
Abstract 

In the last decade, the change of energy concept induced by global
warming and fossil fuel depletion together with the advances in agri-
culture towards a multifunctional and a more sustainable use of rural
areas promoted the development of biomass crops. In this regard,
Populus is largely utilised in short-rotation forestry (SRF), as it is
known to be a fast-growing tree, producing large yields and having a
high energy potential. Most studies focused on economic-productive
and energetic aspects of Populus plantations, whereas their impact on
soil quality and health have been poorly investigated. In this study, the
main soil chemical parameters, microbial biomass and activity were
assessed aiming at evaluating the impact of Populus SRF under one,
two and three-year cutting cycles (T1, T2 and T3) in comparison with
an intensive food cropping system (wheat-soybean rotation, WS). In
addition, arbuscular mycorrhizal (AM) fungal inoculum potential was
measured using root colonisation (RC) and number of entry points
(EP). In the 0-10 cm soil depth, pH, phosphorus (P), total nitrogen (N)
and soil organic carbon (SOC) were significantly affected by the man-
agement. In comparison with WS, Populus SRF treatments produced
significant pH decreases together with N and SOC increases, these
last ones ranging from 11% to 34% and from 21% to 57%, respectively.
Under T3 soil pH decreased of 0.25 units, while P, N and SOC increased
of 10%, 34% and 57%, respectively, in comparison with WS. Microbial

biomass and soil respiration under SRF showed also mean increases
of 71% and 17%, respectively. Under SRF treatments, Lolium perenne,
commonly observed in all field plots, was more than twofold colonised
by AM fungi in comparison with WS, while the number of EP, observed
on Lactuca sativa used as a test plant, showed values ranging from 8 to
21 times higher. The present study shows the potential of a Populus
SRF to improve soil chemical, biochemical and biological quality
parameters in comparison with an intensive food cropping system. 

Introduction

In the last years, the concept of multifunctional agriculture has
obtained large attention from both scientists and policy makers due to
its production of both agricultural commodities and ecological services.
Such multifunctionality has been focused on an accurate revision of the
management of rural areas and of conventional cropping systems both
as process and as product (Renting et al., 2009). In this regard, bioener-
gy crops have recently gained great interest as a potential alternative to
agri-food productions and as a clean and renewable energy source
reducing greenhouse gas emissions (Wise et al., 2009; Popp et al.,
2010). Within biomass crops, Miscantus and Panicum, which are peren-
nial rhizomatous grasses, and fast-growing trees, as Eucalyptus,
Populus and Salix, are grown worldwide for such bioenergy purposes
(Bonari et al., 2004b; Tilman et al., 2006; Karp and Schield, 2008). 

Traditionally, Populus (poplar) breeding has achieved large success
for wood production in short-rotation forestry (SRF) due to the fact
that the hybrids of poplar have a fast growth and produce a high yield,
although they were not initially selected for growing as coppice
(Bonari et al., 2004 a,b; Karp and Schield, 2008). Moreover, many
poplar clones and species showed to have a high energy potential and
to be able to grow in marginal lands and drought conditions (Hansen,
1991; Makeschin, 1994). Many studies have been performed on bio-
mass productivity and quality, management intensity, economic bal-
ance and energy aspects of poplar SRF (Yue et al., 1999; Bonari et al.,
2004 a,b; Vande Walle et al., 2007; Karp and Schield, 2008; Lemus et al.,
2008; Guidi et al., 2008, 2009; Nassi o Di Nasso, 2010). 

So far, less attention has been focused on the evaluation of soil qual-
ity changes under SRF management (Tolbert et al., 2002; Kahle et al.,
2007; Zornoza et al., 2009; Mao and Zeng, 2010), while many studies
were performed on the impact of alternative cropping systems, such as
the organic and biodynamic farming, in comparison with high- and
low-input conventional managements (Wood and Edwards, 1992;
Schjønning et al., 2002; Hamer et al., 2008; Lagomarsino et al., 2009;
Mazzoncini et al., 2010). As regard to soil quality evaluation, Doran
and Parkin (1996) proposed a minimum data set of sensitive physical,
chemical and biological indicators. Firstly, most studies on soil quality
changes under alternative farming utilised chemical and biochemical
indicators (Dick, 1983; Kingery et al., 1996; Omay et al., 1997; Carter,
2002), then the biological parameters became more and more impor-
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tant in evaluating such changes (Saviozzi et al., 2001; Bending et al.,
2004; Parisi et al., 2005; Piotrowski and Rillig, 2008; Mazzoncini et al.,
2010). Similarly, evaluating soil quality and health under SRF or follow-
ing the conversion from food to biomass crops, physical and chemical
indicators were largely used (Sartori et al., 2006; Berthrong et al., 2009;
Laganière et al., 2010), while recently the attention has been also
focused on the biochemical and biological parameters (Makeschin et
al., 1994; Guo and Han, 2008; Zornoza et al., 2009; Kahle et al., 2007;
2010; Mao and Zeng, 2010).

