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Displacements of the pipe system
caused by a transient phenomenon
using the dynamic forces measured in
the laboratory
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Abstract
Background: When transporting liquids, in particularly over long distances, dynamic forces in the system can present a
risk. The larger the system size, and the greater the pressure, the more harmful the impact is of such forces. Water is
transported in this way for domestic, industrial, and fire-fighting purposes. One of the impulses of dynamic force applica-
tion may be the transition of the pressure wave in the water hammer.
Methods: In this paper, the results of measured dynamic forces and associated displacements recorded on the model
caused by transient flow conditions are presented. For measured forces, the displacements of the pipe were also calcu-
lated by using the oscillation motion equations. Force measurements and displacement analyses were carried out in
laboratory on the model of a simple fire protection system equipped with three nozzles.
Results and Conclusions: The measurement results and calculations were used to calibrate a mathematical model
created using MATLAB software.
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Introduction

A severe form of water hammer is called surge, which
is a slow motion mass oscillation of water caused by
internal pressure fluctuations in a system.1 This can be
pictured as a slower ‘‘wave’’ of pressure arising within
the system. If not controlled, it can yield the following
results: damage to pipes, fittings, and valves, which in
turn causes leaks and life shortening of the system.2

In this paper is shown the use of equations describ-
ing the movement of suspended mass focused on the
beam to calculate the displacement of the pipelines
under the action of dynamic forces. This approach will
allow to calculate, as far as possible, the actual displa-
cement of the pipeline in the direction of flow change.
This is very important information for designers calcu-
lating and selecting parameters of fixed points.3

One of the factors that affect the reliability of an
installation is its proper fastening to the structure of the
building or other supporting components. This is espe-
cially important for installations which are exposed to
dynamic loads. An example of an installation with the
necessary high-reliability exposure to dynamic loads is a

fire protection system. The selection of fastening ele-
ments for such an installation depends on the force that
the fastener can carry. Unfortunately, it is usually
assumed that the force is applied statically. Therefore, it
is important to implement numerical models for the cal-
culation of the displacements for the dynamic system
and to compare them with physical models.

The measurements made allowed to calculate the para-
meters of the pipe-water system, which are necessary to
calculate displacements based on the equation using the
natural frequency for the entire system (i.e. the walls of
the pipe and water filling the pipe). Such approach allows
taking into account the impact on displacement not only
the coefficient of elasticity of the pipe walls but also the
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bulk modulus of the water filling the pipe. Taking into
account the mutual influence of both coefficients of elasti-
city (by calculating the natural frequency of oscillations)
will allow a more accurate description of the phenomenon.
The described problem does not finish solving the whole
task. Currently, further research is planned to confirm the
validity of the assumptions made, as well as to conduct
measurements for pipes of various materials, with differ-
ent wall thicknesses and the proportions of wall thickness
and inside diameter, as well as for liquids with different
densities.4 Such an examination will allow for the develop-
ment of a computational scheme, which in a simple way
will allow, for example, engineers to calculate real ranges
of displacements of pipe systems caused by transient phe-
nomena. This knowledge, in turn, will allow adequate pro-
tection of pipe systems against damage, thanks to the
appropriate pipe support selection.

The essence of the water hammer
phenomenon

The disturbance that spreads in the form of a pressure
wave occurs in transient fluid flow conditions.5 The
water hammer phenomenon happens when there are
strong pressure oscillations in the pipe that is operating
under pressure.6 This is due to rapid changes in fluid
flow rate forced in a short period of time. Physically,
flows occurring in the form of hydraulic shock are
caused by inertia of the mass of the fluid moving in the
pipeline, where the flow rate changes suddenly. Rapid
changes in the velocity and volume stream of flowing
fluid leads to a local change in the proportion of kinetic
and potential energy to the total energy of the section,
which is expressed in a pressure increase or decrease in
the stream. A rapid reduction of kinetic energy is
observed in conditions of very rapid flow rate decelera-
tion, which causes a sudden increase in potential
energy, which in turn is manifested by a high-pressure
increase. The course of water hammer phenomenon is
significantly affected by fluid susceptibility to the com-
pressibility and elasticity of the pipeline walls, that is,
their sensitivity to elastic strains due to hydrodynamic
pressure changes in the pipeline. In extreme cases, this
sudden pressure increase may cause an excessive
amount of critical tensile stress in the pipeline walls.7

Water hammer is associated with an increase in pres-
sure referred to as ‘‘positive impact,’’ which is accom-
panied by a sudden pressure drop called ‘‘negative
impact.’’ The pressure gains for positive and negative
water hammer phenomenon are calculated according
to the formula of Joukowsky–Allievi

Dp=6rcDv ð1Þ

where Dp is the maximum pipe pressure increase in
water hammer phenomenon (F/L2], r is the fluid den-
sity (M/L3), c is the speed of propagation of the pres-
sure wave, which is called celerity (L/T), and Dv is the
change in velocity (L/T).

