
Electronic Notes in Theoretical Computer Science 48 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume48.html pp. 1 – 16

Logic programs as specifications in the
inductive verification of logic programs

Marco Comini 1

Dipartimento di Matematica e Informatica
Università di Udine

Udine, Italy

Roberta Gori 2 Giorgio Levi 3

Dipartimento di Informatica
Università di Pisa

Pisa, Italy

Abstract

In this paper we define a new verification method based on an assertion language
able to express properties defined by the user through a logic program. We first
apply the verification framework defined in [3] to derive sufficient inductive condi-
tions to prove partial correctness. Then we show how the resulting conditions can
be proved using program transformation techniques.

Key words: Inductive verification, Abstract interpretation,
Transformation of logic programs.

1 Introduction

The aim of verification is to define conditions which allow us to formally prove
that a program behaves as expected, i.e. that the program is correct w.r.t. a
given specification, a description of the program expected behavior.

There are essentially two ways to represent the actual and the expected
behavior of a program, by listing all the results or by characterizing a property
that the results have to satisfy. In order to express properties of programs we
use assertions, formulas in a suitable assertion language. Once the assertion
language has been chosen, we can only verify a specific class of properties.

1 Email:comini@dimi.uniud.it
2 Email:gori@di.unipi.it
3 Email:levi@di.unipi.it

c©2001 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Comini, Gori and Levi

In this paper we propose a new verification method based on an assertion
language able to express properties which are not given once and for all, but
can be defined by the user through a logic program. This yields a very pow-
erful assertion language, which allows us to verify different properties for a
wide class of programs. Given any property expressed as a formula built on
user defined predicates, by applying the verification framework defined in [3],
we derive sufficient inductive conditions for partial correctness. Since the as-
sertion language is very powerful we can not hope to have an effective way to
decide whenever the resulting conditions are verified. However, we will show
that such conditions can be proved by using well-known program transforma-
tion techniques. Program transformation is a methodology which allows one
to syntactically transform formulas while preserving its (chosen) semantics.
Some examples of transformation rules are fold/unfold transformation rules.
In our case we prove assertions on the user defined predicates by means of
transformations on the user program.

It is worth noting that assertion languages which allow one to express
properties defined by means of user programs have already been defined in
the literature [14,15,2,16,7]. However our approach is substantially different.
In [14,15,2], in fact, assertions are associated to program points. At run time
such assertions will be executed using the logic programs defining the assertion
language and the run time values. In this approach the logic implementation
of the specification language is used to check by execution that each result
of the actual program verifies the specification, while in our approach the
same program is used to syntactically prove sufficient conditions for partial
correctness.

The reader is assumed to be familiar with the terminology and the basic
results in the semantics of logic programs [1,10] and with the theory of abstract
interpretation as presented in [5,6].

2 Inductive Abstract Verification

In order to prove that a program behaves as expected we can use a semantics-
based approach based on abstract interpretation techniques. This approach
allows us to derive in a uniform way sufficient conditions for proving par-
tial correctness w.r.t. different properties of interest. The ideas behind this
approach are the following:

• The concrete semantics [[P]] of a program P is defined as the least fixpoint
of a semantic evaluation function TP on the concrete domain (C,�).

• As in standard abstract interpretation based program analysis, the class of
properties we want to verify is formalized as an abstract domain (A,≤),
related to (C,�) by the usual Galois connection α : C → A and γ : A →
C (abstraction and concretization functions). The corresponding abstract
semantic evaluation function T α

P is systematically derived from TP , α and γ.

2

Comini, Gori and Levi

The resulting abstract semantics is a correct approximation of the concrete
semantics by construction and no additional “correctness” theorems need
to be proved.

• An element Sα of the domain (A,≤) is the specification, i.e., the abstraction
of the intended concrete semantics.

• The partial correctness of a program P w.r.t. a specification Sα can be
expressed as α([[P]]) ≤ Sα.

