
World Journal of Computer Application and Technology 2(1): 10-21, 2014 http://www.hrpub.org
DOI: 10.13189/wjcat.2014.020103

Valuing the User Experience in Human-Computer
Interaction: the Respected User Manifesto

Enrico Denti

Department of Computer Science and Engineering (DISI), Alma Mater Studiorum – Università di Bologna, Italy
*Corresponding Author: enrico.denti@unibo.it

Copyright © 2014 Horizon Research Publishing All rights reserved.

Abstract There is a no-man’s land between how the
Graphical User Interfaces are typically conceived, designed
and engineered in desktop applications and mobile apps, and
what users actually expect: it’s where the users’ experience,
expectations, training, habits, mental attitude come into play.
New software versions add features, change the GUI layout,
behavior and environment for innovation and marketing
reasons, but in doing so they often disregard the value of the
user experience: all the user can do is accept the new
situation and trying to adapt. To make things worse,
customization options are usually limited when it comes to
restoring the previous environment, and downgrading
restrictions in software licenses also apply. Background
services may also start at the worst time, monopolizing the
system against the user’s will, causing frustration and
possibly more serious problems due to service unavailability.
In short, there’s a grey cross area in software design and
deployment where the user is not fully respected as a person
whose experience is intrinsically a value worth preserving.In
this paper we analyze and discuss some common situations
from different scenarios, and exploit them to extract some
golden rules for a more respected software user – the
Respected User Manifesto.

Keywords Human-Computer Interaction, Graphical
User Interfaces Guidelines, User Experience, UI Design,
Manifesto, Software Deployment, Downgrade Right

1. Introduction
There is a no-man’s land between how the Graphical User

Interfaces (GUI) are typically conceived, designed and
engineered in desktop applications and mobile apps, and
what users actually expect: it’s where the users’ experience,
expectations, training, habits, mental attitude come into play.

Solid GUI design principles and guidelines [1-8, 13-15]
have been developed along the decades, but they typically
refer to graphical aspects (colour, shape, size, layout,
arrangement of items on the screen) and – more importantly
from our viewpoint – are applied to the design and

development of a specific version of a software product.
What happened in prior versions – in terms of graphical and
behavioural choices become an established “de facto”
standard in widespread mainstream software products, like
office suites, browsers, and many others – is less often
considered a key value to be preserved: rather, the emphasis
is typically on proposing an appealing, self-selling new
product, possibly with a new GUI, new features and an
extended behaviour, that “shows different” to the general
public so as to deserve the upgrade and be winning from the
marketing viewpoint.

While this approach is well understandable for marketing
reasons and can also actually help to spread innovation,
balancing the natural users’ inertia and resistance to change,
it also inherently disregards the value of the user experience,
of the users’ habits developed over the time and of the way of
working they induced, as well as of the training that was
needed to reach such a level of expertise – and of its cost.

Of course, exploring new functional and aesthetical
approaches and proposing new working philosophies is a
crucial part of innovation: but at the same time, special
attention should be paid to widespread software products,
whose changes potentially impact (hundreds of) thousands
of users. Even smaller changes may be alarming, but larger
changes, like GUI re-designs with introduce new tools and
new operating metaphors, may floor them completely – even
if they aesthetically like the new GUI. The key point is that a
drastic change in the working environment frustrates the
users’ skill and expertise, making even long-experienced
users feel as newbies: the perceived value of their skills (of
which they might have been deservedly proud) suddenly
decreases, together with their self-confidence and – worth
noting – productivity.

Because software vendors are well aware of these
problems, they often offer pre-defined migration plans,
roadmaps, guidelines and tutorials to support the deployment
of the new software version, both in companies and to final
users, assuming that the difficulty to adapt is temporary.
Users, however, do not seem to always agree with this view,
the evidence being the demand for licenses that allow the
software downgrade option (sometimes also called
down-licensing) – that is, the right to install and use some

 World Journal of Computer Application and Technology 2(1): 10-21, 2014 11

prior version of the software, despite owning a license for the
new version. Originally thought for business scenarios, in
companies with hundreds of software installations using
mission-critical, version-depending software, this option has
recently become more and more popular among final users,
when new version of widespread operating systems started to
be pre-installed in new computers with no chance for the
buyer to make a different choice. Unfortunately, restrictions
to the downgrading option often apply to home users licenses:
in some cases (typically, for OEM pre-installed products) the
downgrade option is simply unavailable.

The key point is that such a demand shows that the
problem of a neat migration to a new software version –
independently from the fact that it is actually better and
capable of boosting the personal productivity in the long
term – is real, both for companies and final users. On the one
hand, companies may need to downgrade for technical
reasons – for instance, different file formats, legacy software
that might no longer work with the new product, older
unsupported hardware devices, etc. – and for organizational
reasons – e.g. deployment planning, employees’ re-training
(and related budget), productivity drop for some time, etc.
On the other hand, final users have even fewer alternatives,
their only option being, in most cases, just to accept the new
situation and adapt.

To make things worse, customization preferences are
usually limited when it comes to restoring the previous
environment: so, re-creating an old-looking UI may be
impossible even for the most determined and skilled user.
This may be somehow surprising, given that most of the
widespread software products come with really hundreds of
customization options: yet, it is quite rare that an option exist
to switch off a new GUI, or re-create the previous
old-looking environment, or even just re-set keyboard
shortcuts as they were (the latter problem is even more
serious in localized versions of the software, which tend to
be less stable and coherent than the original English version).
Commercially speaking, the reason is clear – to push the new
version and “force the switching”; at the same time, this
choice negates the possible value for the user of such inertia,
and his/her basic right to decide if, when, and to which extent
to adopt the new version (GUI, behavior, etc.). Such a value
is demonstrated, instead, by the many third-party extensions
and plug-ins that restore the “old style” UI, keyboard
shortcuts, look & feel, etc., that immediately appear on the
market when a new version of a widespread software product
is released. It’s not just a mere matter of resistance to change:
users may actually have a deadline to meet, urgent tasks to
complete, or simply prefer to take their time to get used to the
new UI philosophy and decide whether they like it or not,
whether their way of working can be positively affected by
the new approach or not, etc.. Yet, once the new version is
installed, the switchover has occurred and there’s usually no
way back, the only user option being typically to move
forwards, accept and adapt – whatever the consequences.

Apart from any economic, commercial, marketing and
legal consideration, the fundamental question following the

above considerations is that the user experience and skills
developed over time have a value, and this value belongs to
the user. Yet, this aspect is mostly unconsidered, both for the
software vendor’s marketing convenience, and for the
misleading (but common) idea that users cannot help
eventually appreciating the new version, because “new is
inherently better”: if they don’t, it must be just because they
haven’t perceived the benefits yet. The possibility that the
new version is experienced as an obstacle, maybe just for
subjective reasons (it may simply not fit their way of
thinking: we are not all the same, after all), is basically
unconceivable – possibly because it would raise some
troublesome design and opportunity questions.

Summing up, there’s a grey area in software design and
deployment where the user is not fully respected as a person
whose experience in software use is intrinsically a value
worth preserving.