The dimensions are F (Force), L (Length), M
(Mass), and T (Time).

For both positive and negative water hammer, two
cases are possible:

When tz \ T, where tz is the time of total valve
opening and T is the total time of wave propagation
from the valve and back, then a straight surge will
be observed in the pipe. When tz . T, a non-straight
surge will be noted in the pipe.

Contemporary analysis of water hammer phenom-
enon is most often based on the results obtained from
the numerical solution of mathematical models. Most
of these methods have their origin in differential equa-
tions of motion and continuity.

Differential equations of motion and continuity are
adopted in a simplified form, that is, average flow para-
meters are ‘‘constant’’ and their derivatives are equal to
zero, and the friction is reduced to a linear function.
This results in a special solution of equations whose
results are algebraic equations with respect to the para-
meters of pipelines and boundary conditions. Taking
into account the impact of the enclosure on the solu-
tion, that is, a valve, pump, or change in pipe diameter,
it is possible to achieve a solution, that is, a description
of the phenomenon for a typical fluid transport system,
without the necessity to refer to differential equations.
It should be noted that by applying an equation
reduced to a linear form to describe the phenomenon,
the superposition principle can be used even for com-
plex water supply or heating systems.

In the simplified equations of motion and continuity,
pressure changes p are presented in the form of pressure
head changes H=p/g, and the equations have the fol-
lowing form5

∂H

∂x
+

1

gQ

∂Q

∂t
+

lQn

2gDAn
=0 ð2Þ
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+
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∂H
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where H is the piezometric head (m) of the liquid col-
umn, Q is the volumetric flow rate (m3/s), l is the mul-
tiplication factor of the friction element (–), n is the
power exponent (–), D is the pipeline inner diameter
(m), A is the pipeline cross-sectional area (m2), c is the
celerity (m/s), and g is the acceleration due to gravity
(m2/s).

Experimental facility in laboratory

This paper presents and improves in detail the study
which was simply presented in the article by
Malesinska.2 The draft of the test stand concerned the
simple scheme of a fire protection system, consisting
only of the distribution pipe and one straight pipe
(made up of three different diameters), armed with
three nozzles. A simple geometric scheme allowed for
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an initial analysis and identification of phenomena
accompanying the hydraulic shock wave propagation.
The pipe system was designed in accordance with the
applicable standards. A scheme of the designed installa-
tion is presented in Figure 1.

A system of steel of various outer diameters D0 and
wall thickness e was used in the experiment. The instal-
lation system that was accepted for the study was not
filled with water. It was a model of an air system device
used to protect the space of construction objects from
the risk of frost or water evaporation. The installation
system was equipped with three upright nozzles. The
nozzles were placed one on each section of constant
diameter DN40, DN32, and DN25 (Figure 2). The test
stand for the water hammer analysis was constructed
to perform the experiments, using the measuring system
and recording of fast-changing pressure values.

The model was supplied with water via a pressure
increasing station (Figure 3). The water in the tank was
refilled from a water supply system. Permanent steady
flow conditions established in the model of the system
were made possible by the use of a water–air tank
which had a capacity of 300 dm3. The model was con-
nected to the compressor, allowing an increase in the
initial pressure in the system to the value of 5.5 bar
(Figure 3).

The measurement and analysis of the results was for
a simple water hammer only, that is,. with pressure

wave transition time T always higher than the valve
opening time tz. The experiment was performed at an
average temperature of 281K.8,9

The values of the forces impacting the components
of the system were evaluated as follows:

1. In the first step, the forces were measured by a
means of dynamometers (for a detailed descrip-
tion of the measurements and the results
obtained, see Malesinska2). Figure 4 shows only
the relationship between the measured forces
and the pressure in the cross section in which
the forces were measured.

