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Abstract. The OpenPGP protocol provides a long time adopted and
widespread tool for secure and authenticated asynchronous communi-
cations, as well as supplies data integrity and authenticity validation
for software distribution. In this work, we analyze the Web-of-Trust on
which the OpenPGP public key authentication mechanism is based, and
evaluate a threat model where its functionality can be jeopardized. Since
the threat model is based on the viability of compromising an OpenPGP
keypair, we performed an analysis of the state of health of the global
OpenPGP key repository. Despite the detected amount of weak key-
pairs is rather low, our results show how, under reasonable assumptions,
approximately 70 % of the Web-of-Trust strong set is potentially affected
by the described threat. Finally, we propose viable mitigation strategies
to cope with the highlighted threat.
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1 Introduction

The continuous increase in the size of computing systems, and the amount of
data processed and exchanged by them calls for a widespread and trustwor-
thy infrastructure for secure communications, encompassing both synchronous
data transport and asynchronous messaging. Secure and endpoint-authenticated
transport is nowadays provided by the Transport Layer Security (TLS) proto-
col [6], which is regarded as the most widespread solution when it comes to
interactive communications between a server and a client. By contrast, the main
workhorse in providing both confidentiality of the contents and sender authen-
ticity, when it comes to secure e-mails, is the Open Pretty Good Privacy
(OpenPGP) protocol [3]. The use of OpenPGP has been recently encouraged
as a practical countermeasure to dragnet surveillance actions involving e-mail
inspection. In particular the Free Software Foundation has promoted a cam-
paign [29] to foster its use even among non technically-savvy users. Finally, the
OpenPGP protocol is widely used to ensure data authentication and integrity of
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binary packages of both all the Debian and RedHat derived GNU /Linux distri-
butions, and a significant number of other popular ones such as Arch, Slackware
and Gentoo. Therefore, the authenticity of the software binaries installed on
the overwhelming majority of GNU/Linux systems is provided by OpenPGP
signatures.

Since 2010, the official implementation of the OpenPGP protocol is available
as a commercial technology by Symantec Corp., even if its source code is publicly
available for peer review [28]. In addition to its employment as a solution to pro-
vide confidentiality and sender-authentication for e-mails, Symantec’s products
also employ the same protocol for securing files and documents. The OpenPGP
protocol, first defined in the RFC2440 [4] and then amended and extended in the
RFC4880 [3] by the Internet Engineering Task Force (IETF), has its best known
implementations both in proprietary solutions (e.g., the Google Chrome browser
extension called end-to-end [26], which has also been forked and adopted by
Yahoo! Mail [32]) and in the free alternative GNU Privacy Guard (GPG) soft-
ware suite [13].

The security services offered by OpenPGP all hinge on the requirement to
perform sound public key authentication. The adopted approach relies on a
distributed, asynchronous trust model as an alternative to both the hierarchi-
cal Public Key Infrastructure (PKI) [5,7], and the distributed and synchronous
approach of Perspectives [31]. The mainstay of the OpenPGP protocol is its Web-
of-Trust (WoT), which provides a way to establish the binding of a public key
to an identity through having a number of peers a specific user trusts acting as
certification authorities for it. This is realized through having all the OpenPGP
users sign the public key-identity pairs belonging to anyone they could directly
verify the identity of (e.g., via meeting in person). This practice, under the
“small world assumption”, grows a tightly knit network of trust-relationships,
which allows anyone to authenticate public key-identity pairs.

Contribution. In this work we provide a survey of the state of health of the key
material employed by OpenPGP, and globally distributed via a public network
of keyservers. Subsequently, we describe a practical threat model, aiming at
invalidating the public key authentication mechanism provided by OpenPGP,
on the basis of a broken keypair either directly or indirectly authenticated by a
trustworthy user. We evaluate the effective applicability of the proposed threat
model, as a result of the weak keypairs we detected, reporting the portion of
the most trusted subset of the OpenPGP WoT for which the authentication
mechanism can be fooled. Finally, we suggest viable countermeasures to mitigate
the effect of the described threat, and evaluate their actuation cost.

Organization of the paper. Section2 provides a detailed overview of the
inner workings of the OpenPGP protocol, and a survey of the current state of
the WoT, Sect. 3 proposes our threat scenario, Sect. 4 reports the state of health
of the global key storage, and Sect. 5 evaluates the applicability of the described
threat, and proposes mitigation measures.
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2  OpenPGP Infrastructure

A user in OpenPGP is associated with one or more user-IDs, each of which is
composed by a text string usually including his real name and e-mail address.
Each user generates a bundle of public key/private key pairs. Among the public
key/private key pairs, one is denoted as a primary key pair, while each one of
the others is denoted as a subkey pair. Conventionally, the primary key pair is
employed only for signing purposes, while subkey pairs are employed to either
encrypt or sign messages. The message encryption function employs a hybrid
scheme using a combination of symmetric key cryptography for speed, and pub-
lic key cryptography for ease of secure symmetric-key exchange between the
sender and the receiver of the data transfer. In particular, OpenPGP employs
a symmetric key cipher, with a randomly generated ephemeral key, to encrypt
the message to be transferred. The ephemeral key is sent encrypted with the
recipient’s public key along with the encrypted message.

Users issue certificates to each other to authenticate the binding between
user-IDs and public keys (primary or subkey). This is obtained signing with
their primary private keys a subset of certificate data including the user-ID and
one public key. A certificate contains one primary public key, and at least a self-
signature binding it to the user-ID. In addition, it may contain several signatures
verifiable via public keys of other users. The global distribution of OpenPGP cer-
tificates is realized via a network of public key directories, known as keyservers,
which provide a synchronized billboard accessible via either a dedicated inter-
face over HTTP, known as the HKP protocol [25]. We note that the available
implementations of the OpenPGP keyserver do not support TLS, although it is
possible to add it employing a reverse proxy. The synchronization across key-
servers is maintained with a set-reconciliation algorithm [17], which guarantees
that the uploading of a certificate on one of the servers will be mirrored by all the
others. The servers are not required to perform any integrity or sanity checks.

