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The paper illustrates the design and the implementation of a Fault Detection and Isolation (FDI) system to a rotary machine like a
multishaft centrifugal compressor. A model-free approach, that is, the Principal Component Analysis (PCA), has been employed
to solve the fault detection issue. For the fault isolation purpose structured residuals have been adopted while an adaptive threshold
has been designed in order to detect and to isolate the faults. To prove the goodness of the proposed FDI system, historical data
of a nitrogen centrifugal compressor employed in a refinery plant are considered. Tests results show that detection and isolation of
single as well as multiple faults are successfully achieved.

1. Introduction

In oil and gas plants many processes such as refinery,
natural gas extraction/compression, energy production, and
gasification, involve the use of rotary machines like centrifu-
gal pumps, turbines, and centrifugal compressors. Given the
importance and the crucial role played by these machines,
in the literature several approaches for their control and
supervision have been proposed. For control purposes, the
compressor regulation distant from the surge point has
been discussed in [1–5] while the influence of compressors
working conditions which can greatly affect the overall
efficiency of the plant is considered in [6]. In recent years
the attention has been focused on the prevention of possi-
ble recurrent malfunctions and potential faults which may
cause equipment inactivity or even their complete break.
In fact a prompt identification of perturbations on the
working conditions by a diagnostic system may increase
the availability of the machines and improve plant safety
while achieving functioning costs reduction as well. For
the fault detection on pumps machines several studies have
been carried out: Dalton and Patton in [7] have proposed a
model-based fault diagnosis system of a two-pump systems.
Nold and Isermann in [8] have developed a fault detection
system for centrifugal pumps and AC drives also derived

from a model-based approach. Dealing with other rotary
machines, various works can be found in the literature to
diagnose possible faults on centrifugal compressor: in [9] the
authors suggest using the time series analysis with neural
network to realize a fault diagnosis system for monitoring a
centrifugal compressor; in [10] the monitoring of the bearing
temperature employed in a centrifugal compressor has been
achieved. Another study concerning the detection of the fault
occurring on the compressor bearings has been discussed in
[11]. A comprehensive discussion on fault diagnosis system
applied on rotary machines can be found in [12–14].

In the present work a multivariable data-driven and
model-free approach, that is, Principal Component Analysis
(PCA) [15], has been adopted. The focus is the design of
a Fault Detection and Isolation (FDI) system to be applied
on a multishaft centrifugal compressor. The main reason
for choosing a model-free technique rather than a model-
based one is that, as often verified for large scale chemical
processes, it was difficult to develop a detailed physical model
for the compression process. The presented FDI system deals
with the functioning of the complete centrifugal compressor
system, and this feature differentiates it by typical works on
centrifugal compressors which focus on particular aspects
like surge control or bearing temperature monitoring as in
[1–5, 9–11].
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In the literature, other authors suggested using a PCA
technique for industrial plant applications: in [16] the authors
use the PCA to detect possible faults on Tennessee Eastman
(TE) Process while Bezergianni and Kalogianni in [17]
propose the PCA approach on a hydrotreating process.

The contribution of the paper is the adoption of the adap-
tive thresholds approach, suitably implemented, to compute
the gains associated with the inputs of the thresholds.

The paper is organized as follows. In Section 2 the
background of the Principal Component Analysis is briefly
summarized. In Section 3, the developed adaptive thresholds
approach is described. In Section 4 the rotary machine
considered for the actual implementation of the FDI system
is briefly described. Results on single and multiple faults
detection and isolation are reported in Section 5. Section 6
gives conclusions and future developments.

2. Theoretical Background on PCA

A brief overview of the Principal Components Analysis and
its use in fault detection and isolation is given here. The
main steps of the procedure useful for the understanding
of the proposed FDI system are reported. Further detailed
descriptions of the method are available in published articles
(see among others [15, 17–19]).

The Principal Component Analysis can be considered
a subspace decomposition technique by which the process
measurement space is divided into two orthogonal subspaces,
that is, the principal components (PC) subspace and residual
subspace. The PC subspace contains the components that
account for a maximal amount of total variance in the
observed variables. In practice, given a data matrix 𝑋 of 𝑁
samples of 𝑚 variables, an optimal linear transformation of
𝑋 is operated by which the process measurement space is
divided into the two orthogonal subspaces mentioned above.
In this way possibly correlated variables of the process are
mapped into a smaller number 𝑙 < 𝑚 of uncorrelated
variables called Principal Components.Themain steps of the
PCA procedures can be summarized as in the following [18].