• Since [[P]] is defined as the least fixpoint of the operator TP , a sufficient
condition 4 for the partial correctness is

T α
P (Sα) ≤ Sα. (1)

Following the above approach, verification techniques inherit the nice fea-
tures of abstract interpretation. Namely, we can define a verification frame-
work, parametric with respect to the (abstract) property we want to model.
Given a specific property, the corresponding verification conditions are sys-
tematically derived from the framework and guaranteed to be indeed sufficient
partial correctness conditions.

The inductive verification method based on the sufficient condition (1) does
not require to compute fixpoints. In order to make it effectively applicable,
we need

• a concrete fixpoint (denotational) semantics, which allows us to observe the
property we want to verify.

• a finite representation of the intended abstract behavior (specification).

3 Verification methods

(1) (in the case of logic programs) was initially used in abstract diagnosis
[4], a technique which extends declarative debugging [16,8] to a debugging
framework, parametric w.r.t. abstractions. A similar approach is taken in [2],
where different approximations (modeled by abstract interpretation) can be
used in the semantics and in the specification.

More general specifications (including pre and post conditions) are consid-
ered in [9], which defines a verification framework, where well known verifica-
tion methods can be reconstructed, by simply choosing different abstractions.

The approach can be explained in terms of two steps of abstraction. The
first step is concerned with the derivation of a semantics which models a spe-
cific aspect of the computation which allows us to derive the sufficient verifica-
tion conditions through (1). The second step performs the abstraction needed

4 In fact T α
P (Sα) ≤ Sα implies [[P]]α ≤ Sα and, since α([[P]]) ≤ [[P]]α, the condition

α([[P]]) ≤ Sα can be derived. Note that (1) means that the specification Sα is a pre-fixpoint
of the abstract semantic evaluation function T α

P .

3

Comini, Gori and Levi

to model specific classes of properties which can lead to finitely representable
specifications.

Therefore we can deal with different notions of partial correctness and their
associated proof methods.

Success-correctness. In this case we consider post-conditions only. The
adequate semantics models computed answers.

I/O correctness. In this case specifications are pairs of pre and post con-
ditions. With this method one can prove that the post-condition holds
whenever the pre-condition is satisfied. The adequate semantics models the
functional dependencies between the initial and the resulting bindings for
the variables of the goal.

I/O and call correctness. Specifications are still pairs of pre-post condi-
tions. With this method one can prove also that the pre-conditions are
satisfied by all the procedure calls. The adequate semantics models the
functional dependencies between the initial and the resulting bindings for
the variables of the goal and information on call patterns.

As already mentioned, the second abstraction step is concerned with the
choice of an abstract domain to approximate the properties. Of course we can
make available to program verification all the abstract domains designed for
the static analysis of properties such as modes, types, groundness dependen-
cies, etc. As is the case for static analysis, in general we lose the precision,
however we succeed in getting finite specifications.

4 Assertions and specification languages

As shown in [3], a particular interesting choice for the second abstraction step
consists in defining an abstract domain whose elements are formulas (asser-
tions) in a formal specification language. In this case we can specify properties
of programs as assertions in a suitable specification language. Assertions, in
fact, do define an abstract domain (as shown by the Cousot’s in the early
papers on abstract interpretation).

Let us consider a first order language L. We assume the signature of L to
include functions, constants and variables of the programs we want to verify.
Let F be a set of formulas (assertions) of L, expressing properties of the
arguments of predicates. We choose an interpretation I in order to define the
semantics of the formulas of F. The validity of a formula Φ in I under the
valuation σ, written I |=σ Φ, is defined as usual. Notice that substitutions
can naturally be viewed as valuations.

A natural pre-order is induced on F by implication under the interpretation
I, i.e., Ψ
 Φ if and only if I |= Ψ ⇒ Φ. Our idea is to use formulas of F

as abstract values to describe sets of substitutions. Basically we consider the

4

Comini, Gori and Levi

following concretization from assertions to substitutions:

γF(Φ) := {σ ∈ Subst | I |=σ Φ}.