2.1 Key Management

Each user keeps his own local key storage, known as keyring, containing a number
of certificates, plus his own private keys (which are never disclosed). The keyring
is complemented with two local maps, stored in the so-called trust-db. The first
map associates each public key in the keyring to its trust level, i.e., the amount
of trust the owner of the trust-db has in the actions of the public key owner.
The second one binds each public key in the keyring to its validity level, i.e., the
extent to which the keyring owner deems the key authentic.

Trust level assignment. The admissible trust values, according to the default
trust model of GPG are: (i) ultimate, which is reserved for the keyring owner’s
public keys; (i) full, (7ii) marginal, (iv) untrusted, (v) undefined, and (vi)
unknown. Trust levels from (i) to (iv) can only be explicitly assigned by the user
through a direct interaction with the OpenPGP client. This is typically done
after the user has ascertained the identity and trustworthiness of the public key
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owner either meeting her in person, or by any other means he sees fit. The
unknown trust level is automatically assigned by the OpenPGP client to a new
public key whenever it is imported into the keyring. Whenever a public key
contained in the keyring is employed to verify a signature on a different public
key, the client checks whether its trust level is set to unknown, and, if possible,
asks the user to provide one. In case it is not possible to obtain an explicit trust
level from the user, the client sets the trust level to undefined.

Validity level computation. The admissible validity values for a public key
are: (1) full, (ii) marginal, (iii) untrusted, and (iv) unknown. The validity level
of a public key is computed by the OpenPGP client employing the certificates
contained in the keyring, and both the trust and validity values in the trust-db.
The public key is deemed authentic if its validity level is full. Whenever a new
public key is imported into the user keyring, its validity is automatically set to
the unknown level. The computation of the validity level of a public key takes
place every time it needs to be employed, and its validity level in the trust-db is
unknown. All public keys having an ultimate trust level have their validity level
set to full. Public keys carrying a signature verified with a public key having an
ultimate trust level are considered to have full validity. Thus any piece of key
material carrying a signature verifiable by the public key of the keyring owner
is considered fully valid. Subsequently, all the public keys carrying a signature
verified by a fully valid, fully trusted public key are assigned a full validity
level. If the signature on a public key is verified by a fully valid, but marginally
trusted public key its validity level is set to marginal. Whenever three such
signatures are verified on the same public key, its validity level is promoted to
full. Signatures which can be verified by public keys with an untrusted trust
level are not taken into account in the computation. If a signature on a public
key is verified by a public key having an undefined trust level, the signed public
key validity is set to undefined. The aforementioned validity level computation
rules allow the client to assign a value to the validity of a signed public key
taking into account the one which verifies the signature. This process effectively
creates chains of validity dependence among public keys, where each signed one
depends on the one verifying the signature to be validated.

Revocations management. The revocation of both public keys and signatures
made to certify the binding between an identity and a public key are performed
creating a revocation signature. Three types of revocation signatures are possi-
ble: (i) a primary key revocation, (ii) a subkey revocation, and (iii) a signature
revocation, which voids the authenticity of a signature, regardless of whether
it is correctly verified by the corresponding public key or not. The OpenPGP
revocation management allows to mark a signature as non revocable: in this case,
all the revocation signatures on it are ignored. Finally, it is possible to indicate
an expiration date for both public keys and signatures.
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2.2 The OpenPGP Web-of-Trust

Each OpenPGP user is endowed with a keyring and a trust-db, which represent
the means by which he will authenticate the public keys contained in the former.
The most common way to analyze the effectiveness of the authentication mecha-
nism is to examine the certifier-certified relation among the different public keys
of the keyring. This certifier-certified relation is commonly represented in terms
of a directed graph [30] with public keys as nodes and signatures as directed
edges exiting from the certifying node and entering into the certified one. Such
a representation implies that the public key contained in the source node can
be used to verify a signature on the destination node. The direction of the arcs
is a convention chosen for the sake of clarity: we note that the authors of [30]
employ arcs in the opposite direction. This graph is known as the Web-of-Trust
(WoT) of a keyring, although it is indeed the certifier-certified relationship being
represented, instead of the user specified trust.

Table 1. Contents of the OpenPGP keyservers as of March 2015, reporting a ~41 %
increase of the number of certificates w.r.t. the figures reported in 2011 by [30]

Total Revoked | Expired
Primary public keys (certificates) | 3,867,397 | 181,833 | 13,754
Public subkeys 3,597,910 |27,670 |2
Signatures 13,866,817 | 78,976 | 1,828,630

Willing to obtain information on the state of all the publicly available cer-
tificates, we analyzed the contents of the distributed keyserver network as if it
were a single large keyring, and its corresponding WoT. We obtained a snapshot
of the whole keyserver contents as of March 2015, of which we report a synoptic
overview in Table 1. Note that it is possible for an OpenPGP user to generate
a keypair and never upload the corresponding certificate on the keyservers. The
number of subkeys is smaller than the number of primary keys: this is caused
by the old certificate formats of OpenPGP (Ver. 3 and earlier) not mandating
the generation of separate subkeys to relieve the primary keypair from encryp-
tion uses. We also note that the amount of revoked keys is comparatively small
(~4.7%), and the number of expired ones is almost negligible (0.35%). In par-
ticular, we ascertained that 99.6 % of the primary public keys do not have an
expiration date set, which may be ascribed to the optional nature of the expi-
ration date field [3]. We report the presence of 3,828,825 unique user-IDs, thus
pointing strongly at a one-to-one correspondence between user-IDs and primary
public keys for most of the OpenPGP users, although the standard [3] allows for
multiple user-IDs. The mean number of identity-public key binding signatures
per certificate, including the mandatory self-signature, is 2.08, pointing to the
whole WoT as a rather sparse graph. The current global keyring contains 33, 136
non revocable signatures.
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Fig. 1. Structural features of the WoT and the strong set as of March 2015. (a) reports
the number of distinct SCCs of the WoT and their size. (b) depicts the distribution of
the r-certified sets sizes over the strong set (GPG default: » = 5, in blue) (Color figure
online)