There are, however, other ways in which the user is not
respected. Another typical case is when unexpressed (and
often useless) constraints are imposed to complete some
operation – like filling in a web form, an online check-in,
reservation, payment, etc. – leaving the blameless user either
blocked or (worse) half way. Apart from the obvious
frustration and time waste, such situations can cause possible
extra-costs due to the wrong or uncompleted operation. What
is not respected, here, is the user legitimate expectation – that
is, the kind of (smooth) experience of use that the user could
reasonably expect: what makes it vain, instead, is the
practical need to be in the software developer’s mind to be
able to actually use the system.

Last, but not least, is the case where some background
service (antivirus updates, software updates, cloud services
synchronization, pre-scheduled system optimizations, etc.)
suddenly starts – usually at the worst time – monopolizing
the system resources regardless of the user’s will: this causes
frustration at the least, and possibly more serious problems
due to the substantial service unavailability if the user has
some urgent task to complete. What is not respected, here, is
the user’s right to have the last word about which services
should run at any time, making his/her will prevail both over
pre-defined schedules and over a pre-established concept of
what is supposed to be the “user’s good” – in short, his/her
right to know, choose and decide.

For these reasons, in this paper we analyze and develop
the above situations, highlight and discuss the role of the user
in such scenarios, to extract some desirable common
principles for a more respected software user, synthesized in
the Respected User Manifesto.

The rest of this paper is organized as follows. Section 2
presents a selection of relevant related literature, while
Section 3 develops the analysis of the above scenarios and
extracts the consequent general principles. These are then
summarized in the Manifesto discussed in Section 4, which
also compares our result both with other manifestoes
proposed in the past for computer-related purposes, and for
some typical developers’ guidelines. Conclusions are finally
drawn in Section 5.

12 Valuing the User Experience in Human-Computer Interaction: the Respected User Manifesto

2. Selected Related Literature
A wide set of relevant literature exists, originated from

different fields – from human-computer interaction (HCI)
[8-12], to interface design, to licensing models and related
legal issues. Moreover, various guidelines [1, 4-7] and
manifestoes [2, 3] have been proposed in the past as a
synthetic way to summarise relevant features, desirable
behaviours and properties, valuable experiences – in several
contexts and for several purposes.

In this Section we overview some of the most relevant
contributions, putting in special evidence their applicability
with respect to the scope of this paper.

2.1 Background from the HCI Area

Human-Computer Interaction (HCI) [8-12] is a very wide
research field, covering many topics and various application
areas: a short historic view can be found in [8], together
with a list of over thirty links to other information sources
aimed at tracing the development of modern user interfaces
in the last fifteen years.

Today, HCI labs and institutes are present in many
universities (e.g. [9-11]), with applications in several fields
–industry, medicine, aerospace and automotive areas,
tourism, learning, and many others. The research areas
spread from Web 3D and virtual reality to information
visualization, mobile devices, adaptive interfaces,
interactive cognitive aid systems, etc.

Although the available literature is really broad (see e.g.
[10,11] for a wide list of papers and projects; [12] for one of
the many journals on this subject), most of such work seems
to be aimed at dealing with specific problems, systems,
goals: in fact, topics range from designing and evaluating
specific systems, to discussing the use of specific
technologies, improving usability in health and emergency
systems, learning systems, cultural heritage and education,
in mobile tools, etc., to developing advanced 3D
applications and technologies, crowdsourcing, voice
systems, up to human factors in computing systems
(including interaction with robot systems), context-aware
applications, trust issues, human behaviour modelling,
tutoring systems, and others.

In this paper, instead, we will take a different perspective,
trying to deduce a set of general, cross-area user rights from
a respect-oriented perspective, independently of the specific
application field – although all fields constitute valuable
inspiration sources.

2.2 Background from the User Interface Design Area

The UI design area also features a long, honourable
history. Rooted in HCI, it is currently specific enough (in
contrast with the HCI broadness) to be treated separately.
Notable books (e.g. [13]) exist that encompass a long list of
design principles for both interface and software design,
emphasizing the user human factor. In this Section, we

focus on some specific rules for UI design and testing.

2.2.1 Mandel’s Golden Rules
In Chapter 5 of his book [6], Mandel discusses three UI

design principles, called “Golden Rules”. His basic
assumption is that the system should adapt to the user, not
vice-versa, while “in the past, computer software was
designed with little regard to the user”. Although the word
“regard” is not intended here as “respect” in our sense, but
more generally as the user being “a key aspect to be
considered” in the software design process, mentioning the
user as an aspect representing a value “per se” is a notable
change of perspective. We will develop this aspect further
in the following, deducing some user rights that logically
derive from recognising such a user role.

More in detail, Mandel’s Golden Rule #1 states to “place
users in control of the interface”, observing that the ultimate
decision whether “to drive or be driven” (in his analogy, to
drive the car or take the train) should be the user’s, not
someone else’s. He further in-zooms this rule deriving ten
detailed principles: among these, the emphasis on input
devices (freedom to use keyboard or mouse, depending on
personal habits and possibly on available devices – think of
mice on laptops), on the chance to customize the interface
(via proper preferences, with special regards to interaction
techniques including shortcut keys, keystrokes, etc.) and on
a transparent/facilitative UI is particularly worth noting.

While Golden Rule #2 is more strictly related to usability
(reduce the user’s memory load), Golden Rule #3 insists on
the value of UI consistency, both within and across products,
as a means by which “users can transfer their knowledge
and learning to a new program”. In fact, Mandel
distinguishes among consistency in presentation, in
behaviour and in interaction – the latter being referred to
shortcut keys, mnemonics, etc. Needless to say, such an
emphasis on consistency as a key value is of great interest
in our perspective, as it intrinsically recognises the user
knowledge and experience as key values worth preserving.

2.2.2 Usability (and its opposite)
According to one of the classical definitions [14],

usability is “the capability in human functional terms to be
used easily and effectively by the specified set of users (..)
to fulfil the specified set of tasks, within the specified
environmental scenario”. As noted in [7], the emphasis on
environment (use context), users and tasks is central, since
no meaningful usability concept “can be assessed in the
vacuum”. In [15] the so-called user-center design approach
is developed into four key items: focus on user, integrated
design, early and continual user testing, and iterative design.
Item #1, in particular, states the need to maintain direct
contact between the end users and the designers, preventing
the risk that the system specifications are given by
managers who will not actually use the system. Usability
testing is also highlighted as a fundamental part of the
process: in [7], this key aspect is addressed in depth, via
questionnaires and related studies.

 World Journal of Computer Application and Technology 2(1): 10-21, 2014 13

In the context of this paper, usability is interesting in that
it provides a complementary view of what “respecting the
user” means and implies – that is, not only valuing the user
knowledge and experience, but also recognising its value to
improve acceptation, efficiency, comfort, and therefore
productivity.