Consider the transformation of the data matrix 𝑋 of
normal variables (zero mean and unit variance) given by

𝑇[𝑁×𝑚] = 𝑋[𝑁×𝑚]𝑃[𝑁×𝑚]. (1)

Matrix 𝑇 in (1) is named the score matrix while 𝑃 is the
loading matrix. The columns of matrix 𝑃 are the eigenvectors
associated with the eigenvalues of the following matrix 𝐴
proportional to the data correlation matrix:

𝐴 [𝑚×𝑚] = 𝑋
𝑇
[𝑚×𝑁]𝑋[𝑁×𝑚]. (2)

Once the number of the 𝑙most significant components is
determined, the loading matrix is partitioned as follows:

𝑃 = (𝑃̂ 𝑃̃) , 𝑃̂ ∈ 𝑅
𝑚×𝑙 (3)

and, considering the linear transformation (1), the data
matrix𝑋 is partitioned into two parts: 𝑋̂, the principal part of

the data explained by the first 𝑙 eigenvectors and the residual
part 𝑋̃ explained by the remaining components:

𝑋̂[𝑁×𝑚] = 𝑋[𝑁×𝑚]𝑃̂[𝑚×𝑙]𝑃̂
𝑇

[𝑙×𝑚] = 𝑋[𝑁×𝑚]𝐶𝑙[𝑚×𝑚],
(4)

𝑋̃[𝑁×𝑚] = 𝑋[𝑁×𝑚] − 𝑋̂[𝑁×𝑚] = 𝑋[𝑁×𝑚] (𝐼[𝑚×𝑚] − 𝐶𝑙[𝑚×𝑚]) .

(5)

Equation (4) is sometimes called Back-Transformation
process; by this transformation it is possible to obtain the
original variables with only significant variances; that is, if
the number of Principal Components is correctly chosen,
insignificant noise effects are removed.

When approaching a PCA problem, the number of the
Principal Components retained in the model is an essential
parameter that strongly determines its performance. When
too few components are retained, the model will not capture
all of the information in the data and a poor representation
of the process will result. On the other hand, if too many
components are chosen, themodel will be overparameterized
and it will include noise. Several approaches for selecting the
optimal number of PCs have been developed. The approach
followed in this paper is based on the ANalysis Of Variance,
ANOVA test (see [20, 21]), that was proven to be a reliable and
objective method.

Stored dataset is processed offline applying the ANOVA-
based test so that principals components are determined; the
loadingmatrix𝑃 is then computed and partitioned according
to the selected PCs as in (3). Hence, back-transformation (4)
is calculated online for each new sampled data vector x[1×𝑚].
The reconstructed vector x∗ is thus obtained:

𝑥̃
∗
= 𝑥 (𝑘) 𝑃̃𝑃̃

𝑇
. (6)

Then the signal of the original variables x is compared
with the reconstructed one x∗; the difference between the two
signals is called residual. Comparing the actual residual with
its trends in standard operative conditions, detection of faults
can be achieved. However, based on this residual quantity,
isolation of the fault cannot be performed.

3. Fault Isolation

Developing a (good) diagnostic system, the interest in general
is not just to accomplish the faults detectability but rather
to specify the kind of the fault that has occurred, thus
realizing the primary function of isolation. At this regard
various methods have been developed for the generation of
particular structured residuals. The authors have chosen to
apply the so-called structured residual approach as described
byTharrault et al. in [18].These structured residuals are based
on the reconstruction principle; the founding idea of this
approach is to reconstruct variables using the PCA model
with the remaining variables of the model. Different subsets
𝑅 of variables to be reconstructed can be considered. The
reconstruction of variables consists in estimating, for each
new sampled data, the reconstructed vector 𝑥̂𝑅 by eliminating
the effect of possible faults occurred on the selected variables.

To achieve isolation the reconstructed variables 𝑥̂𝑅 are
projected on the Residual subspace by a new projection
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matrix generating 𝑥̃𝑅. Given the propriety of the projection
matrix which states that its product with the matrix that
identifies the directions of reconstruction is null, it is possible
to isolate potential faulty components. In fact from the above
property it can be deduced that the components of 𝑥̃𝑅 are not
sensitive to the components of 𝑥 belonging to the subset 𝑅.

This property can be used to identify which components
of 𝑥 are disturbed by faults. Through the analysis of all the
residual trends, computed considering different (structured)
variables subsets, faults directions are identified.

