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Abstract: This paper aims at investigating the efficacy of different state-of-art damage detection methods when applied to real world 
structures subjected to ground motion excitations, for which the literature contributions are, at present, still not fully comprehensive. To this 
purpose the paper analyses two test structures: (1) a four-story scaled steel frame tested on a shake table in a controlled laboratory conditions, 

and (2) a seven-story reinforced concrete building monitored during the seismic excitations of the 1999 Chi-Chi (Taiwan) Earthquake main 
shock and numerous fore and aftershocks. Some model based damage approaches and statistics based damage indexes are reviewed. The 
different methodologies and indexes are, then, applied to the two test structures with the final aim of analysing their performance and 

validity within the case of a laboratory scaled model and a real world structure subjected to input ground motion. 
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1. Introduction 

At present many damage detection methodologies 

have been proposed in the scientific literature. One 

traditional approach is to compare the behaviour of the 

structure in its undamaged and damaged states and look 

at changes that occur in its dynamic characteristics (e.g., 

natural frequencies, damping ratios, mode shapes) and/or 

response. In carrying on this comparison, mathematical 

and/or physical models that represent the structure in its 

undamaged and damaged states must be identified and 

this can be accomplished following different approaches. 

As an example, Friswell et al. [17] proposed to identify 

modal models of a structure by using a model updating 

procedure that compares the recorded response of the 

structure with the predicted response derived from an 

iteratively updated finite element model. Others 

approaches use dynamic measurements of the structural 
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input and/or output to identify a mathematical, not 

necessarily physical, “black box” model of the structure 

that properly maps inputs and outputs. Among them, 

Brinker et al. [7] performed, in the frequency domain, the 

identification of the modal characteristics of a structure 

using the Frequency Domain Decomposition (FDD) 

applied in the cases of known or unknown input, while 

Juang [24] proposed, in the time domain, the OKID 

(Observer Kalman/filter Identification) — ERA/DC 

(Eigensystem Realization Algorithm with Data 

Correlation) algorithm. Yu at al. [50] analyse the time 

domain identification of systems with a limited number 

of instrumentation measurements. Pati et al. [36] used the 

rational wavelets. Bai and Keller [4] conducted dynamic 

experiments on a GFRP composite pedestrian bridge, 

retrieving its modal parameters in the time and frequency 

domain by applying two output-only techniques. In their 

study, Moaveni et al. [31] validated and cross-checked 

the results derived from the application of six system 

identification algorithms, including three output-only 

and three input-output methods, with reference to a 
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full-scale seven-story reinforced concrete building slice, 

tested on the unidirectional UCSD-NEES shake table. 

The three output-only methods used in this work were 

successfully applied by He et al. [20] the dynamic field 

test data from the Alfred Zampa Memorial Bridge. Fraser 

et al. [16] developed an automated modal analysis 

procedure to apply output-only identification techniques 

for continuous health monitoring and therefore a 

real-time data transmission. Saitta et al. [39] studied the 

application of feature selection to system identification, 

while Kerschen et al. [25] presented a review of the past 

and recent developments in system identification of 

nonlinear structures. 
On the direct use of vibration measurements to locate 

and quantify damaged areas in a structural system, an 

exhaustive literature review on frequency domain 

methods for damage detection can be found in Doebling 

et al. [13, 14]. Alvandi and Cremona [2] reviewed some 

of the most common Vibration-Based Damage Detection 

(VBDD) techniques, based on changes of mode shapes 

and/or modal frequencies. Cruz and Salgado [11] tested 

the performance of various model based and data-driven 

methods in detecting damage on a composite (steel/RC) 

