

CMP Off-chip Bandwidth Scheduling Guided by Instruction
Criticality

Pablo Prieto
University of Cantabria

Santander, Spain
prietop@unican.es

Valentin Puente
University of Cantabria

Santander, Spain
vpuente@unican.es

Jose Angel Gregorio
University of Cantabria

Santander, Spain
monaster@unican.es

ABSTRACT
This paper explores the benefits of scheduling off-chip memory
operations in a Chip Multiprocessor (CMP) according to their
execution relevance. Assuming the scenario of having many out-
of-order execution cores in the CMP, from the processor
perspective, the importance of the instruction that triggers an
access to off-chip memory may vary considerably. Consequently,
it makes sense to consider this point of view at the memory
controller level to reorder outgoing memory accesses. After
exploring different processor-centric sorting criteria, we reach the
conclusion that the most simple and useful metric for scheduling a
memory operation is the position in the reorder buffer of the
instruction that triggers the on-chip miss. We propose a simple
memory controller scheduling policy that employs this
information as its main parameter. This proposal significantly
improves system responsiveness, both in terms of throughput and
fairness. The idea is analyzed through full-system simulation,
running a broad set of workloads with diverse memory behavior.
When it is compared with other scheduling algorithms with
similar complexity, throughput can be improved by an average of
10% and fairness enhanced by an average of 15% even in very
adverse usage scenarios. Moreover, the idea supports the
possibility of dynamically favoring throughput or fairness,
according to the end-user requirements.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles – primary memory,
shared memory. C.1.0 [Processor Architectures]: General.

General Terms
Algorithms, Management, Measurement, Performance, Design,
Experimentation.

Keywords
Multi-core processor; Off-chip bandwidth wall; out-of-order;
memory access scheduling.

1. INTRODUCTION
Moore’s law seems to be keeping pace, without insurmountable
roadblocks in sight, although further shrinking in feature size will
finally be prevented by the laws of physics. In any case, other
More-than-Moore technologies such as 3D stacking [4] will allow
these problems to be circumvented. Since the mid-2000s,

processor designers have had problems to translating device
availability into ILP enhancement [26]. Therefore, chip
multiprocessors (CMP) have flourished, today being pervasive in
most computing fields. The virtuous cycle that in the pre-CMP era
allowed performance enhancement to be transparently included in
legacy software without any intervention of the final user has been
broken. All computer science disciplines [1] are committed to
facilitating the adjustment of all the elements of the computer
stack to fully exploit the potentials of CMP systems and so
guarantee that performance can keep up with device availability
growth. Nevertheless, several problems could prevent that
evolution. In this paper we will focus on one particularly
interesting aspect, namely the off-chip bandwidth wall [3][29].
Packaging issues limit the number of pins available for a chip and
clocking. Even under the assumption of a high-performance
system, the actual ITRS roadmap [32] states that by 2020 the
maximum number of pins will be fewer than 6000, which is less
than double today’s standard. According to the same report, the
operation frequency will grow slightly. Combining both facts, the
result is that the off-chip bandwidth available per million
transistors will fall exponentially.

Architects and technologists will have to find imaginative
solutions to help with this problem; otherwise it will be
impossible to keep increasing the number of cores in a single chip.
The solutions could be diverse and range from adding massive
amounts of on-chip cache, to increasing pin bandwidth using
photonics and ultra-dense wavelength multiplexing [25]. Even in
these cases, off-chip bandwidth scarcity is foreseeable, and if we
combine it with the fact that there will be a huge number of
running threads in the CMP, not necessarily cooperating in the
same task, it makes sense to pay special attention to how the
bandwidth is used. In an extreme case, an intentionally or
unintentionally misbehaving task could reduce the whole CMP
performance. Therefore, bandwidth partitioning [18] will be
paramount and this is where this paper is focused.

Although the work dealing with this problem is profuse, we have
used a novel approach to deal with it. In particular we focus our
interest on the processor side. Although there are CMPs based on
simple cores, general purpose computing demands the utilization
of cores capable of exploiting instruction level parallelism [12].
This will require, in one way or another, the use of cores with
aggressive out-of-order execution [11]. This work analyzes how to
effectively exploit the different nature of memory operations in
this class of systems in order to optimize bandwidth utilization.
We will explore and demonstrate the possible improvement in
system behavior if memory operation scheduling is done taking
into account the relevance of the instruction that triggers the
operation. In particular we use the distance from such an
instruction to the head of the Reorder Buffer (ROB). The
proposed scheduling algorithm uses this distance when the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’13, June 10–14, 2013, Eugene, Oregon, USA.
Copyright 2013 ACM 978-1-4503-2130-3/13/06 ...$15.00.

379

C
or

e
0

L
oc

al
 C

ac
he

L
as

t
L

ev
el

 C
ac

h
e

C
or

e
N

-1

L
oc

al
 C

ac
he

D
R

A
M

D
R

A
M

D
R

A
M

Memory Controller 0

Arbiter

M
em

.
S

ch
ed

ul
in

g
&

 S
ig

na
li

ng

Bank0

Bank1

Bank B-1

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

Memory Controller M-1

Arbiter

M
em

.
S

ch
ed

ul
in

g
&

 S
ig

na
li

ng

Bank0

Bank1

Bank B-1

D
R

A
M

D
R

A
M

D
R

A
M

Figure 1. Baseline System

… …

memory operation leaves the core and the off-chip miss-frequency
behavior of each core to determine the sorting and aging criteria.
The proposal (called DROB) outperforms similar scheduling
algorithms both in terms of fairness and throughput. Additionally,
the proposed idea has a noteworthy property of allowing the end-
user to favor throughput or fairness according to the usage
scenario simply by modifying a single parameter. Finally, we
demonstrate that it is possible to use a simple mechanism to self-
tune the memory controller in order to achieve the most balanced
throughput-fairness behavior.

The paper is organized as follows: Section 2 presents the baseline
organization for the memory controller and describes related
work. Section 3 discusses how the processor viewpoint may be
relevant as an ordering criterion and which metrics can be useful.
Section 4 introduces a suitable implementation of a memory
controller that can exploit this knowledge. Section 5 describes the
methodology used to evaluate how effective our approach is.
Section 6 reports the performance with different workloads and
compares it with other similar scheduling approaches.