Finally, considering the large dimensions of the problem,
instead of checking all the components of computed residual
vectors separately, it may be convenient to group them in to
a single index called square prediction error (SPE) calculated
as the square Euclidean norm of the computed residuals:

SPE𝑅 =
󵄩󵄩󵄩󵄩𝑥̃𝑅
󵄩󵄩󵄩󵄩

2
. (7)

Fault isolation is based on the threshold violation of one
or a few SPE variables.

3.1. Adaptive Thresholds. To perform the fault detection and
isolation, it is necessary to compare the SPEs values to
threshold values which can be fixed or adaptive. Values for
static threshold are typically computed, analyzing the SPEs
signal in normal operative conditions. This solution works
well if the process stays in a steady state or if the operating
point does not change. Furthermore, when operating with
real processes data, it is highly possible that due to the
presence of noisy data and/or due to the influence of external
conditions, the generated residuals exceed the set fixed
threshold evenwithout faults. A possible solution is to enlarge
threshold values. To set the tolerances, compromises have to
bemade between the threshold size for avoidingmisdetection
problems because of too large threshold values and the
generations of false alarms because of normal fluctuations of
the system.

In order to improve the isolation feature, the authors have
chosen to employ an adaptive threshold approach. In fact,
the process variability is such that the adoption of a fixed
threshold would imply many spurious false alarms.

In the literature, different approaches to the design
of adaptive thresholds have been introduced. Isermann in
[15, 19] observed that deviations of the generated residuals
frequently depend on the amplitude and frequencies of the
input excitation and proposed an adaptive threshold scheme
based on a first-order high-pass filter of the input signal
with a possible additional proportional enlargement. A low-
pass filter is then introduced to smooth the dynamic of the
threshold. Conversely Clark in [22] proposes a scheme where
the use of the high-pass filter is substituted by static gains.

Following Clark’s approach, the adaptive threshold
scheme, proposed by the authors, is constituted by a term
proportional to the amplitude of the input signals and
of a constant term for a tight tuning (see Figure 1). The
proportional term is obtained, multiplying the input data
signal by a gain matrix which is diagonal.

For the actual computation of the gains no clear sug-
gestions are given in [22] so that a new method based

Gain

𝐶

𝑈
∣𝑈∣

Figure 1: The scheme employed by the authors to realize the
adaptive threshold.

on the frequency analysis of the input signals has been
proposed, and implemented by the authors. The single gains
elements have been computed by taking into account the
input variables that actually contribute to the generation of
each SPE. The significance of each input signal has been
associated to its energy in terms of its power spectrum in the
frequency domain. A variable thresholds approach has thus
been adopted which resulted effective andmore efficient than
applying fixed ones. In particular, it has been chosen to assign
low gain weights to signals “poor” in frequency while high
weights have been assigned to signals with the highest energy
contents.

4. The Multishaft Centrifugal Compressor

In the present paper, a multishaft centrifugal compressor is
considered. Centrifugal machines are critical equipments;
their essential characteristics have been the large pressure
rises and flow rates involved. Given the importance of and
the crucial role played by compressor machines, in recent
years an increasing attention has been given to the prevention
of possible frequent malfunctions and potential faults which
may cause inactivity of compressor or even its complete
break.

The machine, called BLNC (base load nitrogen com-
pressor), is located in the air separation unit (ASU) of a
refinery plant and is employed for nitrogen compression in
the dilution of a particular gas, the Syngas, which is forwarded
to a gas turbine. It is a complex machinery consisting of two
sections: the first section includes two compression stages
while the second comprises three compression stages.

In order to decrease the nitrogen temperature at the
exit of the compression stage, leveling it at its input value
before compression, a heat exchanger is positioned at the
end of each stage. In these conditions, the compression is
nearly equivalent to an isotherm process which requires less
mechanical work for the compression.

Variables considered in the construction of the data
matrix 𝑋 employed in the PCA diagnoser consist of sensor
and actuator (positioner) variables. Their tag names used in
the refinery are summarized in Table 1 together with their
description. As it can be observed, variables considered for
the detection and isolation of faults are the nitrogen (N2)
flow through themultishaft compressormeasured at different
points, the commanded actuators signals, and their actual
values used to regulate the position of the IGVs. All the
variables included in the PCA data matrix 𝑋 are process
variables; no variables related to thermodynamic parameters
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Figure 2: Continued.
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Figure 2: Figures (a)–(i) show the trends of the real variables (blue) and their reconstruction with PCA (red).