bridge and a RC bridge. The novel approach for 

vibration-based damage detection proposed by 

Deraemaeker and Preumont [12] relies on the use of a 

large network of sensors to which a programmable linear 

combiner, working as a modal filter, is attached. Kim et 

al. [26] presented a damage monitoring scheme to give 

warning of the occurrence, the location and the severity 

of damage under temperature-induced uncertainty 

conditions. Capecchi and Vestroni [8] addressed the 

issue of understanding when only the natural frequencies 

are sufficient for damage detection, without computing 

the mode shapes. He [19] related the damage detection to 

model updating methods. Staszewski [44] discussed the 

use of wavelets in structural damage detection problems, 

while Rucka and Wilde [38] applied the continuous 

wavelet transform for estimating the damage location in 

beam and plate structures. The analytical and 

experimental results of the ASCE benchmark structure 

were used by Barroso and Rodriguez [5] and Nair at al. 

[33] to test the efficacy of several algorithms for damage 

identification and localization. Panigrahi et al. [35] 

conducted numerical analyses about damage detection in 

a uniform strength beam using genetic algorithm. The 

study of Ratcliffe at al. [37] investigated an alternative 

approach, which relies on the reciprocity theorem and 

involves the installation on the structure of a large array 

of low cost MEMS accelerometers. Sakellariou and 

Fassois [40] introduced a stochastic output error (OE) 

vibration-based methodology for damage localization 

and quantification in structures under earthquake 

excitation. By using a multi-criteria approach, 

incorporating the modal flexibility and the modal strain 

energy methods, Shih at al. [43] tried to identify and 

localize single and multiple damages in numerical 

models of flexural members having different boundary 

conditions. The work by Koo et al. [28] presented a 

vibration-based damage detection method for shear 

buildings using the damage-induced deflections 

estimated by modal flexibility obtained from ambient 

vibration measurements. A new structural damage 

detection method based on the statistical moments of 

dynamic responses of a structure has been recently 

proposed by Xu et al. [48]; the experimental study 

conducted on three shear-type models showed that the 

proposed method is sensitive to local structural damage 

but insensitive to measurement noise. Starting from the 

Damage Locating Vector (DLV) method proposed by 

Bernal [6], Jang et al. [23] developed the Strain DLV 

method, i.e., a method combining DLV and static strain 

measurements. Wang and Chan [47] reviewed the recent 

developments in damage detection and condition 

assessment techniques based on vibration-based damage 

detection and statistical methods. A sensitivity-based 

finite element model updating strategy was used by 

Moaveni et al. [32] to detect, localize and quantify 

damage in a full-scale seven-story reinforced concrete 

building slice, tested on the unidirectional UCSD-NEES 

shake table. In their paper, Yan et al. [49] presented a 

state-of-art review of damage detection methodologies, 
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classified into traditional-type and modern-type, the 

latter taking modern signal processing technique and 

artificial intelligence as analysis tools. The study by 

Salawu and Williams [41] presented full-scale vibration 

tests conducted before and after structural repairs on a 

multi-span reinforced cement concrete (RCC) highway 

bridge. They studied the correlations between the 

different stages of the repair works and the changes in the 

dynamic characteristics of the bridge. Waheb and Roeck 

[46] described the results of field vibration tests on three 

concrete bridges with the aim to correlate finite element 

models with test results. Other interesting research 

studies are presented in Koh [27], Liu [30], Kosmatka 

and Ricles [29], Hermans and Auweraer [21] and 

Alampalli and Cioara [11], Yu et al. [50, 51]. 

Among the numerous studies available in the literature 

about the vibration-based damage detection problem, 

there are not many applications to real cases. This is an 

important limiting factor for determining proper damage 

indexes (either model based or data-driven and/or 

output-only) since testing them on simulated data could 

provide false indications about their performance in real 

applications. The aim of this paper is to provide a 

contribution to the SHM problem with reference to this 

last important aspect, by looking at the performance of 

different state-of-art methodologies and indexes for 

laboratory scaled models and, especially, for real world 

structures. To this purpose the paper analyses two case 

studies; in the first one, a four-story scaled steel frame, 

tested on the shake table at the Columbia University and 

damaged by changing the stiffness of certain structural 

elements, is analysed. The second case study is a 

seven-story reinforced concrete building (of the Civil and 

Environmental Engineering Department at NCHU) in 

Taichung (Taiwan) subjected to fore- and aftershocks of 

the 1999 Chi-Chi Earthquake. 