The SRF management is associated with minimal mechanical distur-
bance of the soil and less agrochemical inputs in comparison with con-
ventional cropping systems (Lemus and Lal, 2005; Dickmann, 2006).
This, together with the leaf litterfall of deciduous trees, is likely to pro-
mote the increase of soil organic carbon (SOC), nitrogen (N) and phos-
phorus (P) content, as well as of soil microbial biomas (Lal, 2003;
Liebig et al., 2005; Ritter, 2007; Iovieno et al., 2010). One of the funda-
mental components of microbial biomass, which might be affected by
SRF, is represented by arbuscular mycorrhizal fungi (AMF) (Rooney et
al., 2009). AMF are mutualistic associations between the roots of the
majority of plant species and soil borne fungi belonging to
Glomeromycota (Schüβler et al., 2001; Smith and Read, 2008). In
response to such symbiosis, bioenergy crops could in turn benefit by an
increased biomass yield and a greater cropping resistance (Rooney et
al., 2009), since AMF are largely known to have a fundamental role in
plant nutrition and protection against root and shoot pathogens (Smith
and Read, 2008). 

The aim of the present study was to evaluate the impact on soil qual-
ity of a bioenergy crop management, represented by a SRF poplar plan-
tation under different coppicing frequencies, in comparison with an
intensive food cropping system based on a wheat-soybean rotation.

Materials and Methods 

Field site and experimental set-up
A long-term poplar (Populus deltoides Bartr.) SRF field experiment was

started in 1996 at the “Enrico Avanzi” Interdepartmental Centre for Agro-
Environmental Research of the University of Pisa (43°40' N lat; 10°19' E
long), Italy. Before experimental set-up, the field site was conventionally
cultivated with maize (Zea mays L.) - durum wheat (Triticum durum
Desf.) rotation for more than 15 years. The soil showed the following
physical and chemical characteristics: clay, 20.1%; silt, 40.5%; sand,
39.4%; available P, 8.8 mg Kg–1; total N, 1.3 g Kg–1; organic carbon, 10.4 g
Kg–1. Climatic conditions were typically Mediterranean. More details on
climate conditions are given by Mazzoncini et al. (2008). The experiment
was a completely randomised design, i.e. one, two and three - year cutting
cycles (T1, T2 and T3), with three treatments and three replicates (n=3;
plots of 500 m2). Details on the poplar stands and their management are
given by Nassi o Di Nasso et al. (2010). In addition, an adjacent intensive-
ly tilled (ploughing to 30 cm depth) wheat-soybean rotation (WS), show-
ing similar physical and chemical characteristics in 1996, was selected
and used as control. Details on the wheat-soybean experimental design
and its management are given by Mazzoncini et al. (2008).

Soil and root sampling
In the spring of 2005, one combined soil sample, obtained by mixing

three random soil cores, was collected (0-10 cm depth) from each plot and
from three random areas within the WS rotation. The soil samples utilised
for biochemical analyses were sieved through 2 mm sieve at the field
moisture, whereas the samples used for chemical and AMF analyses were
oven dried at 30°C before sieving. The root systems of perennial ryegrass
(Lolium perenne L.), a common weed found in all the plots, known to be

highly responsive to a wide range of AMF, were collected (one combined
root sample per each SRF plot and WS area) at a depth of 15 cm and then
rinsed and dried (70°C for 3 days). 

Analytical procedures
Soil samples were analysed for pH, available P, total N, SOC, micro-

bial biomass carbon (MBC) and soil respiration (SR). Soil pH was
measured in deionised water (1:2.5 w/v) (McLean, 1982) and P and N
were determined by colorimetry using the Olsen method (Olsen and
Sommers, 1982) and by the macro Kjeldahl digestion procedure
(Bremner and Mulvaney, 1982), respectively. SOC was evaluated
using the modified Walkley-Black wet combustion method (Nelson
and Sommers, 1982). MBC was determined by the Vance chloroform
fumigation-extraction method, while SR was measured according to
the Isermeyer method, described in Alef and Nannipieri (1995). MBC
and SR were assessed on soil subsamples of 45 g and SR was deter-
mined after 10 days of incubation in closed jars maintained at 25°C.
The percentage of AMF colonisation was determined by the gridline-
intersect method (Giovannetti and Mosse, 1980) after clearing and
staining the roots according to Phillips and Hayman (1970), using
lactic acid instead of phenol. AMF infectivity was assessed using the
mycorrhizal inoculum potential test (MIP) (Pellegrino et al., 2011) on
lettuce (Lactuca sativa L.): three seedlings were grown for two weeks
in 50 mL sterilised plastic tubes filled with 40 mL of soil obtained by
each replicate plot (n=6). Lettuce root system was stained as
described above, mounted on microscopic slides and examined under
a Reichert-Jung (Vienna, Austria) Polyvar light microscope. The
number of entry points (EP) was assessed at a magnification of 125-
500x and of 1250x. 

