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The aim of this work is to improve urban traffic viability through an appropriate choice of yielding
and stop signs or red and green phases for traffic lights in junctions with two entering and one
exiting roads (junctions of 2 × 1 type). We consider a macroscopic fluid-dynamic model able to
capture the traffic evolution. We analyze different functionals measuring networks performance in
terms of average velocity, average traveling time, total flux, density, stop and go waves, average
traveling time, weighted with the number of cars moving on roads, and kinetic energy. Right of
way parameters which optimize the latter two functionals are obtained. Simulations of simple
junctions of 2 × 1type have been used to test the correctness of the analytical results. Then, global
performance of optimization procedures has been investigated on Re di Roma Square, in Italy.
In particular, we discuss cases in which the functionals are optimized locally at each junction for
different values of right of way parameters. We show that for the chosen initial data the only
algorithm for the maximization of velocity assures globally the best performance for the network,
also in terms of average traveling times and kinetic energy.

1. Introduction

The problem of traffic modeling is a very huge task, due to the complexity of the system to
analyze. Many methods have been developed based on different approaches ranging from
microscopic one, taking into account each single car, to kinetic and macroscopic ones, dealing
with averaged quantities. Of course the understanding and control of traffic phenomena by
means of simulation and optimization studies can be useful to eventually make decisions
which may alleviate congestion, maximize flow traffic, reduce accidents, and other desirable
ends.

Here rather than analyzing the movement of individual cars, we describe road
networks behaviour using fluid-dynamic models; hence we treat traffic situations resulting
from complex interaction of many vehicles. In particular, following [1] we determine the
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evolution of car traffic on each road with the first-order model of Lighthill, Whitham,
and Richards (LWR model), which is on one side simple enough to permit a complete
understanding of traffic flows and on the other side rich enough to detect important
phenomena as queue formation. A key role in the networks modeling is played by the
junctions. In order to capture the dynamics at a node, Cauchy problems with initial data
constant on each road, called Riemann Problems at the node, have to be solved. The latter
have a unique solution if we introduce some rules:

(A) the cars flow from an incoming road to outgoing ones according to the final
destination;

(B) the number of cars passing the junction is maximized respecting rule (A).

For a junction of 1 × 2 type, that is, with one incoming road, labeled with 1, and two
outgoing roads, labeled with 2, 3, the rule (A) is expressed by a coefficient α which describes
the percentage of cars going from road 1 to road 2. Obviously 1 − α is the percentage of cars
moving towards the outgoing road 3.

If the junction has two incoming roads, labeled with 1 and 2, and one outgoing road,
labeled with 3, (junction of 2 × 1 type), in order to solve the dynamics, we have to introduce
the right of way parameter p. Supposing that C cars can enter into the junction, then pC cars
come from road 1 and (1 − p)C from road 2.

Assigning the initial density of all incoming and outgoing roads in a node, we compute
the final equilibrium as function of the traffic distribution coefficient or/and of the right of
way parameter depending on junction type. Such equilibrium, belonging to the admissible
region for the final fluxes, is chosen according to a fixed strategy, and represents the solution
of the Riemann Problem.

The aim of this work is the optimization of urban networks performancewith junctions
of 2×1 type through a suitable choice of the right of way parameter p. Observe that the choice
of p corresponds to the use of yielding and stop signs or to the regulation of red and green
phases for traffic lights.

Optimization problems for fluid-dynamic models have been already considered for
car traffic: [2] is devoted to traffic light regulation, while [3] and [4] are more related to our
analysis but focus on the case of smooth solutions (not developing shocks) and boundary
control. A specific traffic regulation problem is addressed in [5]. Given a crossing with some
expected traffic, is it preferable to construct a traffic circle or a light? The two solutions are
studied in terms of flow control and the performances are compared. In [6–8], the traffic
behaviour has been analyzed using four cost functionals, J1, J2, J3, and J5, measuring,
respectively, cars average velocity, cars average traveling time, car velocity, weighted with
cars quantity, traveling on the roads, that is, fluxes and stop and go waves (see also [9]).
The optimization was done over right of way parameters and traffic distribution coefficients
with the aim of maximizing J1 and J3 and minimizing J2. In particular, two special cases of
junctions have been considered for the optimization: the 2 × 1 and 1 × 2 cases.

In this work, we analyze the urban traffic behaviour introducing new functionals.
From the solution of the Riemann Problem, we determine the average speeds at which drivers
travel and we define additional functionals: J4 which measures the density, J6 the average
traveling time, seen as the sum of the average traveling times on each road, weighted with
the number of cars moving on it, and J7 which gives information about the kinetic energy.
Of course the aim is to optimize the choice of the parameters in order to minimize J6 and
to maximize J7. Since in case of 1 × 2 junctions, the functionals J6 and J7 are optimized for
the same values of the distribution coefficients which maximize and minimize J1 and J2, we
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focused our attention on the optimization of junctions of type 2 × 1, for which J1 and J6 have,
in some cases, different optimal values. It is interesting to notice that in many cases (with the
extreme case of functionals not depending on p) there is a set of optimal values of the right
of way parameters.

