
Research Article
Assessing the Capabilities of a New Linear Inversion Method for
Quantitative Microwave Imaging

Loreto Di Donato,1 Roberta Palmeri,2 Gino Sorbello,1

Tommaso Isernia,2 and Lorenzo Crocco3

1Department of Electrical, Electronics and Computer Engineering (DIEEI), University of Catania,
Viale A. Doria 6, 95126 Catania, Italy
2Department of Information Engineering, Infrastructures and Sustainable Energy (DIIES),
University Mediterranea of Reggio Calabria, Via Graziella, Localita Feo di Vito, 89124 Reggio di Calabria, Italy
3Institute for Electromagnetic Sensing of the Environment (IREA), National Research Council of Italy (CNR),
Via Diocleziano 328, 80124 Napoli, Italy

Correspondence should be addressed to Loreto Di Donato; loreto.didonato@dieei.unict.it

Received 23 February 2015; Accepted 15 June 2015

Academic Editor: Ahmed A. Kishk

Copyright © 2015 Loreto Di Donato et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We investigate the imaging capabilities of a new linear microwave imaging approach, which allows to quantitative retrieve the
complex permittivity distribution of unknown nonweak targets. To this end, we carry out a parametric numerical analysis for a
canonical scatterer (a homogeneous dielectric cylinder with circular cross section) and derive a quantitative criterion to foresee
the method’s applicability. The reliability of the criterion is then tested against noncanonical scatterers to show the effectiveness
of the method in imaging nonweak targets and in outperforming the linearized inversion method based on the standard Born
approximation.

1. Introduction

The development of reliable solution procedures in electro-
magnetic inverse scattering is an important topic as it would
open the way to effective microwave imaging techniques in
many different areas ranging from biomedical to subsurface
imaging, nondestructive test, and civil engineering. However,
it is well known that the possibility to achieve quantitative
results, that is, characterizing both the geometrical and the
electromagnetic features of a scattering system, is a tough
challenge from both a theoretical and a computational point
of view. In fact, microwave imaging entails the solution of a
nonlinear and ill-posed problem [1, 2].

In particular, ill-posedness requires the adoption of
proper regularization strategies [2] that lead to an approxi-
mation of the actual unknown, unless a priori information is
exploited [3–10]. On the other hand, nonlinearity is usually
tackled by formulating the problem in terms of an optimiza-
tion task, which is computationally heavy or even unfeasible

within a global optimization framework. As a result the
solution is pursued by means of local optimization strategies,
which are prone to the “false solutions” problem [11].

As an alternative, linearized approaches seem to be very
attractive from an applicative point of view, since they
show inherent advantages in handling both ill-posedness and
nonlinearity of the problem. Unfortunately, they can be safely
applied only in a limited range. This is the case of the first
order Born approximation (BA) that can be exploited to
achieve quantitative reconstructions only for weak scatterers,
that is, objects which are small with respect to the probing
wavelength andwhose electromagnetic features are similar to
those of the embedding medium [12]. As a result, the method
applicability is severely limited in any actual instances. This
notwithstanding, BA can be applied in all those cases when a
qualitative imaging, that is, position, size, and possibly shape
of an unknown scattering system, is the goal of the diagnostic
survey.
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Recently, a linearized approach has been proposed [13],
which is based on a novel field approximation that implic-
itly takes into account the unknown targets. As such, this
approachmakes the imaging of nonweak targets viable within
a linear inversion framework. This interesting capability is
achieved by means of a “smart” preprocessing of the mea-
sured data, which allows rearranging the original incident
fields in such away to “condition” the scattering phenomenon
in a predictable way, which is giving rise to total fields which
can be approximately foreseen (and which differ from the
“simple” incident field used in typical linearizations).