2. Damage Detection Methods 

In this section, some model based damage methods 

and statistics based damage indexes are reviewed. The 

different methodologies and indexes are, then, applied to 

the two case studies presented in section 0 with the final 

aim of analysing their performance and validity within 

the cases of a laboratory scaled model and a real world 

structure subjected to input ground motion. 

2.1 Model Based Damage Indexes 

In this section, some damage locating indexes, based 

on changes that occur in the identified mode shapes, 

frequencies and stiffness matrices, are presented. Such 

indexes require the use of two records, one in the 

undamaged state and one in the damaged state, and 

assume linear structural behaviour within each single 

record. One of the most common approaches to assess the 

presence of damage consists of comparing the natural 

frequencies of each mode before and after the event 

causing the potential damage. However, the approach is 

generally unreliable when dealing with smaller damage 

levels and with data records with a higher noise level 

such as the case of real world structures. 

2.1.1 Flexibility Change Based Indexes 

Another interesting damage index is based on the 

assumption that a localized damage in a structure causes 

a decrease in stiffness and, consequently, an increase in 

flexibility. If two measurement sets are available, one for 

the undamaged state and one for the damaged state, it is 

possible to identify the flexibility matrices F and Fd for 

the two states. Considering these two flexibility matrices, 

Alvin et al. [3] defined two global index vectors, rdi1 and 

rdi2, of dimensions equal to the number of degrees of 

freedom of the structure, whose values give an estimate 

of the damage amount and position: 

     diag ; diag / diagd d
1 2   rdi F F rdi F F F  (1) 

It is also possible to compute an element based 

flexibility matrix Fe = (SL)F(SL)T for the two states, by 

using the transformation matrix SL that links the 

displacements of the system’s dofs and the forces acting 

on the structure to those relative to the inter-story 

elements. 

Analogously to Eq. (1), two indexes related to the 

single element rather than the dof can be defined: 
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     diag ; diag / diagd d
e e e e e1,e 2,e   rdi F F rdi F F F  (2) 

Both the global and local flexibility matrices can be 

computed by using either all the significant modes of the 

structure or only some of them and, consequently, this 

will reflect in the indexes defined in Eq. (1) and Eq. (2). 

This is an important aspect since, in real life applications, 

only few predominant modes can be identified because of 

the measurement incompleteness or because higher-order 

modes are barely excited. 

2.1.2 Damage Index Method 

Among the model based damage indicators, Stubbs et 

al. [45] proposed a damage indicator βj for the j-th 

element, which is computed on the basis of the identified 

system’s stiffness matrix and the mass normalized mode 

shapes, , in both the damaged and undamaged states. 

These indicators, one for each inter-story element, are 

then normalized to provide a more robust statistical 

criterion for damage localization. The normalized 

indicator for the j-th element, zj (j = 1, 2, ...), is given by: 

 
z

j

j

β

 



             (3) 

where  and σβ are the mean and the standard deviation 

of all the indicators, respectively. 

2.1.3 Modal Strain Energy Change Ratio (MSECR) 

This damage index is based on the definition of Modal 

Strain Energy (MSE) for the j-th element and the i-th 

mode that, in the undamaged and damaged states, is 

represented by the expressions: 

MSE ; MSET d d,T d

ij i j i ij i j i φ K φ φ K φ    (4) 

where Kj is the stiffness matrix of j-th element, obtained 

by considering only the stiffness of the j-th element and 

setting to zero all the other ones, in the global stiffness 

matrix, while φi and φi
d are the identified i-th mode 

shapes for the two states. Since the location of damage is 

unknown, the undamaged stiffness matrix of the j-th 

element is used in both the undamaged and the damaged 

states as an approximation. According to the theory of 

Shi et al. [42] the Modal Strain Energy Change Ratio 

(MSECR) for the j-th element and the i-th mode can be 

calculated as: 