A radically different, unconventional approach [16]
consists of intentionally creating and engineering the user
discomfort – rather than the user comfort – in order to
provide an intense, involving, possibly thrilling user
experience in specific application contexts (mainly games,
rides, installations, cultural experiences, etc.). This
approach integrates HCI perspectives with performance
studies to deliberately produce uncomfortable interaction:
specific tactics (called visceral, cultural, control, intimacy)
are exploited to embed discomfort in the user experience.
Apart from other aspects, this approach calls for facing
non-trivial ethical considerations, which involve the user’s
“right to choose”, “right to withdraw”, the value of
informed consent, privacy and anonymity issues. Of course,
this is rather a specific kind of “user experience”, quite
different from what people expect in the everyday software
and from what we refer to in this paper; still, the emphasis
on the user role and on his/her personal/ethical rights, and
more generally on the user’s awareness, are on the same
wavelength with our approach.

2.3. Background about Usability Guidelines

2.3.1 Mohkov’s ten web application usability guidelines
In [1], ten web application usability guidelines are

presented (an excerpt is reported in Table 4): while their
formulation is intentionally GUI-oriented, some aspects
involve respecting the user and valuing his/her experience,
although sometimes indirectly. In particular:
• Rule #1 (“Keeping the UI consistent”), whose basic

motivation is that “It takes long enough to establish
familiarity with an interface”, emphasizes the value
of the user experience intended as “familiarity”;

• Rule #2 (“Guide the user”), which moves from the
assumption that “The worst thing to a user is having
to guess what to do next”, and Rule #4 (“Give
feedback”), rooted in “There’s few things worse in a
web app than not knowing (..) give visual feedback
when a user’s interacting (..) don’t leave him/her
guessing”, point out that the user should not be
required to glaze into the crystal ball to understand
what to do / what is going on;

• Rule #9 (“Have Clear and Explanatory Error &
Success Messages”) affirms the relevance of proper
information, avoiding vague feedback.

2.3.2. Porter’s Twenty UI Design Principles
In [4], twenty UI design principles are presented and

discussed (summarized in Table 5). Expectedly, their
formulation is mainly technical and tailored to the GUI

designer: still, some do deal with user-respect-related
aspects. In particular:
• Rule #4 (“Keep users in control”) points out an

aspect that is similar to Mandel’s golden rule #1;
• Rule #8 (“Provide a natural next step”) is another

instance of the principle that the user should not be
required to glaze into the crystal ball;

• Rule #9 (“Appearance follows behaviour”), despite
of its graphics formulation, is interesting in that
emphasizes the role of expectable behaviour
(“humans are most comfortable with things that
behave the way they expect”) in making people feel
“at home”. In a sense, this can be seen as an indirect
recognition of the value of a known environment,
that fits the user experience and expectations. The
same concept is reaffirmed in Rule #12 (“Smart
organization reduces cognitive load”) by suggesting
“not to force the user to figure out things” – yet
another instance of the “crystal ball” issue. Both
rules #8 and #9 actually recall Mandel’s golden rule
#3, though in different form.

• Rule #16 (“Help people inline”) is interesting for
the assumption that ideal interfaces should be self-
-explanatory (“in ideal interfaces, help is not
necessary”) – another way of emphasizing the “feel
at home” principle above.

2.3.3. Weevers’s Seven Guidelines
In [5], seven guidelines are discussed for the design of

high-performance mobile user experience (Table 6).
Again, although their primary intended scope is different,

some user-respect aspects appear in-between. In particular,
the focus on a “long-lasting relationship” (between the user
and the app) implicitly promotes a view of the user
experience – intended here as knowledge gained over time
– as a value worth preserving: moreover, such a valuing
also applies to the story of the brand (Rule #1).

Other rules, like Rule #4 (“Optimize UI flows and
elements”) and, indirectly, Rule #7 (“Champion dedicated
UI engineering skills”) emphasize the value of another kind
of user “experience” – namely, the user feeling in using the
application, specifically in the context of tricks to reduce
the user waiting times and time wasting feeling (Rule #4)
and in providing advanced (high-performance) usage
feeling (Rule #7).

2.4. The Down-licensing Problem

There are plenty of software licenses out there, both for
commercial and non-commercial software, each granting
some rights to the users and denying others. While most of
such rights refer to the specific (version/edition of the)
software that the user is installing, one right – the so-called
“right to down-license” or “right to downgrade”, meaning
that the user is allowed to use a prior version/edition of the
software – spreads across versions and editions, therefore

14 Valuing the User Experience in Human-Computer Interaction: the Respected User Manifesto

possibly impacting the user habits and way of working.
If the software license does not include this right, the user

wishing to configure a new computer, or adding the
software to a workstation that was not previously used for
that task, could be unable to reproduce his/her standard
working environment on the new machine. Being forced to
move to the new software version may cause serious
problems, both in terms of personal productivity – the user
might not know the new version well, commands and
features and UI might be different – and in terms of
possible incompatibilities (e.g. different file formats).

To make things more intricate, some vendors distinguish
between different versions and different editions – the first
term being referred to different generations of a given
product family, the latter to different functional offerings
within the same product family – and apply different legal
rules, possibly subordinating the downgrade possibility to
the possess of a specific version/edition combination.

On the one hand, the right to downgrade is just one of the
many terms that a commercial license can legally contain,
and can be seen as a technique to promote the diffusion of
the new version, create and defend market space for
different editions, and more generally to push the market to
adopt the new product with less inertia and smaller latency.

On the other, however, it should be recognised that
software licenses are an asymmetric kind of agreement, as
they are not freely negotiated between the two parties, but
actually written by one party – the vendor – and
accepted/rejected in toto by the other part – the user – that
has basically no negotiation power, despite being the most
affected by the version change.

3. Case Analysis
In this Section we discuss a set of relevant cases,

developing the basic scenarios presented in the Introduction
to extract some general principles, aimed at capturing the
corresponding desirable “respected user” rights.

3.1 Valuing the user experience

New software versions typically feature an improved or
brand new GUI, further/improved functionalities, possibly
an extended behaviour, etc., not only for the worthy reason to
provide the user with an innovative and better-performing
product, but also for marketing purposes – appearing “new
and different” to the general public, push the desire to
upgrade, etc.

Unfortunately, as outlined in the Introduction, it is often
the case that in doing so they disregard the value of the user
experience and habits established for long over the time. This
value is not just a personal perception: the monetary cost and
the dedicated time of the training that was needed to reach
that expertise level are real, and can be particularly relevant
in widespread software products, where any change impacts
thousands, possibly millions of users.

As a matter of fact, while innovation in itself is welcome,
drastic changes in the working environment can easily
frustrate the users’ skill and expertise, making even
long-experienced users feel “downsized” to newbies – with
obvious consequences on self-confidence and productivity.

In order to safeguard the value of the user experience, we
suggest that the user should never be required to mandatorily
change his/her habits, or learn new working processes that
exclude the previous ones he/she was accustomed to, or be
forced to adapt to new GUI or radically different interaction
styles against his/her will. We formalize this as follows:

Rule 1: the user has the right to safeguard the value of
his/her expertise, skills and overall experience with a given
software product, including the procedures to perform the
already-existing functions.

