, and Balkan de-
posits were not yet under the control of Rome. The data reported for two shipwrecks of the
third century BC (Cabrera 2, from the Balearics and Îlot de Brescou at Agde, Trincherini
et al. 2009) indicate that the coastal route for transport of the Cartagena lead was already in
use during Republican times. The data also seem to suggest that some lead was originating
in the Linares/Jaen area (Cabrera 5 wreck), the French Massif Central (Saint Maries de la
Mer wreck), and negligible lead was produced in Sardinia. Although it is hard to have a pre-
cise chronology, the LI data obtained from ship artefacts recovered in South Western Sardinia
(anchors, rings, bars: Begemann and Schmitt-Strecker 2001) denote a rather more complex
dynamics of metal flow. In fact, the various parts of the anchors indicate lead production in

Figure 5 LI data of available measurements on Roman lead ingots from shipwrecks in the Western and Central Medi-
terranean: Saint Maries de la Mer and Cabrera 5 (Trincherini et al. 2001), Mal di Ventre (Pinarelli et al. 1995), Mahdia
(Begemann and Schmitt-Strecker 1994). The data for Carthago Nova (Trincherini et al. 2009) include ingots from several
shipwrecks (Cabrera 2, Escombreras 2) plus ingots from the Murcia mines and several other inland sites. The anchor
data (Begemann and Schmitt-Strecker 2001) include various Pb components of anchors and ships recovered underwater
in South-Western Sardinia. [Colour figure can be viewed at wileyonlinelibrary.com]
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Sardinia (Sulcis area), Iberia (Valle de Alcudia), the French Massif Central, and Greece
(Laurion)(Fig. 5).

3 The LI data for the Saint Maries de la Mer ingots are nicely following the trend line of the
French Massif Central and actually extend the Pb-ore field to lower 207Pb/204Pb values, thus
hinting that ore data for several important mine districts are missing from the available data-
base of French Pb ores (Baron et al. 2006).
There is one further complication in the interpretation of the LI data of Pb artefacts. The issue

is well exemplified by plotting the data obtained on several samples of the great hydraulic net-
work of water pipes built under Augustus in Pompeii (Fig. 6, data from Boni et al. 2000). Apart
from one object (97P11B, that is a segment of lead pipe from Casa di Orfeo) which is fully com-
patible with the Early Paleozoic lead ores from the Sardinian Sulcis area, most of the LI data plot
in a field severely overlapping the isotopic field of the French Massif Central ores (Fig. 6). They
also broadly follow a similar evolution line. Following the originally published interpretation,
which however omitted the French ores from the discussion, these data have been constantly
interpreted as a mix of Sardinia-, Iberia-, and Laurion-derived Pb metal. The samples therefore
are “the results of repeated re-meltings and mixing and represent an integration, over a period
of several centuries, of the manufacture of lead objects around Pompeii” (Boni et al. 2000).
Far from challenging this interpretation, here we just cast a warning about a simplistic interpre-
tation of LI data of Roman lead objects. If we exclude the French origin (which is however plau-
sible given the signal found in the Sainte Maries de la Mer ingots) and use simple mixing lines
(Bode et al. 2009; Villa 2016) to assess the presence of the other sources as defined by the iso-
topic fields of the ingot data, it is clear that Laurion- and Central Iberian-derived lead is minimal,
and most of the Pompeii pipes are made of lead from Carthago Nova, slightly diluted by Sardin-
ian lead.

SILVER

Apart from the ores in Rio-Tinto, Iberia, where silver is present in secondary jarosite (Rothenberg
and Blanco-Freijeiro 1982; Domergue 1990; Anguilano et al. 2010) and scarce occurrences in
the native form (such as in Sardinia, in association with silver chlorides), most silver in ancient