MSE MSE
MSECR

MSE

d

ij iji

j

ij


       (5) 

and by looking at the contributions of the various modes 

on each single element, a modal strain energy change 

ratio related to the j-th element, msecrj, can be written as: 

n

1

MSECR1
msecr

n MSECR

i

j

j i
i max

         (6) 

where MSECRi
max is the largest value for each mode 

while n indicates the number of modes used in the 

analysis. In using this index, damage appears to be 

located in correspondence of those elements that show 

the largest values of such an index. 

2.2 Statistics Based Damage Indexes 

In the context of the statistical pattern recognition, the 

process of vibration-based damage detection relies on the 

analysis only of the recorded output signals. One of the 

most thorough review of the statistics approach is 

provided by the work of Fugate et al. [18], where the 

different phases are outlined and discussed. After the 

phase of data acquisition and cleansing, the collected 

output data are used in the feature extraction phase which 

consists of evaluating damage sensitive parameters 

and/or functions, e.g., the residuals between the observed 

and predicted records. In the case of supervised 

algorithm, which is the one used in this work, the data are 

available for both the undamaged and the damaged 

structures. The key phase of the statistics approach 

consists of developing statistical algorithms able to 

analyse the distributions of the extracted damage 

sensitive features and, eventually, their changes occurred 

in case of damage from the undamaged to the damaged 

states with the aim of detecting the presence and location 

of damage. For example, the mean, the variance and 

others functions of the damage sensitive features are 



 

284

monitored th

change over

The stat

minimizing 

output acc

experimenta

of autocorre

provide som

the selected

from the u

Following th

consists of 

observed d

autoregressiv

fitted AR m

uncorrelated

Some con

residuals dir

construct X-

is also defin

the residuals

form subgro

within each 

n, are chosen

them. If n is

possibly av

Several stud

for the subgr

In applyin

AR model pa

computed on

new accele

damaged str

and the unda

can be deter

the new set o

new accele

significant n

chart control

An App

hrough contro

r time. 

tistical proc

false indica

celeration m

al tests are so

elation can le

me false alarm

d parameters

undamaged 

he study [18

working wi

ata and tho

ve (AR) mod

model is set 

d without syst

ntrol charts 

rectly as data

-bar and S co

ned the R con

s, it is necess

oups, compu

subgroup and

n on the basi

s too large, a

veraged-out a

dies proved th

roup size is 4

ng the superv

arameters and

n the basis of

eration meas

ructure can b

amaged AR m

rmined and ch

of data, the A

eration meas

number of re

l limits, deno

plication of Da

ol charts to tr

ess control 

ations of dam

measurement

omewhat corr

ead to contro

ms or might fa

s/features ch

case to th

8], a solution

ith the resid

ose obtained

del to the ob

correctly, th

tematic patter

can be con

a. Fugate et 

ntrol charts a

ntrol chart. To

sary to manip

ute a functio

d chart it. The

is of similar o

a drift in the 

and so not 

hat in most ca

4. 

vised statistic

d the chart co

f the undamag

surements fr

be predicted u

model parame

harted. If dam

AR model sho

surements a

esiduals shou

oting the prese

amage Detec
to Gro

race (pinpoin

allows als

mage. In fac

s derived 

related. The d

ol charts that 

ail to indicate

hange signifi

he damaged 

n to this draw

duals betwee

d from fittin

bserved data.

he residuals a

rns.  

structed usin

al. [18] sugg

and, in this pa

o detect chan

pulate them, e

n of the res

e subgroups, o

observations w

mean value c

easily detec

ases the best c

cal algorithm

ontrol limits ar

ged data. The

rom the po

using the new

eters. New res

mage occurs b

ould not fit w

and a statis

uld fall beyon

ence of dama

tion Methods
ound Motion

nt) any 

so to 

ct, the 

from 

degree 

might 

e when 

icantly 

case. 

wback 

en the 

ng an 

If the 

appear 

ng the 

gest to 

aper, it 

nges in 

e.g., to 

siduals 

of size 

within 

can be 

ctable. 

choice 

ms, the 

re first 

en, the 

ossibly 

w data 

siduals 

before 

well the 

tically 

nd the 

age. 

