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A B S T R A C T

Both the two-dimensional harmonic oscillator and the Newton potential allow particular solutions for the orbits
which are ellipses with center of attraction in the center, in the first case, and in one focus, in the second. The
same complex map which allows to go from Kepler’s to Hooke’s orbits, and back, is used to transform the Lenz
vector, defined for the Kepler orbit, into two conserved quantities for the harmonic motion. Upon quantization,
the resulting operators, together with the angular momentum Lz , are found to correspond to the generators of the
SU(2) internal symmetry of the two-dimensional quantum oscillator and the connection to the Schwinger model
of angular momentum is made apparent. We give a self-contained new look on this topic.
1. Introduction

This paper is a reflection on a subject which has been explored in
depth in some few works in classical mathematical physics, but is barely
known to the broader physics community. We accidently rediscovered
certain results established in the past and present them here, highlighting
the aspects which we found more interesting. We keep our presentation
accessible to the general physicist reader while preserving the necessary
mathematical rigor.

The section on the Kepler’s problem in the Landau and Lifshitz book
on Mechanics [1] is concluded showing that there is a further integral of
motion ‘‘which exists only in fields U ¼ α=r’’, attractive or repulsive. This
is better known as the Lenz vector A, directed along the major axis of the
Kepler trajectory, from the focus to the perihelion.1 Its constancy forbids
the precession of the perihelion. Indeed the two fundamental frequencies
ðωr ;ωθÞ in the coordinates of the plane of the orbit, coincide for U ¼ �
1=r— the motion is said to be ‘completely degenerate’— and orbits are
closed.2

The classical expression of A is the following. Ifm is the reduced mass,
the Lenz vector is usually defined by
.D. Polosa).
potential is an ellipse with semi
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Here L is the orbital angular momentum, which is orthogonal to the
plane of the orbit and to A.

In a renowned work, Pauli [2] introduced a quantum version of A
(transforming (1) into an hermitean operator) and presented an algebraic
derivation of the spectrum of hydrogen together with an explanation of
the degeneracy of levels with the orbital quantum number ℓ, the arche-
typal application of symmetry methods in quantum physics.

It is less known however that there is a geometric relation connecting
the Kepler elliptical orbits, with center of attraction in a focus, with those
of the classical two-dimensions harmonic oscillator, with center of
attraction in the center of the ellipse. This relation is better understood
substituting vectors in the plane with complex numbers, thus wri-
tingformulating the equations of the orbits in the complex plane. Most
importantly, the same complex map which relates Kepler and oscillator
(Hooke) orbits, allows to derive the Newton force law from the elastic
force law, a surprising result touched by Arnold [3] in some writings
which inspired our discussion.
major axis a, semiminor axis b, eccentricity e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða2 � b2Þ=a2p
, and center of

ssical Lenz vector A has the center of attraction of the elliptic orbit as its point of
rbit is closed whereas the conservation of angular momentum, descending from
agnitude of A is proportional to the eccentricity of the elliptical orbit jAj ¼ κe,

t return to some given state after a finite amount of time, even though it can pass
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What is the fate of the Lenz vector, which exists only for 1= r fields,
when mapped with the same transformation allowing to go from Newton
to Hooke and back?

The components of the transformed vector are found to correspond to
two of the five components of the classical quadrupole tensor in the
coordinate-momentum representation and they come up with the right
constants needed to make them constants of motion, as it can ben seen by
the computation of Poisson brackets. Therefore two classical conserved
quantities of the harmonic oscillator are nothing but the Hooke coun-
terparts of the Lenz vector. The geometric meaning of the quadrupole
components is less direct than that of the Lenz vector and it encodes the
higher symmetry of the oscillator orbit with respect to the Kepler’s one,
where the minor axis of the ellipse is not a symmetry axis. These relations
have been very much elaborated in classical mathematical physics [4].

Following the Pauli approach, what is the meaning of the mapped
components, Ax and Ay , in quantum physics? Not much, when taken on
their own, but, when considered together with the angular momentum,
which has the component Lz only, the three form an SU(2) Lie algebra.
We show that this is indeed the internal SU(2) symmetry of the two-
dimensional harmonic oscillator and make a straightforward connec-
tion to the Schwinger model of angular momentum.