Figure 6 LI data of available measurements on Roman lead pipes from Pompeii (Boni et al. 2000) and some implements
and anchors from ships (Begemann and Schmitt-Strecker 2001) recovered underwater in South-West Sardinia. [Colour
figure can be viewed at wileyonlinelibrary.com]
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times was derived from mixed argentiferous lead ores by cupellation processes (Nriagu 1985;
Bachmann 1993; Meyers 2003). This is positive news, because if the mineral is rich in lead
(i.e. galena), then the reduced silver metal should have the same LI signal as the ore, therefore
being a reliable tracer for provenance. However, in the case of Pb-poor jarosite, the Pb content
of the mineral may not be sufficient to induce an efficient redox process, and external lead must
be added to the mixture. This is exactly the case of the Rio Tinto-derived silver, where lead from
Carthago Nova was imported to supply the cupellation process (Anguilano et al. 2010). Further-
more, cupellation was also used to refine silver from debased metal (Rehren and Kraus 1999).
Actually, the control of the metal purity and the silver content in coins requires its purification
by cupellation, leading to foreign lead contamination. These issues, compounded to the problem
of re-melting of coins (Guénette-Beck et al. 2009), should be kept in mind when dealing with the
LIA of ancient silver.

Despite these problems, LI analysis has been widely used, especially for ancient coins. As an
example, Fig. 7 reports some of the published data for ancient greek coins (sixth–fourth centuries
BC), both from the Eastern Mediterranean (Stos-Gale and Davis 2018) and from the Greek col-
onies in Southern Italy (Magna Grecia, Birch et al. 2018), and for Roman denarii of Augustan
age (first century AD: Ponting et al. 2003; Butcher and Ponting 2005).

Concerning ancient Greek coins, “virtually all the silver used to mint coins in the Archaic pe-
riod in the Western Mediterranean came from the Greek motherland and its immediate surround-
ings” (Birch et al. 2018). Not surprisingly, the recent re-evaluation of the extensive dataset on
Eastern Mediterranean archaic coins gathered by the OXALID project (Stos-Gale and Davis
2018) clearly indicates that both the mines located in continental Greece (Laurion, Trakia, the
Rodhopes) and also some of the other mines located in the Islands (Siphnos, Thasos) were the
source of silver for minting. A little more surprising is to observe that also the coins of the Greek
colonies in Southern Italy were also made of Eastern Mediterranean silver (Fig. 7, see the LI data
for the Magna Grecia coins and the Selinus hoard). “Thus, Greek poleis in Southern Italy and
Sicily in the period up to approximately 470 BC were definitely not using locally mined silver,
nor were they tapping into Carthaginian or Etruscan sources” (Birch et al. 2018). As confirma-
tion, and an addition to the published data, we present now a new measurement (white circle

Figure 7 LI data of available measurements on ancient Greek coins (6th–4th centuries BC, from OXALID, see references
in Stos-Gale and Davis 2018), the Selinus hoard (Beer-Tobey et al. 1998), Magna Grecia coins (Birch et al. 2018), and
Roman denarii of Augustan age (Ponting et al. 2003; Butcher and Ponting 2005). [Colour figure can be viewed at
wileyonlinelibrary.com]
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in Fig. 7) of the only Ag-containing mineral assemblage present in Calabria, the one relative to
the sphalerite-argentiferous galena of Longobucco, known to be exploited for silver in Medieval
times (Adorisio 2015). Apparently none of the investigated Magna Grecia coins were made of the
Longobucco ores, not even those minted in Sybaris, which is located only few tens of km away
from the mine.

There are however a few Greek coins falling outside the Eastern Mediterranean ore fields. In-
terestingly enough they are quite compatible with some of the Iberian ores, including the
jarosite-based ores of Rio Tinto and the mines around the Valle de Alcudia (yellow squares in
Fig. 7) that are indicated as the possible source of Argaric silver (Murillo-Barroso 2013). In fact,
systematic survey of recent LI data seems to support the continuity of silver extraction in Iberia
from the Early Bronze Age of El Argar until the Early Iron Age, so that the early indigenous min-
ing seem to slowly give way to the later Phoenician control and technology, with introduction of
cupellation (Murillo-Barroso et al. 2016). In this context, it is not impossible that some Iberian
silver was transferred to the Eastern Mediterranean, as inferred by recent investigations of Phoe-
nician silver (Eshel et al. 2019; Wood et al. 2019).