2. Then, in the same section after removing the
dynamometers, a fixed support was installed,
constructed from a special clamp hung on an
80 cm threaded pipe (Figure 5). On this threaded
pipe, after special preparation, a strain gauge
was attached, which then allowed the stress
measurements to take place (Figure 6). This
fixed support is working as a cantilever beam
with a point mass suspended at its end. The
threaded pipe is considered as a cantilever beam
and the steel pipe with water as a suspended
mass.

In addition, measurement involved the concurrent
measuring of pressures and flow rate and also the open-
ing time of the feed valve. This measurement guaran-
teed a comparison of the water hammer phenomenon
for the same (or very similar) boundary conditions. The
valve opening time was closely linked to the valve open-
ing angle. The measurement of voltage obtained from
the potentiometer, mechanically coupled with the valve
hand wheel, was used to register the changes during the
opening angle of the feed valve. This procedure ensured

Figure 1. Scheme of the laboratory test stand.

Figure 2. Upright nozzle installed in the pipe.

Figure 3. Pressure increasing station with the compressor.
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a voltage proportional to the angle of rotation of the
valve hand wheel. The turbine flow meter type TUV-
1210, which could record the counted flow units, was
used for flow measurement.

All the recorded values were recorded using a com-
puter that was equipped with software that controlled
the measurement process and all further processing.
The basic software was developed in the ‘‘C’’ language,
using ‘‘Turbo C’’ program for compilation and subrou-
tine statements. Two versions of the software were
designed: a version used to record the measurements
and a version used to analyze the measurement results
and the recorded value outputs.

Case study

The analysis included three work variants of the exam-
ined installation in the laboratory. Variant 1—one

nozzle opened, variant 2—two nozzles opened, and
variant 3—three nozzles opened.

Strain gauges installed on the cantilever beam of the
fixed support allowed the calculation of the mass that
was suspended on the beam, and then using the equa-
tion of oscillatory motion, the beam displacement was
calculated for the suspended installation.

Before any measurements were taken, the strain
gauges attached to the cantilever beam of the fixed sup-
port was calibrated, and the basic strength characteris-
tic of the applied cantilever, which was necessary for
calculation of the mass suspended on the beam, was
determined.

Two wire strain gauges with the following para-
meters were attached to the beam:

Nominal resistance Rnom=600O;
Transformation constant K=2.62;
Active length l=10mm.

Both strain gauges were combined in a ‘‘half-bridge’’
system. The half-bridge system was used due to the
measured parameter. In this system, one strain gauge
was under compression and the other under tension.
The strain gauges were attached to the previously pre-
pared surface (the surface was leveled and cleaned).
The place of attaching the strain gauges is shown in
Figure 6. The strain gauges were attached as close as
possible to the place where the beam was fastened, so
as to minimize the effect of changing the length of the
bent beam on the accuracy of strain gauge measure-
ments. On the diagonal of the bridge to obtain the
change in voltage DU, which depended on the resis-
tance change DR/R

DU

U
=

1

2

DR

R
ð4Þ

where U is the voltage of bridge powering (V)

DR=RnomKe ð5Þ

Figure 4. Relationship between the measured forces and the pressure in the cross section in which the forces were measured.

Figure 5. Scheme of a fixed support on which the model was
suspended.
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here, E is the relative elongation of strain gauges in the
range of elastic strains and e=0.001, thus

DU

U
=

1

2
32:6230:001=0:0013 ð6Þ

With the bridge powered by a voltage U of 5V, a
strain gauge bridge input signal imbalance is obtained
and is equal to

DU=530:0013=0:0065V=6:5mV ð7Þ

By strengthening the direct current, having, for
example, an amplification of L=1000, it is possible to
obtain an input signal of 6.5V with 1 kN of force
applied to the end of the cantilever beam in question.

Strain gauges calibrating was carried out by apply-
ing a force of known value (kN) and then reading the
values of voltage (mV) corresponding to these known
force values and their corresponding voltage changes.

Since the relationship presented is linear, a best fit of
the variability function was determined by the least
squares method (Figure 7).

To calculate the strength parameters of the cantilever
threaded pipe beam of the fixed support, it is necessary
to know the basic geometrical and material parameters
of the beam as follows:

Inner diameter d=33mm;
Outer diameter D=39mm (below the thread);
Beam length L=80cm;
Elastic modulus for steel E=2.093 105MPa.