2. BASELINE ORGANIZATION AND
RELATED WORK
Figure 1 shows the baseline system assumed. The system is
composed of a set of N out-of-order execution cores, each one
with one or more coherent private levels of cache, a shared write-
back last level cache and M memory controllers, managing R
ranks made up of B banks. When a memory access instruction, i.e.
prefetch, fetch, store, load, atomic or requested block is not in the
chip, depending on the memory interleaving, the corresponding
memory controller should deal with the request applying the
priority ordering used to each incoming request and issuing it to
the corresponding DRAM bank. Outstanding accesses to the same
memory block from the same core will coalesce in the MSHR of
the Local cache level [16]. Outstanding memory requests from
different cores will coalesce in the Last level cache MSHR. Write
memory operations will be associated with write-back events in
the last level cache when an on-chip miss evicts a dirty block.

The memory controller is responsible for applying the priority to
the incoming memory transaction and enqueueing it, depending
on the address translation, in the corresponding bank queue. From
the bank queues, the memory access scheduler logic will chose
one transaction and issue it to the appropriate bank. As a starting
point, we will assume that this scheduler logic is FR-FCFS [28].
Although other more advanced policies, depending on the DRAM

physical implementation, signaling interface, etc. could be used
[9][10][22], in most cases this could be considered
complementary to this work.

Our proposal, like many others, works at the arbiter level. We
compose a policy that prioritizes the incoming memory
transaction, based on different sorting criteria. The scheduling
algorithm modifies the First-Come-First-Served policy of FR-
FCFS, at each bank queue depending on the policy used.
According to the priority determined by the arbiter we will insert
the associated DRAM operations in the appropriate position of the
corresponding queue and will leave the CMP in that order. Given
that off-chip bandwidth limitation is a topic that it is attracting
significant attention, there are many recent high quality works
focused on memory scheduling [5][9][10][15][22][28]. In most of
these works, the key point is to infer what the processor is doing
in the memory controller and act accordingly with the scheduling
decision, coordinating the decision across banks [15], [18]. In
some cases the mechanism involved in this decision requires
complex algorithms [14], [22] and/or modifications throughout
the software stack or limits the flexibility of use of the CMP [21].

Intuitively, the underlying approach in many proposals [8], [20] is
to limit the interference of bandwidth-demanding applications on
bandwidth non-demanding ones. The objective is, with little
performance penalty, to limit the bandwidth consumption of the
former applications so as to significantly improve the latter. In a
way our approach is similar to this, although it also takes into
account the criticality of the instructions at scheduling time. For
an out-of-order processor, the criticality of an instruction
represents how large the performance penalty of delaying it can
be.

3. MEMORY OPERATIONS FROM THE
PROCESSOR PERSPECTIVE
There is a significant amount of work focused on managing off-
chip bandwidth scarcity from the perspective of the DRAM itself.
It makes sense to exploit the technological peculiarities of these
systems while not precluding the combined utilization of other
techniques focused on the opposite end of the problem: the
processor. Although there are many works that introduce
mechanisms to deduce the processor responsiveness [15][18][21]-
[24] at the memory controller, we opt to directly look at what the
processor is doing. Not all memory operations are equally
important in an out-of-order execution core, therefore it seems
pertinent to use their degree of relevance to carry out the

380

prioritization of the memory accesses. At a given time, in usual
memory interleaving approaches, each memory controller may
deal with memory operations coming from any of the cores in the
system. These operations should be sorted and sent to the
corresponding DRAM bank in order to be fulfilled. The sorting
may have a non-negligible impact on performance, fairness and
energy. We will explore the use of different criteria from the
processor perspective. We will focus on operations that are in the
critical path of the cores, i.e. memory reads. Note that memory
write commands are always the result of replacements of dirty
blocks in the on-chip cache. Like in systems such as Power5,
write operations always have the lowest priority [13].

Although there are recent works, such as [31], focused on co-
optimizing the replacement algorithm and the memory controller
in order to minimize read-after-write waiting cycles, we do not
consider this problem. This type of solutions can be
complementary to the analysis carried out in this work. In our case
memory write operations will be inserted with the lowest priority
in the bank queue.

3.1 Optimize Retire Bandwidth
Retire bandwidth underutilization has a large effect on
performance because it directly causes an IPC loss. The most
common sources of retire underutilization are a slow operation
blocked at the head of the ROB or frequent rollbacks due to miss-
speculations. In current system configurations the most likely
cause of a slow operation is an on-chip miss. Therefore, when a
memory operation arrives at the memory controller, its criticality
is higher when the distance to the head of the ROB is smaller. We
carried out a simple experiment for thirty-six particular mixes of
multiprogrammed workloads using SPEC2006 benchmarks (using
the framework and system configuration described in Section 6.1).
When an on-chip miss reaches the memory controller we
determine the average number of instructions between the
triggering instruction and the head of the ROB. As can be seen in
Figure 2 the variability is large across all the running threads. For
example in the hmmer-gcc-lbm-lbm case, memory operations
from Core 0 (hmmer) and Core 1 (gcc)1 seem to be much more
critical than memory operations in other cores. If we can use that
information judiciously to schedule memory operations, we can

1 We use the Solaris tool processor_bind to fix threads to cores.

advance the resolution of more important memory operations by
some cycles with little effect in other cores. In this example, at a
given time, if we can somehow determine the situation in ROBs, it
could be useful to favor gcc and hmmer memory operations over
lbm. Note that these numbers are oversimplified because the
variability is constant during the execution of the benchmark.

3.2 Optimize Fetch Bandwidth
An on-chip miss in the processor front-end, i.e. instruction fetch,
has a critical impact on an out-of-order execution processor. In
such situations, given that this operation is performed in order, the
processor pipeline will stall. Although this type of misses is not
very frequent in many applications, in others, such as commercial
workloads, it might be quite probable. This behavior is due to the
large code footprint of this type of applications [2]. Therefore, in a
multiprogrammed environment, the number of memory operations
triggered by a fetch from each core could be quite different
depending on the characteristics of each thread. If the memory
controller assigns the maximum priority to these operations, it
could be possible to accelerate miss resolution and consequently
unclog pipeline access faster. This would have a notable impact
on performance not only when an unbalance in core fetches is
observed but even for each core. Enabling some loads already
enqueued in the bank queue from the same core to be overtaken
would be beneficial, especially if these loads are far from the
ROB head. In few applications, we have observed significant
improvements in performance when accelerating fetches over
other memory requests.