Concerning Roman denarii, their provenance is still problematic. Most of the measured data lie
in a well-defined isotopic field corresponding both to Iberian ores, and to the mixing line joining
the Rio Tinto and Cartagena ore fields. The hypothesis that they were made of Iberian silver, or
that the silver was refined using the already mixed lead found in Pompeii (see discussion above
and Fig. 6) for cupellation are both suitable. The solution seems more direct than the original pro-
posal of the use of British or German lead for the cupellation of the Iberian metal (Ponting et al.
2003, Butcher and Ponting 2005). However, a general overview of the LI data for late Roman
silver (Fig. 8) including Late Roman and Gallo-Roman hoards (third–fourth centuries AD) and
the cited Roman denarii (1st century AD) share several features. (1) None of the circulating silver
carries a homogeneous LI signal compatible with a single ore district. (2) The hoard and coin data
as a whole plot in a field streaming between the Iberian and East Mediterranean ores, and overlap
with the field of the Pompeii lead pipes. Therefore, the interpretation of the lead pipes of Pompeii
as a mix of lead with different provenance may as well be applicable to the silver objects. (3) As-
suming a simple mixing model of two silver sources (or the equivalent refining from a mixed lead
metal), it is relatively simple to account for the composition of the Marengo hoard and most of

Figure 8 LI data measured on Late Roman silver objects, compared with the data of the cited Roman lead pipe measure-
ments (Boni et al. 2000). The Roman denarii data are as in Fig. 7. The Late Roman silver hoards are Marengo (Angelini
et al. 2019), Boscoreale (Berthoud et al. 1989), Berthouville, Notre Dame d’Allencon, Graincourt-lès-Havrincourt
(Baratte et al. 1985). [Colour figure can be viewed at wileyonlinelibrary.com]
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the Roman denarii using Sardinia and/or Rio Tinto as source A, and Cartagena and/or Greek de-
posits as source B. However, several of the Roman denarii and most of the Gallo-Roman silver
hoards found in France show rather low values of the 207Pb/204Pb ratio, which can hardly be
accounted for by the Mediterranean ore districts. These low values are also well outside the
known field of the French Massif Central ores, even if the field is extended according to the Saint
Maries de la Mer ingots (see discussion above and Fig. 5). For these samples the proposed con-
tribution of British silver and/or British lead for cupellation refining may be a reasonable
solution.

In any case, LI data of Late Roman silver objects show a complexity that is far higher than that
of pre-Roman Iron Age objects, which most authors interpret without the need to invoke mixing,
debasing, and complex refining processes. This is without doubt related to the rapid evolution
of silver metallurgical techniques in the Iron Age, an evolution likely stimulated by the massive
request for silver in complex societies, well beyond the basic aesthetic value of this shining
metal. The rapid acquisition of silver of a high symbolic value (i.e. reference monetary value)
is fundamental to understand the modes of production, diffusion, and finally storage as
hacksilver, hoard, or treasure (Patterson 1972; Balmuth 2001).

TIN

It is generally considered that lead contained in tin to produce bronze does not significantly affect
the lead signature of the copper because of the rather low amount of lead incorporated in tin min-
erals (mainly cassiterite) during formation. This assumption, which has not been disproved to
date, has two consequences: the first is that LI may be used to provenance copper in tin bronzes,
and the second is that the signal of tin is too low to be measured on alloyed metals. Therefore, if
we want to use LIA to trace tin, we must measure pure tin objects, despite the fact that they are
rare in the archaeological record, and we must be aware that in the past claims have been made
about lead fractionation during the reduction process (Clayton 2001).