Beam strength parameters were then calculated
based on the above data values:

Moment of inertia for beam cross section

J=
p

32
D4 � d4
� �

=11:069 cm4 ð8Þ

Cross section modulus

W=
p

16

D4 � d4

D

� �
=5:677 cm3 ð9Þ

Beam cross section

A=
p

4
D2 � d2
� �

=3:39 cm2 ð10Þ

With beam length of L=80cm, 271 cm3 of beam
material net volume is obtained.

Calculation of the deflection of the cantilever
beam—static force applied at the end of the
cantilever

The displacement of the end of the beam as a result of
the static action of the concentrated force, F, according
to the material mechanics theory can be calculated from
the relationship

Figure 6. Fixed support with strain gauges attached.

Figure 7. Strain gauges calibrating, readout of voltage value for known applied force value.
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f=
FL3

3EJ
ð11Þ

where f is the displacement of the end of the cantilever
beam (deflection; m), F is the concentrated force (N), L
is the beam length (m), E is the modulus of elasticity of
the beam (Pa), and J is the modulus of inertia of the
beam (m4).

For the scheme presented in Figure 6, in the first
stage of the test, the components of the force caused by
the water hammer pressure wave were measured using
dynamometers.2 The measured force components were
used at this point to calculate the displacement of the
beam end after the static force was applied at the end of
the beam, that is, the threaded pipe of the fixed support.
The cantilever beam was 80 cm long. For that particular
beam length and the calculated strength parameters in
Table 1, the deflection of the cantilever beam based on
the calculated resultant forces was determined. The cal-
culations are shown in Table 2.

Use of the equation of the oscillatory motion for
maximum deflection determination of the cantilever
beam

In the first step, the frequency of the natural oscillations
of the pipe system not filled with water was measured in
the laboratory. Oscillation inductions were forced by
hitting with a soft pad. The oscillations constitute peri-
odical motion in which all the points of the oscillating
system, after a fixed time interval, would return to the
initial value in a reproducible manner. This time inter-
val is called the period of oscillation, and it is denoted
by the letter T. The reciprocal of the period 1/T= f is
called the frequency of oscillations. The frequency of
natural oscillations of beam + mass f (Hz) system was
measured, which gives

Angle velocity

v=2pf(rad=s) ð12Þ

Angle velocity of beam with susceptibility k and
mass concentrated at the end of the beam

v=

ffiffiffiffi
k

m

r
ð13Þ

thus

m=
k

v2
ð14Þ

in order to obtain the characteristic of oscillations, two
records of suppressed oscillations, ‘‘dr1’’ and ‘‘dr2,’’
were made.

To register ‘‘dr1’’ (Figure 8), nine cycles took
14302 350=1080 recorded points (x and y=counted
non-scaled impulses). Each registered point lasts 2ms,
thus 9 cycles lasted 2.16 s which corresponds to the
following:

Oscillation period T=2.16/9=0.24 s;
Oscillation frequency f=4.17Hz;
Angle velocity v0=26.17 rad/s.

On the basis of the course of the forced
oscillation for the empty pipe, ‘‘dr2,’’ similar to the first
case ‘‘dr1,’’ 10 cycles were taken from the recorded
characteristic, which took 14302 255=1175 registered
points (x, y=counted non-scaled impulses) 2.35 s, cor-
responding to

Table 1. Properties of steel pipes used in the experiment.

No. Nominal diameter
DN (mm)

Outer diameter
D0 (mm)

Wall thickness
e (mm)

Individual celerity
ci (m/s)

Pipe length
L (m)

1 50 60.3 3.65 1280 14.5
2 40 48.3 3.25 1280 3.0
3 32 42.3 3.25 1280 3.0
4 25 33.7 3.25 1280 3.0

Table 2. Calculated deflections for the acting resultant forces.

Variant Force F (N) Deflection f (cm)

I 773 0.57
II 992 0.73
III 873 0.64

Figure 8. Course of forced oscillation for an empty pipe, ‘‘dr1.’’
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Oscillation period T=2.35/10=0.235 s;
Oscillation frequency f=4.25Hz;
Angle velocity v0=26.72 rad/s.