The correctness of analytical optimization algorithms is tested through simulations.
First we consider simple junctions of 2 × 1 type and compare different choices of parameters,
statistical parameters, and optimal one. In particular, the initial density values on the roads
are chosen in such way that optimization procedures, obtained evaluating the described cost
functionals, give different optimal parameters.

Then, we studied the effects of the decentralized approach on the global performance
of more complicated networks. According to this approach local optimal parameters at every
junction of a complex network have been used. The discussed example regards Re di Roma
Square, in Rome.We notice that the global effect of optimization is achieved using the optimal
values for the velocity functional. Indeed, it is also shown that, considering the optimal values
for the other cost functionals, the network becomes almost completely full, with consequent
birth of congestion phenomena and reduction of cars fluxes. Finally we compare optimal
algorithms with random ones. In the latter case, the right of way parameters are chosen
randomly at every instant of time and for every junction independently. We see that the
optimal algorithm based on themaximization of the velocity ensures better performance than
random simulation.

The paper is organized as follows. In Section 2, we recall the basic definitions and
the construction of solutions to Riemann Problems at junctions. The subsequent section is
devoted to the introduction of the cost functionals and to the optimization of J6 and J7,
compared with J1 and J2. Then, Section 4 reports simulation results first for simple junctions
and then for Re di Roma Square.

2. Road Network Model

We consider a traffic network that is a finite collection of roads connected together by
junctions. Formally, we introduce the following definition.

Definition 2.1. A traffic network is given by a 4-tuple (N,I, F, J)where

Cardinality

N is the cardinality of the network, that is, the number of roads in the network;

Lines

I is the collection of roads, modeled by intervals Ik = [ak, bk] ⊆ R, k = 1, . . . ,N;

Fluxes

F is the collection of flux functions fk : [0, ρmax
k ] �→ R, k = 1, . . . ,N, with ρmax

k the maximal
density on road Ik;
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Nodes

J is a collection of subsets of {±1, . . . ,±N} representing junctions. If j ∈ J ∈ J, then the road
I|j| is crossing at J as incoming road (i.e., at point bi) if j > 0 and as outgoing road (i.e., at
point ai) if j < 0. For each junction J ∈ J, we indicate by Inc(J) the set of incoming roads,
that are Ii’s such that i ∈ J , while by Out(J) the set of outgoing roads, that are Ii’s such that
−i ∈ J . We assume that each road is incoming for (at most) one node and outgoing for (at
most) one node.

In what follows, we suppose that fk = f for k = 1, . . . ,N, but it is possible to generalize
all definitions and results to the case of different fluxes fk for each road Ik. In fact, all
statements are in terms of fluxes values at junctions, thus it is sufficient that the ranges of
fluxes intersect. On each road, we consider the LWR model, described by the equation (see
[10, 11]),

ρt + f
(
ρ
)
x = 0, (2.1)

where (t, x) ∈ R
+×R, ρ = ρ(t, x) ∈ [0, ρmax] is the density of cars, ρmax is the maximal density,

f(ρ) = ρv is the flux, and v = v(ρ) the average velocity. For roads such that i /∈ ⋃
J∈J Inc(J)

and bi < +∞ or such that i /∈ ⋃
J∈J Out(J) and ai > −∞, a boundary condition is needed. In

throughout the paper, we use the following flux function:

f
(
ρ
)
= ρ

(
1 − ρ

)
, ρ ∈ [0, 1], (2.2)

with a unique maximum σ = 1/2.
For a single conservation law (2.1) on a real line R, a Riemann Problem (RP), the

basic ingredient to construct approximate solutions to Cauchy Problems with wave front
tracking algorithm, is a Cauchy problem for an initial data piecewise constant with only one
discontinuity. In a similar way, an RP at a junction is a Cauchy Problem for an initial data
constant on each incoming and outgoing road.

Fix a junction J with n incoming roads andm outgoing roads (junction of n ×m type),
where Ii, i = 1, . . . , n, are the incoming roads and Ij , j = n + 1, . . . , n + m, are the outgoing
ones. Let ρ = (ρ1, . . . , ρn+m), ρk ∈ [0,+∞] × Ik be the density vector for J .

Definition 2.2. A Riemann Solver (RS) for the junction J is a map RS : [0, 1]n × [0, 1]m �→
[0, 1]n × [0, 1]m that associates to a Riemann datum ρ0 = (ρ1,0, . . . , ρn+m,0) at J a vector ρ̂ =
(ρ̂1, . . . , ρ̂n+m) so that the solution on Ii, i = 1, . . . , n, is given by the wave (ρi,0, ρ̂i) and on
Ij , j = n + 1, . . . , n +m is given by the wave (ρ̂j , ρj,0). We require the consistency condition:

(CC) RS
(
RS

(
ρ0
))

= RS
(
ρ0
)
. (2.3)

Ifm ≥ n, it is possible to introduce an RS, based on the following rules ([1, 12]).