3.3 Degree of Speculation
When an on-chip miss reaches the memory controller, the
triggering instruction/s can be speculatively issued. Let’s denote
the degree of speculation of an instruction as the number of
operations issued without all the parameters being known, i.e. the
number of unresolved branches, number of executed loads with
ambiguous stores, etc. between it and the head of the ROB.
Intuitively, not all instructions will be equally relevant from the
point of view of the memory operation. If the triggering
instruction of an on-chip cache miss has a higher degree of
speculation than another triggering instruction of another pending
memory operation at the memory controller, it could make sense
to use this information somehow to order the priority of the
requests to memory. Following a similar procedure to the one
described previously, we show the number of unresolved branches

0

10

20

30

40

50

60

A
ve
ra
ge

 D
is
ta
n
ce
 t
o
 R
O
B
 h
e
ad

CORE 0 CORE 1 CORE 2 CORE 3

Figure 2 Average instruction distance to head of the Reorder Buffer when the triggered memory operation reaches the
memory controller.

381

for six different mixes of SPEC2006 applications. As we can see
in Figure 3(a), for a 128-entry ROB, the average number of
unresolved branches from application to application is quite
similar, ranging from 1 to 3. This seems to indicate that this
criterion might not be useful when ordering memory operations.

Nevertheless, this information is partial because the likelihood of
being annulled is also dependent on the branch prediction
accuracy. In particular, this could be very important if the thread
executed by some cores has a higher chance of miss-speculation.
For example, if we mix integer applications with floating point
applications, the chances of miss-speculation are much higher in
the former type of applications than in the latter due to branch
prediction miss-speculations. To provide a better perspective, in
Figure 3 (b) we show the probability of the instruction arriving at
the memory controller being rolled-back. Where, M is the branch
miss-prediction rate, and N the number of speculated branches, the
probability of rolling back is calculated as:

1 1 																																		(1)

Figure 3 (a) Degree of speculation of triggering instructions at
memory controller, (b) Probability of the triggering
instruction being rolled-back later.

The result is that most of the benchmarks are fairly similar, the
presence of some pathological behavior being noticeable only in
astar, where almost half of memory accesses correspond to miss-
speculated instructions. Therefore, this metric might not be so
relevant as the previous one when sorting memory operations but
it can be useful to discard pathological behavior such as astar’s.
Anyway, the results obtained show that the complexity involved is
not cost effective bearing in mind the performance benefits.
Consequently this approach will not be considered in our ordering
criteria.

Although other types of speculation can be considered, such as
opportunistic load execution, with a simple dependency predictor,
the number of miss-speculations is not relevant in comparison
with branch-caused miss-speculation. Other speculative
operations like “data value prediction” have not been analyzed.

3.4 Dependent instructions

3.4.1 Dependency Graph Depth
Looking backwards in the ROB could also provide hints about the
relevance of the memory operation depending on the number of
dependent instructions. Intuitively, a pending instruction with
more dependent instructions waiting to be issued in the ROB
should be considered more important than another one with fewer.
The question that arises is whether on average it could be possible
to observe a significant difference from core to core. We ran the
same experiment again looking in the ROB for the number of
dependent instructions (both direct and indirectly) on the output
register of the instruction that generates the miss. Figure 4 shows
how many dependent instructions are in the ROB when the
triggering instruction of the memory operation reaches the
memory controller. Any direct or indirect dependence of the
instruction in the ROB is taken into account. As can be seen, in
spite of having up to 128 in-flight instructions, the difference
between each thread is not sufficient for clear discrimination.
Moreover, in most cases there is a clear correlation between the
distance of the triggering operation from the head of the ROB and
the number of dependent instructions. Intuitively, if we assume a
similar degree of usefulness for the block fetched from memory,
then the shorter the distance from the head of the ROB, the longer
the distance to the tail and consequently the more dependent
instructions could be found. A classification in terms of this
metric and distance to the head of the ROB, therefore, seems to be
redundant and will not be used in the scheduling algorithm.

Figure 4. Average Number of dependent instructions at the
ROB when the triggering operation reaches the memory
controller.

3.4.2 Store Operations
In the previous analysis, the nature of each memory operation was
not addressed. For the stores, technically the processor does not
require the outcome of the execution of instructions to progress
forward, i.e. there are no truly dependent instructions in the
associated on-chip miss. Forwarding from the Store Queue or
Write Buffer will provide the required value for any subsequent
load to the same word. Therefore, at the memory controller,
classification of memory operations according to the nature of the
triggering instruction might be considered. Although it could
make sense to prioritize the memory read when the instruction is a
load [9], this decision should be carefully considered. Loads to a

0

0.5

1

1.5

2

2.5

3

3.5

A
ve
ra
ge
 P
en

d
in
g
B
ra
n
ch
e
s
in
 R
O
B

Core 0 Core 1 Core 2 Core 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
ro
b
ab

ili
ty
 o
f
 b
ei
n
g
M
is
‐s
p
e
cu
la
te
d

Core 0 Core 1 Core 2 Core 3

0

0.2

0.4

0.6

0.8

1

1.2

A
ve
ra
ge
 N
u
m
b
e
r
o
f

D
ep

en
d
en

t
In
st
ru
ct
io
n
s

Core 0 Core 1 Core 2 Core 3

382

particular block can be overlapped with earlier stores misses,
which will be pending in MSHR [16]. Under this situation, storing
triggered memory operations will impact on performance. Next,
we will show how frequently this situation could happen. We
choose, as an example, nine applications of SPEC2006. Figure 5
shows the average number of coalescing loads in the MSHRs to
the same memory block where a previous store has missed. The
value is computed when the memory operation finalizes. The bars
indicate the maximum and minimum number of coalescing loads-
under-store miss observed when the application is executed
concurrently in different mixes of applications. As we can see,
from application to application there is a large disparity in the
coalescent loads compared to stores. For mcf or hmmer, the
average number of loads to the same block requested by a store is
relatively large. In contrast, in other applications such as lbm the
likelihood is negligible. The dissimilar spatial locality of each
application determines this behavior. Moreover, when each
application is running concurrently with three other applications,
the variability is sometimes noticeable. Therefore, a careful
analysis is necessary before delaying store operations at the
memory controller, otherwise a large number of coalescing critical
loads might be delayed. Nevertheless, this information is not
easily accessible since, at scheduling time, even with idealized
MSHR knowledge in memory controllers, most coalescing loads
will still be pending. In practice, besides its complexity, this
approach in most cases tends not to provide noticeable benefits. It
is not unusual to observe substantial performance degradation,
especially in applications such as mcf and hmmer.

Figure 5. Average Number of coalescing Loads in the same
cache block as a Store miss.