The concept of Strongly Connected Components (SCCs) of a directed graph
is a key tool to analyze the usefulness of the WoT [30]. A SCC is a maxi-
mally connected subgraph where there is at least one path between every node
pair. Computing the number of SCCs and their size yields the data reported
in Fig. 1(a), taking into account only non-revoked and non-expired public keys
and signatures. Examining the sizes of the SCCs, it can be noticed that around
300k nodes are indeed isolated (top left point in figure), and all but one SCCs
have a size smaller than or equal to 117. The largest SCC of the WoT (bottom
right point in figure), is composed by 59,466 primary public keys, and is com-
monly known as the strong set. The strong set is significantly less sparse than
the rest of the WoT: its nodes have an average of 27.39 signatures on them.
However, we note that the distribution of signatures on each certificate of the
strong set (incoming arcs in nodes) is rather skewed: in particular, only ~18 %
of the strong set users have more than 27 signatures. The nodes in the strong set
are the ones able to better exploit the structure of the WoT to perform public
key authentication since, in principle, there is a path between any two of them.
However, a bound on the allowed certifier-certified chains length exists, limiting
their length to 5 in both in the original PGP and in the GPG trust model; thus,
not all the strong set paths are useful. In fact, the maximum length among all
such paths, known as the graph diameter, is 27, and only 38.7 % of the distances
between pairs of strong set nodes are smaller or equal to 5. To the end of ana-
lyzing the effectiveness of the OpenPGP WoT as a public key certifier, we define
the concept of r-certified set as follows.
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Definition 1 (r-certified set). Let n be a node of the WoT, and r be an integer
r > 1. The set of nodes reachable from n via a valid certifier-certified chain of
length shorter or equal to r is defined as the r-certified set of n.

Since each OpenPGP user acts as both user and certification authority, the size
of the r-certified set of a given node n is a measure of: (i) the extent of the
strong set which is actually useful for n to perform public key authentication
when acting as a user, and (ii) the usefulness of n as a certification authority.

Figure 1(b) reports the evaluation of the count of r-certified sets for the nodes
in the strong set, and r € {2,3,4,5,6,10}. Considering the case of the PGP and
GPG default value r = 5, highlighted in blue, it can be seen how only a little more
than 10k nodes have a r-certified set exceeding 40k in size (represented by the
values on the bottom right corner), out of ~60k, while around 15 k nodes have an
r-certified set not exceeding 10k in size (values on the top left corner). Lowering
the maximum certifier-certified chain length r yields an effective decrease of
the usefulness of the strong set, up to the point where, with » = 2, no nodes
have a r-certified set larger than 10k elements. By contrast, increasing the chain
length boosts the certifying capability of the nodes, at the expense of the need
for a longer trust chain to be effectively exploited. For instance, for r = 10
the overwhelming majority of the nodes have an r-certified set exceeding 50k
elements out of =60k, at the expense of the requirement to trust a rather long
certifier-certified chain.

3 Threats to the WoT Authentication Capabilities

In this section we provide a description of the scenario and the threat model to
OpenPGP public key authentication capabilities.
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Fig. 2. Compromising a fully trusted key scenario. A queries the keyserver network
for B’s certificate, receiving instead one forged by £. Blue portions of the picture are
forged by the adversary &, red portions are compromised by £, black portions are
genuine (Color figure online)

Assume a user, A, wants to retrieve an OpenPGP certificate containing the
public key of whom she wants to communicate with, B. A will query a keyserver
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to retrieve B’s certificate. A malicious keyserver, or an adversary able to act
as an active man-in-the-middle, say &£, is willing to supply a forged OpenPGP
certificate to A, as depicted in Fig. 2. If B’s certificate is considered authentic
by A after running the signature validation procedure, both the confidentiality,
and the authenticity of the messages between A and B are compromised.

Compromising a fully trusted key. Assume A is trusting a public key Ppub,
with full trust level. If the adversary £ is able to compromise 7’s keypair,
i.e., she is able to obtain 7’s private key, she will be able to forge a certificate
containing an arbitrary public key Pgub, generated by herself. She Will use this
to forge a certificate binding B’s identity ID—B to her public key P¢ ,, and
perform a self signature on (Ppub, ID—B) with Ppr i Subsequently, & will compute
a signature on (Ppub7 ID—B) with 7’s private key P
forged certificate Certp (depicted in blue in Fig. 2).

Upon receiving the forged certificate, A will Verify both signatures and, trust-
ing the actions of 7 fully, she will consider Ppub fully valid, according to the
key authentication mechanism described in Sect. 2.

A noteworthy point is the fact that £ generates the forged certificate for 15
from scratch. In case a certificate for B is already present on the keyservers, £
simply refrains from synchronizing the forged one, effectively presenting to A
a different view on the state of the distributed key storage with respect to the
other keyservers. This strategy is viable as the SKS synchronization protocol
between keyservers allows each member to choose which certificates should be
included in the synchronization, without any enforcement on the inclusion of all
of them. In case a certificate for B is not present, £ can refrain from performing
an active man-in-the-middle attack, and simply upload the forged certificate on
the global directory, leaving the delivery to A up to the keyserver network.

and append it to the

prz?