The recombined incident fields can be seen as a set of new
experiments, which we refer to as virtual experiments, as they
are achieved without performing additional measurements.
While this framework has been applied in different ways
to develop linear and nonlinear, as well as approximated
and nonapproximated, approaches [13–15], in this paper, we
investigate, for the first time, the range of validity of the
approximation underlying the method in [13]. To this end,
we consider the canonical case of a homogeneous circular
cylinder and perform a parametric numerical study meant
to investigate the method’s imaging capabilities with respect
to the electrical size and the electromagnetic properties of
the scatterers. The analysis allows determining the range of
applicability of the inversion procedure and shows that its
range of validity is significantly larger with respect to the
BA. Moreover, both the method and the validity criterion
are further assessed against noncanonical targets, confirming
the capability of outperforming the BA in imaging nonweak
scatterers.

The paper is structured as follows. In Section 2, the
mathematical formulation of the imaging problem and the
main issues are briefly recalled. In Section 3, the imaging
strategy is briefly recalled and outlined. Sections 4 and 5
address the numerical analysis. Discussion of the results and
conclusions follow. Throughout the paper, the time factor
exp{𝑗𝜔𝑡} is assumed and dropped.

2. Statement of the Problem

We assume a 2D geometry with the electric field polarized
along the invariance axis, that is, the 𝑧-axis. Let 𝐷 denote
the investigation domain that hosts the cross sections of one
or more dielectric scatterers with support Σ and complex
dielectric permittivity 𝜀

𝑠
(𝑟, 𝜔) = 𝜀

𝑠
(𝑟) − 𝑗𝜎

𝑠
(𝑟)/(𝜔𝜀0), 𝜔 being

the working angular frequency and 𝑟 = (𝑥, 𝑦) denoting the
generic point in𝐷. We consider a homogeneous background
medium with complex permittivity 𝜀

𝑏
(𝜔) = 𝜀

𝑏
− 𝑗𝜎
𝑏
/(𝜔𝜀0).

Both the scatterers and the background are assumed to
be nonmagnetic. The region 𝐷 is probed by means of
incident fields impinging from several directions radiated by
filamentary currents positioned all around 𝐷. Accordingly,
the field is assumed to be measured on a curve Γ.

Under the above assumptions, the integral “data” and
“state” equations governing the scattering phenomenon read,
respectively, as
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wherein 𝐸
𝑖
and 𝐸

𝑡
denote the incident and the total field,

respectively, 𝜃
𝑛
denote the 𝑛th impinging direction 𝜃, and

𝑅
𝑚
= (𝑅
𝑚
, 𝜙) denotes the 𝑚th position on the measurement

curve Γ. Moreover, 𝜒(𝑟) = 𝜀
𝑠
(𝑟)/𝜀
𝑏
− 1 is the contrast

function, and 𝑔(𝑟, 𝑟) = −(𝚥/4)𝐻2
0 (𝑘𝑏|𝑟



− 𝑟|) is the Green’s
function for the considered homogeneous background, 𝑘

𝑏

being the (complex) wavenumber of the hostmedium and𝐻2
0

the second kind zeroth order Hankel function. Accordingly,
the inverse scattering problem is cast as the retrieval of
the unknown function 𝜒 for given incident fields in 𝐷 and
measured total (and possibly incident) fields on Γ.

Equations (1) represent the scalar 2D inverse scattering
problemwhich is nonlinear due to the functional relationship
between data and unknowns. As a result, linearized models
like the Born approximation, may be introduced to avoid
this drawback of the problem. However, it is well known
how the latter completely neglects the effect of the scattering
system on the field, thus leading to unavoidable deterioration
of the imaging when it is applied for nonweak scatterers.
As a result, no quantitative information about the scatterer’s
nature can be inferred. Iterative approaches, like the Born [16]
and the distorted Born iterative method [17, 18], have been
introduced to possibly restore the effect of the scatterers on
the field solving a cascade of linearized problems. However,
these approachesmay suffer from lack of convergence, as well
as the difficulty in choosing a stopping criterion as tradeoff
between reconstruction accuracy and computational burden.

3. A (Scatterer-Oriented) Approximation and
Method’s Implementation

In this section we recall the method proposed in [13]. In
particular, we defer the reader to the original paper for
theoretical issues, while addressing mainly guidelines for the
method’s implementation.