Is possible to show that the previous concretization induces a Galois connec-
tion between (F,
) and the power-set of sets of substitutions ordered by set
inclusion. Following this approach we can provide assertion versions of the
verification conditions for the previously defined proof methods. In order to
prove I/O (and call) correctness, we deal with pre-post specifications SI ,SO,
functions which associate to each pure atom p(x) an assertion Φ, with free
variables in {x}.
I/O correctness. The sufficient verification conditions obtained from (1) in

the case of I/O correctness are the following.
For each clause c := p(t)← p1(t1), . . . , pn(tn) ∈ P ,

I |= SI(p(x))[x/t] ∧ Φ1 ∧ · · · ∧ Φn ⇒ SO(p(x))[x/t], (cO)

where

Φj :=

{
SO(pj(xj))[xj/tj] if I |= SI(p(x))[x/t] ⇒ SI(pj(xj))[xj/tj]

TRUE otherwise

I/O and call correctness. The sufficient verification conditions obtained
from (1) in the case of I/O and call correctness are the following.

For each clause c := p(t)← p1(t1), . . . , pn(tn) ∈ P and each k ≤ n,

I |= SI(p(x))[x/t] ∧ SO(p1(x1))[x1/t1] ∧ · · · ∧
SO(pk−1(xk−1))[xk−1/tk−1] ⇒ SI(pk(xk))[xk/tk],

(cI)

and

I |= SI(p(x))[x/t] ∧ SO(p1(x1))[x1/t1] ∧ · · · ∧
SO(pn(xn))[xn/tn] ⇒ SO(p(x))[x/t],

(cO)

Whenever the relation |= is decidable, we have an effective test to check the
conditions. An example is the language of properties in [17], which allows
one to express properties of terms, including their types and other properties
relevant to static analysis.

Although decidable, the class of properties which can be expressed in these
languages are given once for all. Furthermore the expressiveness of such as-
sertion languages is limited. A more interesting case would be to let the user
to be able to define its own properties through the definition of logic pro-
grams. As already mentioned, assertion languages which allow one to express
properties defined by means of logic programs have already been defined in
the literature [14,15,2,16,7]. In particular in [14] such a language is used to

5

Comini, Gori and Levi

generate assertions associated to program points, which will be verified at run
time by executing the logic programs with the suitable run time values. [7]
proposes a new language to let the user communicate with the debugger. In
this language specifications are logic programs and the user assertions are used
to interactively diagnose errors.

In all these approaches the role of the user defined logic programs is to
allow to extensionally derive information on the intended behavior, i.e. the
specification. They are in fact used to execute the assertion on run time
values and therefore to check that each single program answer also satisfies
the assertion. In this paper we propose an approach where the user defined
logic programs are used to intensionally derive information on the intended
behavior. This is obtained by using the user defined programs to syntactically
transform the verification conditions and to prove them.

The approach proposed in this paper considers a language where assertions
are formulas built on user defined predicates. The meaning of such predicates
is specified by some user defined logic program. Once the verification condi-
tions are derived they can be proved using the program and transformation
techniques as the ones described in [12].

Depending on the property we want to verify, different versions of these
techniques can be used. For example if we want to prove partial correctness of
a program w.r.t. computed answers we should be careful to use transformations
preserving the computed answers semantics.

As we will show in the following examples, in general, in order to prove
our verification conditions, only simple unfolding steps are sufficient, while
for some more complex steps we need to prove some intermediate lemmata
by using then the goal replacement rule [12], which allows us to replace a
goal with an equivalent (w.r.t. the chosen semantics) one. It is worth noting
however that also the generation of these intermediate lemmata can often be
obtained by using an unfold/fold proof method, as shown in [13].

This paper essentially presents some examples which show how our ver-
ification method works. As the following programs will show, most of the
verification conditions are very easily proven by using a few unfolding steps.
This suggests that the process of proving the verification conditions can be
automatized or at least semi-automatized.