(A) At each junction J , we define a matrix A = (αj,i), that describes the traffic
distribution from incoming to outgoing roads, where, for every i ∈ {1, . . . , n} and
j ∈ {n + 1, . . . , n +m}, 0 ≤ αj,i ≤ 1 and

∑n+m
j=n+1 αj,i = 1. The ith column of A indicates
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the percentages of traffic that, from the incoming road Ii, are distributed to outgoing
roads.

(B) respecting (A), drivers behave so as to maximize the flux through J .

In the case m < n, with n ≥ 2 and m = 1, in order to define an RS, we fix also the
right of way parameters vector p = (p1, . . . , pn) with

∑n
i=1 pi = 1 and consider the following

additional rule.

(P) Assume that not all cars can enter the outgoing roads, and let C be the amount that
can do it. Then piC, i = 1, . . . , n cars come from the road Ii into the node.

For simplicity, we indicate by ρi(t, x), i = 1, . . . , n, the densities of the cars on the
incoming roads and by ρj(t, x), j = n+ 1, . . . , n+m, those on outgoing roads. Let us introduce
the notation

γk = f
(
ρk
)
, γ̂k = f

(
ρ̂k
)
, k = 1, . . . , n +m. (2.4)

Proposition 2.3. Let (ρ1,0, . . . , ρn+m,0) ∈ [0, 1] be the initial densities of an RP at J . The maximum
fluxes that can be obtained on the incoming roads and the outgoing ones, respectively, are given by (for
a proof see [12]):

γmax
i =

⎧
⎪⎪⎨

⎪⎪⎩

f
(
ρi,0

)
, if ρi,0 ∈

[
0,

1
2

]

f

(
1
2

)
=

1
4

if ρi,0 ∈
]
1
2
, 1
]
,

i = 1, . . . , n,

γmax
j =

⎧
⎪⎪⎨

⎪⎪⎩

f

(
1
2

)
=

1
4
, if ρj,0 ∈

[
0,

1
2

]

f
(
ρj,0

)
if ρj,0 ∈

]
1
2
, 1
]
,

j = n + 1, . . . , n +m.

(2.5)

Now we focus on junctions of 2 × 1 type and indicate with 1 and 2 the entering roads
and with 3 the exiting one. In this case, we need only one right of way parameter p. The
solution to the RP with initial data (ρ1,0, ρ2,0, ρ3,0) is constructed in the following way. Since
we want to maximize the through traffic (rule (B)), we set

γ̂3 = min
{
γmax
1 + γmax

2 , γmax
3

}
. (2.6)

If γ̂3 = γmax
1 + γmax

2 , then the solution of the RP is γ̂ = (γmax
1 , γmax

2 , γmax
1 + γmax

2 ). Consider now
the case γ̂3 = γmax

3 and the following conditions:

(A1) pγmax
3 < γmax

1 ;

(A2) (1 − p)γmax
3 < γmax

2 .

The solutions of the RP are the following:

(i) (pγmax
3 , (1 − p)γmax

3 , γmax
3 ) if A1 and A2 are both satisfied;

(ii) (γmax
3 − γmax

2 , γmax
2 , γmax

3 ) if A1 is satisfied and A2 is not satisfied;

(iii) (γmax
1 , γmax

3 − γmax
1 , γmax

3 ) if A2 is satisfied and A1 is not satisfied.
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The case of both A1 and A2 false is not possible, since it would be γmax
3 > γmax

1 + γmax
2 .

From the flux function, we can express ρ̂k in terms of γ̂k. In fact, solving the equation
ρ̂k(1 − ρ̂k) = γ̂k, we get

ρ̂k =
1 + sk

√
1 − 4γ̂k

2
, k = 1, 2, 3, (2.7)

with

si =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 if ρi,0 < σ, γmax
1 + γmax

2 ≤ γmax
3 ,

or ρi,0 < σ, γmax
3 < γmax

1 + γmax
2 , piγ̂3 ≥ γmax

i ,

+1 if ρi,0 ≥ σ,

or ρi,0 < σ, γmax
3 < γmax

1 + γmax
2 , piγ̂3 < γmax

i ,

i = 1, 2,

s3 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−1 if ρ3,0 ≤ σ,

or ρ3,0 > σ, γmax
1 + γmax

2 < γmax
3 ,

+1 if ρ3,0 > σ, γmax
1 + γmax

2 ≥ γmax
3 ,

(2.8)

where

pi =

⎧
⎨

⎩

p if i = 1,

1 − p if i = 2.
(2.9)

The velocity, in terms of γ̂k, is given by v(ρ̂k) = (1 − sk
√
1 − 4γ̂k)/2, k = 1, 2, 3.