3
M

di

di

m

se

st

U

ce

co

E

su

E

3.

F

fo

di

di

Fi

s to A Real W
Excitation 

. Perform
Methods Ap

With the pu

ifferent sta

iscussed in t

models and, e

ection analys

teel frame, te

University and

ertain structu

oncrete build

Engineering D

ubjected to fo

Earthquake. 

.1 Damage D

Four-Story Sca

3.1.1 Descri

The first s

our-story A36

The inter-st

imensions are

iagonally onl
 

ig. 1  Tested f

World Structur

mance of 
pplied to Tw

urpose of eval

te-of-art m

the previous 

especially, fo

es two case s

ested on the 

d damaged b

ural elements

ding (of th

Department at 

fore- and afte

Detection in

aled Steel Fr

iption of the S

structure ana

6 steel frame 

tory height is

e 610×457×1

ly in one direc

four-story fram

re Subjected 

the Dama
wo Case St

luating the pe

methodologies

section for l

or real world

studies: (1) a 

shake table 

by changing 

; (2) a seven

e Civil and

NCHU) in T

ershocks of th

n a Laborato

rame 

Structure 

alysed in th

shown in Fig

s 533 mm an

2.7 mm. The 

ction (strong)

me. 

 

age Detect
tudies 

erformance of

s and inde

laboratory sc

d structures, 

four-story sc

at the Colum

the stiffnes

n-story reinfor

d Environme

Taichung (Tai

he 1999 Chi-

ory Structure

his study is 

g. 1.  

nd the floor p

floors are bra

), while in the

 

tion 

f the 

exes 

aled 

this 

aled 

mbia 

s of 

rced 

ental 

wan) 

-Chi 

e: A 

the 

plate 

aced 

e 



An Application of Damage Detection Methods to A Real World Structure Subjected  
to Ground Motion Excitation 

 

285

other (weak) direction they remain unbraced. The 

columns have cross-sectional dimensions of 50.8×9.5 

mm while the cross-section of the diagonal braces is 

50.8×6.4 mm. All the structural connections are bolted. 

The frame is mounted on an ANCO uni-axial hydraulic 

shake table, with a 1.5×1.5 m platform, which provides 

an excitation along the weak direction in the frequency 

range of about 0 to 150 Hz with a peak acceleration of 3 g. 

The model is instrumented with piezoelectric 

accelerometers, with seven channels of acceleration 

response on the structural model and one reference 

channel (representing the input) on the shake table’s 

platform. The sensor locations are chosen in order to 

capture the three-dimensional behaviour of the structure, 

caused either by the excitation or by the frame’s 

asymmetry. The data acquisition scheme is shown in 

Table 1. 

Damage is simulated by introducing a 66% reduction 

of the cross-section of one column between the 2nd and 

3rd floors (see the circle in Fig. 1), inducing a 22.2% 

reduction of the interstory stiffness between these two 

floors in the weak bending direction. Hereafter, the 

undamaged or Reference Case will be referred to as RC 

while DC will indicate the Damaged Case. Although the 

uniaxial excitation along the weak direction, the 

response of the frame was characterised by accelerations 

along both the weak and the strong directions, the last 

ones due to some structural imperfections in the RC 

case and to the presence of damage in the DC case. 