It should be noted that safeguarding the value of the user’s
expertise, skills and experience implies that he/she should be
able to perform the already-existing functions in the same
way as before¸ without necessarily having to learn new
ad-hoc procedures, or navigate through different or
previously-inexistent menus, etc.

Three notable corollaries can be derived, that will be later
refined in Rules 3, 4 and 5. First, if the GUI has been
innovated, or new approaches have been included that could
disorient the user, specific preferences and options should be
included to enable/disable the new UI, menus, or features (or
groups of features) singly (see also Rule 3 below), so that
each user can define his/her personal adaptation path towards
the new version (possibly leaving some features permanently
disabled if they don’t fit his/her mind and way of thinking).
Second, the opt-out approach should also be available at the
behavior level: that is, if previously-existing tasks or
functions require now different procedures to be performed,
so that the older procedures the user was accustomed to no
longer work as expected (or no longer work at all), it should
be possible to disable the new procedures singly, reverting
the product to the “old style” behavior. As a special, but
particularly relevant, case, this principle should also cover
the keyboard shortcuts (Rule 4 below) and their
customization (Rule 5 below).

3.2. Valuing the User Experience across Products

So far we have focused on one single software product or
suite. However, some killer application areas (e.g. office
suites, Internet browsers, etc.) are populated by software
products from different vendors, and it may well be the case
that some of them have become during the time – deservedly
or not – a sort-of “de facto” standard. In this case, the balance
between innovation, which is boosted by competition, and
users’ experience safeguarding, which calls for prudence and
smooth change pathways, is particularly critical: in fact, on
the one side, no obstacles should be placed on the new
competitors’ road, so that they can challenge the leading
product possibly following a radically different approach; on
the other, the user’s experience on the de-facto standard
product should be effectively safeguarded, even in the case

 World Journal of Computer Application and Technology 2(1): 10-21, 2014 15

that he/she decides to migrate to another vendor’s product.
Rule 2: the user accustomed to a de-facto standard

product has the right to safeguard the value of his/her
expertise, skills and experience also with respect to different
software products from other vendors.

The above right can be enforced by different means, such
as suitable customization options, compatibility modes,
inter-operability tools, etc., or a mix of these: it is up to the
challenging vendor (as well as its own interest, to “steal” as
many users away from the leading product as possible) to
define the most appropriate set of tools to accomplish this
task. A reasonable way to do so could be, for instance, to
provide specific user profiles in the new vendor’s product
that are thought for users coming from a given competitor’s
product: such profiles should collectively apply the whole set
of preferences, options, etc. that are needed to make the
incoming user feel like at home. (As an aside, it is worth
noting that users can be more disoriented by apparent-
ly-marginal behavioural details, such as a mouse wheel
behaving differently than expected – like in the case of the
Impress tool in the LibreOffice™ / OpenOffice™ suite vs.
Microsoft’s PowerPoint ™ – or an “apply style” command
working slightly differently, etc., than by major aesthetical
changes, because GUI changes are immediately visible,
while behaviour differences are hidden and therefore cannot
be anticipated.)

3.3. Being in Control of UI and Application Features

As briefly mentioned above, a common misleading among
software developers and vendors is that users cannot help
eventually appreciating the new version, because “being new,
it is inherently better” – and if they don’t, that must be
because they haven’t yet perceived the benefits, or haven’t
yet got accustomed to the new approach – but they
eventually will. While there is definitely an amount of truth
in this statement – people naturally tend to resist to change,
even without a specific reason – the user’s actual priorities,
feelings, and reasons are up to the users, not the developers
or the vendors. Of course, a carefully-planned deployment
can be of great help in minimizing the users’ resistance and
the subsequent experienced problems, especially in a
business context; still, individual users, home users,
professionals may have their own priorities – depending on
their deadlines, personal way of working, etc. – that deserve
to be respected: for these people, getting accustomed to a
new GUI or product version may not be the top priority.

Moreover, the new version could simply be perceived by
some users as negative, inadequate or somehow worse than
the previous for subjective “inexplicable” reasons: in short, it
does not fit with their way of thinking – and again, this
feeling deserves to be respected.

For these reasons, we claim that the user has the right not
to appreciate a revised GUI, look & feel, behaviour, or way
of interacting that replaces an older one, whence

Rule 3: the user has the right to enable and disable singly
each new feature (or group of related features) in a clear and

transparent way, with no extra cost, and without using any
third-party add-ons.

Clearly, the goal of this rule is to allow the user to restore
the previous working environment as much as possible, yet
in a reversible way, so that he/she can later re-enable any
feature at any subsequent time to try it out or explore it
according to his/her own needs, time, and priorities.

Special emphasis is put on the constraint that this must be
possible transparently – that is, via some straightforward
option, with no manual modification of any inner
configuration files, no need to exploit special tools, etc. – and
at no cost, because the chance to have full control over the
software product should not be seen as an “extra feature” to
be paid for, but as an intrinsic user right. The exclusion of
third party software is motivated by the same basic need – to
avoid both any indirect extra costs as well as further
download & installation burden.

A typical example of the above situation could be the
introduction of the Office “Ribbon” ™ in Microsoft Office™
2007: despite of its indubitable effectiveness and graphic
clearness, certainly appreciated by novices and the many
users that found it hard to navigate the previous menu
hierarchy, this tool actually disoriented some power users,
suddenly deprived of the old-fashioned, but familiar, menu
system that was the key of their efficiency and productivity –
with no easy way back. As a result, perhaps unsurprisingly,
several third-party commercial tool soon appeared to restore
the old-style menus – a clear evidence both that a smoother,
customizable and more user-respectful migration path would
have been welcome, and that the user experience has a
measurable economic value, if several people were willing to
pay for tools to restore their old, familiar environment after
already paying for the new version of their software product.

3.4. Being in Control of Keyboard and Mouse

Proper customization does not mean just supporting the
chance to selectively restore the previous UI in terms of
dialogs, older-style screens and menus, etc.: it also includes
the proper keyboard and mouse personalization support.
New software versions sometimes include a re-designed set
of keyboard shortcuts (especially in localized versions of the
software, often less stable and coherent than the original
English version), inherently incompatible with the previous
ones. While this can be seen somewhat a minor issue at a
time where interaction is more and more mouse-based and
touch-based, it should also be considered that keyboard
shortcuts are mainly used by power users to speed up their
everyday operations (e.g. creating and formatting hundreds
of PowerPoint slides), more than by occasional users:
consequently, an unexpected and irreversible change in this
area can result in a dramatic decrease of efficiency precisely
for the user category that is most sensitive to this aspect.

Again, the complete user interaction redesign in Microsoft
Office™ 2007 is instructive: while most keyboard shortcuts
were actually changed, some applications in the suite (Word
™, Excel ™) did offer the chance to customize them,

16 Valuing the User Experience in Human-Computer Interaction: the Respected User Manifesto

possibly restoring the original ones if desired. PowerPoint,
however, did not: and again, unsurprisingly, third party tools
appeared to provide this feature. The conclusion is analogous
to the one above: power users need to be able control and
fine-tune their migration path, because their productivity
depends also on these “minor details” – and when efficiency
is concerned, habits and familiarity do matter. We
summarize this as follows:

Rule 4: the user has the right to maintain the same
keyboard shortcuts he/she was accustomed to, with no extra
cost and without using any third-party add-on, for a
reasonable amount of time.