Statistical analyses
The soil quality parameters were expressed as percentage of varia-

tion in comparison with their values under the intensive wheat man-
agement (WS), used as control. For pH values, considering their log-
arithmic scale, we expressed the variation in units. Data were com-
pared using a one-way (management as factor) analysis of variance
(ANOVA). Data were ln- and arcsin-transformed when needed to ful-
fil the assumptions of ANOVA, which was carried out according to a
completely randomised design. The Tukey-B procedure was used to
means comparison. Soil chemical parameters showed neither a nor-
mal distribution of error terms nor constant error variance, therefore
a non-parametric ANOVA was required. In this case, we used the
Kruskal-Wallis test and the Mann-Whitney U-test as post-hoc. All sta-
tistics were performed with the SPSS 17.0 software (SPSS Inc.,
Chicago, IL, USA). Ordination analysis (Redundancy Analysis, RDA)
was carried out in Canoco for Windows v. 4.5 (ter Braak and Šmilauer,
2002) in order to investigate the influence of the management (used
as explanatory variable) on the soil quality parameters (used as
response variables). Additionally, Monte-Carlo permutation test was
conducted using 499 random permutations in order to determine the
statistical significance. 

Results and Discussion 

Chemical parameters
In the 0-10 cm soil depth, pH, P, N and SOC were significantly

affected by the management (Figure 1). Soil pH, calculated as units
of variation in comparison with the value under WS, ranged from 
-0.26 to -0.13 units in T3 and T1, respectively (Figure 1a). All the
poplar SRF treatments produced significant pH decreases in compar-
ison with WS and, within poplar, soil pH significantly decreased from
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T1 to T3 (Figure 1a). In a recent meta-analysis, Berthrong et al.
(2009) reported that Eucalyptus and Pinus plantations induced a
strong and moderate acidification, respectively. A general decrease
of pH was also observed in afforestations of a never-tilled soil or
grasslands (Ross et al., 1999; Chen et al., 2000; Sartori et al., 2007).
Consistently, Guo and Han (2008) reported significant decreases of
pH at 0-10 cm and at 10-20 cm soil depth due to soil use conversion
based on a 50-year-old Populus davidiana plantation. On the con-
trary, no changes in soil pH were revealed under Salix and Populus
stands in comparison with arable land by Kahle et al. (2007, 2010).
The reduction of soil pH has been suggested to be related to the
higher organic or carbonic acid production, the latter due to an
increased autotrophic respiration (Richter and Markewitz, 1995)
and to the influence of tree root system on level of ground water and
cation uptakes (Attiwell and Adams, 1993; Jobbágy and Jackson,
2003). Here, the differences in acidification among the different SRF
treatments may be due to the larger production of tree root biomass,
under less frequent cutting cycles, that may release a higher number
of H+ ions (Attiwell and Adams, 1993). 

The variation of soil available P ranged from -17% to 10% in T1 and
T3, respectively (Figure 1b). Significant soil P changes were
observed between T1-T2 in comparison with WS and within poplar
SRF, T3 showed a significant soil P increase, in comparison with T1
and T2. Some authors reported increases of soil P due to the
afforestation with different tree species in comparison with grass-
lands or agricultural soils (Ritter, 2007; Zornoza et al., 2009), while
some others observed higher P contents or no changes in arable
lands or pastures than in adjacent forests (Koerner et al., 1997; Ross
et al., 1999; Chen et al. 2000; Zhao et al., 2007). Such contrasting
results might be due to variables influencing P dynamics, which may
be associated with SOC changes as reported by Piccolo et al. (1996),
and to previous land-use, time since land-use conversion, tree
species planted and climatic conditions (Ross et al., 1999; Ritter,
2007; Zhao et al., 2007).