Compromising a key verified by a fully trusted one. Consider the alter-
nate scenario where A is trusting Z fully, and has Z’s certificate in her own
keyring, as depicted in Fig 3(a). £ has compromised 7’s keypair and has gen-
erated a keypair Ppm, pe b, Which she desires to substitute to the legitimate one
for B. A gets to know that T is on a certifier-certified chain leading to B (for
instance using an online tool [23]), and fetches Certs from the keyserver with the
intent of verifying the signature made with Pg” present in Certp. The resulting
state of A’s keyring is depicted in Fig. 3(a), and the trust level of P ub 18 set to
unknown. Subsequently, 4 attempts to compute the validity of Ppub contalned in
Certg. To this end A requires a definite validity level for Ppub7 which is computed
to be full, through verifying both Z’s and 7’s signatures on Certs and knowing
that P b is fully trusted. A’s client will ask A to set a trust value for PZ
in order to proceed with the validation of Ppub Assume A sets the trust level
of Ppub, to full on the basis that Z and 7 cross-signed their certificates, thus
providing reasonable evidence for the presence of a mutual trust relationship
among them. This assumption is reasonable especially whenever both 7 and 7
are members of the strong set, and thus highly regarded in terms of reliability in
the use of OpenPGP. We note that, in case A decides against setting the trust

pub
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level to full, she will be forfeiting the usefulness of this WoT path as a mean
for authenticating B’s public key, effectively decreasing the WoT usefulness as a
public key authenticator from A’s point of view. Once the trust level for Pgub is
set to full, A will set the validity level of Pgub to full as it is correctly signed

by Pgub, thus effectively believing &’s forgery.

By induction on the length of the certifier-certified chains of the aforemen-
tioned scenario, £ will be able to forge an arbitrary certificate whenever A fully
trusts a key containing in its (r — 1)-certified set the compromised key 7 (recall
that » > 1). Figure 3(b) reports an example of WoT, including the forged Pgub,
and the compromised Pgub7 drawn, together with their signatures, in blue and
red respectively. The portion of the graph (both keys and signatures) drawn in
black is genuine and non compromised. The red-filled nodes are the ones having
in the (r—1)-certified set the compromised public key Pgub considering the GPG
default value r = 5. If A trusts any one of the red-filled nodes, and extends the
trust to the ones which have mutual signatures with respect to it, £ will be able
to forge a certificate for an arbitrary identity and get it validated by A. In this
respect, we note that, if A requires mutual signatures between a trusted node
and one with an unknown trust level to extend her trust, it is possible for £ to
forge 7T’s signature on Pgub (the red arc from Pgub to Pgub in Fig. 3(b), should
it be missing. We can thus state our attacker model as follows.

Definition 2 (Threat model). Consider the OpenPGP public key authentica-
tion scheme based on the PGP/GPG trust model with a certifier-certified chain
boundr =5 and the WoT signature verification infrastructure. Assume an adver-

Cert; Certy
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Fig. 3. Compromising a key verified by a fully trusted one scenario. Subfigure (a)
represents the state of A’s keyring and trust-db after fetching the certificate for the
compromised key Certr. Subfigure (b) depicts a sample WoT, highlighting the extent
to which the attack is successful (red filled nodes), and the immune portion (green
filled ones). Items drawn in blue are forged by &, the ones in red are compromised by
&, the black ones are genuine (Color figure online)
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sary € able to compromise the keypair of a user T, (PZ)—” , Pgub

). € is also able to
either act as a keyserver or perform active man-in-the-middle between a targeted
user A and A’s keyserver of choice. Whenever A tries to fetch the certificate of
another user B, the adversary € is able to forge a valid Certp, provided: (i) the
public key of the compromised keypair, Pgub, is within r — 1 certifier-certified
steps from a public key deemed fully trusted and fully valid by A and (i) A

extends her trust to the intermediate certifier public keys.

Consequentially, compromising a well connected public key in the WoT will
yield a potentially larger attack surface against the target user A. In particular,
compromising nodes in the strong set has the maximum potential for certificate
forgery, both due to the strongly connected nature of the strong set (each of
its nodes has an average of 27.39 signatures in contrast with the 2.08 average
of the global WoT as mentioned in Sect.2.2), and to the potential willingness
of A to trust them as certifiers. Note that the capability of £ of performing
signatures on behalf of 7 allows her to connect Pgub to the strong set as long as
T’s certificate contains a signature from a strong set member. This observation
allows to extend the effectiveness of the described threat model to keys which
are not members of the strong set, as we will highlight in Sect. 5.

The practical impact of the described attacker model is thus dependent on
the robustness of the generated keypairs, and the location of their public keys
within the OpenPGP WoT. In the following we will examine the factors allowing
& to compromise a keypair present in the current OpenPGP global keyring, thus
meeting the former requirement.

4 State of Health of the OpenPGP Global Keyring

In the following, we report, for each one of the asymmetric key cryptosystems
employed to perform signatures in OpenPGP, the possible issues on the key
material which may lead to compromise a keypair. A similar analysis, tackling
keypairs employed in the SSL/TLS and SSH protocols was performed in [11].
The asymmetric key ciphers available for signature purposes in OpenPGP are
RSA [24], DSA [19], ElGamal [8] and ECDSA [9]. ECDSA signatures have been
recently introduced in OpenPGP and currently account for a negligible portion
(<0.01%) of the total keypairs, and were thus ignored in our analysis. Table 2
reports, for each examined issue, the number of affected keypairs, and the number
of signatures performed by strong set members on their certificate.