Table 1: Considered process variables.

Tag name Description
FYI 89735 N2 mass flow through the BLNC first section

FV 89700
Positioner of the Inlet Guide Vanes (IGV) relative
to the first and second stages of BLNC

ZT 89700
Feedback of IGV position relative to the BLNC
first and second stages

PV 89750 Measurement of the vent position at the entrance
of first section of BLNC

FYA 89710A N2 mass flow through the second section of BLNC

FV 89704 Positioner of the IGV relative to the third stage of
BLNC

ZT 89704 Feedback of IGV position relative to the third
stage of BLNC

FV 89751A Throttle valve position relative to inlet high
pressure nitrogen gas (HNG)

FYA 89751 N2 mass flow at the head of the high pressure
column

were considered for the implementation of the FDI system in
the case considered here since it has been verified that these
variables were not particularly affected by the analyzed faults.

5. Fault Detection and Isolation System

The first step of PCA method concerns the selection of the
Principal Component retained in the model. At this regard,
for the computation of the matrix A (2) to be effective, the
absence of faults in the system data is required. Furthermore,
the absence of measurement noise has to be assumed. In
fact, if the calculation of matrix 𝐴 is performed from a noisy
dataset, errors on variables reconstruction may influence the

PCAmodel and, consequently, the overall fault identification
process. For the application to themultishaft centrifugal com-
pressor, to avoid measurement noise effects, PCA training
data have been gathered just after instruments calibration.
The resulting PCA model together with the application of
adaptive thresholds guarantees good performances in terms
of fault detection and isolation even in the presence of
perturbations due to altered ambient conditions like, for
example, the ones that can be daily experienced due to the
alternation of day and night. At the same time, the succession
of the seasons may call for the FDI system update, and to
improve system sensibility, different PCA training dataset
could be considered.

Accordingly, with the PCA model, the measurement
space has been partitioned into two orthogonal spaces: the
principal component subspace, which includes data vari-
ations according to the principal component model, and
the residual subspace, which includes data variation not
explained by the model. Applying the ANOVA procedure
developed by the authors (see [20, 21]), the dimension of the
PC subspace is set to four. In order to verify if the selected
number of PCs is adequate to correctly explain the original
system’s variables, the signals of the original variables are
comparedwith the reconstructed ones. Plots of Figure 2 show
themeasured and reconstructed signal.With the exception of
Figure 2(f) (positioner of the IGV) and Figure 2(i) (N2 mass
flow at the head of the high pressure column) where slight
mismatching can be noticed, all the reconstructions are in
good agreement with measurements.

After having trained the model on system data in the
absence of faults, that is, after having chosen the PCs that
make up the loading matrix P used for the generation of the
structured residuals (see (1)) the diagnoser has been tested on
both single and multiple faults.

Faults that may possibly occur in the centrifugal com-
pressor concern errors in the sensor readings and/or in the
actuators. By inspection of historical data of the compressor
at issue, themost common faults were found to be faults of the
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Table 2: Most common compressor faults.

Tag name Description Time dependency

FYI 89735 Fault in the first stage N2
mass flow sensor

Abrupt fault;
incipient fault

ZT 89700 Fault in the first stage IGV
positioner

Abrupt fault;
incipient fault;

intermittent fault

FYA 89710 Fault in the third stage N2
mass flow sensor

Abrupt fault;
incipient fault

ZT 89704 Fault in the third stage IGV
positioner

Abrupt fault;
incipient fault;

intermittent fault

FYA 89751
Fault in the N2 mass flow
sensor relative to N2 flow at

the head of the high
pressure column

Abrupt fault;
incipient fault
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Figure 3:Third section IGV position (blue) and ramp additive fault
(red).

actuators andmass flow sensors as specified in Table 2. To test
the FDI system both single and multiple faults are simulated.
The simulation is necessary to test the system on critical and
not easy to detect faults such as drift faults andmultiple faults.

5.1. Single Fault Case: Third Stage IGV Positioner Fault. The
diagnoser has been tested on the detection and isolation of
faults of the Inlet Guide Vanes (IGV) of the third stage of the
compressor. An abrupt failure of the actuator, which caused
its complete breakdown, was documented on the historical
data at disposal; this failurewas correctly detected by the Fault
Diagnosis module, but since the detection in this case is quite
trivial, we have chosen to test the diagnoser performances
on an intermittent fault by modifying the real data by the
addition of step or ramp variations.These kinds of faults may
be likely caused by a temporary malfunction of the leverage
used for IGV handling.