4.1 Verification of properties of a reactive system

We consider the Prolog program of Fig. 1 intended to model the possible be-
havior of a simple coffee machine which accepts 10 cents of Euro coins and
gives back water for 10 cents and coffee for 20. The water is given immedi-
ately when requested, while the coffee can take a while to be served since the
machine has to warm up. The behavior is modeled as an infinite list of pairs
(input,output) to express the consequentiality of the machine actions. The
possible inputs are ‘no actions’, ‘a 10 cents coin’, ‘the water request button’

6

Comini, Gori and Levi

c1: e00([(null, null) | X]) :- e00(X).

c2: e00([(10, null) | X]) :- e10(X).

c3: e00([(water, beep) | X]) :- e00(X).

c4: e00([(coffee, beep) | X]) :- e00(X).

c5: e10([(null, null) | X]) :- e10(X).

c6: e10([(10, null) | X]) :- e20(X).

c7: e10([(water, water) | X]) :- e00(X).

c8: e10([(coffee, beep) | X]) :- e10(X).

c9: e20([(null, null) | X]) :- e20(X).

cA: e20([(water, water) | X]) :- e10(X).

cB: e20([(coffee, coffee) | X]) :- e00(X).

cC: e20([(coffee, null) | X]) :- warm(X).

cD: warm([(null, null) | X]) :- warm1(X).

cE: warm([(null, coffee) | X]) :- e00(X).

cF: warm1([(null, coffee) | X]) :- e00(X).

Fig. 1. The vending machine program

and ‘the coffee request button’. The outputs are ‘no actions’, ‘an error beep’,
‘a water cup’ and ‘a coffee cup’.

The concrete semantics of such a system has to model partial answers in
order to be able to express the infinite behavior. However (1) on the assertion
domain boils down to the same sufficient conditions presented on Page 5. Thus
the interpretation I models the partial answers of the program.

The property we want to prove is that if we insert 20 cents and press the
coffee request button, the coffee cup eventually comes. The specification is
then

SI :=

e00 (X) �→ sublist([(10,), (10,), (coffee,)], X)

e10 (X) �→ sublistX([(10,), (coffee,)], X)

e20 (X) �→ sublistX([(coffee,)], X)

warm(X) �→ TRUE

warm1 (X) �→ TRUE

SO :=

e00 (X) �→ match([(10,), (10,), (coffee,)], (, coffee), X)

e10 (X) �→ matchX([(10,), (coffee,)], (, coffee), X)

e20 (X) �→ matchX([(coffee,)], (, coffee), X)

warm(X) �→ matchX([], (, coffee), X)

warm1 (X) �→ matchX([], (, coffee), X)

7

Comini, Gori and Levi

sublist(Xs, Ys) :- sublistX(Xs,Ys).

sublist(Xs, [Y|Ys]) :- sublist(Xs,Ys).

sublistX([], Xs).

sublistX([Y|Xs],[Y|Ys]) :- sublistX(Xs,Ys).

match(Xs,X,Ys) :- matchX(Xs,X,Ys).

match(Xs,X,[Y|Ys]) :- match(Xs,X,Ys).

matchX([],X,[X|_]).

matchX([],X,[Y|Ys]) :- matchX([],X,Ys).

matchX([Y|Xs],X,[Y|Ys]) :- matchX(Xs,X,Ys).

Fig. 2. The user defined predicates for the program of Fig. 1

where the definition of the user defined predicates is given in Fig. 2. Since
the property expressed by the precondition does not have to be definitely
verified by all the traces of the system, we are not concerned with call patterns
correctness. Therefore we use the I/O correctness schema which gives rise to
the following inductive conditions.

It is worth noting that the unfolding which we are going to use has been
proved to preserve the computed answer semantics. The extension to partial
answer semantics is straightforward.

clause c1 The verification condition is

sublist([(10,), (10,), (coffee,)], [(null, null)|X])) ∧
match([(10,), (10,), (coffee,)], (, coffee), X) =⇒
match([(10,), (10,), (coffee,)], (, coffee), [(null, null)|X])

because we can prove side condition I |= SI(e00(Y))[Y/[(null, null)|X]] ⇒
SI(e00(Z))[Z/X], i.e., I |=

sublist([(10,), (10,), (coffee,)], [(null, null)|X]) =⇒
sublist([(10,), (10,), (coffee,)], X)

Indeed, by unfolding the atom in the premise, the latter condition is rewrit-
ten in

sublist([(10,), (10,), (coffee,)], X) ∨
sublistX([(10,), (10,), (coffee,)], [(null, null)|X]) =⇒
sublist([(10,), (10,), (coffee,)], X)