3. Cost Functionals

In this section, we introduce the functionals used to evaluate the network performance and
report optimization results for the functionals J6 and J7, compared with J1 and J2. We focus
again on junctions of 2 × 1 type and we define the following functionals:

J1 measuring car average velocity:

J1(t) =
3∑

k=1

∫

Ik

v
(
ρk(t, x)

)
dx, (3.1)
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J2 measuring average traveling time:

J2(t) =
3∑

k=1

∫

Ik

1
v
(
ρk(t, x)

)dx, (3.2)

J3 measuring total flux of cars:

J3(t) =
3∑

k=1

∫

Ik

f
(
ρk(t, x)

)
dx, (3.3)

J4 measuring car density:

J4(t) =
3∑

k=1

∫ t

0

∫

Ik

ρk(τ, x)dτdx, (3.4)

J5 the Stop and Go Waves functional, measuring the velocity variation:

J5(t) = SGW =
3∑

k=1

∫ t

0

∫

Ik

∣∣Dv
(
ρ
)∣∣dτdx, (3.5)

where |Dv| is the total variation of the distributional derivative Dρ, which is a finite Radon
measure,

J6 measuring the kinetic energy:

J6(t) =
3∑

k=1

∫

Ik

f
(
ρk(t, x)

)
v
(
ρk(t, x)

)
dx, (3.6)

J7 measuring the average traveling time weighted with the number of cars moving on
each road Ik:

J7(t) =
3∑

k=1

∫

Ik

ρk(t, x)
v
(
ρk(t, x)

)dx. (3.7)

For a fixed time horizon [0, T], our aim is to maximize
∫T
0 J1(t)dt,

∫T
0 J3(t)dt,

∫T
0 J6(t)dt and to

minimize
∫T
0 J2(t)dt,

∫T
0 J7(t)dt, choosing the right of way parameter pk(t). Since the solutions

of such optimization control problems are too difficult, we reduce to the following problem.
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(Pr) Consider a junction J of 2 × 1 type, the functionals Jk, k = 1, 2, 3, 6, 7, and the right
of way parameter pk as controls. We want to minimize J2(T), J7(T) and to maximize
J1(T), J3(T), J6(T) for T sufficiently big.

Given the initial data, solving the RP, we determine the average velocity, the average
traveling time, and the flux over the network as function of the right of way parameters p,
then all the functionals depend on p. As was proved in [6–8], the functional J3(T) does not
depend on the right of way parameter.

3.1. Optimization of J6 and J7

Let us consider the optimization of the functionals, measuring kinetic energy and weighted
average traveling time. For T sufficiently big the functionals assume the form:

J6(T) =
3∑

k=1

f
(
ρ̂k
)
v
(
ρ̂k
)
=

3∑

k=1

γ̂k

(
1 − sk

√
1 − 4γ̂k

)

2
,

J7(T) =
3∑

k=1

ρ̂k

v
(
ρ̂k
) =

3∑

i=1

1 + sk
√
1 − 4γ̂k

1 − sk
√
1 − 4γ̂k

,

(3.8)

where sk, k = 1, 2, 3 are defined in (2.8), ρ̂ = (ρ̂1, ρ̂2, ρ̂3) = RS(ρ1,0, ρ2,0, ρ3,0), and γ̂ = f(ρ̂).
If γ̂3 = γmax

1 + γmax
2 , the solution of the RP does not depend on the parameter p and the

same happens for the functionals J6 and J7 which do not depend on the parameter p. Hence
we analyze the functionals in the case γmax

3 < γmax
1 + γmax

2 , that is, γ̂3 = γmax
3 . Let us define

β− =
γmax
3 − γmax

1

γmax
1

, p+ =
1

1 + β−
=

γmax
1

γmax
3

,

β+ =
γmax
2

γmax
3 − γmax

2
, p− =

1
1 + β+

=
γmax
3 − γmax

2

γmax
3

.
(3.9)

It is easy to check that β− ≤ β+. Then, for p ≥ p+, A1 is false andA2 is true, for p ≤ p−, A1 is true
and A2 is false and, finally, for p− < p < p+, A1 and A2 are both true. From (2.7), neglecting
the parts of the costs that do not depend on p, maximizing J6 and minimizing J7 is equivalent
to maximize and minimize, respectively,

J̃6 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
γmax
3 − γmax

2

)(
1 − s1

√
1 − 4

(
γmax
3 − γmax

2

))
+ γmax

2

(
1 − s2

√
1 − 4γmax

2

)
, 0 ≤ p ≤ p−,

pγmax
3

(
1 − s1

√
1 − 4pγmax

3

)
+
(
1 − p

)
γmax
3

(
1 − s2

√
1 − 4

(
1 − p

)
γmax
3

)
, p− < p < p+,

γmax
1

(
1 − s1

√
1 − 4γmax

1

)
+
(
γmax
3 − γmax

1

)(
1 − s2

√
1 − 4

(
γmax
3 − γmax

1

))
, p+ ≤ p ≤ 1,
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J̃7 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + s1
√
1 − 4