Note that the expiration of a compromised key does not prevent an adversary
from performing the certificate forgery. In fact the expiration date of a key
can be updated by performing a new self-signature which is feasible by the
adversary, as he owns the corresponding private key. Moreover, in the man-in-
the-middle scenario, we note that the adversary is also able to drop revocation
signatures, thus practically voiding their effect. However, willing to take into
account the scenario where the adversary uploads a forged certificate for a non-
existent recipient, and does not need to perform an active man-in-the-middle
attack, we will assume that revoked keys are unusable.
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Table 2. Report on the state of health of the global OpenPGP keyring, highlighting
which issues are present, how many keypairs are affected, and how many of them were
signed by strong set members

Cryptosystem | Keypair issue Public keys
Affected | Not revoked | Signed by strong set

RSA Mog, N1 < 600 8,260 | 89.48% 1.79%

600 < [log, N <800|11,205 |91.79% 2.03%

Prime modulus 1 100.00 % 100.00 %

Common primes 4 100.00 % 0.00%
DSA None - - -
ElGamal Use as a signing key | 1,383 89.73 % 2.60 %
Any MD5 Hash function | 155,760 | 89.79 % 3.78%

4.1 RSA Cryptosystem

The RSA algorithm is a very popular choice in the OpenPGP ecosystem both
for signing and encryption purposes. In particular, it gained popularity in 2009,
when the first version of GnuPG using it as default algorithm for the key gener-
ation process was released (i.e., Ver. 1.4.10). An RSA public key is constituted
of a pair of integers (e, N) where N is obtained as the product of two large, ran-
domly chosen primes p and ¢, having substantially the same bit-size. The RSA
private key d is computed as d = e~! mod ¢(INV), where Euler’s Totient function
©(-) can be evaluated only by the keypair owner who knows the factorization of
the modulus N, since ¢(N) = (p—1)(¢—1). The values of p, ¢ and ¢(N) should
be kept as secret as the value d. The security margin of the RSA cryptosystem
hinges on the difficulty of factoring N, provided nothing else is known on the
form of the two factors: p and ¢ [14]. In the following, we present the aspect
on which we focused our attention during the analysis of the RSA public keys
contained in the WoT.

Outdated key sizes. The OpenPGP system has a long history, which means
that a good share of the key-pairs were generated in an era when security margins
were significantly lower, and were never revoked. Nowadays RSA keys using
a modulo N smaller than 768 bits are considered weak, as it was proven the
practical feasibility of factoring one in [12], while factoring 512-bit RSA moduli
was proven to be feasible in about 10h of computation time on Amazon EC2
for a cost around 100 USD [10]. Moreover, as shown in [2], the cost of factoring
multiple RSA moduli with the same size increases less than linearly with their
number. As a consequence, we consider all the 8,260 RSA moduli smaller than
600 bits to be compromised, and the 11,205 ones using a modulus between 600
and 800 bits-long as nearly compromised. As reported in Table 2 only ~10 % of
the keys were revoked, and none of them are part of the strong set. However,
there are more than 1,000 signatures from the strong set vouching for their
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authenticity, thus meeting the requirement of Sect.3 for 1.79% keys smaller
than 600 bits, and 2.03 % of the ones between 600 and 800 bits.

Prime modulus. If the modulus N is prime, ¢ (N) can be trivially computed
as ¢ (N) = N — 1, thus allowing an adversary to compute the private exponent
d. We found a single instance of this issue, running a primality test on all the
moduli of the RSA public keys available. This compromised key does not belong
to the strong set, but was signed by one of its members.

Common primes. Given two moduli n = p-q and n' = p’ - ¢/, if they share
a factor (e.g., p = p’), then it is possible to efficiently factor both. In fact,
computing the greatest common divisor (using Euclid’s algorithm), it is possible
to obtain the common factor p = p’, and, via trivial division operations, the ¢
and ¢’ too. Looking for common primes is a technique which has been proven
successful in discovering flaws in the TLS certificate pool [11]. The causes for
the repeated use of the same primes were either a low entropy availability on
the generating system, in particular on embedded devices or during the boot
process, or simply faulty PRNG implementations. The results of our survey
point to substantially different results: only two pairs of public key shared a
common prime, thus providing good evidence of the soundness of the prime
generators employed in OpenPGP implementations. We note that none of the
public keys sharing primes were in the strong set, nor they were signed by one of
its members, and thus are not exploitable in the described threat model. We also
report the presence of 253 RSA moduli which are not the product of two large
primes. They share a large amount of small factors and the self signatures on
the corresponding public keys are not valid, nor there are other valid signatures
on them.

4.2 Digital Signature Algorithm

The examination of keypairs generated to perform signatures with the DSA
algorithm were found to be sound, and passed all the tests mandated by the [19]
standard (prime generation methodology, check on the order of the generator).
The only keys found not to be passing the tests were belonging to corrupted
certificates where neither the public key was respecting the constraints of [19],
nor the signatures made by others on it were verified correctly.

4.3 ElGamal Cryptosystem

The ElGamal cryptosystem is formed by two primitives, signature and encryp-
tion, based on the Discrete Logarithm Problem [1,8] over a multiplicative cyclic
subgroup of order ¢ of Z;, the set of equivalence classes of signed integers mod-
ulo p, with both p,q primes and p > 21924 ¢ > 2160, The ElGamal signature
algorithm produces an output longer than DSA, and, for this reason, it has
been historically discouraged. Thus, ElGamal keys are assigned two separate
algorithm identifiers depending on whether they are only employed to perform
encryptions, or if they are also used for signatures. In 2004, Nguyen et al. [20]
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discovered a significant flaw in how ElGamal signatures were implemented in
GPG. The ElGamal signature requires the generation of an unpredictable ran-
dom integer [ of the same bit-size of p. The issue with the GPG implementation
of the ElGamal signature is that [ is generated as an unpredictable random inte-
ger g bits long, with ¢ < p, for efficiency reasons. This allows to recover the
ElGamal private key exploiting the material of a single signature. Since all the
ElGamal primary keys must have signed their own certificate, we consider them
to be all compromised. It is interesting to note how the WoT still contains 1,241
unrevoked keys ElGamal public keys allowed to perform signatures, and bearing
signatures from members of the strong set.