Mean value of angle velocity for the dry system is
v0avg=26.45 rad/s.

Finally, it is possible to calculate the mass suspended
on the cantilever beam assuming that the suspension is
at its end point. Hence, the constant of beam suscept-
ibility was calculated from k=3EJ/L3 (N/m), where L
is the beam length. According to Equation (14), we
know that m= k=v2, where k=135kN/m and
v=26.45 rad/s are the values calculated for the exam-
ined system. Thus, we obtain mass value m=193kg.

In the same manner, using the measured characteris-
tics, the following was established for the wet pipes:

Oscillation period T=0.28 s;
Oscillation frequency f=3.57Hz;
Angle velocity v=22.4 rad/s, calculated from
Equation (12);
Mass m=269kg, calculated from Equation (14).

As the value of the concentrated mass suspended at
the end of the cantilever beam is known, it was possible
to analyze the oscillations forced by a sudden applica-
tion of force—a response of the system to the pressure
wave propagation. Forcing the oscillating system
motion is a certain process, and as known, its nature
can be of an aperiodic process character, in particular
the transition one.

Then, the mathematical model of the system with
suppressing takes the following form

m€x+ c _x+ kx=F tð Þ ð15Þ

where force F(t) may be aperiodic and also a discontin-
uous function. To determine the motion of the oscillat-
ing system affected by the action of aperiodic
extortions, the response of the system on two elemen-
tary forces can be analyzed, that is, the unit impulse
and the unit step. The impulse is a measure of the
impact of short-term forces, for example, the closing
and quick opening of the feeding valve. The step is a
response to the force of the constant value suddenly
applied to the physical system, for example, a heat
shock caused by a sudden temperature change.

In the case of the water hammer phenomenon, we
are dealing with an applied instantaneous force. A mea-
sure of the impact of short-term forces is impulse S,
that is

S=

ðt2
t1

F tð Þdt ð16Þ

When the time Dt of force F(t) operation is very
short, as it is in the case of pressure wave propagation,
it is an instantaneous force. The solution of the

equation of suppressed oscillatory motion induced by
instantaneous force, taking into account the subcritical
suppression, is the following function

x tð Þ= s

mvD
e�btsinvDt ð17Þ

where x is the displacement of the end of the cantilever
beam in time; S is the impulse caused by instantaneous
force action, S=F0Dt; m is the mass, in this case calcu-
lated based on measured characteristics of mass value
for a wet installation, m=269kg; and vD is the fre-
quency of suppressed free oscillations (natural
frequency)

vD =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
0 � b2

q
ð18Þ

v0 is the natural oscillations frequency; b is the normal-
ized suppression coefficient, b=c/2m; and c is the vis-
cous suppression coefficient related to the suppressive
properties of viscoelastic material

c=
gk

v
ð19Þ

v=v0 ð20Þ

g is the number characterizing the suppression proper-
ties of the beam

g=
ImE�

ReE�
ð21Þ

ImE is the imaginary part of complex elastic modu-
lus, ReE is the real part of complex elastic modulus, E
is the complex elastic modulus, that is, variable over
time, and k is the number characterizing elastic proper-
ties of the beam

k=
AReE�

l
ð22Þ

On the basis of the experiments conducted, and by
calculating certain value characteristic of the analyzed
system, it is possible to derive an equation of suppressed
oscillatory motion caused by the activity of the instan-
taneous force–pressure wave propagation.

In order to derive an equation of suppressed oscilla-
tory motion, the relationship for TD may be used,
which is defined as the time interval between two suc-
cessive peaks in the same direction. The TD value is
constant in time and can be calculated from the follow-
ing relationship

TD =
2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
0 � b2

q ð23Þ

Explanations are similar to those in Equation (18).
Having the measured characteristics for the experiment,
it is now possible to determine the value of TD=0.29 s.
After converting the above relationship, it is possible to
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calculate the standardized suppression coefficient
b=5.69 rad/s and vD=21.66 rad/s.

For the assumed unit impulse inducing system oscil-
lation, the equation of the change of displacement ver-
sus time takes the form (h and x are the same
parameters describing displacement of the end of the
cantilever beam)

h tð Þ= 1

mvD
e�btsinvDt ð24Þ

m=269kg, b=5.69 rad/s, vD=21.66 rad/s, and
TD=0.29 s

h tð Þ=1:716310�4e�5:69tsin 21:66t ð25Þ

In the case of a water hammer, it was assumed that
the concentrated force F was acting in infinite time. So,
it is assumed that the impulse S is equal to the force F.