8

Comini, Gori and Levi

Then, by unfolding sublistX we obtain

sublist([(10,), (10,), (coffee,)], X) ∨ FALSE =⇒
sublist([(10,), (10,), (coffee,)], X)

We can prove that the verification condition holds because, by some un-
folding steps and logical implication properties, it can be rewritten as

sublist([(10,), (10,), (coffee,)], [(null, null)|X])) ∧
match([(10,), (10,), (coffee,)], (, coffee), X) =⇒
match([(10,), (10,), (coffee,)], (, coffee), X) ∨
matchX([(10,), (10,), (coffee,)], (, coffee), [(null, null)|X])

which is a propositional tautology.

clause c2 By using some unfolding steps in the premise we can prove that

sublist([(10,), (10,), (coffee,)], [(10, null)|X]) =⇒
sublistX([(10,), (coffee,)], X)

Then (by some unfolding steps and logical implication properties) we can
prove the verification condition

sublist([(10,), (10,), (coffee,)], [(10, null)|X]) ∧
matchX([(10,), (coffee,)], (, coffee), X) =⇒
match([(10,), (10,), (coffee,)], (, coffee), [(10, null)|X])

clause c3 Analogous to c1

clause c4 Analogous to c1

clause c5 By using an unfolding step in the premise we can prove that

sublistX([(10,), (coffee,)], [(null, null)|X]) =⇒
sublistX([(10,), (coffee,)], X)

since the premise is false. Then we can prove the verification condition

sublistX([(10,), (coffee,)], [(null, null)|X]) ∧
matchX([(10,), (coffee,)], (, coffee), X) =⇒
matchX([(10,), (coffee,)], (, coffee), [(null, null)|X])

clause c6 Analogous to c2

clause c7 By using an unfolding step in the premise we can prove that

sublistX([(10,), (coffee,)], [(water, water)|X]) =⇒
sublist([(10,), (10,), (coffee,)], X)

9

Comini, Gori and Levi

since the premise is false. Then we can prove the verification condition

sublistX([(10,), (coffee,)], [(water, water)|X]) ∧
match([(10,), (10,), (coffee,)], (, coffee), X) =⇒
matchX([(10,), (coffee,)], (, coffee), [(water, water)|X])

clause c8 Analogous to c5

clause c9 Analogous to c5

clause cA Analogous to c7

clause cB By using an unfolding step in the premise we can prove that

sublistX([(coffee,)], [(coffee, coffee)|X]) �=⇒
sublist([(10,), (10,), (coffee,)], X)

since the premise is true and the conclusion is not. Then we can prove the
verification condition

sublistX([(coffee,)], [(coffee, coffee)|X]) ∧ TRUE =⇒
matchX([(coffee,)], (, coffee), [(coffee, coffee)|X])

clause cC By using an unfolding step in the premise we can prove that

sublistX([(coffee,)], [(coffee, null)|X]) =⇒ TRUE

Then we can prove the verification condition

sublistX([(coffee,)], [(coffee, null)|X]) ∧
matchX([], (, coffee), X) =⇒
matchX([(coffee,)], (, coffee), [(coffee, null)|X])

clause cD Since TRUE =⇒ TRUE we can prove the verification condition

TRUE ∧ matchX([], (, coffee), X) =⇒
matchX([], (, coffee), [(null, null)|X])

clause cE By using an unfolding step in the premise we can prove that

TRUE �=⇒ sublist([(10,), (10,), (coffee,)], X)

since the premise is true and the conclusion is not. Then we can prove the
verification condition

TRUE =⇒ matchX([], (, coffee), [(null, coffee)|X])

clause cF Analogous to cE

10

Comini, Gori and Levi

We conclude that the program is partially correct w.r.t. the specification. Note
that if we had used a stronger verification condition with call correctness, we
would not succeed in proving it, because we have no guarantee that every
procedure call verifies the preconditions.