4.4 MDS5 Based Signatures

In digital signatures, the choice of the cryptographic hash to be employed to
reduce the signed content size to a fixed length is crucial. The MD5 hash algo-
rithm has been proven vulnerable to a specific collision attack, where it is possi-
ble for an attacker to choose the prefix of the colliding messages. In particular,
Stevens et al. [27] exploited the aforementioned issue to construct a rogue X.509
certificate, splicing out a valid signature, and forging a set of certificate contents
colliding with the signed hash. This was possible especially as the X.509 standard
allows an arbitrary comment field to be placed as the suffix of the material to
be hashed [5]. The same attack can be performed also on a OpenPGP certificate
signature, since the RFC4880 [3] allows to add arbitrary subpackets at the end of
the data to be signed. Despite, RFC4880 explicitly discourages the use of MD5,
signatures made with it are still quite widespread. In fact, our analysis shows
that ~115k unrevoked keys performed at least a MD5 signature, and 3.78 % of
them were signed by a strong set member as reported in Table 2.

5 Vulnerability Evaluation

In this section we provide concrete evidence of the extent of applicability of the
attack scenario described in Sect.3 against the public OpenPGP keyring. To
this end, all the certificates in the public keyring were parsed and stored in a
database, from which the relevant data was extracted and further processed.

In order to avoid GPG-specific parsing behaviors, we adopted a parsing
library [15] independently built on RFC4880 OpenPGP format specifications.
The library was modified to extract the RSA and DSA /ElGamal signature mate-
rial for subsequent analysis steps and to make the parsing process more robust
towards recoverable errors caused by corrupted entries in packets.

We point out that parsing the dumps available for keyserver bootstrapping,
split in chunks of 10k-50k certificates, results in a few non recoverable errors,
due to corrupted packet metadata, which in turn cause the parser to go out-
of-sync with the underlying format. The issue was made worse by the lack of
synchronization points, as an OpenPGP certificate bundle has no recognizable
trailer to skip to. In fact, when such an error is encountered, the parsing process
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cannot proceed further and the rest of the chunk is discarded. Such an issue was
encountered in [30], and prevented the parsing of around 50k certificates. How-
ever, we observed that the main implementation of the SKS server [16] reported
no errors in importing the certificate dumps, while the GnuPG client fails in
parsing them in the same way our parser does. Combining the observations
above, we decided to bootstrap our own instance of the SKS keyserver with the
provided dump and re-export the dataset as a separate file for each certificate
bundle. By doing so, we were able to limit the impact of unrecoverable parsing
errors to the single certificate in which they were located. All the certificates in
the public keyring dump were correctly parsed.

We imported the information contained in the global keyring into a MySQL
5.5.41 database with MyISAM backend. The parsing stage lasted approximately
3h and resulted in 10 GB of database files being stored on disk. The underlying
schema was modeled on the content of the OpenPGP packets composing a cer-
tificate bundle, with a table for each packet type. With said database in place,
the various datasets used for the analysis presented in this paper were gathered
as SQL queries and prepared for further processing steps. In particular, each
analysis step was coded as a Python script with specified dependencies onto the
results of previous steps. The whole set of analysis was then orchestrated by a
makefile, making the whole process fully automatic and therefore easily repro-
ducible. The WoT was exported as a graph, with arcs being trust signatures and
keys as nodes, and all connectivity and reach-ability measures and the related
graph processing were carried on using graph-tool [22], a comprehensive Python
toolkit for graph analysis. The fastged tool [11] was used to find common RSA
primes in an efficient way. With the aforementioned infrastructure in place, and
after performing the analyses which produced the results shown in Table 2 and
described in Sect. 4, we proceeded to compute the portion of the WoT affected
by the threat model described in Sect. 3.

Figure 4 reports the amount of public keys which allow an adversary to forge
an arbitrary certificate, should one of them be trusted by an end-user, and
should the end-user trust the certifier-certified chain up to the compromised
key. Full grey bars take into account only public keys belonging to the strong set,
while thatched bars represent keys not in the strong set. In particular, Fig. 4(a)
reports the amount of certifiers which pose a risk in being trusted, considering
as compromised all the short and mis-generated RSA, Elgamal keypairs: in both
cases compromising the keypair (i.e., computing the private key) is feasible with
limited resources, and further signatures made with the compromised keypairs
will be accepted by any client as valid. We note that such a key compromise
is performed fully offline, and thus is most likely not alerting the legitimate
keypair owner. Figure4(b) complements the previous information reporting the
extent of the risk whenever spliced MD5-based signatures can be reused, and
RSA keypairs with a modulus size between 600 and 800 bits are compromised.
These two cases will either require a significant amount of computational effort to
compromise the keypair, or yield signatures which may be discarded by modern
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Fig. 4. Number of public keys affected by the attack described in Sect. 3 as a function
of r. Subfigure (a) reports the amount of public keys which allow an adversary to forge
a certificate considering short (<600 bits) RSA moduli, mis-generated RSA keypairs
and ElGamal keypairs employed for signature purposes. Subfigure (b) provides the
same results for RSA keys with insufficient sized moduli (between 600 and 800 bit in
length) and keys which performed at least an MD5 based signature. The red dashed
line marks the size of the strong set

clients (GPG stopped taking into account MD5-based signatures starting from
June 2014, with GnuPG 2.0.23).