4. REALISTIC IMPLEMENTATION OF A
CORE-CRITICALLY-BASED MEMORY
SCHEDULER
The previous section discusses potential scheduling criteria
assuming that the memory controller has full knowledge of the
processor logic when the memory operation reaches it. This is
unfeasible without impairing CMP scalability. Therefore, the
information needed to reorder memory operations has to be
generated when the triggering instruction leaves the core, i.e. it is
executed if it is a load or committed if it is a store. We can embed
the required information in requests and piggyback it in each
successive on-cache miss until reaching the memory controller.
However, when the memory operation reaches the controller, the
processor status might have changed. We should readjust this
information using local metrics.

4.1 Distance to ROB Head
As explained before, it is possible to send the distance of the
instruction to the ROB head attached to the memory request it
triggers, but this information arrives at the memory controller

after a number of cycles and might have changed. It would be
desirable to estimate its position in the ROB when the on-chip
miss reaches the memory controller. Although achieving precision
in the absolute value might be hard, a relative value to compare
the criticality of the concurrent memory operations would be
enough. In general, when a processor generates a memory request,
the instruction that triggers it will reach the head of the Reorder
Buffer approximately after the number of cycles given by:

 (2)

This information should be enough to order requests properly, but
it is not easy to continuously provide it to the memory controller.
Nevertheless, the memory controller has easy access to the on-
chip misses in each core in the memory region that is mapped.
From this metric, it is straightforward to derive the miss
frequency, which is a good proxy for the CPI [18]. Although the
correlation between CPI and miss frequency has been analyzed
thoroughly in previous works, we simplify its practical use. We
cannot obtain the absolute value for the CPIs of each core, but we
can guess the relationship among them from the viewpoint of the
ratio of their miss frequency at the memory controller. As it is a
ratio, the result is no longer a measure of time, but a sort of
corrected distance to the ROB head. As this parameter will only
be used as a correction factor for the distance to the ROB head,
this approximation is accurate enough to evaluate request
criticality.

According to this and using (2), the corrected distance or priority
level of a request i, with a distance of DROB to the ROB header at
the time the operation leaves the core p for a CMP with N cores,
when it arrives at the memory controller is calculated as:

_

	 _ .. _ 	
 (3)

As the miss frequency is computed independently at each
controller, no communication is required between the memory
controllers. Miss frequency is calculated every 1M cycles, and to
avoid momentary application singularities, miss frequency will be
computed using the exponential moving average of each processor
at the memory controller. Note that the priority level expressed in
(3) is inverted, i.e. a memory request has higher priority when the
normalized distance to the head of ROB is smaller.

4.2 Fetches and Writes
As previously discussed, prioritizing fetches over other memory
requests might have impact on performance without noticeable
cost, so we have implemented this feature. Fetches are considered
high priority, and do not use the same formula as other memory
reads. Instead, their priority level is automatically set to 0 (the
maximum). On the other hand, we know memory writes
corresponds to LLC write-backs and are not in the critical path.
To keep the scheduling algorithm uniform, for such operations the
priority level of the request is set to the size of the Reorder Buffer
(the minimum priority).

4.3 Memory scheduling algorithm
Once a request reaches the memory controller, the operation will
be inserted into the corresponding bank queue and then sorted
according to the priority assigned using (3). When no previous
high priority requests are pending in the queue, for example
situation (a) depicted in Figure 6, a search for high priority
requests is initiated. In the example, we represent the computed

0

2

4

6

8

10

12

A
ve
rg
a
N
u
m
b
e
r
o
f
co
al
e
sc
in
g

Lo
ad

s
A
ft
er
 S
to
re
 m

is
s

383

priority and the issuing processor in each entry of the queue. The
algorithm uses an input parameter denoted Threshold Distance. If
the priority is below this distance the request is tagged as high
priority. If not, the request priority is recomputed decreasing the
distance to the ROB header by the Threshold Distance, avoiding
starvation issues for these requests. In the example presented in
Figure 6, the Threshold distance used is 16. Therefore, in situation
(b), only the first five requests will be tagged as high priority and
the remaining requests are recomputed accordingly. Therefore, the
sorting algorithm used is:

	 	 	 	
					 	

→ 	 	 	 	
				 → 	

When all the high priority commands have left the queue, which
corresponds to situation (c) in Figure 6, the search for new high
priority requests is initiated. Note that since step (b) occurred,
additional memory requests could have arrived at the memory
controller, which correspond to the white boxes. After the
application of the sorting, seven requests are tagged with high
priority.

In contrast to other batch-like scheduling algorithms, such as
PAR-BS [24] the batch length and time between arbitrations is
variable and no request for a processor can be tagged with high
priority. In the first sorting in the example, no request from
processor 2 has been tagged with high priority. Additionally, once
the request is tagged for high priority, the processor id is no longer
used in the scheduling of the memory operations. In PAR-BS the
order of pending requests per processor is used to decide how the
batch is sent to memory. This is equivalent to prioritizing the
processor with lowest CPI for the current interval. In order to
capture a global scope, ATLAS uses the exponential moving
average of the pending request for each core to sort the batches.
We combine the broad effect of the miss frequency and the local
scope of the DROB of each request. Although miss frequency is
useful as a proxy of the CPI, per request DROB is very useful to
correct it with local effects.

The input parameter of Threshold Distance, as we will show later,
could be used to adjust the system to favor fairness or global
performance. This can be dynamically set in order to
simultaneously optimize the two figures of merit.

5. EVALUATION METHODOLOGY
To perform the evaluation we use a modified version of the
GEMS framework [19]. We use a DDR2/3 detailed memory
controller provided by the latest GEMS version. It models bank
busy time, memory bus occupancy and turnaround delays, and
refresh. Our target machines run an unmodified SPARCv9
operating system and binaries. The operating system used by the
target system is Solaris 10. We model hardware-assisted TLB fill
and register window exceptions for all target machines. Multiple
runs are used to achieve strict 95% confidence intervals (error
bars are not visible in most cases). Benchmarks are fast-forwarded
past their initialization phases, during which page tables, TLBs,
predictors, and caches are warmed.

We will target our study towards aggressive core architecture,
dimensioned with up to 128 in-flight instructions and 4-issue
width. The main parameters of the architectural specification are
summarized in Table 1. Note that the L3 characteristic is per core,
therefore, in our system with four processors, there will be a total
of 4MB. To interconnect all L3 banks, L1 caches and memory
controllers, we will use an on-chip interconnection network based
on [14]. L3 cache is shared and statically partitioned (S-NUCA)
and interleaved using less significant address bits. L2 is exclusive
with L1 and L3 is inclusive with private caches [17].