Of course, the reasonable amount of time is somehow
discretionary: however, given that widespread software
products with a large installed mass tend to induce a
correspondingly large inertia to change in their worldwide
users, 2-3 previous versions should probably be considered
the minimum. In order to reduce the overhead for software
developers and vendors, make the version maintenance
easier, and to facilitate the user migration among different
software products of the same category, the above
consideration could be subsumed as follows:

Rule 5: the user has the right to freely customize any
keyboard shortcut in a clear and transparent way, with no
extra cost, and with no need of any third-party add-ons.

This approach lightens the burden on developers,
according to the “one feature takes all” approach: give users
the chance to customize the keyboard shortcuts and
accelerators as they want, and it won’t be necessary to worry
about previous versions anymore. Of course, such a
customization should be possible in a simple and immediate
way – ideally, just pressing the keys to be associated to a
given command – and with proper help to intercept and solve
possible conflicts. Interestingly, the software tools produced
by small software houses, often with just one leading product,
are more likely to adopt this approach than larger software
companies – possibly because the former need to care about
their installed users’ base quite more than the latter.

Input devices, however, are not limited to the keyboard:
productivity depends on the overall user’s environment
behavior, and this calls for attention even to
apparently-marginal details in other input devices. A mouse
wheel behaving differently than expected, for instance, can
be very confusing, and possibly result the discriminating
factor for a power user in deciding whether to adopt, or not to
adopt, a given software product or version, or could become
an obstacle if the new product is chosen by the management,
out the direct users control. An interesting example of this
kind of detail relevance can be found in the Impress ™ tool
of the LibreOffice ™ / OpenOffice ™ suite, where the mouse
wheel up/down does not cause the previous/next slide to be
shown, as in PowerPoint and other similar software, but the
up/down scroll of the same slide in the workspace – a
perfectly reasonable behaviour in the abstract to provide
more control on the design workspace, yet completely
different from the “de-facto standard” that most users are
accustomed to. This difference in behaviour is three times

subtle, in that a) it is not mentioned in the user’s guide and
online help, so users discover it only at run time, b) cannot be
modified by any preference and option, and c) only applies if
the slide zoom is larger than a factor that depends on the
shown area (typically ~33%). It is worth noting that
discussions in online forums [17,18] have long focused on
the technical specifications and on this behaviour being
correct or not in the abstract, rather than on users accustomed
to other “de facto standard” products; even more, the idea of
making this aspect user-selectable is simply unconsidered,
which speaks the volume on the need for a more
respected-oriented, customization-based approach.

The rule below extends the previous Rule #5 to the mouse
and, more generally, to any other input/pointing device:

Rule 6: the user has the right to freely customize any
pointing or input device in a clear and transparent way, with
no extra cost, and with no need of any third-party add-ons.

3.5. Being in Control of Background Services

Another case where the user should be in control – and
often is not – concerns the many background services
(antivirus updates, software updates, cloud services
synchronization, pre-scheduled system optimizations, etc.)
that populate our desktop pc, smartphones, tablets, etc. It is
not uncommon that such services start suddenly, usually at
the worst time: the key point is that they often monopolize
the system resources, virtually taking control of the
pc/smartphone as long as they need, regardless of the user’s
will and – above all – of his/her priorities, time, needs, etc.

This may cause frustration at the least, but also serious
problems if the user has some urgent task to fulfill – be it an
email to send, a train to book, or whatever. Reasonably, the
user should have the right to say the last word about which
services should run on his/her devices at any time, with the
explicit chance to make his/her will prevail both over
pre-defined schedules and, ultimately, over a pre-established
concept of what is supposed to be the “user’s good”.

Again, there is a clear need for better transparency and
control: the user should be possibly warned that a service is
going to run, and be enabled to postpone it, re-schedule it,
or even deny his/her consent if necessary. Moreover, it
should also be possible for a user to inspect and control the
running services, being shown not just a mere and
undistinguished list of process names (often with little more
than a vague explanation of their intended purpose) but a
selection of those services and processes that could be
possibly stopped, delayed, slowed down, etc. – in a word:
controlled – with no direct consequences on the system
“core” functionalities, but only on the selected service, its
availability and performance. A clear yet concise
explication of the consequences of operating on such a
service or process should also be selectively provided. We
synthetize this consideration in the following rule:

Rule 7: the user has the right to control and inspect the
inessential background services / processes at any time, in a
clear, transparent, and situation-aware fashion.

 World Journal of Computer Application and Technology 2(1): 10-21, 2014 17

It is worth noting the emphasis on the “inessential” word,
which subsumes the above idea of constraining the user
control capabilities to non-dangerous items, whose
unavailability or performance downgrade does not
undermine the system reliability and immediate robustness.
Examples range from anti-virus scanning and updates,
checking, downloading and installing software updates of
any kind, remote folder synchronization (including remote
services like Dropbox ™, Microsoft SkyDrive ™, etc.), etc.

3.6. No Constraint Guessing

The no man’s land of the un-respected user spreads to
other areas of human-computer interaction. Another typical
case is when unexpressed constraints prevent the user from
completing an operation, with no or little/vague explanation
of why the operation is being denied. The consequences
range from frustration and time waste, at the least, to worries,
rage, up to possible extra-costs if some misleading feedback
got the user to repeat an operation that involved payments,
orders, etc.: in fact, the wide area of online services, from the
basic filling in of some web form, to airline check-ins,
reservations, orders, payments of any kind, etc. provides
plenty of examples of blameless users blocked or let half way
due to some unexpressed (and often useless) constraint.

A major airline company, for instance, requires users to
enter their home address in the online check-in form, but
forgets to specify that, for some obscure reason, commas are
not permitted in the address field – that is, precisely where
most users would write one, to separate the street and the
number. They could have pointed it out, of course, or, better,
they could cut away the comma automatically, or just accept
the comma as is – but they did not: users simply get a generic
error message referred to something being wrong in the page,
and remain blocked with no idea about what is wrong and
how to proceed, their only option being a trial-and-error
(with the risk that the system blocks their account due to too
many errors), call a call center, etc.

Of course, that page violates the good practice of UI
design, but what is worth highlighting is that the very reason
behind the violation is not technical – it is a lack of user
respect, the user having to be in the developer’s mind to
guess how to actually use the system: what is not respected is
the user legitimate expectation for a smooth, seamless
experience. These problems have social consequences in
terms of resistance to technology acceptation, difficulties to
trust online systems (especially by less experienced, possibly
elderly users), etc., that should not be ignored.

Rule 8: the user has the right not to guess unexpressed
constraints, format, requirements of any kind.

Unnecessary constraints should be avoided, but generally
speaking any constraint, requirement, data request, etc.
should be proportioned to the operation to be performed, if
possible expected by the user in that context, and in any case
made explicit in a clear, concise and transparent way.