(
γmax
3 − γmax

2

)

1 − s1
√
1 − 4

(
γmax
3 − γmax

2

) +
1 + s2

√
1 − 4γmax

2

1 − s2
√
1 − 4γmax

2

, 0 ≤ p ≤ p−,

1 + s1
√
1 − 4pγmax

3

1 − s1
√
1 − 4pγmax

3

+
1 + s2

√
1 − 4

(
1 − p

)
γmax
3

1 − s2
√
1 − 4

(
1 − p

)
γmax
3

, p− < p < p+,

1 + s1
√
1 − 4γmax

1

1 − s1
√
1 − 4γmax

1

+
1 + s2

√
1 − 4

(
γmax
3 − γmax

1

)

1 − s2
√
1 − 4

(
γmax
3 − γmax

1

) , p+ ≤ p ≤ 1.

(3.10)

Observe that when the condition A1 is false and A2 is true, or vice versa, the cost functionals
J6 and J7 are constant with respect to p. To complete the analysis of the costs it is enough
to take the derivatives with respect to p in the region where both A1 and A2 are true. The
expressions are a bit long, so we do not report them, but it is straightforward to check that J6
and J7 are decreasing for p < 1/2 and increasing for p > 1/2, hence they have a minimum in
p = 1/2.

We analyze the functionals J6 and J7 in the intervals: [0, p−], ]p−, p+[ and [p+, 1]. We
search for absolute minimum in the case of J6 and absolute maximum in the analysis of J7,
taking into account the possible values that sk, k = 1, 2, 3, can assume in the above intervals:

(i) s1 = s2 = 1, s3 = ±1 in [0, p−], s1 = s2 = 1, s3 = ±1 in ]p−, p+[, s1 = s2 = 1, s3 = ±1 in
[p+, 1];

(ii) s1 = s2 = 1, s3 = ±1 in [0, p−], s1 = s2 = 1, s3 = ±1 in ]p−, p+[, s1 = −1, s2 = 1, s3 = ±1
in [p+, 1];

(iii) s1 = 1, s2 = −1, s3 = ±1 in [0, p−], s1 = s2 = 1, s3 = ±1 in ]p−, p+[, s1 = s2 = 1, s3 = ±1
in [p+, 1];

(iv) s1 = 1, s2 = −1, s3 = ±1 in [0, p−], s1 = s2 = 1, s3 = ±1 in ]p−, p+[, s1 = −1, s2 = 1, s3 =
±1 in [p+, 1].

Remark 3.1. Since s3 assumes the same values, 1 or −1, in all the intervals, (hence in the point
of discontinuities) and the terms in which s3 occurs do not depend on p, the optimal values
are independent from s3.

The functionals J2(T) and J7(T) are maximized for the same values of p. In fact we get
the following theorem.

Theorem 3.2. Consider a junction J of 2 × 1 type. For the flux function (2.2), and T sufficiently big,
the cost functionals J2(T) and J7(T) are optimized for the following values of p.

(1) Case s1 = s2 = +1, we have that

(a) p = 1/2 if β− ≤ 1 ≤ β+ or γmax
2 = γmax

3 ;
(b) p ∈ [0, p−] if β− ≤ β+ ≤ 1;
(c) p ∈ [p+, 1] if 1 ≤ β− ≤ β+;



10 ISRN Applied Mathematics

(2) Case s1 = −1 = −s2, we have that

(a) p = 1/2 or p ∈ [p+, 1] if β− ≤ 1 ≤ β+ or γmax
2 = γmax

3 ;
(b) p ∈ [0, p−] or p ∈ [p+, 1] if β− ≤ β+ ≤ 1;
(c) p ∈ [p+, 1] if 1 ≤ β− ≤ β+;

(3) Case s1 = +1 = −s2, we have that

(a) p = 1/2 or p ∈ [0, p−] if β− ≤ 1 ≤ β+;
(b) p ∈ [0, p−] if β− ≤ β+ ≤ 1;
(c) p ∈ [0, p−] or p ∈ [p+, 1] if 1 ≤ β− ≤ β+;
(d) p = 1/2 or p ∈ [p+, 1] if γmax

2 = γmax
3 ;

(4) Case s1 = s2 = −1, we have that

(a) p = 1/2 or p ∈ [p+, 1] if β− ≤ 1 ≤ β+, with β−β+ > 1 or γmax
2 = γmax

3 ;
(b) p = 1/2 or p ∈ [0, p−] if β− ≤ 1 ≤ β+, with β−β+ < 1;
(c) p = 1/2 or p ∈ [0, p−] ∪ [p+, 1] if β− ≤ 1 ≤ β+, with β−β+ = 1;
(d) p ∈ [0, p−] if β− ≤ β+ ≤ 1,
(e) p ∈ [p+, 1], if 1 ≤ β− ≤ β+;

where β− = (γmax
3 − γmax

1 )/γmax
1 , β+ = γmax

2 /(γmax
3 − γmax

2 ), p+ = γmax
1 /γmax

3 , p− = (γmax
3 −

γmax
2 )/γmax

3 .