As recently as this year Berger et al. (2019b) state that “The origin of the tin used for the
production of bronze in the Eurasian Bronze Age is still one of the mysteries in prehistoric
archaeology”. However, the authors also show convincingly that the radiogenic character of
cassiterite may be used to define the approximate age of the deposit, using a method com-
monly used in geology and whose application to tin deposits had been proposed earlier by
Molofsky et al. (2014) by the use of isochrons (Albarède et al. 2012; Killick et al. 2020).
The application of LIA to tin requires geological and geochemical modeling because in ana-
lyzing the tin ores (cassiterite) the common lead hypothesis is not valid (Sinha and Tilton
1973; Faure and Mensing 2005). This is rooted in the high content of uranium able to enter
in the crystal lattice of the tin oxide, which is far higher than the amount incorporated in the
sulphides normally forming the main ores of the metal deposits. Highly variable uranium con-
tents may also results in highly heterogeneous distribution of radiogenic elements within cas-
siterite minerals from the same deposit (Swart and Moore 1982). The concept, long known in
geochemistry, has been successfully applied by Molofsky et al. (2014) to South African,
Botswanan, and Romanian artifacts. The method now has been applied to tin ingots from
the Mediterranean area (Berger et al. 2019b).

The so-called “ancient tin problem” concerns the nature and origin of tin in Bronze Age
Europe and the trade routes employed in the Mediterranean to supply tin-bronze production
(Dayton 1971; Muhly 1985; Penhallurick 1986; Giumlia-Mair and Lo Schiavo 2003). The prob-
lem extends far eastward (Crawford 1974; Weeks 1999; Pigott 2011). The focus here is not to
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review in detail the nature of the debate and the plethora of investigations attempting to solve the
problem. Here we would like to remind a couple of methodological issues and appropriately re-
view the existing LI data on relevant cassiterite deposits and Bronze Age tin objects.

Concerning methodology, the provenance of tin has long been investigated by the use of ele-
mental tracers (Tylecote et al. 1989; Rapp et al. 1999) and tin isotope ratios (Gale 1997; Nowell
et al. 2002; Haustein et al. 2010; Yamazaki et al. 2014; Brügmann et al. 2017; Nessel et al.
2019). Concerning chemical tracers, several elements (such as W, Bi, In, Mo) have proven poten-
tially interesting to characterize cassiterite ore deposits. However, it has become apparent that
there is yet insufficient chemical systematics of the relevant deposits and no adequate understand-
ing of their behaviour during ore smelting. On the other hand, the variation in tin isotopes within
a single ore district is comparable or larger than the difference between distant deposits. Any dis-
crimination is therefore extremely difficult to obtain (Brügmann et al. 2017). Isotope fraction-
ation depending on reduction conditions may also be an issue (Berger et al. 2019a). As a
matter of fact “the pioneering studies on tin isotopes carried out on some tin ingots from Hishuley
Carmel, Kfar Samir south, Haifa and Uluburun have already revealed similarities and differences
in the isotope composition [see references cited], but no conclusions could be drawn on the origin
of the tin in those studies because of the lack of ore data.” (Berger et al. 2019a).

LI are then a promising method to solve the old question. Here we will briefly summarize the
available LI data on cassiterite ores (Figs. 9,10 and Tabs. 2,3), tin ingots from the Eastern Med-
iterranean (Fig. 11), and some new data on tin ingots from the Central Mediterranean area
(Fig. 12).

Tin ores

Fig. 9 shows the available data for cassiterite ores formed during the Variscan/Hercynian orog-
eny, that is the Late Palaeozoic collision between the Euramerican plate (Laurussia) and Gond-
wana. The data mostly comply with the model age of the event, dated between 360 and
280Ma (see for example Shaw and Johnston 2016). A consistent date of about 320Ma has been
calculated by Berger et al. (2019a) and the isochron line reasonably fits most of the ore samples
related to the Cornish, West Iberian, and Erzgebirge deposits. The LI data available for some tin
ingots and metal scraps found in South West England (OXALID, also reported by Galili et al.
2013), and plausibly related to the Cornwall deposits, also show a reasonable fit to the Variscan
model age (Fig. 9). However, several Iberian and Cornish cassiterite samples deviate from the
reference isochron line, showing anomalously high values in the 207Pb/204Pb and/or in the
208Pb/204Pb ratios. They possibly indicate later events remobilizing the original mineralization
or locally different geological sources of the metals included in the original mineral,
characterised by different initial U/Pb and Th/Pb ratios. Clearly, full understanding of these
anomalies would require ad hoc investigation and a more complex modeling with respect to a
simple one-stage evolution of the Pb isotopes.