It is particularly interesting to observe that the operators Xij ¼ aia
y
j ,

which allow to switch between the oscillator degenerate states, are
themselves the generators of the SU(2) symmetry, U ¼ expðεijXjiÞ, with
εijXji which are readily translated in terms of the mapped Ax and Ay , and
of the angular momentum Lz.

The Pauli version of the classical Lenz vector explains the ℓ � n� 1
degeneracy of hydrogen. The mapped components of the classical Lenz
vector, upon quantization, are two of the three generators of the internal
SU(2) symmetry of the two-dimensional quantum oscillator, and this is in
turn the reason for the degeneracy of states.3

Let us make a step back and present the complex map which allows to
connect Kepler’s to Hooke’s orbits.

In the complex ζ-plane, a circle of radius r, with center in the origin, is
represented by the formula ζ ¼ reiϕ. The map

ζ→ z ¼ ζ þ 1
ζ

(4)

defines an ellipse z with semimajor axis a ¼ r þ 1=r and semiminor axis
b ¼ r� 1=r. The position of focii is given by x ¼ �ae ¼ � 2. The map

z→w ¼ z2 (5)

shifts the focus located at x ¼ �2 into the origin of axes, since w ¼ ζ2 þ
1=ζ2 þ 2, thus giving an ellipse w with center of attraction4 in a focus.
Similarly it shifts an ellipse with center of attraction in the rightmost
focus to an ellipse with center of attraction in the origin. Abandoning this
specific example, it is easily seen that a generic ellipse z ¼ a cos θþ
ib sin θ, with center of attraction in the center, is mapped by w ¼ z2 into
an ellipse with center of attraction in the leftmost focus. This is some-
times called a ‘Bohlin map’ [6].

Differently from the Kepler case (ellipse w), the center of attraction in
the two-dimensional oscillator is located in the center (ellipse z).
Therefore Kepler and Hooke orbits can be connected by the map (5), as is
well known [3]. We will review all this in Section II.

The Lenz vector A can be written as a complex number A, whose real
and imaginary parts define the conserved components of A in the plane of
3 The excited states of the harmonic oscillator can be written in the form of
symmetric rank-n tensorsΨn ¼ ayi1⋯ayinΨ0 (2)whose dimensionality, for i1; …;

in ¼ 1;2, is given byd ¼
�
nþ 1
n

�
¼ nþ 1 (3)corresponding to the degeneracy

of En levels.
4 The point from which the position vectors stem.

2

the orbit. The transformation (5) can be used to map the Lenz vector for
the Kepler orbit into its counterpart for the Hooke orbit. This passage will
be described in detail in Section III.

We show that the two components identifying the mapped Lenz
vector correspond to two of the five entries of a (symmetric and traceless)
quadrupole tensor Qi;j, with i; j ¼ 1;2;3, in space-momentum co-
ordinates. These are known to be classical conserved quantities for the
two-dimensional harmonic oscillator.

Introducing the quantization rules, we recover the SU(2) symmetry of
the two-dimensional harmonic oscillator: two of the generators turn out
to be the operators derived form the components of the mapped Lenz
vector, whereas the remaining SU(2) generator is the angular momentum
Lz orthogonal to the plane of the orbit.

The connection with the Schwinger model of angular momentum will
then be apparent, as will be discussed in Section IV.

2. From Hooke to Kepler orbits

In the following we derive the rule connecting the Kepler and Hooke
force laws and orbits. This will be illustrated making use of the varia-
tional principle.

The variational principle, in the Maupertuis form, states that the path
γ taken by a particle in the potential UðrÞ < E is an extremum of the
(reduced) action [5].

S¼
Z
γ

ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � UðrÞ

p
(6)

where E is the conserved total energy and v ¼ ds=dt is the particle ve-
locity and we discard the overall constant of

ffiffiffiffiffiffiffi
2m

p
.