In the particular case γmax
1 = γmax

2 = γmax
3 , the functionals J2 and J7 are optimized for

p = 1/2.
The maximization of the functionals J1(T) and J6(T) is reached, in some cases, for

different values of the right of way parameter, as reported in the following theorem, in which
the optimization analysis of the new functional J6(T) is compared with the results obtained
in [6] for J1(T).

Theorem 3.3. Consider a junction J of 2 × 1 type. For the flux function (2.2), and T sufficiently big,
the cost functionals J1(T) and J6(T) are optimized for the following values of p.

(1) Case s1 = s2 = +1, we have that

(a) p ∈ [0, p−] if β− ≤ 1 ≤ β+, with β−β+ > 1, or 1 ≤ β− ≤ β+, or γmax
2 = γmax

3 ;
(b) p ∈ [0, p−] ∪ [p+, 1] if β− ≤ 1 ≤ β+, with β−β+ = 1;
(c) p ∈ [p+, 1] if β− ≤ 1 ≤ β+, with β−β+ < 1 or β− ≤ β+ ≤ 1;

(2) Case s1 = −1 = −s2, we have that
for J1(T), p ∈ [p+, 1];

for J6(T),

(a) p ∈ [p+, 1] if β− ≤ 1 ≤ β+, or β− ≤ β+ ≤ 1;
(b) p ∈ [0, p−] or p ∈ [p+, 1] if 1 ≤ β− ≤ β+, or γmax

2 = γmax
3 ;

(3) Case s1 = +1 = −s2, we have that
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for J1(T), p ∈ [0, p−];

for J6(T),

(a) p ∈ [0, p−] if β− ≤ 1 ≤ β+, or 1 ≤ β− ≤ β+, or γmax
2 = γmax

3 ;
(b) p ∈ [0, p−] or p ∈ [p+, 1] if β− ≤ β+ ≤ 1;

(4) Case s1 = s2 = −1, we have that
for J1(T),

(a) p ∈ [0, p−] if β− ≤ 1 ≤ β+, with β−β+ < 1, or β− ≤ β+ ≤ 1;
(b) p ∈ [0, p−] ∪ [p+, 1] if β− ≤ 1 ≤ β+, with β−β+ = 1;
(c) p ∈ [p+, 1] if β− ≤ 1 ≤ β+, with β−β+ > 1, or 1 ≤ β− ≤ β+, or γmax

2 = γmax
3 ;

for J6(T),

(a) p ∈ [0, p−] or p ∈ [p+, 1] if β− ≤ 1 ≤ β+, with β−β+ > 1, or β−β+ < 1, or γmax
2 = γmax

3 ;
(b) p ∈ [0, p−] ∪ [p+, 1] if β− ≤ 1 ≤ β+, with β−β+ = 1;
(c) p ∈ [p+, 1] if β− ≤ β+ ≤ 1;
(d) p ∈ [0, p−] if 1 ≤ β− ≤ β+;

where β− = (γmax
3 − γmax

1 )/γmax
1 , β+ = γmax

2 /(γmax
3 − γmax

2 ), p+ = γmax
1 /γmax

3 , p− = (γmax
3 −

γmax
2 )/γmax

3 .

The functionals J1 and J6 are maximized for p = 0 or p = 1 if γmax
1 = γmax

2 = γmax
3 .

Remark 3.4. In the cases in which two possible optimal candidates exist, we evaluate the
corresponding values of the cost functionals. The optimal p is given by the value that
minimizes or maximizes, respectively, the functionals J1(T), J6(T) and J2(T), J7(T). If we have
a set of optimal values [0, p−], we can choose p = p− or p = p− − ε, while in the case in which
the optimal right of way parameter belongs to [p+, 1] we can take as optimal value p = p+ or
p = p+ + ε, with ε small and positive.

4. Simulations

In this section, we present some simulation results in order to test the optimization algorithms
both for single junctions and complex networks. The aim is to verify the correctness of the
analytical results and then to analyze the effects of different control procedures, applied
locally at each junction, on the global performances of networks. The approximation of the
conservation laws, that describe the density evolution for each road of the network (see [13]),
is made by the numerical scheme of Godunov ([14]), with space stepΔx = 0.01. The time step
is determined by the CFL condition ([15]), equal to 0.5.