We start from the observation that the linearity of
Maxwell’s equations, and then of the scattering phenomena,
suggests that a superposition of the incident fields gives
rise to a scattered field which is nothing but the same
superposition, that is, with the same “weighting coefficients,”
of the original scattered fields. Saying it in formulas, we
consider a superposition of the incident fields given by

E
𝑖
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∑
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𝛼
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which, interacting with the scatterers, will give rise to the
scattered field:
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wherein 𝐸
𝑠
= 𝐸
𝑡
− 𝐸
𝑖
is a noisy version of the scattered field.
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Indeed, according to the above, the basic idea underlying
the virtual experiments’ framework is finding a linear combi-
nation of the original data problem (the measured field), so
that the scattering phenomenon behaves in such a way that
the internal field can be suitably foreseen.

Accordingly, the first step of the method is concerned
with the solution of a “design equation.” Among many
different possibilities, we consider the far field equation,
which is the basic equation of the linear sampling method
(LSM), an imaging approach developed to recover the shape
of an unknown scattering system [19].The discretized version
of this equation is cast for each point 𝑟

𝑠
of an arbitrary grid

that samples the imaged domain, that is,

E
𝑠
𝛼 = g, (4)

where E
𝑠
is the 𝑀 × 𝑁 scattered field data matrix as

arranged in amultiview-multistatic configuration,𝛼 is the𝑁-
dimensional vector unknown, and g is the 𝑀-dimensional
vector containing the values of the Green’s function at the
receiver positions 𝑅

𝑚
. Note that this equation is nothing but

the linear combination expressed by means of (3).
Equation (4) is an ill-posed one that can be effectively

solved via singular value decomposition (SVD) of thematrix-
operator E

𝑠
and Tikhonov regularization [2] to find the

following solution:
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𝑇

∑
𝑖=1

𝜆
𝑖

𝜆2
𝑖
+ 𝜇2

⟨g, u
𝑖
⟩ k
𝑖
, (5)

wherein k
𝑖
and u

𝑖
are the right and left singular vectors of

E
𝑠
, respectively, 𝑇 = min(𝑁,𝑀), 𝜆

𝑖
denotes the 𝑖th singular

value of E
𝑠
, and ⟨ , ⟩ denotes the standard scalar product in

𝐿
2. Finally 𝜇 is the Tikhonov regularization parameter that,

according to [13], can be chosen once for all the sampling
points.

Once the design equation is solved, a first outcome of
the imaging approach is the qualitative imaging pursued by
the LSM. As a matter of fact, the energy of the solution,
that is, its 𝐿2-norm, assumes low values for sampling points
belonging to the scatter’s support and high values elsewhere
(with respect to its overall dynamics over the sampling grid)
[19]. Such a behavior can be exploited by considering the
following support indicator:

Υ =
20log
10
(‖𝛼‖)

max {20log
10
‖𝛼‖}

, (6)

which continuously varies assuming the lowest values in
those sampling points belonging to the scatterer support Σ.
Equation (6) is the commonway to exploit solution of (4) [19].

This result is not the only one actually brought by the LSM
solution. Indeed, in the following, we are going to describe
how the LSM can be exploited to conveniently afford the
inverse scattering problem. In this respect, the second step
of the imaging procedure amounts to select a number 𝑁

𝑝

of sampling points among those belonging to the retrieved
scatterer’s support, namely, the “pivot points,” and to use the
pertaining solution 𝛼

𝑝
to achieve the linear combinations

Σ

D

Γ

PML
(perfectly matched layer)

Figure 1: Sketch of the measurement setup used in COMSOL to
simulate the total field data on the measurement curve Γ.

(2) and (3). By doing so, the multiview-multistatic standard
scattering experiments are converted into a set of multiple
virtual (or synthetic) experiments which do not require an
additional measurement process since they are built only via
software processing.