Considering the default bound on the length of certifier-certified trust chains,
r = 5, the reported results show that around 70 % of the keys in the strong set of
the WoT are affected by the described threat scenario if all the keypairs breakable
with limited resources are effectively broken. This significant amount of keys is
cut down to 37% of the strong set, if the user is willing to cap the length of
the maximum chain on the WoT to r = 4 (or, equivalently, not to extend her
trust), and is further cut down to 8 % in case r = 3. However, we note that such
a restriction also reduces the effectiveness of the strong set as an authenticator
(see Fig.1(b)), and thus comes at a usability expense. In particular, this link
between the effectiveness of the threat and the size of the longest certifier chain
r would allow a threat coverage of above 87 % in case the default chain length
were one step longer, i.e., 7 = 6. Moreover, in the extreme case where it is
desired for the overwhelming majority of the users to be able to use the entire
strong set as a certifier, setting » = 10 (as shown in Fig. 1(b) and described in
Sect. 2), substantially the whole strong set (99.6 % of the keys) are affected by
the described threat. The effects of either compromising moderately sized RSA
moduli, or splicing MD5 signatures yields similar effects to the aforementioned
ones, as reported in Fig. 4(b), although providing a slightly higher coverage of
the strong set (83 % of the keys for r = 5).
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Mitigation strategies. We now propose three viable mitigation strategies for
the described threat scenario. A first approach to counteract the actions of the
adversary, while preserving usefulness of WoT, is to employ redundant chains of
authentication to validate a public key. However, this approach requires two, or
more, disjoint paths on the WoT to be present in order to effectively thwart the
certificate forgery. To evaluate the practical feasibility of such an approach, we
computed how many public keys in the strong set are the unique way to reach a
portion of it (i.e., removing one of such keys would split a portion of the strong
set out). There are 8,804 such nodes (14.8 % of the strong set), thus pointing
to a lack of practical viability of such an approach, especially for certification
chains of lengths up to 5. An alternate approach is to prevent the attacker from
successfully impersonating a keyserver, fetching the certificates from multiple
ones. In this case, even if a single malicious keyserver tries to present a “split
world”-view to a targeted user, fetching certificates from multiple servers and
comparing them will allow to detect the malicious intent. This approach is rather
feasible in practical terms, although it may be a concern in rare cases where the
user is trusting only a single keyserver to be safe.

Finally, we point out that the nature of the OpenPGP protocol makes the
phase out of an outdated hash algorithm trickier than in a common hierarchical
PKI infrastructure. In fact, cases such as the current one with MD5, need to be
tackled through dropping altogether the support for it. However, such a solution
may potentially endanger the soundness of the WoT in case many signatures
are removed from it, as it could happen dropping the support for SHA-1 based
signatures (which currently constitute 88.9% of the entire WoT arcs). To the
end of preventing a significant alteration in the WoT structure, it is advisable
to exploit the nature of OpenPGP certificates, which allow for more than one
signature coming from the same issuer to be appended. To allow a graceful
phase out of SHA-1, or any other hash which should be phased out, it is thus
sufficient to modify the OpenPGP clients so that signatures on the same key
material signed with SHA-1 are made, exploiting a better algorithm (e.g., the
OpenPGP message standard supports SHA-2-256). As it is already happening
in the public web PKI [18,21], this operation should be performed while it is not
yet possible to find meaningful collisions on SHA-1. This allows a graceful, and
transparent deployment of a stronger hash algorithm, allowing safe disposal of
SHA-1 signatures, should the need come anywhen in the future.

6 Conclusion

In this paper we proposed a threat scenario to the authentication capability
of the OpenPGP WoT, relying on the possibility for an adversary to perform
a man in the middle attack, trying to forge a requested certificate. Under the
described threat scenario, the adversary needs to compromise a keypair and get
the target user to be trusting the compromised keypair certifiers to be able to
forge a certificate for an arbitrary identity. Willing to provide an evaluation of
the impact of the threat, we performed a survey of the current state of health
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of the OpenPGP WoT, both in structural terms, and concerning the security
of the individual keypairs. The results show how, in a context where public
key authentication can be performed indirectly exploiting verification made by
trusted users, even a limited amount of broken or outdated keys can have a
dramatic impact on the security of the whole system. Another relevant aspect
that emerged from our analysis is the impact of the recent decision to reject
MD5-based signatures by some OpenPGP clients, namely GnuPG. A unilateral
decision to disable MD5 for public key authentication effectively removed more
than 432k signatures for the WoT, without any preemptive measures being taken
to compensate for the loss. For this reasons we suggest a strategy to perform
a graceful phase-out of SHA-1, which is currently used in the vast majority
of OpenPGP signatures, through a signature refreshment strategy amenable to
automation, performed by the clients, using a more modern algorithm.

References

1. Barenghi, A., Beretta, M., Di Federico, A., Pelosi, G.: Snake: an end-to-end
encrypted online social network. In: Bourgeois, J., Magoules, F. (eds.) 2014 IEEE
International Conference on High Performance Computing and Communications,
6th IEEE International Symposium on Cyberspace Safety and Security, 11th IEEE
International Conference on Embedded Software and Systems, HPCC/CSS/ICESS
2014, Paris, France, 20-22 August 2014. IEEE (2014)

2. Bernstein, D.J., Lange, T.: Batch NFS. In: Joux, A., Youssef, A. (eds.) SAC 2014.
LNCS, vol. 8781, pp. 38-58. Springer, Heidelberg (2014)

3. Callas, J., Donnerhacke, L., Finney, H., Shaw, D., Thayer, R.: OpenPGP Message
Format. RFC 4880, updated by RFC 5581 (2007)

4. Callas, J., Donnerhacke, L., Finney, H., Thayer, R.: OpenPGP Message Format.
Internet RFC 2440 (1998)

5. Chokhani, S., Ford, W.: Internet X.509 Public Key Infrastructure Certificate Policy
and Certification Practices Framework. RFC 2527, obsoleted by RFC 3647 (1999)

6. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246, updated by RFCs 5746, 5878, 6176 (2008)

7. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Crypt. 2(2), 107-125 (1992)

8. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469-472 (1985)

9. Hall, T.A., Keller, S.S.: The FIPS 1864 Elliptic Curve Digital Signature Algo-
rithm Validation System. NIST (2014). http://csrc.nist.gov/groups/STM/cavp/
documents/dss2/ecdsa2vs.pdf