4.1. Single Junctions

We consider single junctions of 2×1 type, namely, junctions consisting of two incoming roads,
1 and 2, and one outgoing road, 3, in order to verify the goodness of optimization procedures.
Thenwe compare cost functionals behaviour using right of way parameters, that optimize the
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Figure 1: Comparison among J1 computed by optJ1 (a), J6 computed by optJ6 (b), and fixed cases for
p = 0.4 and p = 0.8.
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Figure 2: Comparison among J2 (a) and J7 (b) computed by optJ2J7, and fixed cases for p = 0.4 and p = 0.8.

functionals (optimal case) and fixed right of way parameters ( fixed case), according to which p
is chosen by the user. The evolution of the traffic is simulated in a time interval [0, T], where
T = 20min for the flux function (2.2). As for the initial conditions on the roads, we assume
that, at the starting instant of simulation (t = 0), all roads are empty. Moreover, for roads 1,
2, and 3, also boundary data, ρi, b, i ∈ {1, 2, 3}, have to be considered. Precisely, we choose
ρi, b = 0.3, ρ2, b = 0.4, and ρ3, b = 0.1.

The motivation for the choice of such boundary data is that it allows to capture the
case in which different optimization procedures, one for J1, indicated as ”optJ1”, one for J6,
”optJ6”, and one for both J2 and J7, ”optJ2J7”, give origin to different optimal values.

As you can see from Figures 1 and 2, the optimal algorithms for J1, J2, J6, and J7
improve traffic conditions with respect to the fixed cases. Notice that, when we are not in the
steady state, it could occur that some fixed simulations can behave better than the optimal
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Figure 3: Comparison among J1 (a) and J6 evaluated by optJ1, optJ2J7 and optJ6 (b).

Table 1: Boundary data for the four simulation cases.

Case ρ1,b ρ2,b ρ3,b

A 0.112 0.139 0.846
B 0.183 0.139 0.782
C 0.112 0.183 0.673
D 0.301 0.412 0.101

ones. This is due to the fact that the analytical results are always obtained for big times. In
Figure 3, we present the differences between the optimization algorithms for cost functionals
J1 and J6. As expected, J1 and J6 are higher, respectively, applying optJ1 and optJ6. Moreover,
simulating the junction with the parameter p obtained using the control procedures optJ1,
optJ6, and optJ2J7, the behaviours of J1 and J6 are different, confirming the theoretical results
that, depending on the initial data, the functionals can be optimized for different values of
the right of way parameter.

As for a single junction of 2 × 1 type, various optimization algorithms can be applied
to set the priority parameters, we tried to understand which is the best policy to adopt for the
improvements of traffic conditions. In order to discriminate among the different optimization
approaches, we analyze the behaviour of the Stop and Go Waves functional (SGW), which
measures the velocity variations on roads. We simulate the traffic evolution for a junction
in four different situations, denoted by A, B, C, and D, in a time interval [0, T], where T is
30min for cases A and B and 50min for cases C and D. We assume that at the beginning of
the simulation all the roads are empty. Boundary data are reported in Table 1, and chosen in
such way to test various cases of Theorems 3.2 and 3.3.

For such case studies, optimal values for the right of way parameter p are as shown in
Table 2.

In Figures 4 and 5, the behaviour of SGW, applying optJ1, optJ2J7, and optJ6, in the
different simulation cases, is depicted. In the steady state, SGW is lower when the algorithm
optJ1 is used, and this implies a lower probability of car accidents. We can conclude that it
is suitable to choose the parameter p which maximizes the average velocities. Notice that in
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Table 2: Optimal right of way parameters for simulation cases A, B, C, and D.

Case optJ1 optJ2J7 optJ6
A p ∈ [0.769, 1] p = 0.5 p ∈ [0, 0.769]
B p ∈ [0, 0.294] p ∈ [0, 0.294] p ∈ [0.882, 1]
C p ∈ [0.454, 1] p ∈ [0.454, 1] p ∈ [0, 0.318]
D p ∈ [0, 0.040] p = 0.5 p ∈ [0.840, 1]
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Figure 4: Comparison among SGW, evaluated by optJ1, optJ2J7, and optJ6, in case A (a) and case B (b).

cases B and C, the optimal algorithms optJ1 and optJ2J7 give the same set of p, hence curves
overlap.

4.2. Simulation of Traffic for Re Di Roma Square

This subsection is devoted to the description of simulative results for a real urban network, Re
di Roma Square, a big traffic circle inside the urban network of Rome, in Italy. The choice of
this case study is justified by the presence of congestion phenomena, which could be avoided
through an opportune choice of network parameters.

The topology of the square, represented in Figure 6, is described by 12 roads, which
form the circle: 1R, 2R, 3R, 4R, 5R, 6R, 7R, 8R, 9R, 10R, 11R, and 12R; 12 roads, con-
necting the inner roads with outside: aosta ent, aosta exi, vercelli, pinerolo, appia sud ent,
appia sud exi, albalonga ent, albalonga exi, cerveteri ent, cerveteri exi, appia nord ent,
appia nord exi.