3.7. No Behaviour Guessing

The above-mentioned lack of user respect, with the user
having to be in the developer’s mind, may occur also when
the GUI guidelines and design principles are, in themselves,
well respected and the resulting GUI is judged user-friendly
and possibly a positive example to imitate: the reason is the
widespread adoption of “thin”, “essential” UIs, that
eliminate the old-fashion menu bars and navigation bars, in
favour of a more task-oriented approach made of pop-up
menus, dynamic menus showing only the task-related items,
etc. In fact, on the one hand this approach actually helps
users to find what they need once they have interiorized the
overall UI philosophy, but on the other may turn out to be an
obstacle if the “natural way of thinking” of the user (there are
some billions people around, after all) does not fit the UI
philosophy. Such a user may then find it difficult to guess
how to do what he/she wants, making his/her interaction with
the UI frustrating, until a solution is found either in the online
help or googling around.

An example is the “burn CD” option in Apple’s iTunes ™,
which is very intimately bound to the playlist notion: if no
playlist is defined and selected, the “burn CD” option never
appears – and there’s no other way to find it in any menu,
dialog, etc. Of course, in retrospect, once you know it, this
approach is well reasonable and totally coherent with the
object-oriented philosophy – after all, you do need a list of
song to burn a CD, and the list of songs is called a playlist.
Unfortunately, users accustomed to other major burning
software could expect a dedicated menu item to operate on
the CD burner –after all, similar items exist in iTunes too, to
interact with the connected devices, to the store, etc. – and be
stuck for not finding any. Indeed, in their philosophy one
first should focus on the CD object, then on the songs to be
added, not vice-versa. Clearly, both views are reasonable,
but in the iTunes case the proposed one is also the only one –
no recovery path is considered for the “diversely-thinking”
users. The result is a product that, for this particular function,
assumes that the user embraces not only its general
philosophy, but also its practical consequences – which
means to be in the developer’s mind. As a result, a user who
is not mentally-tuned with the developer will lack the key to
interpret the iTunes reality, and will probably need extra help
to learn how to burn a CD, despite the overall
user-friendliness of the product. Hence the following rule:

Rule 9: the user has the right not to guess the developer’s
mind to understand how to perform a task.

To face this issue, different “flows of thinking” could be
considered in the product design, that allow the same
task/action/functionalities to be reached and performed via
different pathways – for instance, in the above case, starting
both from the playlist and from the CD burner object. In
short, designers should take into account possible
“differently-thinking” people at least for the most common
tasks, rejecting the assumption that one approach (theirs) is
ultimately better than the other. Proper technical
mechanisms (such as intelligent sensing, smart pop-ups, etc.)
could also be added to intercept early user actions revealing
the user’s probable intention, taking the proper actions to

18 Valuing the User Experience in Human-Computer Interaction: the Respected User Manifesto

gently push him/her back onto the main pathway, showing
how to do the same task the other way and its advantages, etc.
– in short, respecting the difference, instead of ignoring it.

3.8. The Down-Licensing Issue

We have long discussed in the Introduction and in Section
2.4 the reasons and scenarios that determined the increasing
request for software licenses allowing the software
downgrade option – the need to safeguard personal
productivity, the compatibility with legacy mission-critical
software, the compatibility with older hardware or no-longer
supported devices and peripherals are all worth considering.

In this Section, we take it from another perspective. First,
let us observe that, despite laws existing in any country to
protect the user’s privacy on the one hand, and the
consumer’s rights (commercial warranty, etc.) on the other,
and despite the many software licenses available both in the
commercial and in the open-source worlds, no legal
constraint is usually provided by the law with respect to the
down-licensing issue: any vendor is basically free to grant it
or not, possibly reserving it to selected user categories,
possibly requiring an extra fee for it, etc.

While this can be view as a natural consequence of being
in a free market, we should all be aware that such a freedom
actually promotes the view that software downgrading is a
service to buy, rather than a right to observe: as a
consequence, any vendor can freely choose whether to sell it
or not – and under which conditions. Some more caution
could perhaps be desirable: apart from any ethical
opportunity consideration, is it actually convenient for
vendors to possibly displease a loyal customer with an “all or
nothing” approach, making him/her feel like a king’s
subject, instead of a valued customer whose opinion and
feedback is highly considered?

Following the respected user approach developed in this
paper, which emphasizes at any step and in any situation the
intrinsic (personal and monetary) value of the user
experience in terms of personal expertise, skills, habits, time
and energy, we devote our last rule to state this right:

Rule 10: the user has the right to use and install any prior
version of the software for which he/she owns a valid license.

To concretize and enforce this right, vendors should
maintain an online repository of (a reasonable number of)
prior versions, so that registered users can download the
version of choice at any subsequent time. Moreover, such a
repository should be accessible free of charge, for the same
principle stated above –there is a user’s right to support, not a
service to sell.

4. The Respected User Manifesto
The above ten rules can be summarized as a set of user

rights, called the Respected User Manifesto (Table 1). In
this Section we discuss its novelty, similarities and
differences both with respect to other manifestoes and to the

guidelines previously reviewed in the selected literature.

Table 1. Summary of he Respected User Manifesto rules

THE RESPECTED USER MANIFESTO
1.The user has the right to safeguard the value of his/her expertise,

skills and overall experience with a given software product,
in-clud¬ing the procedures to perform the already-existing

functions.
2.The user accustomed to a de-facto standard product has the right to
safeguard the value of his/her expertise, skills and experience also

with respect to different software products from other vendors.
3.The user has the right to enable and disable singly each new feature
(or group of related features) in a clear and transparent way, with no

extra cost, and with no need of any third-party add-ons.
4.The user has the right to maintain the same keyboard shortcuts

he/she was accustomed to, with no extra cost and with no need of any
third-party add-on, for a reasonable amount of time.

5.The user has the right to customize freely any keyboard shortcut in
a clear and transparent way, with no extra cost, and with no need of

any third-party add-ons.
6.The user has the right to customize freely any pointing or input

device in a clear and transparent way, with no extra cost, and with no
need of any third-party add-ons.

7.The user has the right to control and inspect the inessential
back-ground services / processes at any time, in a clear, transparent,

and situation-aware fashion.
8.The user has the right not to guess unexpressed constraints, format,

requirements of any kind.
9.The user has the right not to guess the developer’s mind to

understand how to perform a task.
10.The user has the right to use and install any prior version of the

software for which he/she owns a valid license.

4.1. Comparison with other Manifestoes

The Computer User’s Bill of Right [3] (summarized in
Table 2) and the User’s Data Manifesto [2] (summarized in
Table 3) are perhaps the two major manifestoes explicitly
defined in the past to capture a relevant set of desirable
computer user rights from specific viewpoints.

Ph.D psychologist Claire-Marie Karat wrote the first in
1998 after observing that “The technologists get far into the
design of a system without really understanding who the
target users are, the work that they do, and the context in
which they do that work” – a viewpoint inspired by her
work at IBM, aimed at evaluating the way people interact
with their computers and design human interfaces. Of
course, at that time the GUI design and the issue of
human-computer interaction were still largely a land to be
explored, so the focus was primarily on to technical and
functional aspects: but, interestingly, most of her basic
observations are still valid today.