The advantage to deal with such a (recombined) version
of the inverse scattering problem is related to the possibility of
introducing an effective approximation for the internal field,
which reads

E
𝑡
(𝑟, 𝑟
𝑝
) = E

𝑖
(𝑟, 𝑟
𝑝
) + 𝑔LP (𝑟, 𝑟𝑝) 𝑟 ∈ 𝐷. (7)

Equation (7) assumes the total field in𝐷 to be the sum of the
virtual incident field and the field radiated by a filamentary
current centered in the pivot point 𝑟

𝑝
. In particular, the

second term at the right hand side of (7) represents a low-
pass filtered version of the elementary source field, which
avoids singularity of the (approximated) secondary field for
𝑟 = 𝑟

𝑝
[13]. This approximation for the total field is based

on the assumption that expression (7) can be considered not
only on Γ, where it is actually enforced via the solution of the
“design equation” (4), but also in the whole domain 𝐷 since
the target, regardless of its geometrical and electromagnetic
nature, is forced to react like a point scatterer. Without going
into further details on the nature of the “virtual experiments,”
we only recall that this circumstance arises when the contrast
source 𝐽 = 𝐸

𝑡
𝜒 is mostly focused in a neighborhood of the

pivot point [20].
Once the (virtual) data equation has been linearized

through field approximation (7), one can take profit from the
singular value decomposition (SVD) to solve the following
linear problem:

V𝜒 = E
𝑠
, (8)

where V is the matrix-operator which rules the scattering
phenomena for a given set of incident fields and contrast
function 𝜒. A regularized solution of problem (8) can be
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Figure 2: Validation analysis: (a) plot of Δ err for the parameters’ values reported in Table 1 and (b) cut of Δ err for different values of 𝜀𝑠.

found by means of truncated SVD (TSVD) scheme, which
yields to the following explicit solution:

𝜒 =

𝑇

∑
𝑖=1

1
𝜎
𝑖

⟨E
𝑠
,w
𝑖
⟩ y
𝑖
, (9)

wherein y
𝑖
and w

𝑖
are the right and left singular vectors of

V, respectively, and 𝜎
𝑖
are its singular values. The truncation

index 𝑇 can be easily set using the Picard’s plot as suggested
in [13].

4. Numerical Analysis: Range of Validity

In this section we apply the method outlined in the previous
section to achieve quantitative imaging of circular cylinders
having different radius and dielectric permittivity; see Table 1.
The total field over the measurement circumference Γ has
been simulated by means of a full-wave forward solver based
on the finite element method (COMSOL Multiphysics) and
the incident field has been subtracted from it to extract the
scattered field data. In Figure 1, the layout of the simulation
setup for a free space homogeneous background is sketched.
In particular, the target has been placed at the center of
the imaging domain. Moreover, in order to collect in a
nonredundant way as much information as possible [21], we
take 𝑀 = 2Re[𝑘

𝑏
]𝐿
𝐷
/√2, wherein 𝐿

𝐷
is the side of the

(square) investigated domain which is assumed to embed the
target. The data have been generated considering an equal
number (𝑀 = 𝑁) of transmitters and receivers evenly spaced
on a measurement circumference Γ of radius 𝑅 ≃ 2𝜆

𝑏
. In

all the cases, according to the Richmond rule [22], we have
considered𝑁

𝑐
= 42×42 number of cells for the discretization

of the imaging domain.

Table 1: Values of 𝐼 for different dimensions and wavenumber of
the cylindrical circular scatterers. The values corresponding to an
unsatisfactory reconstruction error are boldfaced.

𝑑

𝜆
𝑏
/3 𝜆

𝑏
/2 2/3𝜆

𝑏
5/6𝜆
𝑏

𝜆
𝑏

7/6𝜆
𝑏

𝑘
𝑚

128.31 2.56 3.85 5.13 6.41 7.70 8.98
148.16 2.96 4.44 5.92 7.40 8.89 10.37
157.15 3.14 4.71 6.28 7.85 9.42 10.99
165.65 3.31 4.97 6.62 8.28 9.93 11.59
181.46 3.63 5.44 7.25 9.07 10.88 12.70