Considering planar orbits γ, we rewrite the action in the complex z-
plane in the form

S¼
Z
γ

jdzj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � UðjzjÞ

p
(7)

where we take the potential to be defined by

UðjzjÞ � 1
4

����dwdz
����
2

(8)

If w is given by

w¼ z2 (9)

then

UðjzjÞ ¼ ��zj2 (10)

corresponding to the harmonic potential in two dimensions. All physical
(dimensional) parameters will be set to one for simplicity. The harmonic
motion is in the z-plane.

The term
���dw=dzj2 can be factored out from the argument of the in-

tegral in (7), changing the integration measure from jdzj to jdwj, thus
giving

S¼
Z
γ

jdwj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E
����dzdw
����
2

� 1

s
(11)

However

����dzdw
����
2

¼ 1
4jwj and jzj2 ¼ jwj (12)

so that
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S¼
Z

jdwj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E’�

�
� E

�s
(13)
γ jwj

which is the Maupertius action for the motion of a particle in the complex
w-plane under the action of the attractive Newton potential as expressed
by

VðjwjÞ¼ � E
jwj (14)

E’, in our units, is E’ ¼ � 1, the negative energy in the Newton
attractive potential to be compared with the positive E in the Hooke
potential U. The Kepler orbit is in the w-plane.

This shows how the w ¼ z2 map connects the harmonic (Hooke po-
tential U in (10)) and Keplerian motions (potential V in (14)). The same
result is described in more general terms in a theorem that can be found
in Ref. [3].

We note however that one more conclusion can be drawn from the
variational principle (7). Namely we may observe that expressing the
kinetic energy

S ¼
Z
γ

���dz��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � UðjzjÞ

p
¼
Z
γ

�����dz
�����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

�
d
dt

����z
����
�2

þ L2

2
��zj2

s
(15)

and

S¼
Z
γ

������dw
������
������
dz
dw

������
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

 
1

2
���wj1=2

d
dt

�����w
�����
!2

þ L2

2jwj

vuuut ¼

¼ 1
2

Z
γ

������dw
������

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

�
d
dτ

����w
����
�2

þ L2

2
��wj2

s
(16)

provided that

dτ¼ 2
��w��dt¼ 2

��zj2dt (17)

The Hooke orbits are changed into Kepler orbits by the complex map
w ¼ z2, provided that an appropriate rescaling of the time variable is
done.

The angular momentum of the Hooke orbit in the z-plane is by defi-
nition the conserved quantity

LH ¼
����zj2dφdt (18)

from which the area law follows. On the other hand

LH ¼
����zj2dφdt ¼

����w
����dφdt ¼ 2

����wj2 dφ
2jwjdt¼ 2

����wj2dφdτ ¼ LK (19)

in terms of position and time of the Kepler orbit5 (the two constant values
for the area laws may also have different values). Therefore we may
argue that the rule
5 In the case of the Hooke orbit (in the z-plane)z ¼ acosωt þ isinωt (20) and

φH ¼ arctanðIz =RzÞ which gives _φH ¼ abω=
���zj2 and LH ¼

���zj2 _φH ¼ abω. In the

same way we could compute the φK ¼ arctanðIw =RwÞ where w ¼ z2. This

gives _φK ¼ 2abω=
���zj2 ¼ 2LH=

���zj2 (21)To replace _φK with dφK= dτ we divide the

previous equation by 2
���zj2 giving (ð��z2��Þ2 ¼

���wj2) dφK=dτ ¼ LH=
���wj2 ¼ LK=

���wj2
(22) where the first equality comes form (21) and the second from the definition
of LK . It follows that φK ¼ 2φH ¼ 2φ by comparing with (19) or by direct in-
spection of the ratio φK=φH .