The LI data of the cassiterite ores from Sardinia (Villacidro and S. Vittoria: Tab. 3 and Fig. 9)
are also rather interesting, because they are co-eval with the emplacement of the Arbus batholith
(Zuffardi 1958; Biste 1982) and thus related to the Variscan event (appx. 290–320Ma: Cuccuru
et al. 2016). However, they seem to show a different trend with respect to the model 320-Ma LI
curve, again indicating that a more complex geological model is needed. Furthermore, the LI data
of most Sardinian cassiterite samples are very close to the values measured on the geologically
related copper ores (Fig. 10). The same is true for the other tin-bearing deposits cited in the lit-
erature as possible sources of prehistoric tin (see for example Muhly 1985), that is, the cassiterite
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ores in Tuscany (Monte Valerio: Stella 1955, Benvenuti et al. 2003) and in Anatolia (Kestel and
Çamardi: Yener et al. 1989, but see discussion in Pernicka et al. 1992). This indicates that either
time was too short or the contents of U and Th in cassiterite were too low to produce significant
radiogenic Pb after cassiterite formation. The first hypothesis may apply to the ’young‘ Tuscan
and Anatolian cassiterites, which are of Miocene (Poli 2004, Dini et al. 2002) and Late Creta-
ceous to Early Tertiary age (Alpaslan et al. 2006; Lermi et al. 2016), respectively. The second
hypothesis is the most likely for the Sardinian cassiterite vein deposits. No matter what the geo-
logical cause, the lack of highly radiogenic samples precludes the use of the model age method to
univocally discriminate these three deposits. Nonetheless, it should be noted that all three de-
posits show limited occurrences of tin ores, and there is to date no firm evidence of exploitation
of any of them in prehistoric times.

The LI fields of Asian cassiterite deposits, taken into account as possible Eastern sources of
tin, are mostly related to the Late Mesozoic Alpine-Himalayan orogeny. The linear trend

Figure 9 Available LI data for cassiterite ores. Figs. 9b and 9d are enlargements of the framed areas of Figs. 9a and 9c,
respectively. Plotted LI data measured on ores related to the Variscan/Hercynian orogeny are Cornwall and Devon
(OXALID), Iberia (OXALID, Marcoux 1997, Relvas et al. 2001, and our own measurements reported in Tab. 2), and Cen-
tral Europe (OXALID, Niederschlag et al. 2003). The plotted data measured on Sardinian cassiterites from the Arbus
batholith (Villacidro and S. Vittoria) are listed in Table 3. The plotted Asian ores are from China, Afghanistan,
Kazakhstan, and Tajikistan (OXALID, Yuan et al. 2011), the linear fit through the Asian cassiterite data is shown as a
magenta solid line. The isochron lines corresponding to deposits of 320Ma (cyan line) and 160Ma (dark red line) cal-
culated by Berger et al. (2019a) and Yuan et al. (2011) respectively are reported in Figs 9a and 9b for reference. The data
for tin finds (ingots) from Cornwall and Devon (OXALID, also reported by Galili et al. 2013) are also reported for com-
parison. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 10 LI data for cassiterite ores (circles) from Sardinia (Villacidro and S. Vittoria, Table 3), Tuscany (Monte
Valerio, Table 3), and Anatolia (Kestel and Çamardi, data from Yener et al. 1991). The isochron line corresponding to
the 320Ma model age of Variscan related deposits, as in Fig. 9. The LI data for cassiterites are compared to the LI data
measured on copper ores from the same area, see text for details. [Colour figure can be viewed at wileyonlinelibrary.com]

Table 2 New LI data on Iberian cassiterites. Analytical error (2σ) refers to the last significant digit

Sample Cassiterite ore Reference 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb

CS-1 Viana do Bolo, Ourense Our measurement 20.492 ± 2 15.761 ± 1 38.675 ± 3
CS-2 Zona el trasquilo, Caceres Our measurement 18.580 ± 8 15.658 ± 7 38.435 ± 17
CS-3 Hoyo de Manzanares, Madrid Our measurement 19.461 ± 2 15.698 ± 1 38.808 ± 3
CS-4 Boiro, La Coruna Our measurement 18.856 ± 2 15.658 ± 1 38.675 ± 3
CS-5 Logrosán Caceres Our measurement 18.656 ± 3 15.653 ± 3 38.504 ± 7