Her Rules #5 (“the user has the right to be in control
(…)”) and #10 (“the user should be the master of the
software (…)”), in particular, do share the same inspiration
point as our Manifesto’s, although their formulation is
intentionally general and more focused on the system’s
responsiveness (Rule #5) and naturalness / intuitiveness
(Rule #10) than on specific aspects of the user’s experience.

Our manifesto, instead, is mainly focused on safe-
guarding the value of the user experience, intended as the

 World Journal of Computer Application and Technology 2(1): 10-21, 2014 19

combined result of proper attention to specific usability
issues, well-defined customization options, as well as
several (apparently minor) details that closely impact the
user everyday working experience. However, our rules aim
at ensuring transparency, intended as the actual chance to
know and be “in control” of what our devices do at any time,
which is not that different from Karat’s original viewpoint.
The main difference is probably referred to the degree of
detail of the rules: while Karat’s rules are intentionally
general, ours mean to express precise constraints referred to
clearly-identifiable concrete situations, where the user skills
and expertise may be at risk. Like any detailed formulation
compared to a more general one, our approach takes the risk
not the capture other situations possibly deserving attention:
on the other hand, however, specific rules are much harder
to misunderstand, equivocate or bypass than broader rules
stating general principles, making it easier to identify
violations and enforce the respect of the consequent rights.

Table 2. Clare-Marie Karat’s Computer User’s Bill of Right

1. The user is always right. If there is a problem with the use of the
system, the system is the problem, not the user.

2. The user has the right to easily install software and hardware systems.

3. The user has the right to a system that performs exactly as promised.

4. The user has the right to easy-to-use instructions for understanding
and utilizing a system to achieve desired goals.

5. The user has the right to be in control of the system and to be able to
get the system to respond to a request for attention.

6. The user has the right to a system that provides clear, understandable,
and accurate information regarding the task it is performing and the

progress toward completion.
7. The user has the right to be clearly informed about all system

requirements for successfully using software or hardware.

8. The user has the right to know the limits of the system’s capabilities.

9. The user has the right to communicate with the technology provider
and receive a thoughtful and helpful response when raising concerns.

10. The user should be the master of software and hardware technology,
not vice-versa. Products should be natural and intuitive to use.

Table 3. The User Data Manifesto

1. The user is always right. If there is a problem with the use of the
system, the system is the problem, not the user.

2. The user has the right to easily install software and hardware systems.

3. The user has the right to a system that performs exactly as promised.

4. The user has the right to easy-to-use instructions for understanding
and utilizing a system to achieve desired goals.

5. The user has the right to be in control of the system and to be able to
get the system to respond to a request for attention.

6. The user has the right to a system that provides clear, understandable,
and accurate information regarding the task it is performing and the

progress toward completion.
7. The user has the right to be clearly informed about all system

requirements for successfully using software or hardware.
8. The user has the right to know the limits of the system’s capabilities.

9. The user has the right to communicate with the technology provider
and receive a thoughtful and helpful response when raising concerns.

10. The user should be the master of software and hardware technology,
not vice-versa. Products should be natural and intuitive to use.

The User’s Data Manifesto [2] (summarized in Table 3)
takes an intentionally narrower scope, aimed at “Defining
basic rights for people to control their own data in the
Internet age” – therefore facing data protection, ownership,
and accessibility issues. These issues are, of course, of
primary relevance in todays’ information society, where
plenty of user’s data are spread around in a variety of online
services of any kind, social networks, etc.; but for the same
very reason, they also benefit from the protection of a large
legal corpus of bills, laws and directives in any most
advanced countries (see for instance [19, 20] for the United
States, and [21] in the European Union), although with
important differences in the degree of protection offered in
the various situations.

Our manifesto, given its focus on the safeguarding of the
user experience, has little to share with this approach in
general: the major contact point is our Rule #10 about the
software downgrading licensing issue, that actually
considers a legal aspect in that it impacts the safeguarding
of the accumulated user experience. As discussed in
Sections 3.8 and 2.4, this aspect is typically not recognized
as a user right from the legal viewpoint.

Table 4. Mohkov’s Ten Web App Guidelines (excerpt)

1. Have a Consistent and Standardized UI (It takes long enough to
establish familiarity with an interface – don’t make it even harder)

2. Guide the user (The worst thing is having to guess what to do next)

3. Make (Call-to-Action) Interactive Objects Obvious
4. Give Feedback – Both for User’s Interacting and Progressing (few
things [are] worse than not knowing (..) give visual feedback when a

user’s interacting (..) don’t leave them guessing (..))
5. Never Have Users Repeat Anything & Keep Signup Info to a

Minimum
6. Always Have Default Values in Fields and Forms

7. Explain How the Input Info Will Be Used

8. Don’t Have any Reset or Mass-Delete Buttons

9. Have Clear and Explanatory Error & Success Messages

10. Include a Clear Visual Hierarchy and Navigation (Breadcrumbs)

4.2. Comparison with other Guidelines

Mohkov’s guidelines [1] (summarized in Table 4) are
quite different from the above manifestoes, mainly in that
they deal with a kind of applications and problems that did
not exist a decade ago. Beside some technical directives
(Rules #3, #5, #6, #8), there is a clear emphasis on the care
of the interaction with the user, which is the key
requirement (and basic conceptual step) to value the user
experience, as we do in our Manifesto. In particular, the
focus on the need of a consistent GUI (though referred to a
single application, rather than to the many versions
developed along its lifecycle) and on driving the user can be
seen as a sort-of special instance of our Rule #9 (“The user
has the right not to guess the developer’s mind”), while the
focus on the need of providing adequate feedback recalls
our Rule #7 (“The user has the right to control and inspect

20 Valuing the User Experience in Human-Computer Interaction: the Respected User Manifesto

the inessential background services / processes..”), albeit in
a more specific and limited formulation. The attention to the
input control and handling also goes in the same direction
as our Manifesto, though with a more specific formulation.

Similar considerations hold for Porter’s guidelines [4]
(summarized in Table 5): though with a more technical
angle, they also highlight the need to maintain the user in
control (Rule #4) and to provide an explicit and natural
workflow (Rule #8) promoting a coherent behavior with the
user expectations (Rule #9) – what we would rephrase as
“not guessing the developer’s mind”. Such attention is
further strengthened by Porter’s rules #15 (help online) and
#17 (care the design).

Table 5. Porter’s Twenty UI Design Principles (excerpt)

1. Clarity is job #1

2. Interfaces exist to enable interaction

3. Conserve attention at all costs
4. Keep users in control Humans are most comfortable when they feel
in control (..) Keep users in control by describing causation (if you do
this that will happen) and by giving insight into what to expect at every

turn.
5. Direct manipulation is best

6. One primary action per screen

7. Keep secondary actions secondary
8. Provide a natural next step (..) Anticipate what the next interaction

should be (..) Give them a natural next step that helps them further
achieve their goals.