A drift on the IGV positioner has been simulated with the
addition of a ramp signal up to 10% of the variable amplitude
starting from the 50th sample as shown in Figure 3.When the
drift of the actuator causes themeasure to rise up to 5%–7%of
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Figure 7: Difference between the SPE and its relative threshold: only the SPE relative to the 7th variable (f) stays under the threshold.
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Figure 8: Continued.
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Figure 8: PCA detection results when considering single directions: all the SPEs exceed their thresholds.

its standard value, the square prediction error overcomes the
assigned threshold. Figures 4, 5, and 6 show SPE computed on
the first variable together with its difference from the adaptive
threshold (see [11, 15]); it can be noticed that, at sample 62,
SPE value exceeds the threshold. Since each SPE takes into
account all the variables but the one or the ones associated
with the direction(s) under inspection, it is necessary to check
the temporal trends of all the other residuals. As a matter of
fact, all the residuals are influenced by the IGV positioner
fault with the exception of the residual associated with the
fault variable.

This situation allows the correct isolatation of the fault.
Figure 7 shows the deviations of the SPE from the threshold;
it can be noticed that the difference remains negative for all
the experiment sampling time only in correspondence of the
7th variable (ZT 89704).

These results show that the fault is detected at the 12th
sample after its onset; given a sampling time of five minutes,
the fault detection time can be computed in the order of 60
minutes.The behavior of the diagnoser in termof promptness
is linked to the adopted large sampling time; given that
actual process dynamics which are rather slow, the result
can be considered fully satisfactory. Given the interest to
investigate the performances of the proposed system on an
operational dataset covering a large period of time (about two
years), the adoption of a sampling time of five minutes was
consequentially forced by the dataset at disposal. It is clear
that the proposed FDI system,when implemented online, can
process data at a faster sampling rate (typically one minute).
No sensible limitations are imposed by the computational
load of the proposed approach; the lower limit is determined
at the I/O acquisition level: the DCS employed for controlling
the machinery under study does not handle sampling period
lower than 0.1 seconds; moreover, for many of the considered
variables in Table 2, a sampling time not lower than one
minute is generally set.

5.2.Multiple Faults Case: First andThird Stage IGVPositioners
Fault. To check the validity of the proposed system on
the detection of multiple faults, faults on the two IGV

partitioners of the first and third section, respectively, have
been simulated.

The simulated faults are supposed to be simultaneous, and
they have been constructed with the following characteris-
tics:

(i) Positioner ZT 89700: a trend of the signal is simulated
at the time instants where the IGV position is opened
around 60% of its total value;

(ii) Positioner ZT 89704: a bias of 10% of its average value
is simulated.

In Figure 8, the differences between the single direction
SPEs and the relative thresholds are shown. As it has to be
expected, all the SPEs exceed the threshold.

The system correctly isolates the faults occurred indi-
cating the presence of a multiple fault on the 3rd and
7th variables. Computed residuals concerning some of the
variable pairs are reported in Figures 9 and 10. As expected
the only SPE that remains under the threshold is the one that
is associated with the variables in fault, that is, variable 3 and
variable 7.

6. Conclusions

A Fault Diagnosis system for the detection and the isolation
of expected faults of a rotary machine based on the Principle
Components Analysis technique has been developed. The
considered machine is a multishaft centrifugal compressor
located in an integrated gasification and combined cycle of
a refinery plant. The adoption of a model-free technique is
justified by the fact that in the process industry, rich process
data are available while, conversely, the development of a
physical model is a demanding task that may not assure
suitable results.

For the Practical implementation of the PCA, the choice
of the number of principal components to be retained in
the model has been based on an approach centered on the
ANalysis Of Variance, ANOVA test, and for what concern
the detection and the isolation issues, a structured residual
approach has been applied and an adaptive threshold has
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Figure 9: Some PCA detection results when considering directions pairs: the SPEs exceed their thresholds.

been adopted for their analysis that was well suited in dealing
with the process variability.

The present method has been successfully applied in the
development of a Fault Detection and Isolation (FDI) system

of a multishaft centrifugal compressor located in a refinery
plant; malfunctions on the compressor sensors and actuators
have been examined and isolation of single andmultiple faults
as well as process faults have been successful.



International Journal of Rotating Machinery 11

0 50 100 150 200 250 300

0

Sample

Va
lu

e

−10

−8

−6

−4

−2

Difference between the SPE and the relative threshold (𝑅 = 3.7)
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