Table 3 Available LI data for Sardinian and Tuscan cassiterite ores

Sample Cassiterite ore Reference 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb

cass S Villacidro Our measurement 17.939 ± 2 15.629 ± 1 37.988 ± 3
sard 101 Villacidro Begemann et al. 2001 18.113 15.658 38.249
MM 1004A Villacidro OXALID 18.195 15.637 38.227
MM 1004B Villacidro OXALID 18.232 15.676 38.362
MM 1004F Villacidro OXALID 18.235 15.684 38.396

S. Vittoria Ingo et al. 1998 17.993 15.721 38.186
Villacidro Ingo et al. 1998 18.348 15.823 38.768

Cass T M. Valerio Our measurement 18.775 ± 3 15.698 ± 1 38.965 ± 3
DUXS802 M. Valerio Chiarantini 2005 18.849 15.708 39.012
C15064col M. Valerio Chiarantini 2005 18.795 15.851 39.266
99-CAS M. Valerio Chiarantini 2005 18.790 15.692 38.973
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appearing in the plot (Fig. 9) is dominated by Chinese deposits, which are age modelled to about
160Ma (Yuan et al. 2011; see dark red curve in Figs. 9a,9b). The two model ages of 320 and
160Ma are very close at low 206Pb/204Pb and 207Pb/204Pb values, so they can hardly be discrim-
inating for cassiterite provenance (Figs. 9a,9b). However, the overall slope of the linear fit to all
Asian data (Figs. 9a,9b) is somewhat smaller than the 320 and 160Ma model ages. This may be
consistent with the younger age of the Asian deposits related to the Alpides phase of the
Alpine-Himalayan orogenesis, which is Late Mesozoic to Cenozoic in age (Şengör 1986; Rol-
land 2002). In any case, at this stage the substantial overlap between the Asian and Western Eu-
ropean cassiterite LI data sets does not allow to use this difference as a discriminative tool.
However, albeit the LI data available are scarce, it seems that there might be a chance of discrim-
inating the Asian cassiterites with respect to the Variscan related deposits of Western Europe by
using the 208Pb/204Pb vs 206Pb/204Pb plot (Figs. 9c,9d). In fact the data measured on cassiterite

Figure 11 LI data measured on tin ingots (stars) recovered from shipwrecks in the Eastern Mediterranean: Uluburun,
Hishuley Carmel, Kefar Shamir, Haifa, and Mochlos (Stos-Gale et al. 1998, Begemann et al. 1999, Galili et al. 2013,
Berger et al. 2019a), compared with the ores (circles) and Cornish ingots (squares) also plotted in Fig. 9. The Iberian
and Central European ores were omitted for clarity. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 12 LI data measured on tin ingots and objects (diamonds) from Central Mediterranean compared with the ores
(circles) plotted in Fig. 9. Objects are from Sardinia (Domu de S’Orku ingot: Ingo et al. 1998; tin ingots from S’Arcu,
Table 4), Alba, Piemonte (tin wire, tin droplets: Angelini et al. 2018), Terramara di Parma, Emilia Romagna (tin bar in-
got: Cremaschi et al. 2018), Sursee-Gammainseli, Luzern (tin ingot: Nielsen 2014), Bajo de la Campana (tin ingots:
Mederos Martín et al. 2017). [Colour figure can be viewed at wileyonlinelibrary.com]
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samples from China, Kazakhstan, and Tajikistan (OXALID, Yuan et al. 2011) follow an almost
horizontal line, possibly indicating a remarkably small amount of Th in the system and the sub-
sequent negligible evolution of the 208Pb/204Pb ratio with time. It is unfortunate that no published
LI data are available for the Iranian tin deposits, which have been repeatedly suggested as likely
source candidates based on archaeological evidence (Nezafati et al. 2006; Cuenod et al. 2015). It
should be noted that the only available datum for cassiterite from the Western region of
Afghanistan (OXALID, Fig. 9) deviates from the apparent trend of the other Asian deposits
and shows a very high value in the 208Pb/204Pb ratio (but not in the 207Pb/204Pb ratio), even much
higher than the European Variscan deposits. Potentially, there are thus chances to discriminate
Afghani deposits from other Asian sources, and this may be in line with the observations of
Weeks (1999) of highly radiogenic tin in bronze objects from Tell Abraq, in the Arab Emirates
region.