3

ðHookeÞ d
dt

↔ ðKeplerÞ d
dτ

with dτ¼ 2
���zj2 dt (23)

�

allows to connect Hooke and Kepler motions. Indeed it is observed that,
see next Section, using (23), one obtains the Newton force law in the w-
plane, corresponding to the gradient of (14)

d2w
dτ2

¼ � E
w��wj3 with w ¼ z2 (24)

where E ¼ 1=2
��� _zj2 þ 1=2

���zj2 is the elastic conserved energy and physical

constants are set to one for simplicity.
Since the Newton potential is a homogeneous function of degree k ¼

� 1, the similarity transformation [1].

w→ βw τ → β1�1=2 kτ (25)

leaves invariant the equations of motion (the Lagrangian gets multiplied
by a constant scale factor β�1 ¼ β2=β2�k). The angular momentum has to
transform accordingly as

L → β1=2L (26)

Therefore we can write

S¼ 1
2

Z
γ

�����dw
�����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

�
d
dτ’

����w
����
�2

þ ðL’Þ2
2
��wj2

s
(27)

with

L’¼ 2
α
L (28)

and

dτ’¼ α
��w��dt¼ α

��zj2dt (29)

in place of(17), having set

β¼ð2=αÞ2 (30)

However this transformation of angular momentum and time scale is
tantamount an inconsequential rescaling of S by

S →
2
α
S (31)

This means that the arbitrary time rescaling (29), which could have
been postulated in place of (17), giving two different values for the
constant area laws as in (28), can be considered as part of a similarity
transformation, which also changes accordingly L and w.

3. The transformation of the Lenz vector

We define

w� xþ iy p � px þ ipy (32)

and

p� L ¼ L
�
py � ipx

� ¼ �iLp (33)

From now on the indices K and H will refer accordingly to quantities
either in the Kepler or the Hooke case. Then the Lenz vector in complex
coordinates is

AK ¼ � iLKpK � κ
w
jwj (34)

where the physical constant κ has been explicitly left for reasons that will



6 In the Kepler orbits the minor axis is not a symmetry axis. The two
dimensional oscillator orbit is more symmetric. One can rotate the ellipse by π=2
around the center and exchange a↔ b obtaining the same ellipse. We can sub-
stitute the equation of such an ellipse in Qxy ¼ xy in two different ways: by
substituting x ¼ acosθcosη� bsinθsinη; y ¼ acosθsinηþ bsinθcosη or by
substituting the same equations with a↔ b and η → η� π=2. The sum of the two
alternatives gives the symmetric Qxy ¼ 1=2ða2 � b2Þsin2η.
7 By choosing the normalizations of the coordinate and momentum terms, the

Correspondence with Gell-Mann matrices is
Qxy ¼ xy þ pxpy ¼ λ1 Lz ¼ λ2 Q1 ¼ 1

2
ffiffi
3

p ððx2 þy2 �2z2Þþðp2x þp2y �2p2z ÞÞ ¼ λ3

Qzx ¼ zxþ pzpx ¼ λ4 Ly ¼ � λ5 Qyz ¼ yzþ pypz ¼ λ6(52).Lx ¼ λ7 Q2 ¼
1
2 ðx2 � y2Þþ 1

2 ðp2x � p2y Þ ¼ λ8

8 The SU(3) f abc structure constants coincide with εijk if a;b;c ¼ i; j;k ¼ 1; 2;3.
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be clear in a moment. This is similarity transformation invariant. Using
the complex map and (23) we find

LK ¼
�
xpy � ypx

�¼ 1
2i

�
w*dw

dτ
�w

dw*

dτ

�
¼ 1
2i

�
z*
dz
dt

� z
dz*

dt

�
¼ LH (35)

Similarly working on momentum we get

pK ¼ dw
dτ

¼ 1

2
��zj2

d
dt
z2 ¼ 1

z*
pH (36)

In order to understand the role of κ in the transformation we compute

d2w
dτ2

¼ 1
4

1��zj2
d
dt

 
1��zj2

d
dt
z2
!
¼ �EH

1

zðz*Þ3 ¼ � EH
w��wj3 (37)

where we have used the equation of motion of the harmonic oscillator

d2z
dt2

þ z ¼ 0 (38)

and recognized the expression for the harmonic oscillator energy

EH � 1
2

���� _zj2 þ 1
2

����zj2 (39)

Comparing (37) with the Keplerian equation of motion

d2w
dτ2

¼ � κ
w��wj3 (40)

we understand that in mapping (34), κ must replaced by EH . Using (35),
(36) and (39) we thus see that the Lenz vector is equal to