4.2 A simple property of append

We consider now the append program

c1: append([], Ys, Ys).

c2: append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

We want to prove that the length of the lists is preserved. Thus the specifica-
tion is

SI := append(X, Y, Z) �→ list(X) ∧ length(X, Lx) ∧ list(Y) ∧
length(Y, Ly)

SO := append(X, Y, Z) �→ list(Z) ∧ length(Z,Lz) ∧ Lz = Lx + Ly

where the definition of the user defined predicates is

list([]).

list([X|Xs]) :- list(Xs).

length([],0).

length([X|Xs],Lx) :- length(Xs, Lxs), Lx = Lxs + 1.

The property expressed by the precondition has now to be definitely verified
by all the inputs. Therefore we use the I/O and call correctness schema which
gives rise to the following inductive conditions.

It is worth noting that here we need a semantics which models arithmetics
over naturals. This is just to shorten notation because we should have chosen
to use a first order representation of numbers (0, s(0), . . .), implement sum
as a user defined predicate and then use the computed answer semantics.

clause c1O The condition is

list([]) ∧ length([], Lx) ∧ list(Y) ∧ length(Y, Ly) =⇒
list(Y) ∧ length(Y, Lz) ∧ Lz = Lx + Ly

It can be proved by first proving the functionality of length(Y, Ly) (i.e.,
length(Xs, X) ∧ length(Xs, Y) ⇐⇒ length(Xs, X) ∧ X = Y) by using
the fold/unfold proof techniques of [13] and then using an unfolding step in
the premise. In fact by unfolding length([], Lx) and list([]) we obtain

list(Y) ∧ length(Y, Ly) =⇒ list(Y) ∧ length(Y, Lz) ∧ Lz = 0 + Ly

11

Comini, Gori and Levi

c1: isort([], []).

c2: isort([X|Xs], Ys) :- isort(Xs, Zs), insert(X, Zs, Ys).

c3: insert(X, [], [X]).

c4: insert(X, [Y|Ys], [Y|Zs]) :- X > Y, insert(X, Ys, Zs).

c5: insert(X, [Y|Ys], [X, Y|Ys]) :- X =< Y.

Fig. 3. The insertion sort program

By functionality we obtain

list(Y) ∧ length(Y, Ly) =⇒ list(Y) ∧ length(Y, Ly) ∧ Ly = 0 + Ly

clause c2I The condition is

list([X|Xs]) ∧ length([X|Xs], Lxxs) ∧ list(Y s) ∧
length(Y s, Lys) =⇒ list(Xs) ∧ length(Xs,Lxs) ∧ list(Y s) ∧
length(Y s, Lys)

which can be proved by unfolding.

clause c2O The condition is

list([X|Xs]) ∧ length([X|Xs], Lxxs) ∧ list(Y s) ∧ length(Y s, Lys) ∧
list(Zs) ∧ length(Zs, Lzs) ∧ Lzs = Lxs + Lys =⇒
list([X|Zs]) ∧ length([X|Zs], Lxzs) ∧ Lxzs = Lxxs + Lys

which (by unfolding and functionality of length) becomes

list(Xs) ∧ length(Xs, Lxs) ∧ Lxxs = Lxs + 1 ∧ list(Y s) ∧
length(Y s, Lys) ∧ list(Zs) ∧ length(Zs, Lzs) ∧
Lzs = Lxs + Lys =⇒ list(Zs) ∧ length(Zs, Lxzs)

∧ Lxzs = Lzs + 1 ∧ Lxzs = Lxxs + Lys

which is true by arithmetic properties.

We conclude that the program is partially correct w.r.t. the specification.

4.3 Specifications and algorithms

In this example we want to prove that a clever implementation of the sorting
problem, the insertion sort of Fig. 3, is correct w.r.t. a specification given by
the declarative (inefficient) specification of sort. Thus the specification is

SI :=

{
isort(X, Y) �→ intlist(X)

insert(X, Y, Z) �→ int(X) ∧ intlist(Y) ∧ ord(Y)

12

Comini, Gori and Levi

intlist([]).

intlist([X|Xs]) :- integer(X), intlist(Xs).

sort(Xs, Ys) :- perm(Xs, Ys), ord(Ys).

ord([]).

ord([X]).

ord([X,Y|Xs]) :- X =< Y, ord([Y|Xs]).

perm(Xs, [Z|Zs]) :- select(Z, Xs, Ys), perm(Ys, Zs).

perm([], []).

select(X, [X|Xs], Xs).

select(X, [Y|Xs], [Y|Zs]) :- select(X, Xs, Zs).