However in this paper, for damage detection analysis, 

the frame is represented as a two-dimensional 

shear-type model in the weak direction, as already 

studied in Fraraccio et al. [15] Consequently, only the 

signals recorded by the channels 2, 3, 4 and 5 are 

considered (see the arrows in Fig. 1 While the channels 6 

and 7, set along the strong direction, and the channel 8, 

useful to detect the torsional behaviour of the 4th floor, 

are not included. See Table 2 for the list of the registered 

channels. 

 

Table 1  Data acquisition scheme. 

CH Sensor position Orientation 

1 Table reference Weak 

2 1st floor Weak 

3 2nd floor Weak 

4 3rd floor Weak 

5 4th floor Weak 

6 3rd floor Strong 

7 4th floor Strong 

8 4th floor Weak 
 

Table 2  Scheme of used channels and correspondent dofs. 

Orientation Registered Channel Dof 

Weak 2 1 

Weak 3 2 

Weak 4 3 

Weak 5 4 
 

In Cavalieri et al. [9], this frame was identified by 

applying the time domain Observer Kalman filter 

Identification (OKID) algorithm, using the time histories 

of both input and output, and the frequency-domain 

Enhanced Frequency Domain Decomposition (EFDD) 

with output-only information. The two approaches 

provided the same results in terms of identified natural 

frequencies, damping ratios and undamped mode shapes, 

results that are shown in Tables 3–4. 

From the analysis of the four identified modes, it is 

clear that these modes correspond to the four bending 

modes along the weak direction of the frame. 

Table 3  Identification results for the RC case. 

RC CASE 

Mode I Mode II Mode III Mode IV 

Undamped mode shapes 

0.235 0.523 0.771 0.608 

0.465 0.616 0.037 -0.707 

0.530 0.100 -0.486 0.307 

0.668 -0.580 0.410 -0.188 

Eigenfrequencies [Hz] 

3.902 10.980 18.645 26.243 

Modal Damping Ratios 

0.003 0.004 0.004 0.006 
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Table 4  Identification results for the DC case. 

DC CASE 

Mode I Mode II Mode III Mode IV 

Undamped mode shapes 

0.229 0.526 0.724 0.603 

0.452 0.629 0.059 -0.730 

0.543 0.082 -0.541 0.204 

0.670 -0.566 0.424 -0.252 

Eigenfrequencies [Hz] 

3.856 10.808 18.327 25.442 

Modal Damping Ratios 

0.003 0.003 0.004 0.005 
 

3.1.2 Model Based Damage Indexes 

Fig. 2a and Fig. 2b show the flexibility change based 

indexes rdi1,e and rdi1, respectively, for different 

numbers of identified modes (1, 2, 3 and the complete set 

(4)). In Fig. 2a, the rdi1,e index, although showing 

non-zero values in all the elements, reaches its highest 

value in correspondence of the 3rd element in all the 

graphs. It is in correspondence of such element that there 

is the 22% reduction of inter-story stiffness. Similar 

conclusions can be derived from Fig. 2b for the rdi1 

index: also in this case the largest value is always reached 

along the 3rd dof in all of the graphs. Both rdi indexes, at 

the degree of freedom or at the element level, show that the 

value corresponding to the third dof or element is the 

highest among the other values, indicating substantial 

changes in the flexibility at that location. Hence, it can be 

concluded that these two indexes provide a clear 

indication about the damage position for the simple 

laboratory structure considered in this study. However, 

they do not allow to quantify the amount of structural 

damage: in fact, looking at the numerical values of such 

indexes, there is no correlation to the 22% inter-story 

stiffness reduction. Identical conclusions can be derived 

for the others flexibility change indexes rdi2,e and rdi2 

described in section 0, as shown in Fig. 3a and Fig. 3b. 

From the analysis of the rdi2,e and rdi2 indexes, it is 

again possible to estimate the damage position in the 

frame 

Fig. 4 shows the plot of the values of zj given by Eq. (3) 

as a function of the inter-story element for the laboratory 

frame. In the ideal case of noise free signals, the zj values 

should be larger for the elements where damage occurs 

while they should be close to zero for the elements 

indirectly affected by damage. In this way, it should be 

possible to easily localize the areas of structural damage. 