According to the equation of the oscillatory motion,
the maximum displacement xmax is as follows

xmax=
S

mvD
e
�bp
2vD for t=

p

2vD
=0:07 s ð26Þ

Assuming S=F, xmax was calculated for the force
values listed in Table 3.

Knowing the function describing end of the cantile-
ver beam displacement, the pipe of the installation dis-
placement is known as well.

MATLAB package implementation

To calculate the change in displacement of the end of
the supporting beam for unit impulse versus time, the
MATLAB package was used. For this purpose, the fol-
lowing oscillation function was created:

function [x, t]=oscillation (S, m, omega0, Td, and
figure), which requires the following input parameters:

S is the value of unit impulse (N), m is the mass con-
centrated at the end of beam (kg), omega0 is the angular
velocity (rad/s), Td is the contractual period (s), and fig-
ure is the parameter specifying whether to create a fig-
ure or not.

The function returns two output values: x is the
value of maximum displacement (cm) and t is the time,
after which the value of maximum displacement
occurred.

To solve the problem, all of the values needed for
Equation (26) must be calculated. Based on the v0 and
Td parameters, the value of the normalized suppression
coefficient (b) is determined. Then, by using this value,
the value of vD is calculated. After calculating all the

necessary values, the symbolic variable t is created, and
Equation (26) is built using the provided and calculated
values.

The built equation is solved to find the global mini-
mum using the GlobalSearch class and the correspond-
ing settings for the optimization problem of one
variable.10

Finally, the graph of the function is plotted, and the
maximum value found (the minimum value determined
by the above optimization problem) is marked on the
graph, and the two output parameters are returned
from the function. The function block diagram is
shown in Figure 9 (the following is an example of a
function call).

Table 3. Calculated deflections for the acting resultant forces.

F1 (N) X1 (cm) F2 (N) X2 (cm) F3 (N) X3 (cm)

773 8.78 992 11.26 873 9.91

Figure 9. Function block diagram.
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For the input parameters S=992N, m=269kg,
v0=22.4 rad/s, and Td=0.29 s, output parameters
were obtained: x=11.661 cm and t=0.060653 s, and
the graph of the function was as shown in Figure 10.

Summary

One of the factors affecting the reliability of an installa-
tion is its proper suspension to the structure of the
building or other supporting components. This is espe-
cially important for installations which are exposed to
dynamic loads. An example of an installation with the
required high reliability exposed to dynamic loads is a
fire protection system. The selection of fastening ele-
ments for a given type of installation depends on the
force that the fastener can carry. Unfortunately, it is
usually assumed that the force is applied statically.
This article presents the values of installation displace-
ment calculated traditionally for the static system (f).
These values were compared with the displacements
obtained with the use of the oscillation equation (x or
h). Such calculations were possible thanks to the results
of research conducted on a physical model in the
laboratory. It was not possible to measure displace-
ments at this stage of the research. Installed strain
gauges were used to measure the quantities necessary
to determine the natural frequency of the system. The
displacement values obtained from the oscillation equa-
tion were on average 10 times larger than the displace-
ments calculated from the static system.11 The order of
magnitude of the displacements calculated on the basis
of the oscillation motion theory was consistent with the
eye observations carried out directly on the model dur-
ing the measurements. The next stage of the research
will be the recording of the displacements of the system

by means of a camera with software for the recording
of fast-changing phenomena. This will allow the getting
of real displacement functions and validation of the use
of equations of oscillation motion (taking into account
the natural frequency of the system) for the description
of the phenomenon, assuming S=F. The obtained
measurement results will allow for a possible correction
of the equations used. Based on current knowledge, it
is well known that the coefficient of compressibility
(inverse of the bulk modulus) of a liquid is meaningful
when analyzing a water hammer phenomenon.
However, from the material mechanics point of view,
the bulk modulus of the liquid is negligibly small (e.g.
2.2GPa for water compared to 160GPa for steel).
Nevertheless, according to the authors, the bulk modu-
lus of the liquid together with the coefficient of elasti-
city of the pipe walls has an influence on the
suppression rate and thus on the size of displacements
caused by transient phenomena.
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