Table 1. Configuration per-core.

Core Parameters Cache Hierarchy

Issue/Retire
Width

4/4 L1 Instruction Private, 32KB, 4-
way,2-cycle, Pipelined,

64B
Scheduler

Size
Unified, Pointer

Based[27],
 128 entries

L1 Data Private, 32KB, 4-way,
2-cycle, Pipelined, 64B

Functional
Units

4 ALU/2 LD-ST, 2
FP, 2BR

L2 Private
Unified

256KB, 8-way, 8-
cycles, 64B, Exclusive

With L1
Min. Latency

Fetch-to-
Dispatch

7 cycles L3 shared
 S-NUCA [8]

2 Slices per core, each
one:

512KB, 8-way, 8-
cycles, 64B, Inclusive

with Private caches
Branch

Predictor
YAGS [6]16K PHT

8K Exception
Table, 8KB BTB,

16-entry RAS

Coherence
Protocol

In-cache MOESI
Directory

Memory
Scheduling

Unlimited
Store-sets

Interconnection
Network

4x4 Mesh

Dram System
DRAM

Controller
On-chip

1,6 GB/s peak
DRAM bandwidth

DRAM
Parameters

DDR2-200
8 banks

 tCL=15ns
tRCD=15ns, tRP=15ns

DIMM
Configuration

Single rank
 8 RAM chips on a

DIMM
 64-bit wide

channel

Due to the computational effort of the current simulation
infrastructure, we chose to use a reduced number of cores in our
analysis. Therefore, to really provide insights about the relevance
of this class of solutions, we should scale down the available off-
chip bandwidth. The starting assumption [32] is that off-chip
bandwidth will be scarce in the future. We think that scaling up
the bandwidth availability for the small size of system we can
simulate today will necessitate reduction of bandwidth availability
if we want to understand the impact that this type of approaches
will have in the long term [29] as the number of cores and
application demands increase [7]. According to this reasoning, we
assume a raw bandwidth of 1.6GB/s in a four-processor system,
and eight memory banks.

a

b

c

d 602 353 121 142 113 92 321 101 122 80 41 21

From Arbiter
To

DRAM

 762 513 281 142 113 92 481 261 122 80 41 21

From Arbiter
To

DRAM

 922 673 321 252 150 123 441 302 201 100 51 30

From Arbiter
To

DRAM

 762 513 261 92 150 123 281 142 41 100 51 30

From Arbiter
To

DRAM

Figure 6 Memory scheduling Example.

384

In order to evaluate the effectiveness of the proposal, we will
compare our approach with different static and dynamic design
alternatives. In regard to the workloads, we will use multi-
programmed workloads from SPEC 2006 [33].

6. PERFORMANCE RESULTS
In order to determine the benefits of our proposal, we will
compare it with FR-FCFS [28], ATLAS[22] and PAR-BS[24].
We select this set of scheduling algorithms due to the similar
complexity of the memory controller and level of intervention
required at runtime. We have explored other scheduling
algorithms based on bandwidth partitioning, such as [18], with
discouraging results.

FR-FCFS, which will be considered as the baseline scheduler, has
no tunable parameters. For PAR-BS, which successfully improves
performance and fairness compared to FR-FCFS, after an
exhaustive search, the optimal BatchCap used is 5. Therefore, in
each scheduling up to 5 requests per processor will be chosen.
ATLAS, a PAR-BS evolution which takes into account broader
effects throughout the past, we use a HistoryWeight of 0.875 for
the exponential moving average. In our proposal, which will be
denoted as DROB, we use a HistoryWeight of 0.875 and
Threshold Distance of 16.

We compare these scheduling algorithms’ performance and
fairness using three different metrics. As a performance metric we
use the Harmonic Average of CPI, which is the inverse of the
arithmetic average of IPC and represents the throughput as the
number of instructions per cycle of the whole system. We also
provide the commonly used Weighted Speedup of CPI which
measures a balance of fairness and throughput. Finally, as a
measure of fairness we use the maximum slowdown of IPC. All
the metrics were chosen in order to guarantee the criteria of the
lower, the better.

	 	 		

	 	
∑ /

			 (4)	

	 	max

Both metrics are important, as our objective is to obtain the best
system throughput and fairness, although there are some cases in
which only pure throughput or fairness is needed. In section 6.4
we will discuss how our system can provide the best results in one
of these metrics simply by varying a single parameter.

6.1 Workloads
We will use hybrid combinations of SPEC2006 workloads. We
compiled each benchmark using gcc version 4.3.1 with –O3
optimizations. All workloads are executed with a reference input
set. All threads are slept at the beginning of the region of interest
and awakened at once, then running at least 500 million
instructions. Each thread core has an affinity, using Solaris
processor_bind facility, for a different core.

Since the number of combinations of applications can be really
high, previously we characterized how memory demanding each
considered benchmark is by obtaining the number of-chip misses
for each thousand instructions executed (MPKI). From those
results, we choose 12 applications shown in Table 2. Most of the
missing applications (nine) have very low memory demands.
Others (five) were not considered due to the simulation
framework limitations.

Table 2 Applications

Memory-intensive Memory-non-intensive
Application MPKI Avg. Dist.

ROB Head
Application MPKI Avg. Dist.

ROB Head
Mcf 97.38 16.90 Astar 9.26 24.35
Libquantum 50.00 6.28 Hmmer 5.66 9.97
Lbm 43.52 44.95 Bzip2 3.98 19.76
Milc 27.90 33.41 Gcc 0.34 14.71
Sphinx3 24.94 21.48 Namd 0.19 15.05
Xalancbmk 22.95 7.36
Omnetpp 21.63 20.21

Seven of the selected applications are memory-intensive (a large
number of misses per executed instruction) and five of them are
non-memory-intensive (a small number of misses per executed
instruction). Additionally, as can be appreciated in Table 2, there
is no direct correlation between average distance to the ROB head
and memory intensity. In some cases, such as Libquantum or
Astar, there is a large discrepancy between the two values. In this
case, the memory accesses tend to be clustered. In other cases,
memory accesses are more homogenously distributed over time.
Note that the numbers presented in this table were obtained in an
isolated execution of each benchmark.

Using these categories, we created 40 workloads combining
different numbers of applications, either memory intensive or not.
Table 3 shows a summary of the workloads grouped by
percentage of memory intensive applications in the workload. In
each group, the number of times each benchmark is used in each
workload is specified in brackets.