For real noisy signals, this distinction in the zj values is 

less evident, with lower values that could be even 

negative: this is mainly due to the presence of noise in the 

measurements. However, the gap between zj values 

corresponding  to  elements  with  damage and those 
 

 

 
Fig. 2  (a) rdi1,e plots and (b) rdi1 plots, with different numbers of identified modes. 
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for each dof and for the first and the second half of the 

signals. For applying the the false-positive testing, the 

model order and the number of subgroups are chosen to 

be 500 and 2, respectively, to take into account the 

reduced size of the signals. Fig. 22 looks different from 

the previous ones (Figs. 19–21). In fact, in Fig. 22, the 

difference between the two bars is in average small and 

can be considered due to the natural variability of the 

experimental data. This small difference is more evident 

in the X-bar rms plot, while, in the other two plots, the 

difference is larger and the bar corresponding to the 

second half of the signal is always higher than the one for 

the first half. This indicates that the X-bar chart is the 

most robust of the three charts against false-positive 

indications of damage. 

4. Conclusions 

This paper presents a comparative analysis of some 

state-of-art vibration-based damage detection approaches 

with the aim of investigating their efficacy when applied 

to damage detection of real world structures and field 

measurements and, also, of testing their sensitivity to the 

presence of structural damage. 

In particular, model based and data-driven damage 

detection methods were reviewed and applied to two case 

studies: (1) a laboratory scaled four-story steel frame 

subjected to shake table tests, and (2) a seven-story 

reinforced concrete building (of Civil and Environmental 

Engineering Department at NCHU) in Taiwan, subjected 

to the 1999 Chi-Chi Earthquake and its fore- and 

aftershocks. In the laboratory structure, damage was 

simulated by introducing a 66% reduction of the 

cross-section of one column between the 2nd and 3rd 

floors, inducing a 22.2% reduction of the inter-story 

stiffness between these two floors in the weak bending 

direction. The real world structure, the reinforced 

concrete building in Taiwan, was instrumented for strong 

motion monitoring with 29 accelerometers and, then, was 

subjected to the 1998 and 1999 Taiwan Chi-Chi 

Earthquakes and experienced some structural damage. 

With regard to the laboratory structure, it was shown 

that the analysed model based indexes provided a correct 

assessment about the presence and/or the location where 

damage has occurred in the frame. However, no clear 

indication was given by these indexes in the 

identification of the amount of the structural damage. 

Similar conclusions can be drawn for the statistics based 

indexes which gave a clear indication about the position 

of the damaged floor in the frame. 

For the seven-story reinforced concrete building, the 

model based indexes clearly identified the most damaged 

floors and the direction along which damage occurred but, 

on the basis of the available instrumentation, did not 

allow to detect the precise position of the damage. Not 

all the statistics based indexes proved to be reliable in 

detecting the damage location for this case study. 

It is possible to conclude that the model based damage 

indexes are reliable in the damage detection process for 

both the laboratory and the real world cases. However, 

they require a sufficient number of sensors to retrieve a 

complete set of modal parameters and this could be too 

demanding in real world structures which are generally 

instrumented by a limited number of sensors. The 

data-driven statistics based indexes are proved to be not 

accurate in locating damaged areas especially for the real 

world structure. However, they should still be considered 

since, being non-deterministic, allow to account for the 

inherent uncertainties in the experimental and field data 

used in vibration-based damage detection processes. 

Structural damage detection in real world structures is 

a complex problem and certainly needs further 

developments. Based on the results discussed above, it is 

suggested to compare the results obtained from different 

damage detection approaches and, also, investigate on 

the possibility to combine them in order to have a more 

reliable identification of damage for real world cases. By 

now there are some interesting contributions based on the 

algorithm fusion approach and we think that this should 

be one of the research topics to be considered in the 

future research on structural damage detection. 
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