Fig. 4. The user defined predicates for the program of Fig. 3

SO :=

{
isort(X, Y) �→ intlist(Y) ∧ sort(X, Y)

insert(X, Y, Z) �→ intlist(Z) ∧ sort([X|Y], Z)

where the definition of the user defined predicates is given in Fig. 4. Moreover
we implicitly assume the following specification for the built-ins

SI :=

X=<Y �→ int(X) ∧ int(Y)

X>Y �→ int(X) ∧ int(Y)

integer(X) �→ TRUE

SO :=

X=<Y �→ X ≤ Y

X>Y �→ X > Y

integer(X) �→ int(X)

Since the property expressed by the precondition has to be definitely verified
by all the inputs, we use the I/O and call correctness schema, which gives rise
to the following verification conditions.

clause c1O The condition is intlist([]) =⇒ intlist([])∧sort([], []) which
can be proved by few unfolding steps.

clause c2I The conditions are intlist([X|Xs]) =⇒ intlist(Xs) and

intlist([X|Xs]) ∧ intlist(Zs) ∧ sort(Xs,Zs) =⇒
int(X) ∧ intlist(Zs) ∧ ord(Zs)

Both can be proved by few unfolding steps in the premises.

13

Comini, Gori and Levi

clause c2O The condition is

intlist([X|Xs]) ∧ intlist(Zs) ∧ sort(Xs, Zs) ∧ intlist(Y s) ∧
sort([X|Zs], Y s) =⇒ intlist(Y s) ∧ sort([X|Xs], Y s)

It can be proved by first proving a property of perm, i.e., perm(Xs, Zs) ∧
perm([X|Zs], Y s) ⇐⇒ perm([X|Xs], Y s).

clause c3O The condition is

int(X) ∧ intlist([]) ∧ ord([]) =⇒ intlist([X]) ∧ sort([X], [X])

which can be proved by few unfolding steps.

clause c4I The conditions are

int(X) ∧ intlist([Y |Y s]) ∧ ord([Y |Y s]) =⇒ int(X) ∧ int(Y)

int(X) ∧ intlist([Y |Y s]) ∧ ord([Y |Y s]) ∧ X > Y =⇒
int(X) ∧ int(Y) ∧ ord(Y s)

Both can be proved by few unfolding steps in the premises.

clause c4O The condition is

int(X) ∧ intlist([Y |Y s]) ∧ ord([Y |Y s]) ∧ X > Y ∧ intlist(Zs) ∧
sort([X|Y s], Zs) =⇒ intlist([Y |Zs]) ∧ sort([X, Y |Y s], [Y |Zs])

It can be proved by first proving a property of sort, i.e., sort([X|Y s], Zs)∧
ord([Y |Y s])∧X > Y =⇒ sort([X, Y |Y s], [Y |Zs]), and then few unfolding
steps in the premises.

clause c5I The condition is

int(X) ∧ intlist([Y |Y s]) ∧ ord([Y |Y s]) =⇒ int(X) ∧ int(Y)

which can be proved by an unfolding step.

clause c5O The condition is

int(X) ∧ intlist([Y |Y s]) ∧ ord([Y |Y s]) ∧ X ≤ Y =⇒
intlist([X, Y |Y s]) ∧ sort([X, Y |Y s], [X,Y |Y s])

It can be proved by first proving a property of perm, i.e., intlist(Xs) =⇒
perm(Xs, Xs), and then few unfolding steps in the premises.

We conclude that the program is partially correct w.r.t. the specification.

14

Comini, Gori and Levi

5 Conclusions

In this paper we have first applied the verification framework defined in [3] in
order to derive a new verification method based on an assertion language able
to express user defined properties. We have shown, through some examples,
how the resulting sufficient verification conditions can be derived and proved
by using program transformations techniques.