The total soil N variations ranged from 11% to 34% in T2 and T3,
respectively (Figure 1c). All poplar SRF showed significant soil N
increases in comparison with WS and, within such treatments, T3 pro-
duced a significantly higher increase than T1-T2 (Figure 1c).
Consistently with our data, in other studies soil N concentration in the
shallow layer was lower in agricultural lands than in Betula and Larix
thinned closed canopy plantations and in Populus stands (Ritter et al.,
2007; Sartori et al., 2007). Lower soil N was also detected in agricul-
tural lands than in deciduous forests by Morris et al. (2007). By con-
trast, soil N decreases were reported under Pinus and Eucalyptus
afforestations (Binkley and Resh, 1999; Berthrong et al., 2009). 

The change of SOC due to the different treatments in comparison
with WS ranged from 21% to 57% in T1 and T3, respectively (Figure
1d). A significant increase was observed under all poplar SRF treat-
ments and within poplar stands, SOC under T3 was significantly
higher than under T1 and T2 (Figure 1d). The increase of SOC under
SRF may result in positive changes of soil structure, water retention,
nutrient availability, biological diversity and C sequestration, since it
is well known to affect directly or indirectly the overall soil quality
parameters (Schjønning et al., 2004). Here, SOC showed a pattern
similar to the soil N concentration as reported in other studies
(Franzluebbers and Stuedemann, 2009; Yao et al., 2010). Such simi-
larity between SOC and N patterns was previously explained by car-
bon inputs from plant production and outputs through microbial
decomposition (Gill et al., 1999). Along with our results, several stud-
ies observed SOC increases due to the afforestation of agricultural
soils (Park et al., 1994; Grigal and Berguson, 1998; Tolbert et al.,
2002; Kahle et al., 2007; Laganière et al., 2010), while some others
reported no changes or lower SOC concentration under forest than
under adjacent grassland (Berthrong et al., 2009; Chen et al., 2010;

Article

Figure 1. Soil pH a), available phosphorus (P); b), total nitrogen
(N); c) and organic carbon (SOC); d) under poplar short-rotation
forestry (one, two and three-year cutting cycles: T1, T2 and T3).
The values are expressed as unit or percentage of variation in com-
parison with their values under a wheat-soybean rotation (WS).
Different letters indicate significant differences as tested by the
Kruskal-Wallis test (P≤0.05) and the Mann-Whitney U-test as
post-hoc (P≤0.05).
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Mao and Zeng, 2010). Climate, soil type, management, land use and
time since land use conversion may explain these contrasting results
(Paul et al., 2002; Laganière et al., 2010). 

Biochemical parameters
Most studies have used biochemical indicators, such as the MBC

and the SR, aiming to evaluate the impact of different managements
on soil quality (Haynes, 1999; Dilly and Nannipieri, 2001;
Lagomarsino et al., 2009; Iovieno et al., 2010), while under SRF such
parameters have been less investigated (Guo and Han, 2008; Mao and
Zeng, 2010). Here, MBC and SR showed to be significantly affected by
the management (Figure 2). MBC was significantly increased by all
poplar SRF treatments compared with WS (Figure 2a), showing vari-
ations from 43% to 93% (T1 and T3, respectively). Our results are in
agreement with other studies evaluating the effects of agricultural
land conversion to Populus, Quercus and Salix plantations on MBC
(Makeschin, 1994; Zornoza et al., 2009; Kahle et al., 2010; Mao and
Zeng, 2010). By contrast, other authors showed no changes or signif-
icant decreases of MBC under Pinus stands (Chen et al., 2000;
Macdonald et al., 2009). The MBC increases observed here and in
other studies may be explained by the increase in carbon available for
microorganisms derived from rhizodeposition and from the high-
quality litter of Salicaceae and Fagaceae, while the lower soil MBC
under Pinus afforestation, as compared to the soil under the climax
vegetation, was attributed to the low-quality litter of pine needle lit-
ter by Iovieno et al. (2010). In addition, the mean decrease of number
of live bacteria in the soils amended with Pinus in comparison with
Quercus observed by Grenni et al. (2009) may contribute to explain

the differences of MBC changes commonly reported between Pinus
and other trees. 

SR percentages of variation ranged from 8% to 25% in T1 and T3,
respectively (Figure 2b). SR values under T2 and T3 were significant-
ly higher than that under WS and, within the different cutting cycles,
T2-T3 and T1 produced significantly different effects on SR (T2-
T3>T1) (Figure 2b). According to our data, Zornoza et al. (2009),
studying the impact of different land use, observed higher values of
SR under forest than under abandoned and agricultural systems. The
SR pattern, similar to the MBC one, may be explained by the higher
quantity and different quality of litter under the tree stands in com-
parisons with herbaceous-based systems (Singh and Singh, 1995;
Chen et al., 2000). 