As it is shown, Re di Roma square is formed by junctions of 2×1 type (1, 3, 5, 7, 9, 11), in
white, and junctions of 1×2 type (2, 4, 6, 8, 10, 12), in black. The traffic distribution coefficients
at 1 × 2 junctions are completely determined by road capacities (and the characteristics of the
nearby portion of the Rome urban network); hence only right of way parameters for 2 × 1
junctions can be chosen as control parameters. Table 3 reports the distribution coefficients
used for simulations.

The evolution of the traffic flows is simulated in a time interval [0, T], where T =
30min. We assume that, at the starting instant of simulation, all roads are empty. We use
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Figure 5: Comparison among SGW, evaluated by optJ1, optJ2J7, and optJ6, in case C (a) and case D (b).
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Figure 6: Topology of Re di Roma Square.

boundary conditions for roads with not infinite endpoints. In particular, roads cerveteri exi,
albalonga exi, appia sud exi, vercelli, aosta exi, and appia nord exi have a boundary data
equal to 0.4, while the other ones equal to 0.35.

We analyze two simulation cases: right of way parameters, that optimize the cost
functionals (optimal case); dynamic random parameters (dynamic random case), which means
that right of way parameters change randomly at every step of the simulation process.

The aim is to investigate the effects of optJ1, optJ6, and optJ2J7 on the global
performances of the network in order to understand which is the best optimization algorithm
(the algorithm realizing the better viability conditions on the whole Re di Roma square). In
the following pictures, we report the time behaviour evolutions of the cost functionals J1, J2,
J6, and J7, fixing at every junction the values of the right of way parameters obtained by the
optimization procedures.
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Table 3: Traffic distribution parameters for junctions of 1 × 2 type.

Junction i αiR,(i−1)R αi,(i−1)R
i = 2 0.866071 0.133929
i = 4 0.459854 0.540146
i = 6 0.800971 0.199029
i = 8 0.730612 0.269388
i = 10 0.536050 0.463950
i = 12 0.753927 0.246073

5 10 15 20 25 30

t (min)

J 1

5

10

15

20

25

30

J1opt
J2J7opt
J6opt

(a)

5 10 15 20 25 30

t (min)

J 2
50

100

150

200

250

300

J1opt
J2J7opt
J6opt

(b)

Figure 7: Behaviour of the optimal cost functionals J1 (a) and J2 (b).

The optimizations of local type, like the ones that we are considering here, could not
necessarily imply global optimization for big networks, as we can see in Figures 7, 8, 10, 11.
This is due to various factors, mainly depending on the network topology and on traffic loads.

First of all, notice that in the case study the algorithm optJ1 allows a global
optimization for the whole network. It is evident in Figure 7, where J1 and J2 are, respectively,
the highest and the lowest. Hence, the use of optJ2J7 and optJ6, as control procedures,
does not guarantee better performance of traffic flows. The goodness of optJ1 for global
performances is confirmed by the behaviour of J2. In fact, optJ2J7 and optJ6 can let J2 explode,
that is, the traffic circle is stuck and the time to run inside goes to infinity. This situation is
more evident in Figure 8, where we can capture another important aspect: the total kinetic
energy J6, on the whole network, tends to zero when optJ1 is not used. This means that the
cars flux is going to zero, as evident from Figure 9, hence roads inside the circle are becoming
full. A consequence of this phenomenon is also visible in J7 evolution, that tends to infinity.

In Figure 10, J4 and J5 (Stop and Go Waves functional, SGW) behaviour are depicted.
There are no optimization algorithms for these functionals, and they are computed directly
using optJ1, optJ2J7, and optJ6. It is evident that the amount of traffic load, visible in J4, tends
to decrease using optJ1. Moreover, the behaviour of J5, that measures the velocity variation,
indicates that the use of optJ1 leads to more regular densities on roads, giving advantages in
terms of security.
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Figure 8: Behaviour of the optimal cost functionals J6 (a) and J7 (b).
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To complete the discussion, we focus the attention on the characteristics of dynamic
random simulations (Figure 11). As proved in [8], the dynamic random simulation is similar
to a fixed simulation with all right of way parameters equal to 0.5. In fact, dynamic random
choices fit well the optimizations obtained with J2 and J7, since in the considered case the
optimal value is 0.5 for each junction of 2 × 1 type. Unlike the case presented in [6, 8], optJ1
does not guarantee an average optimal right of way parameter equal to 0.5, and this justifies
the dissimilarities among the optimal performances obtained using optJ1, optJ2J7 and the
global effects due to dynamic random simulations.

From all the previous observations, it is clear that for the case study and with the
chosen initial data, the best performances on the whole network are given by the optimal
algorithm for J1. Such algorithm is preferable for maximizing traffic flows, since it allows not
only the locally optimization of each node of 2 × 1 type, but also the global improvement
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Figure 10: Behaviour of the optimal cost functionals J4 (a) and SGW (b).
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Figure 11: Behaviour of optimal J2 (a) and J7 (b) versus dynamic random simulations.

of traffic conditions over the whole network. The other algorithms are able only to improve
locally traffic viability.
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