Table 3 Workloads evaluated

Mixture Combinations Memory non-intensive
benchmarks

Memory intensive
benchmarks

0% 3
Astar(2), bzip2(3),
gcc(3), hmmer(3),
namd(1)

25% 5
Astar(4), bzip2(2),
gcc(3), hmmer(4),
namd(2)

Lbm(1), libquantum(1),
mcf(1), omnetpp(1),
xalancbmk(1)

50% 13

Astar(4), bzip2(6),
gcc(7), hmmer(7),
namd(2)

Lbm(6), libquantum(1),
mcf(7), milc(6),
omnetpp(3),
xalancbmk(3)

75% 15

Astar(2), bzip2(4),
gcc(4), hmmer(2),
namd(3)

Lbm(7), libquantum(7),
mcf(9), milc(7),
omnetpp(4), sphinx3(8),
xalancbmk(3)

100% 4
 Lbm(5), mcf(2), milc(3),

omnetpp(4), sphinx3(1),
xalancbmk(1)

6.2 Throughput
We measure system throughput using two different metrics.
Instruction throughput is the average number of instructions
retired by all cores per cycle. As explained, we use the harmonic
average of CPI to maintain the idea of the lower the better in all
figures. We also use the commonly-employed weighted speedup
[30] which sums the Cycles per Instruction (CPI) slowdown
experienced by each benchmark compared to when it runs alone.

We present the performance of our proposal in comparison with
counterpart scheduling algorithms (FR-FCFS, PARBS and
ATLAS). Figure 7 shows the system throughput provided by each
algorithm on the 40 representative workloads, grouped by their
kind of mixture. Our proposal provides slightly better throughput
results than the highest performance algorithm, ATLAS,
outperforming FR-FCFS by 12.5% on average with a maximum
of 37% in the hmmer-gcc-lbm-lbm workload, while ATLAS
obtains an improvement of 11.9% on average and a maximum of
33%.

385

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0% 25% 50% 75% 100% Average

FR‐FCFS ATLAS PAR‐BS DROB

Figure 7. Harmonic Average of CPI normalized for FR-FCFS
for different workload mixes.

As expected, the performance differences between the diverse
scheduling algorithms, when all running applications are not
memory intensive, are almost constant. In these cases, memory
bandwidth is under-utilized and so there is little to no interference
in sharing it. As the number of memory intensive applications is
increased in the workload, the performance differences become
significantly higher. When the pressure on the memory is very
high (4 memory intensive applications) the benefits diminish
slightly. Note that in this case, there is performance improvement
because the applications, although intense in memory usage, have
different MPKIs. In addition, these types of scheduling algorithms
obtain their best results when running applications with
substantial differences in their memory behavior. Considering just
the workload sets where performance differences are most
noticeable, ATLAS provides 16.4% higher instruction throughput
than FR-FCFS, while PAR-BS increases it by 14.3% and our
proposal outperforms FR-FCFS by approximately 17% on
average.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0% 25% 50% 75% 100% Average

FR‐FCFS ATLAS PAR‐BS DROB

Figure 8. Weighted SpeedUp of CPI normalized for FR-FCFS
for different workload mixes.

On the other hand, in Figure 8, when fairness is taken into
account, ATLAS’s weighted speedup results match those of
PARBS, which outperforms FR-FCFS by 4.7%, while our
proposal outperforms both of them by 1.6%. We can conclude that
our proposal outperforms other throughput-oriented scheduling
algorithms, while taking care of instruction criticality rather than
just processor performance, obtaining better results in weighted
CPI.

6.3 Fairness
We also report fairness using maximum slowdown [30]. This
parameter measures the maximum slowdown of the applications
running in each workload compared to their IPC running alone.
Scheduling algorithms are likely to improve the performance of
those high-IPC applications which suffer most when executed
along with memory-intensive applications, and so they reduce the
maximum slowdown. However, those algorithms which just deal
with the IPC tend to penalize memory-intensive applications

excessively, which could end up turning the tables and causing a
decrease in fairness. As seen in Figure 9, our proposal obtains the
best fairness results, taking into account instruction criticality,
outperforming FR-FCFS by 10.6% on average and by up to 31%.
It also outperforms PAR-BS and ATLAS by 6.1% and 7.6% on
average respectively and by up to 20% at most. Although on
average FR-FCFS is the worst in terms of fairness, as explained
before, there are workloads where scheduling algorithms
negatively affect fairness.

When all the applications in the workload stress the memory, both
ATLAS and PAR-BS on average have slightly worse fairness than
plain FR-FCFS (in the worst case this increases maximum
slowdown by 32% and 40% respectively). Unsurprisingly, PAR-
BS and ATLAS use on-chip misses only to arbitrate the memory
access. When all the applications have a high miss frequency, they
tend to over penalize more demanding applications, which
negatively affects execution time. In contrast DROB uses
instruction criticality to separate application behavior, which on
average improves baseline fairness.

1

1.5

2

2.5

3

3.5

4

0% 25% 50% 75% 100% Average

FR‐FCFS ATLAS PAR‐BS DROB

Figure 9. Maximum slowdown for each of the different
scheduling algorithms normalized for FR-FCFS.

6.4 Statically Tunable Behavior
Throughout the previous discussion the fundamental parameter of
the policy, i.e. Threshold Distance was fixed at a distance of 16 to
the head of the ROB. Under these conditions, fairness and
throughput balance is optimal, allowing DROB to outperform
counterpart memory scheduling algorithms. Nevertheless,
depending on the usage scenario, it could be more interesting to
maximize throughput or fairness. Let us suppose a usage scenario
where a CMP is running a set of virtual private servers (VPS)
from different clients. In this situation, fairness is paramount.
Nevertheless, in a usage scenario where all cores are running
applications from the same user, maximizing throughput might be
more interesting. A noteworthy property of our proposal is that by
modifying Threshold Distance, we can maximize either metric.

As explained in section 4.3, the speed of the aging process can be
modified considering a different “Threshold Distance”. When we
reduce the critical distance chosen, the aging process slows down
because the queued requests would expect a higher number of
jumps before becoming critical, meaning critical requests reaching
the memory controller have less competition, thus improving
performance. In contrast, when we increase the critical distance,
the aging process accelerates causing critical requests that reach
the controller to compete with a greater number of requests
already queued, thus also reducing the average waiting time in the
queue, which consequently improves fairness. Intuitively, reduced
Threshold Distance tends to favor recent close-to-head requests
whereas large Threshold Distance favors old waiting requests.