Tin objects

Inserting the numerous LI measurements of Sn ingots recovered from shipwrecks in the Eastern
Mediterranean (Fig. 11) in the diagrams relative to cassiterite ores yields a number of informa-
tion. (1) At least two sources of tin are present in the ingots, as well noted by previous authors
(Galili et al. 2013, Berger et al. 2019a). (2) The great majority of the circulating tin is actually
derived from Atlantic sources. In fact, even if in the 207Pb/204Pb vs 206Pb/204Pb diagram
(Fig. 11a) the ingot data ambiguously show a reasonable fit with both the Cornwall and the Asian
ores, in the 208Pb/204Pb versus 206Pb/204Pb diagram (Fig. 11b) most of them have a generally bet-
ter agreement with the evolution line of the Western European ores and Cornish ingots. The con-
clusion agrees with those derived by tin isotope investigations (Berger et al. 2019a). However,
part of the Uluburun and several of the Hishuley Carmel tin ingots cluster in a region deviating
from the 320Ma model trend, which is typical for most of the Cornish ores (Fig. 11a). This is
also evident in the 208Pb/204Pb vs 206Pb/204Pb diagram (Fig. 11b), where some of the Uluburun
ingots and objects display highly radiogenic character similar to some of the Cornwall cassiter-
ites. This may indicate derivation from some anomalous Cornish ores, though this may also well
indicate that some other mines in the Atlantic province (including Iberia) or in Variscan ore dis-
tricts of continental Europe (such as the Massif Central or the Erzgebirge) were active in the Late
Bronze Age. Moreover, although at present the LI evidence points to Western sources of tin for
the Eastern Mediterranean ingots, we could actually speculate that the anomalous radiogenic sig-
nal observed for the Afghan deposits (discussed above) could even hint the possibility of a sig-
nificant contribution of the Afghan tin to the composition of the Uluburun ingots.

Further, if we try to apply the developed LI method to the measured tin objects and ingots
from the Central Mediterranean (Fig. 12), we obtain a similar picture as the one resulting from
Eastern Mediterranean wrecked ingots. The LI data match rather well the fields defined by the
Eastern Mediterranean ingots discussed above, so the same tin sources may be suggested, al-
though the data are more scattered, indicating a variety of possible Western tin sources. Specif-
ically: (1) the objects from Northern Italy (the tin wire and the droplets from Alba, Angelini
et al. 2018; and the tin ingot from the Terramara di Parma, Cremaschi et al. 2018) fit rather
well with the main trend of the Cornwall or Iberian ores. (2) The Sardinian ingots from Domu
de S’Orku (Ingo et al. 1998), one of the ingots from S’Arcu ‘e is Forros (SARC-43, Table 4),
and the tin ingot from Sursee-Gammainseli (Nielsen 2014) seem to be related to Variscan
sources characterised by variable Th/Pb and U/Pb ratios, thus departing from the 320-Ma model
trend. Finally: (3) the remaining Sardinian ingots from S’Arcu ‘e is Forros (SARC-42, SARC-
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46, Table 4) and the ingots from Bajo de la Campana (Mederos Martín et al. 2017) have rather
low 207Pb/204Pb and 208Pb/204Pb values, possibly indicating a different, relatively unradiogenic
source.