Arbuscular mycorrhizal fungi measurements
L. perenne, the common plant species found in all the plots, showed

root colonisation (RC) changes ranging from 141% to 170% in T1 and
T2, respectively (Figure 3a). L. perenne grown under WS was signifi-
cantly less colonised by AMF than that grown under poplar SRF and,
within the different cutting cycles, the root colonisation under T1 and
T3 was significantly lower than that under T2 (Figure 3a). The differ-
ence of AMF colonisation between SRF and WS may be attributed to
the cultural operations carried out in order to prepare seedbed, to fer-
tilise crops and to control weeds, pests and diseases as well as to the
above- and belowground plant species diversity  (Helgason et al.,
1998; Vandenkoornhuyse et al., 2003; Leake et al., 2004). In addition,
the highest root colonisation of the L. perenne grown under T2 might
be explained by a large production of poplar fine roots observed in
such management (Amato, 2000; Bonari and Masoni, 2000). 
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Figure 2. Soil microbial biomass (MBC) a) and soil respiration
(SR) b) under poplar short-rotation forestry (one, two and three-
year cutting cycles: T1, T2 and T3). The values are expressed as
percentage of variation in comparison with their values under a
wheat-soybean rotation (WS). Different letters indicate signifi-
cant differences as tested by ANOVA (P≤0.001) and the Tukey-B
test as post-hoc. 

Figure 3. Arbuscular mycorrhizal fungal root colonisation (RC).
a) and number of entry points (EP) b) under poplar short-rota-
tion forestry (one, two and three-year cutting cycles: T1, T2 and
T3). The values are expressed as percentage of variation in com-
parison with their values under a wheat-soybean rotation (WS).
Different letters indicate significant differences as tested by
ANOVA (P≤0.001) and the Tukey B test as post-hoc.
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The number of EP under poplar SRF treatments showed values
from 8 to 21 times higher than that reported under WS (Figure 3b).
The number of EP under T1 and T3 was significantly lower than under
T2 (T1-T3<T2) (Figure 3b). Our EP data under WS are consistent
with the values reported by several authors, which measured such
parameter assessing the AMF inoculum potential under shrubs, wild
and cultivated plant species from semiarid ecosystem to boreal grass-
lands (Requena et al., 2001; Bharadwaj et al., 2007). Besides, EP val-
ues similar to those reported, here, under SRF were observed for dif-
ferent AMF inocula on several plant species (Liu and Luo, 1994). Such
strong difference of AMF inoculum potential between a herbaceous-
based system (WS) and the SRF may be explained by the different
management, plant communities, patterns of root systems and hyphal
networks, AMF communities in the soil and in planta (Bever et al.,
1996; Helgason et al., 1998; van der Heijden et al., 1998; Daniell et al.,
2001; Vandenkoornhuyse et al., 2003; Giovannetti et al., 2004). 

Multivariate analysis of the soil chemical, biochemi-
cal and biological parameters

The RDA analysis, aiming at evaluating the impact of the different
managements on the soil quality parameters, showed that manage-
ment, used as explanatory variable, explained 69.9% (I and II axes) of
the whole variance and that its effect on soil quality parameters
(Figure 4), used as response variables, was significant (P=0.002). In
detail, the Monte-Carlo permutation test pointed out significant dif-
ferences on soil quality between WS and poplar SRF stands (P=0.01)
and between T3 and the other cutting cycles (P=0.002), as showed by
the distances of the centroids representing the managements. The
biplot shows that the values of all soil quality parameters were high-
er under poplar SRF in comparison with WS, and that the differences
among the T1, T2 and T3 were due to the fact that T1 and T2
increased the parameters linked to AMF, while T3 the soil chemical
and biochemical variables. The short distance between the arrows
representing RC and EP, as well as those representing SOC and N,
shows the strong correlation between such parameters. 

Conclusions

Since biomass is one of the most important sources of renewable
energy, plant-microbial interactions under Poplar stands in comparison
with conventional agricultural management are a cutting-edge issue.
The present study shows the potential of a bioenergy crop manage-
ment, represented by poplar SRF, to improve soil quality in comparison
with an intensive food cropping system and a distinct behaviour of the
different poplar cutting cycles in promoting soil organic carbon, micro-
bial biomass and AMF inoculum potential. Such findings have impor-
tant ecological and environmental implications, since the positive
belowground effects observed here under poplar plantations could
improve the viability of low-input SRF stands. The interactions between
bioenergy crops and microorganisms need to be further investigated to
explore their implications on plant-soil carbon sequestration, biomass
production and nutrient uptake by mycorrhizas. 
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