386

Figure 10 and Figure 11 show how throughput and fairness
behave when Threshold Distance is modified. For the smallest
value of this parameter, the highest throughput results are
obtained, improving on FR-FCFS by 16% on average at most,
22% on average just considering the workloads where memory
bandwidth is scarce. On the other hand, Figure 11 shows how we
can improve fairness results simply by increasing the critical
distance to the highest value, (half the ROB size), outperforming
FR-FCFS by 12%. This throughput-fairness balance is consistent
across all the workloads evaluated.

Other scheduling algorithms also have fixed parameters. For
example PAR-BS limits the number of requests per core in the
batch. If we change that parameter in the memory controller, as
expected, there is no direct result in system metrics, which are
quite inconsistent across the workload. In some cases one decision
improves throughput and in other cases the same decision
improves fairness. As we can see, the average variation of these
changes is hardly noticeable. Therefore, in contrast to DROB, this
parameterization is not useful for this purpose. Similar behavior
would be observed with ATLAS.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0% 25% 50% 75% 100% Average

FR‐FCFS ATLAS PAR‐BS (Cap 3) PAR‐BS (Cap 5)

PAR‐BS (Cap 8) DROB (Thr 64) DROB (Thr 32) DROB (Thr 16)

DROB (Thr 8) DROB (Thr 4) DROB (Thr 2) DROB (Thr 1)

Figure 10. Harmonic Average of CPI of DROB varying the
Threshold Distance (Thr) from 1 to half the ROB size (64)
compared to other memory scheduling algorithms.

1

1.5

2

2.5

3

3.5

4

0% 25% 50% 75% 100% Average

FR‐FCFS ATLAS

PAR‐BS (Cap 3) PAR‐BS (Cap 5)

PAR‐BS (Cap 8) DROB (Thr 64)

DROB (Thr 32) DROB (Thr 16)

DROB (Thr 8) DROB (Thr 4)

DROB (Thr 2) DROB (Thr 1)

Figure 11. Maximum slowdown of DROB varying the
Threshold Distance (Thr) from 1 to half the ROB size (64)
compared to other memory scheduling algorithms.

6.5 Adaptive Behavior
According to the results in the previous section, it is possible to
observe that, globally, the most balanced choice for Threshold
Distance is 16. Nevertheless, when the applications’ mixes
change, we can observe better results with slightly different
values. If we take into consideration that during the execution of
the workload, application behavior will change, it might be
interesting to allow the memory controller to self-adapt threshold
distance in order to improve the throughput-fairness balance even
more. In order to do so, we implement a simple approach that
samples the tendency in the miss frequency of each core every
million cycles. The change in this value could mean, that the
application is entering in a high MPKI phase or that the last
change in the Threshold Distance has improved CPI. To

distinguish the two cases, we use the average distance to the ROB
header. If there is no significant change between the two samples,
we assume that MPKI is the same. We determine for all cores
without variations in MPKI whether the last change in Threshold
distance was positive (i.e. the average slope of the CPI is
negative). If this is the case, the Threshold Distance is changed in
the same direction. Otherwise the parameter is decreased. The
changes are done gradually (in steps of one). If the average CPI
change perceived is less than 5%, the Threshold distance is
maintained. The throughput and fairness results are shown in
Figure 12 and Figure 13 respectively. As can be seen, both
throughput and fairness are slightly improved over the best static
configuration.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0% 25% 50% 75% 100% Average

FR‐FCFS DROB (Thr 16) DROB (Adapt Thr)

Figure 12. Harmonic Average of CPI for DROB with adaptive
Threshold Distance.

0

0.5

1

1.5

2

2.5

3

3.5

4

0% 25% 50% 75% 100% Average

FR‐FCFS DROB (Thr 16) DROB (Adapt Thr)

Figure 13. Maximum slowdown for DROB with adaptive
Threshold Distance.

7. CONCLUDING REMARKS
We have presented DROB, a novel approach to the memory
scheduling problem for chip multiprocessor systems. Previous
memory scheduling algorithms are too complex or are focused on
processor performance inference rather actual behavior. Our
proposal obtains the information from the processor in a simple
way, improving performance and fairness of the whole system.
Our evaluation using a wide variety of application mixtures shows
that our proposal provides reasonable system throughput
compared to previous memory scheduling algorithms, while
obtaining significantly better fairness. In addition, our
implementation is able to adapt in a simple manner to the needs of
the system, obtaining even better results according to the usage
scenario.

8. ACKNOLEDGEMENTS
The authors would like to thank Jose-Angel Herrero for his
valuable assistance with computing environment HPC cluster
Calderon within the datacenter 3Mares. This work has been
supported by the MICCIN (Spain) under contract TIN2010-
18159, MECD (Spain) under grant PRX12/00006, and by the
HiPEAC European Network of Excellence.

387

9. REFERENCES
[1] Asanovic, K. et al. 2006. Tech. Rep. UCB/EECS-2006-183.

Technical Report EECS Department, University of
California, Berkeley.

[2] Barroso, L. A., Gharachorloo, K., and Bugnion, E. 1998
Memory system characterization of commercial workloads.
In Proc. of the 25th Annual Int. Symp. on Computer
Architecture (ISCA 1998), 3–14.

[3] Burger, D. and Goodman, J. 1996. Memory bandwidth
limitations of future microprocessors. In Proc. of the 23rd
Int. Symp. on Computer Architecture (ISCA 1996), 78–89.

[4] Davis W., Wilson J., Mick S., and Xu J. 2005. Demystifying
3D ICs: The pros and cons of going vertical. IEEE Design &
Test of Computers (2005), 498–510.

[5] Ebrahimi E., Miftakhutdinov R., Fallin C., Lee C. J., Joao J.
A., Mutlu O., and Patt Y. N. 2011. Parallel application
memory scheduling. In Proc. of the 44th IEEE/ACM Int.
Symp. on Microarchitecture (MICRO 2011), 362-373.

[6] Eden, A. N. and Mudge, T. 1998. The YAGS branch
prediction scheme. In Proc. of the 31st Annual ACM/IEEE
Int. Symp. on Microarchitecture (MICRO 1998), 69–77.

[7] Gustafson J. L. 1988. Reevaluating Amdahl’s law.
Communications of the ACM, vol. 31, no. 5 (May 1988),
532–533.

[8] Huh J., Kim C., Shafi H., Zhang L., Burger D., and Keckler
S. W. 2007. A NUCA substrate for flexible CMP cache
sharing. IEEE Transactions on Parallel and Distributed
Systems, vol. 18, no. 8 (2007), 1028–1040.