9. Appearance follows behavior People are most comfortable with
things that behave the way they expect

10. Consistency matters

11. Strong visual hierarchies work best
12. Smart organization reduces cognitive load (..) Don't force the user to

figure things out…show them
13. Highlight, don't determine, with color

14. Progressive disclosure
15. Help people inline In ideal interfaces, help is not necessary (..) The
step below is where help is inline and contextual, available only when

and where it is needed
16. A crucial moment: the zero state

17. Great design is invisible

18. Build on other design disciplines

19. Interfaces exist to be used
20. Existing problems are most valuable (a.k.a Resist creating

interfaces for hypothetical problems) [rule added in
http://htmlcss.in/developer-tips/principles-user-interfaceui-design/]

Weevers’ Seven Guidelines [5] (see Table 6) are
somehow different, being thought for a mobile app scenario
with a strong emphasis on performance (Rules #4 through
#7), on technical aspects in general and on the branding
issues in particular (Rules #1 and #2). The aspect of the user
experience in our meaning (i.e., safeguarding the user past
experience) is not their main focus, as it can be expected in
an application segment which is experiencing a dramatic
development, has a relatively small installed base with a

little history behind it (which also means less value of the
user experience in itself, and less inertia), and is generally
more prone to change than the traditional software products’
sector. Nevertheless, the idea of the user as a “holder of
value” is clearly perceivable, though the main focus is on
his/her desires and willingness to experiment (Rule #3),
rather than his/her past.

Table 6. Weevers’ Seven Guidelines

1.Define UI brand signatures

2.Focus the portfolio of products

3.Identify the core user stories

4.Optimize UI flows and elements

5.Define UI scaling rules

6.Use a performance dashboard

7.Champion dedicated UI engineering skills

5. Conclusions
In this paper we analyzed in depth several situations and

frequent use-case scenarios in the context of
human-computer interaction, GUI design, and related
aspects to highlight the intrinsic value of the user experience
in terms of accumulated expertise, skills, and habits, and
discussed why and how such a value should deserve to be
safeguarded, summarizing the result in the ten rules of the
Respected User Manifesto.

The central idea of this paper is that the user experience
need to be considered not only with respect to a single
software product or application, as it is often the case in UI
design guidelines, but with respect to the many versions that
a widespread software product is likely to offer over the time,
possibly taking into account other vendors’ products in
selected, mainstream application areas.

We investigated some concrete situations where users are
often not respected under that viewpoint, provided specific
examples, discussed the possible consequent counter-
measures and synthesized a set of corresponding desirable
user rights. We then compared our synthesis with related
literature, manifestoes and guidelines.

The rules stated in the resulting Manifesto are both general
and specific, yet mostly unconsidered in today’s software.
Technically, most of them could be applied tomorrow: the
main obstacles are conceptual, and to some extent,
expectedly commercial. In fact, their application calls for an
enhanced awareness of the user centrality among developers
and vendors – a centrality which goes beyond the single
specific product, in favor of a wider view that spreads both
across versions and time, and across products of different
vendors, to recognize the conceptual and monetary value of
the user experience and expertise as something worth
preserving in itself. For these reasons, in the short term the
pathway to accepting even some of the less impacting rules
cannot be expected to be smooth. In the mid-term and

 World Journal of Computer Application and Technology 2(1): 10-21, 2014 21

long-term, however, developers and vendors could benefit
from a software design style that focuses on the respected
user, because respected users are likely to be much happier
and loyal users, well willing to become the first (and free)
witnesses of the product they use.

REFERENCES
[1] O. Mokhov, 10 Essential Web Application Usability

Guidelines. SpeckyBoy Design Magazine, March 31, 2011.
Online available from http://speckyboy.com/2011/03/31/10-
essential-web-application-usability-guidelines/.

[2] The User Data Manifesto. Online available from
http://userdatamanifesto.org/.

[3] C. M. Karat. The Computer User’s Bill of Rights. In S.H.
Wildstrom, A Computer User's Manifesto, BusinessWeek,
Sept. 1998. Online available from http://www.business-week
.com/1998/39/b3597037.htm (also available from
http://theomandel.com/resources/users-bill-of-rights/)

[4] J. Porter. Principles of User Interface Design. Online
available from
http://bokardo.com/principles-of-user¬interface-design/

[5] I. Weevers. Seven Guidelines For Designing
High-Performance Mobile User Experiences. Smashing
Magazine, July 18, 2011. Online available from
http://uxdesign.smashingmagazine.com/2011/07/18/seven-g
uidelines-for-designing-high-performance-mobile-user-exper
iences/

[6] T. Mandel. The Elements of User Interface Design, Chapter 5.
John Wiley & Sons, 1997. Online available from
http://theomandel.com/wp-content/uploads/2012/07/Mandel-
GoldenRules.pdf

[7] V. L. Edrigton. User Interface Design and Usability Testing:
an Application. Master’s Paper, University of North Carolina,
April 1999. Online available from https://cdr.lib.unc.edu/
indexablecontent?id=uuid:5581f676-fd7b-4803-98b4-45195
6079e82&ds=DATA_FILE

[8] HCI Bibliography. Online available from
http://hcibib.org/hci-sites/history/

[9] HCI Lab – University of Udine. Online available from
http://hcilab.uniud.it/

[10] HCI Institute – Carnegie Mellon University. Online available
from http://www.hcii.cmu.edu/research

[11] Stanford HCI Group. Online available from http://
hci.stanford.edu/research

[12] Human-Computer Interaction, Taylor & Francis. ISSN
0737-0024 (Print), 1532-7051 (Online) . Available from
http://www.tandfonline.com/action/journalInformation?journ
alCode=hhci20#.UkKhy4byYZk

[13] R. Rubinstein, H.M. Hersh. The Human Factor: designing
computer systems for people. Digital Press, 1984. ISBN-10:
0134450248. ISBN-13: 978-0134450247

[14] B. Shackel. Usability – context, framework, definition, design
and evaluation. In B. Shackel, S. Richardson (eds), Human
factor for informatics usability, 21-37, Cambridge University
Press, New York, USA, 1991

[15] J. D. Gould, S. J. Boies, C. Lewis. Making usable, useful,
productivity-enhancing computer applications.
Communications of the ACM, Vol. 34, No. 1, 74-95, 1991.

[16] S. Benford, C. Greenhalgh, G. Giannachi, B. Walker, J.
Marshall, T. Rodden. Uncomfortable User Experience.
Communications of the ACM, Vol. 56, No. 9, 66-73, 2013.

[17] Apache Openoffice Forum. Online available athttps://issues.
apache.org/ooo/show_bug.cgi?id=10931

[18] Openoffice.org Forum. Online available athttp://www.ooofo
rum.org/forum/viewtopic.phtml?t=108821

[19] US privacy laws. Online available at http://www.information
shield.com/usprivacylaws.html

[20] Data protection law - US. Online available at
http://www.hg.org/data-protection.html

[21] Protection of personal data in the EU. Online available at
http://ec.europa.eu/justice/data-protection/

	1. Introduction
	2. Selected Related Literature
	3. Case Analysis
	4. The Respected User Manifesto
	5. Conclusions
	REFERENCES