AK ¼ � iLKpK � κ
w
jwj ¼ �

�
1
2
z2 þ 1

2
_z2
�
� � AH (41)

where AH is the vector corresponding to the Lenz vector in the Hooke
problem. It is straightforward to verify that AH is a conserved quantity of
the Hooke motion, since from (38)

d
dt

�
1
2
_z2 þ 1

2
z2
�
¼ 0 (42)

We can expand AH as (from now on to the variables x, y, px and py will
refer to the Hooke motion)

AH ¼ 1
2

�
x2 � y2

�þ 1
2

�
p2x � p2y

	
þ i
�
xyþ pxpy

�
(43)

Since AH is conserved, both the real and the imaginary parts of it are
separately conserved. From the fact that EH and ReðAHÞ are both
conserved it follows that the one dimensional harmonic oscillator energy
is separately conserved on both the x and y axis. We successively found
that this result was also discussed in Refs. [7], although in a slightly
different form, whereas part of what follows in the next section was
addressed in Ref. [8].

We will proceed in the next section to describe the role of AH � A in
the quantum harmonic oscillator problem.

4. SU(2) and the Schwinger model

We found in the previous Section that the mapped classical Lenz
vector in complex coordinates is given by

A¼ 1
2

�
px þ ipy

�2 þ 1
2
ðxþ iyÞ2 (44)

This can be rewritten as

A¼Q2 þ iQxy (45)
4

where the Q’s are two of the five components of the classical quadrupole
tensor in the coordinate-momentum representation6

Qxy ¼ xyþ pxpy (46)

and

Q2 ¼ 1
2

�
x2 � y2

�þ 1
2

�
p2x � p2y

	
(47)

The general expression of the classical quadrupole tensor in co-
ordinates and momenta will be given in the form

Qij ¼ A
�
xixj � 1



3 δijx2

�þ B
�
pipj � 1



3 δijp2

�
i; j ¼ 1; 2; 3 (48)

where the constants A and B are chosen appropriately as can be seen in
footnote (7). Since Q is defined as a traceless tensor, there are only two
independent diagonal entries: we choose Qxx and Qyy . These can be
combined into Qxx � Qyy ¼ Q1=2. Q1 turns out to be the energy, whereas
Q2 is given above, with appropriate normalization.

Let us promote x and p to quantum operators with the quantization
rules

�
xi; pj

� ¼ iδij (49)

using ℏ ¼ 1 natural units. Computing explicitly the commutators, one can
easily show that Lz, given by

Lz ¼ xpy � ypx (50)

together with Qxy and Q2, form an SU(2) Lie algebra. Indeed the
following correspondence holds

Qxy ¼ σ1

Lz ¼ σ2

Q2 ¼ σ3
(51)

More generally it is known that the quadrupole components in
coordinate-momentum representation are in correspondence with the
Gell-Mann matrices.7 The correspondence in (51) reflects8

½λi; λj� ¼ 2iεijkλk for i; j ¼ 1; 2; 3 (53)

We want to show now that the internal symmetry of the two-
dimensional quantum oscillator is generated indeed from Qxy ;Lz;Q2.

The harmonic oscillator Hamiltonian in two dimensions (with m ¼
ω ¼ 1)

H¼ 1
2

�
p2x þ p2y

	
þ 1
2

�
x2 þ y2

�¼ X2
i¼1

�
ayi ai þ

1
2

�
(54)

has an internal SU(2) symmetry under unitary transformations of the
creation/annihilation
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U�1 ai U¼U ij aj (55)
U�1 ayi U¼U *
ij a

y
j (56)

where the U are special unitary matrices. The latter equation in infini-
tesimal form is

U�1 ayi U¼ �δij � εji
�
ayj (57)

where εij is an anti-hermitian and traceless matrix

ε*ij ¼ � εji (58)

which can be written in tems of Pauli matrices as

ε ¼ iθ1t1 þ iθ2t2 þ iθ3t3 (59)

where ta ¼ σa=2. To obtain (57) we have to require (infinitesimal
transformation)