Concerning the diffusion of tin in the Mediterranean, the generally accepted narrative of tin
metallurgy rising in Anatolia in the early part of the third millennium BC and linearly expanding
westward at the end of third millennium BC does not encounter solid confirmation, based on LI
data. Well before the massive spread of tin-based alloys in the Bronze Age, the existence of tin
metallurgy in the 5th millennium BC has been discussed in the frame of the evidence of
polymetallic metallurgy related to the Vinča culture of the Balkans (Radivojević et al. 2013).
There are thus challenges to the conventional model of Eurasian metallurgy. Moreover, the in-
creased content of tin in the blades of the younger graves of the Singen cemetery (Early Bronze
Age) seems to be related to the appearance of Armorico-British daggers, hinting to an Atlantic
source of tin (Krause 1989). The above discussion of the available LI data, supporting of the
presence of Atlantic tin in the recovered ingots from the Turkish and Israeli coasts reinforces
the model of tin flowing from the mythological “Cassiterides” islands located in the West during
the Bronze Age. Expanding work on the Iberian and Balkan ore deposits may well show that
there might even have been multiple sources of the metal (Huska et al. 2014; Comendador
Rey et al. 2017), further increasing the complexity of the scenario for the metallurgical produc-
tion and diffusion. The tin ores need many more LI measurements in order better investigate their
inhomogeneity and practically define reference “fields” and “trends” that can effectively be used
for provenancing studies.

CONCLUDING REMARKS

LI data are nowadays an important part of metal provenancing investigations. The application
of isotopic tracers has expanded to interpret metal production, diffusion, and trade at different
scales, from the local level to the regional or to long-distance movements. In combination with
chemical tracers and other developing isotopic systems (Sn, W, Fe, Sb, Os, Nd, etc.) LIA pro-
vide a powerful tool to explore the past movement of materials, technology, ideas, and, of
course, people. The selected case studies discussed in this paper support the idea that isotopes

Table 4 Available LI data on Sardinian ingots. Analytical error (2σ) refers to the last significant digit

Sample
label Object Reference 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb

Panella Sn Sn ingot, Domu de
S’Orku

Ingo et al. 1998 18.5807 15.9482 39.2432

Sarc-42 Sn ingot, S’Arcu ‘e is
Forros

Pernicka, reported in Valera
et al. 2005

18.5195 15.6920 38.1011

Sarc-42 Sn ingot, S’Arcu ‘e is
Forros

Our measurement 18.32 ± 3 15.53 ± 3 38.08 ± 6

Sarc-43 Sn ingot, S’Arcu ‘e is
Forros

Our measurement 22.6 ± 1 15.62 ± 8 50.8 ± 3

Sarc-46 Sn ingot, S’Arcu ‘e is
Forros

Our measurement 24.7 ± 2 15.54 ± 9 37.9 ± 2
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are increasingly helping to define and quantify the details of the metal flow in space and time,
and this in turn enhances our understanding of human thinking and mobility (Martinon-Torres
in Armada et al. 2018). The net result is that the picture of ancient metal production and trade
is getting less blurred, more detailed, and far more dynamic and complex that perceived in the
past.

However, the consequence is that in practice we need to deal with an increasing amount of
technically and instrumentally sophisticated data, and often the conceptual and technical interpre-
tive tools are not adequate to the needs. In the specific realm of archeometallurgical data, at pres-
ent we are greatly suffering from the limitations posed by databases and methods of inquiry. The
existing data sets are incomplete, biased, and poorly interconnected. Unless there is some critical
innovation in the management and integration of chemical, isotopic, and archaeological data,
soon we’ll not be able to efficiently relate and interpret the data that are increasingly available.
We will measure data that we might not be able to adequately compare with existing information.
It should be a priority to standardize, rationalize, and make publicly accessible the huge amount
of existing data already available. Journals should require data deposition in standardized form
and much more effort should be put into software for quality assessment, data consistency, and
efficient interrogation. This is being actively pursued in other fields, but it is hard to come by
in archaeology and archaeometry for a variety of historical and specific reasons, not last the crit-
ical mass of research groups. The small step that the Isotrace Laboratory in Oxford did when
making OXALID publicly accessible had enormous consequences for the diffusion of LI
methods to research groups not able to develop internal databases. If we want to move forward,
it is now time for all archaeometallurgists to share information and enter in the regime of big data
analysis.
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