10. Heininger, N.: Factoring as a Service. CRYPTO 2013 Rump session (2013). https://
www.cis.upenn.edu/nadiah/projects/faas/

11. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps and
Qs: detection of widespread weak keys in network devices. In: Kohno, T. (ed.)
Proceedings of the 21th USENIX Security Symposium, Bellevue, WA, USA, 8-10
August 2012, pp. 205-220. USENIX Association (2012)

12. Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry,
P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H., Timofeev, A., Zimmer-
mann, P.: Factorization of a 768-bit RSA modulus. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 333-350. Springer, Heidelberg (2010)


http://csrc.nist.gov/groups/STM/cavp/documents/dss2/ecdsa2vs.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/dss2/ecdsa2vs.pdf
https://www.cis.upenn.edu/nadiah/projects/faas/
https://www.cis.upenn.edu/nadiah/projects/faas/

446

13.
14.
15.
16.
17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.
29.
30.

31.

32.

A. Barenghi et al.

Koch, W.: The GNU Privacy Guard (2015). https://www.gnupg.org

Lenstra, A.K.: Integer factoring. Des. Codes Crypt. 19(2/3), 101-128 (2000)
McGee, D.: PGP Packet Parser Library (2015). https://github.com/toofishes/
python-pgpdump

Minsky, Y., Clizbe, J., Fiskerstrand, K.: Synchronizing Key Server (SKS) Software
Package (2015). https://bitbucket.org/skskeyserver/sks-keyserver/wiki/Home
Minsky, Y., Trachtenberg, A., Zippel, R.: Set reconciliation with nearly optimal
communication complexity. IEEE Trans. Inf. Theory 49(9), 2213-2218 (2003)
Mozilla Security Engineering Team: Phasing Out Certificates with SHA-1
based Signature Algorithms (2014). https://blog.mozilla.org/security/2014/09/
23 /phasing-out-certificates-with-sha- 1-based-signature-algorithms/

National Institute of Standards and Technology: Digital Signature Standard (DSS).
Federal Information Processing Standards Publication (FIPS) 186-4. U.S. Depart-
ment of Commerce (2013). http://dx.doi.org/10.6028 /NIST.FIPS.186-4

Nguyén, P.Q.: Can we trust cryptographic software? Cryptographic flaws in GNU
privacy guard v1.2.3. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 555-570. Springer, Heidelberg (2004)

Palmer, C., Sleevi, R.: Gradually Sunsetting SHA-1 (2014). http://blog.chromium.
org/2014/09/gradually-sunsetting-sha-1.html

Peixoto, T.P.: The Graph-tool Python Library (2014). http://figshare.com/
articles/graph_tool/1164194

Penning, H.P.: PGP Pathfinder and Key Statistics (2015). http://pgp.cs.uu.nl/
Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120-126 (1978)

Shaw, D.: OpenPGP HTTP Keyserver Protocol (HKP). Expired Internet-Draft
(2013). http://tools.ietf.org/html/draft-shaw-openpgp-hkp-00

Somogyi, S.: End-to-End Chrome Browser Extension (2015). https://github.com/
google/end-to-end /wiki

Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A.,
de Weger, B.: Short chosen-prefix collisions for MD5 and the creation of a rogue
CA certificate. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 55-69.
Springer, Heidelberg (2009)

Symantec Corp.: Symantec Encryption (PGP) Docs. Article Tech202483 (2015)
The Free Software Foundation: Email Self-Defense Campaign (2015). https://
emailselfdefense.fsf.org/

Ulrich, A., Holz, R., Hauck, P., Carle, G.: Investigating the OpenPGP web of
trust. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 489-507.
Springer, Heidelberg (2011)

Wendlandt, D., Andersen, D.G., Perrig, A.: Perspectives: improving SSH-style
host authentication with multi-path probing. In: Isaacs, R., Zhou, Y. (eds.) 2008
USENIX Annual Technical Conference, Boston, MA, USA, 22-27 June 2008, pp.
321-334. USENIX Association (2008)

Zhu, Y., et al.: End-to-End for Yahoo! Mail (2015). https://github.com/yahoo/
end-to-end


https://www.gnupg.org
https://github.com/toofishes/python-pgpdump
https://github.com/toofishes/python-pgpdump
https://bitbucket.org/skskeyserver/sks-keyserver/wiki/Home
https://blog.mozilla.org/security/2014/09/23/phasing-out-certificates-with-sha-1-based-signature-algorithms/
https://blog.mozilla.org/security/2014/09/23/phasing-out-certificates-with-sha-1-based-signature-algorithms/
http://dx.doi.org/10.6028/NIST.FIPS.186-4
http://blog.chromium.org/2014/09/gradually-sunsetting-sha-1.html
http://blog.chromium.org/2014/09/gradually-sunsetting-sha-1.html
http://figshare.com/articles/graph_tool/1164194
http://figshare.com/articles/graph_tool/1164194
http://pgp.cs.uu.nl/
http://tools.ietf.org/html/draft-shaw-openpgp-hkp-00
https://github.com/google/end-to-end/wiki
https://github.com/google/end-to-end/wiki
https://emailselfdefense.fsf.org/
https://emailselfdefense.fsf.org/
https://github.com/yahoo/end-to-end
https://github.com/yahoo/end-to-end

	Challenging the Trustworthiness of PGP: Is the Web-of-Trust Tear-Proof?
	1 Introduction
	2 OpenPGP Infrastructure
	2.1 Key Management
	2.2 The OpenPGP Web-of-Trust

	3 Threats to the WoT Authentication Capabilities
	4 State of Health of the OpenPGP Global Keyring
	4.1 RSA Cryptosystem
	4.2 Digital Signature Algorithm
	4.3 ElGamal Cryptosystem
	4.4 MD5 Based Signatures

	5 Vulnerability Evaluation
	6 Conclusion
	References