[9] Ipek E., Mutlu O., Martínez J. F., and Caruana R. 2008. Self-
Optimizing Memory Controllers: A Reinforcement Learning
Approach. In Proc. of the 35th Int. Symp. on Computer
Architecture (ISCA 2008), 39–50.

[10] Jacob B., Ng S., Wang D. 2007. Memory Systems: Cache,
DRAM, Disk. Morgan Kaufmann Publishers Inc. 1st edition
(Sep. 10th, 2007).

[11] Joao J., Suleman M., and Mutlu O. 2012. Bottleneck
Identification and Scheduling in Multithreaded Applications.
In Proc. of the 17th Int. Conf. on ASPLOS (2012), 223-234.

[12] Juurlink, B. H. H. and Meenderinck, C. H. 2012. Amdahl’s
law for predicting the future of multicores considered
harmful. ACM Computer Architecture News, vol. 40, no. 2
(May 2012), 1-9

[13] Kalla R., Sinharoy B., and Tendler J. M. 2004. IBM power5
chip: a dual-core multithreaded processor. IEEE Micro, vol.
24, no. 2(Mar. 2004), 40-47.

[14] Kim J., Nicopoulos C., Park D., Das R,, Xie Y., Narayanan
V., Yousif M. S., and Das C. R. 2007. A novel
dimensionally-decomposed router for on-chip
communication in 3D architectures. In Proc. of the 34th Int.
Symp. on Computer Architecture (ISCA 2007), 138-149.

[15] Kim Y., Papamichael M., Mutlu O., and Harchol-Balter M.
2010. Thread Cluster Memory Scheduling: Exploiting
Differences in Memory Access Behavior. In Proc. of the
43rd IEEE/ACM Int. Symp. on Microarchitecture (MICRO
2010), 65-76.

[16] Kroft D. 1998. Lockup-free instruction fetch/prefetch cache
organization. In 25 years of the Int. Symp. on Computer
Architecture (selected papers) ISCA 1998, 195–201.

[17] Kurd, N., Douglas, J., Mosalikanti, P., and Kumar, R. 2008.
Next generation Intel® micro-architecture (Nehalem)
clocking architecture. In IEEE Symposium on VLSI Circuits
Digest of Technical Papers (2008), 62–63.

[18] Liu, F., Jiang, X., and Solihin, Y. 2010. Understanding how
off-chip memory bandwidth partitioning in Chip
Multiprocessors affects system performance. In Proc. of the
16th Int. Symp. on High-Performance Computer Architecture
(HPCA 2010), 1–12.

[19] Martin, M. M. K., Sorin, D. J., Beckmann, B. M., Marty, M.
R., Xu, M., Alameldeen, A. R., Moore, K. R., Hill, M. D.,
and Wood, D. A. 2005. Multifacet’s general execution-driven
multiprocessor simulator (GEMS) toolset. ACM Computer
Architecture News, vol. 33, no. 4 (2005), 99–107.

[20] Mukundan, J., and Martinez, J. F., 2012. MORSE: Multi-
Objective Reconfigurable SElf-Optimizing Memory
Scheduler. In Proc. of the IEEE 18th Int. Symp. on High-
Performance Computer Architecture (HPCA 2012), 1-12.

[21] Muralidhara, S. P., Subramanian, L., Mutlu, O., Kandemir,
M., and Moscibroda, T. 2011. Reducing Memory
Interference in Multicore Systems via Application-Aware
Memory Channel Partitioning. In Proc. of the 44th
IEEE/ACM Int. Symp. on Microarchitecture (MICRO 2011),
374-385.

[22] Mutlu, O. and Harchol-Balter, M. 2010. ATLAS: A scalable
and high-performance scheduling algorithm for multiple
memory controllers. In Proc. of the 16th Int. Symp. on High-
Performance Computer Architecture (HPCA 2010), 1–12.

[23] Mutlu, O. and Moscibroda, T. 2007. Stall-time fair memory
access scheduling for chip multiprocessors. In Proc. of the
40th IEEE/ACM Int. Symp. on Microarchitecture (MICRO
2007), 146–160.

[24] Mutlu, O. and Moscibroda, T. 2008. Parallelism-Aware
Batch Scheduling: Enhancing both Performance and Fairness
of Shared DRAM Systems. In Proc. of the Int. Symp. on
Computer Architecture (ISCA 2008), 63–74.

[25] Nitta, C., Farrens, M., and Akella, V. 2011. Addressing
system-level trimming issues in on-chip nanophotonic
networks. In Proc. of the 17th Int. Symp. on High Perform.
Computer Architecture (HPCA 2011), 122–131.

[26] Olukotun, K. and Hammond, L. 2005. The future of
microprocessors. Queue - Multiprocessors, vol. 3, no. 7 (Sep.
2005), 26-29

[27] Ramirez, M. A., Cristal, A., Veidenbaum, A. V., Villa, L.,
and Valero, M. 2005. A new pointer-based instruction queue
design and its power-performance evaluation. In Proc. of the
Int. Conf. on Computer Design (ICCD 2005), 647–653.

[28] Rixner, S., Dally, W. J., Kapasi, U. J., Mattson, P., and
Owens, J. D. 2000. Memory access scheduling. In Proc. of
the 27th Int. Symp. on Computer architecture (ISCA 2000),
128–138.

[29] Rogers, B. M., Krishna, A., Bell, G. B., Vu, K., Jiang, X.,
and Solihin, Y. 2009. Scaling the bandwidth wall. In Proc. of
the 36th Int. Symp. on Computer Architecture (ISCA 2009),
371-382.

[30] Snavely, A. and Tullsen, D. M. 2000. Symbiotic
Jobscheduling for a Simultaneous Multithreading Processor.
In Proc. of the 9th Int. Conf. on ASPLOS (2000), 234-244.

[31] Stuecheli, J., Kaseridis, D., Daly, D., Hunter, H.C., and John,
L. K. 2010. The virtual write queue: Coordinating DRAM
and Last-level Cache Policies. In Proc. of the 37th Int. Symp.
On Computer Architecture (ISCA 2010), 72-82.

[32] ITRS. 2011 Roadmap. [Online]. Available:
http://www.itrs.net/links/2011itrs/home2011.htm.

[33] V. Standard Performance Evaluation Corporation, SPEC*,
http://www.spec.org, Warrenton, SPEC 2006.

388