To evaluate the imaging results we have considered the
reconstruction error defined as

err =
𝜒 − 𝜒


2

𝜒

2 , (10)

where 𝜒 is the actual contrast profile and 𝜒 is the estimated
one. In particular, the outcome of the imaging procedure
has been quantitatively appraised by means of the absolute
difference Δ err between the reconstruction error achieved
with field approximation (7) and the reconstruction error
obtained with the solution of the “ideal” data equation, that
is, when (8) is solved assuming that the total field is exactly
known. It is worth noting that although the processing of the
ideal data equation is meaningless in any practical instance,
it provides in our analysis an immediate benchmark for the
method, being the “best result” achievable from regularized
solution of the data equation. As a result, considering Δ err
allows comparing the reconstruction error introduced by
approximation (7) with that achieved in the best possible
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Figure 3: Kite example: (a) layout of the reference profile; (b) support estimation via LSM indicator and the selected pivot points (𝑁
𝑝
= 17)

and (c) real part of the retrieved contrast profile for 𝜀
𝑠
= 1.5; (d) support estimation via LSM indicator (𝑁

𝑝
= 17) and (e) real part of the

retrieved contrast profile for 𝜀
𝑠
= 2. The truncation index in the TSVD inversion scheme is 𝑇 = 73 and 𝑇 = 52, respectively.
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Figure 4: Reference profile for (a) example 1, (b) example 2, and (c) example 3. Support estimation via LSM indicator and the selected pivot
points for (d) example 1 (𝑁

𝑝
= 18), (e) example 2 (𝑁

𝑝
= 28), and (f) example 3 (𝑁

𝑝
= 31).

case [13]. Figure 2 shows Δ err for different values of electrical
dimension and refractive index of the circular cylinder.

It is possible to see that, for increasing values of the refrac-
tive index √𝜖𝑠 and electrical dimensions of the scatterer, the
accuracy of the reconstruction becomes worse. In particular,
for the considered values of the diameter and permittivity,
we have experienced that the reconstruction error for the
ideal data equation keeps almost constant (≤12.5%) while
the error achieved in the case of field approximation (7)
increases with the electrical dimension and refractive index
of the scatterer. It is also worth noting that its slope rate is
larger for increasing dimension of the scatterer rather than
for increasing refractive index.

In order to quantitatively appraise the validity of the
method, we have considered the following index:

𝐼 = 𝑘
𝑚
𝑑 (11)

with 𝑘
𝑚
and 𝑑 being the wavenumber and diameter of the

homogeneous lossless scatterer, respectively. Note that for
lossy scatterers the index can be generalized by considering
|𝑘
𝑚
|. In Table 1 the values of 𝐼 for the considered circular

scatterers are reported. In particular, we have experienced
that the largest index still corresponding to a satisfactory
reconstruction (err ≤ 20%) is almost 7.70. We consider this
value as limit for the method’s applicability.

Interestingly, if we convert and compare this value with
the limit found in [12] to analyze the validity of the Born

approximation (√𝜖𝑠𝑑), our index results to be 1.22𝜆
𝑏
, which

is more than three times larger than the one in the case of
the BA (0.35𝜆

𝑏
). As a result, the range of the approximation

provided by the method at hand is much larger than the
standard scattering linearization based on the BA. As already
stated in the previous sections, this is due to the peculiarity
of the virtual experiments to take implicitly into account
the nature of the scattering system and then to provide an
effective “scatterer-oriented” field approximation.

In order to corroborate the above analysis, we have
addressed another example dealt with a scatterer of different
shape. In particular, we have considered a lossless kite
scatterer described by the following parametric equation:

𝑓 (𝑡) = [𝑎 cos (𝑡) + 𝑏 cos (2𝑡) − 𝑏, 𝑐 sin (𝑡)] ,

0 ≤ 𝑡 ≤ 2𝜋,
(12)

(𝑎 = 0.025, 𝑏 = 0.01625, 𝑐 = 0.0375) with a leading
dimension of about 1𝜆

𝑏
; see Figure 3(a). Moreover, we have

considered two different values for the target’s permittivity;
that is, 𝜀

𝑠
= 1.5 and 𝜀

𝑠
= 2. The first step of the imaging

strategy allows recovering in both the cases the support of
the scatterer and choosing equispaced pivot points to devise
the virtual experiments; see Figures 3(b)–3(d). On the other
hand, the quantitative reconstruction is satisfactory only for
the kite with the smaller refractive index. Indeed for the latter
𝐼 = 7.40, while 𝐼 = 7.85 for the kite with 𝜀