U¼ 1þ Trðε �XÞ (60)

where

Xij � aia
y
j i; j ¼ 1; 2 (61)

as can easily be verified; we use the notation of [9]. The X operators, the
generators of theU transformation in the Hilbert space of quantum states,
allow to switch through the states in the space of degenerate states
associated to a certain energy value.9

From (59) and (61) we get

U¼ 1þ iθ1 J1 þ iθ2 J2 þ iθ3 J3 (64)

where we used the definitions of creation/annihilation operators thus
finding that the generators J are given by

J1 ¼ Qxy

2
¼ Ay

2

J2 ¼ Lz

2

J3 ¼ Q2

2
¼ Ax

2

(65)

Therefore the x and y components of the mapped Lenz vector, which
are Q2 and Qxy respectively, correspond to the symmetry generators J3

and J1 of the two-dimensional harmonic oscillator.
Writing x and p back in terms of the creation and annihilation oper-

ators, we obtain the generators as written in the Schwinger model of
angular momentum

J1 ¼ a1a
y
2 þ a2a

y
1

2
J2 ¼ i

�
a1a

y
2 � a2a

y
1

�
2

J3 ¼ a1a
y
1 � a2a

y
2

2
(66)

with the usual commutation relations and ½a1;a2� ¼ ½a1;ay2� ¼ ⋯ ¼ 0.
The mapped Lenz vector components Ax ¼ Q2;Ay ¼ Qxy form,

together with Lz, the Casimir operator

C¼L2
z þ Q2

xy þ Q2
2 (67)

and give, by explicit calculation
9 For exampleX12Ψ3;1∝Ψ2;2 (62)where Ψ3;1 and Ψ2;2 have the same energy
E4~ [9]. Also observe that generators of the symmetry annihilate the ‘vacuum’

state XijΨ0 ¼ 0 i 6¼ j (63) where Ψ0 ¼ j0; 0〉 is the ground state of the harmonic

oscillator. The combination with i ¼ j from is a1a
y
1 � a2a

y
2 which again annihi-

lates Ψ0.

5

C¼H2 � 1 (68)
On the other hand it is known that the Casimir of the nþ 1 repre-
sentation (for n ¼ 1;2;3:::) of SU(2) is given by the formula

Cnþ1 ¼
�
n2 þ 2n

�
for n¼ 1; 2; 3;… (69)

so that, setting back ℏ and ω

H¼ðnþ 1Þℏω (70)

with degeneracy

dðnþ 1Þ¼ nþ 1 (71)

In a similar way we can obtain the energy from the sum of the squares
of the three generators

J2 ¼N
2

�
N
2
þ 1
�
¼H2 � 1

4
(72)

where the total number operator is

N¼ ay1a1 þ ay2a2 ¼ N1 þ N2 (73)

with

½N; Ji� ¼ 0
�
J2; Ji

� ¼ 0 (74)

which is another way of stating that the transformed Lenz vector com-
ponents are conserved.

Thus we showed that the mapped Lenz vector generates the internal
SU(2) symmetry of the harmonic oscillator, which is the origin of the
quantum degeneracy of states.

5. Conclusions

We have shown that the generators of the SU(2) internal symmetry of
the quantum harmonic oscillator can be written in terms of the Lz angular
momentum and of two operators which, under a specific transformation,
defined in (23), correspond to the components of the classical Lenz
vector.

In the case of the 1=r potential, Pauli showed [2] that the hermitean
quantum version of the Lenz vector can be considered on the same
footing of the angular momentum by introducing the operator Lij ¼
xi pj � xj pi with i; j ¼ 1; 2; 3;4 and Li4 ¼ Ai, appropriately rescaled10, x4;
p4 being fictitious coordinates. The resulting Lie algebra is that of SO(4)
which does not represent a geometrical symmetry of the hydrogen atom
in the same way as SU(2) is not a geometrical symmetry of the
two-dimensional quantum oscillator. Similarly, in the case of the
two-dimensional harmonic oscillator, the angular momentum Lz, when
taken together with the mapped components of the Lenz vector, gener-
ates an SU(2) algebra.
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