As the examples presented in this paper have shown, most of the verifica-
tion conditions can very easily be proven by using some unfolding steps while
other transformation techniques, such as goal replacement, are necessary to
prove more complex properties. As we have already discussed, also the gen-
eration of the intermediate lemmata needed for goal replacement, can often
be obtained by using an unfold/fold proof method, as shown in [13]. These
considerations suggest that the process of proving our verification conditions
can easily be semi-automatized by using, for example, some of the recently
implemented systems for the transformation of logic programs [11].

References

[1] Apt, K., Introduction to logic programming, in: J. van Leeuwen, editor, Formal
Models and Semantics, Handbook of Theoretical Computer Science B, Elsevier
and The MIT Press, 1990 pp. 495–574.

[2] Bueno, F., P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo,
J. Maluszynski and G. Puebla, On the role of semantic approximations in
validation and diagnosis of constraint logic programs, in: M. Kamkar, editor,
Proceedings of the AADEBUG’97 (The Third International Workshop on
Automated Debugging) (1997), pp. 155–169.

[3] Comini, M., R. Gori, G. Levi and P. Volpe, Abstract interpretation based
verification of logic programs, submitted for publication.

[4] Comini, M., G. Levi, M. C. Meo and G. Vitiello, Abstract diagnosis, Journal
of Logic Programming 39 (1999), pp. 43–93, Special Issue on Synthesis,
Transformation and Analysis of Logic Programs.

[5] Cousot, P. and R. Cousot, Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints, in:
Proceedings of Fourth ACM Symp. Principles of Programming Languages, 1977,
pp. 238–252.

[6] Cousot, P. and R. Cousot, Systematic design of program analysis frameworks,
in: Proceedings of Sixth ACM Symp. Principles of Programming Languages,
1979, pp. 269–282.

[7] Drabent, W., S. Nadjm-Tehrani and J. Maluszynski, Algorithmic debugging with
assertions, in: H. Abramson and M. H. Rogers, editors, Meta-programming in
Logic Programming (1989), pp. 383–398.

15

Comini, Gori and Levi

[8] Ferrand, G., Error diagnosis in logic programming, an adaptation of E.Y.
Shapiro’s method, Journal of Logic Programming 4 (1987), pp. 177–198.

[9] Levi, G. and P. Volpe, Derivation of proof methods by abstract interpretation,
in: C. Palamidessi, H. Glaser and K. Meinke, editors, Principles of Declarative
Programming. 10th International Symposium, PLILP’98, Lecture Notes in
Computer Science 1490 (1998), pp. 102–117.

[10] Lloyd, J. W., “Foundations of Logic Programming,” Springer-Verlag, 1987,
second edition.

[11] Pettorossi, A. and M. Proietti, Map: A tool for program transformation.
URL http://www.iasi.rm.cnr.it/~proietti/system.html

[12] Pettorossi, A. and M. Proietti, Transformation of logic programs, Handbook
of Logic in Artificial Intellince and Logic Programming 5, Oxford University
Press, 1998 pp. 697–787.

[13] Pettorossi, A. and M. Proietti, Synthesis and transformation of logic programs
using unfold/fold proofs, Journal of Logic Programming 41 (1999), pp. 197–230.

[14] Puebla, G., F. Bueno and M. Hermenegildo, An Assertion Language
for Constraint Logic Programs, in: P. Deransart, M. Hermenegildo and
J. Maluszynski, editors, Analysis and Visualization Tools for Constraint
Programming, number 1870 in LNCS, Springer-Verlag, 2000 pp. 23–61.

[15] Puebla, G., F. Bueno and M. Hermenegildo, A generic preprocessor for
program validation and debugging, in: P. Deransart, M. Hermenegildo and
J. Maluszynski, editors, Analysis and Visualization Tools for Constraint
Programming, number 1870 in LNCS, Springer-Verlag, 2000 pp. 63–107.

[16] Shapiro, E. Y., “Algorithmic Program Debugging,” The MIT Press, 1983.

[17] Volpe, P., A first-order language for expressing aliasing and type properties of
logic programs, Science of Computer Programming (2000), to appear.

16