𝑠
= 2. This
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Figure 5: From top to bottom: imaging results for the three examples. From left to right: real and imaginary part of the retrieved contrast
profile by means of the proposed approach (𝑇 = 65, 𝑇 = 62, and 𝑇 = 132) and the BA (𝑇 = 76, 𝑇 = 78, and 𝑇 = 64).

result is in agreement with the validation analysis as method’s
performances become critic when 𝐼 ≃ 7.70. Accordingly, the
reconstruction errors are 21% and 53%, respectively.

5. Numerical Analysis: Comparison with
the Born Approximation

In this sectionwe report somenumerical examples concerned
with nonhomogeneous scatterers in order to compare the
performances of the imaging approach at hand with those
pursued by means of the BA.

The actual permittivity profiles of the considered exam-
ples are shown in Figure 4. Also in this case the imaging
results have been appraised by means of (10). For these
examples the validity index 𝐼 cannot be adopted as defined
in (11), being the scatterers nonhomogeneous. As a result, for
these scatterers the index has been evaluated considering an
effective permittivity

𝜀eff = (√
𝜒

2
/𝑁
Σ
+ 1) 𝜀

𝑏
(13)

to take into account the nonhomogeneous nature of the
scatterer,𝑁

Σ
being the number of the pixels belonging to the

target’s support.
In the first example the unknown profile is a stepwise

constant nonhomogeneous rectangular scatterer with per-
mittivity 𝜀 = 2 ÷ 1.4 and conductivity 𝜎 = 50 ÷ 10mS/m,
Figure 4(a). A number of transmitters and receivers equal to
21 and𝑁

𝑐
= 42× 42 cells for the discretization of the imaging

domain are considered.
The second example deals with a target made of two

nonconcentric lossless circles with different permittivity val-
ues (𝜀 = 1.8 ÷ 1.4); see Figure 4(b). In this case, we have
considered𝑀 = 𝑁 = 21 and𝑁

𝑐
= 42 × 42 cells.

In the last example two identical squares and one circular
shaped scatterers with 𝜀 = 2, 𝜀 = 1.4, and 𝜀 = 1.6, respectively,
and the same conductivity 𝜎 = 0.1 S/m are considered; see
Figure 4(c).The number of transmitters and receivers is equal
to 26 and the imaged domain is discretized into 50 × 50 cells.

In Figures 4(d)–4(f) the indicator Υ and the pivot points
chosen to devise the virtual experiments are depicted for the
three different examples. For each example, in Figure 5 are
shown the outcome of the TSVD based inversion by means
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of the proposed approach and the reconstruction performed
via BA.

The comparison between the inversion results clearly
shows that the approximation based on the virtual experi-
ments confirms its good capability in appraising the dielectric
nature of nonweak scattering systems as far as both the real
and the imaginary part of the recovered contrast profile are
concerned. As a matter of fact the reconstruction errors are
20%, 10%, and 38% and 67%, 64%, and 65% for the virtual
experiments based approximation and BA, respectively. It
is worth to underline that, although in the third example
the reconstruction error is rather large, in any case the
reconstruction error for the “ideal” data equation achieves
36%. This is due to the peculiar features of the scattering
system made of three very close disjoint scatterers which are
very small in terms of the probing wavelength.

6. Conclusion

In this paper we have investigated the range of validity of
a new linear approach for microwave imaging which relies
on the emerging framework of the “virtual scattering experi-
ments.” The imaging results clearly show that the proposed
method can be applied in a range much wider than the
standard first order Born approximation while not increasing
either the complexity of the overall solution procedure or
its computational burden. To this aim, we have addressed
a numerical analysis in order to show the capability of the
method in tackling quantitative imaging of nonweak targets.
Interestingly, themethod can be applied also in aspect limited
configurations wherein the design of the virtual experiments
is expected to be more challenging [13, 15]. Such a numerical
study can be useful to improve the reliability of the method
in developing effective microwave imaging diagnostic tools.
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