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ABSTRACT ARTICLE HISTORY

This paper presents the results obtained by the elaboration of an Received 27 December 2017
artificial neuronal network for the creation of a rockfall susceptibility =~ Accepted 2 May 2018

map. The analysis was carried out by analysing the predisposing
and triggering factors of the rockfall phenomenon. The parameters
considered for this study and representing the input data of the
artificial neural network are factors such as: gradient, soil use, lith-
ology, rockfall source areas and kinetic energy values obtained by
considering the probable pathways of the blocks through simula-
tions with dedicated softwares, DEMs and niches of the rockfalls
that have already occurred in the past. The processing of this data
(required in a versatile dedicated software for the realization of the
artificial neural network in ASCII format) is done using GIS softwares,
useful tools for the creation of hazard maps. An important step is
the realization of the rockfall inventory map: it allows to identify the
training set (consisting of 50% of the pixels relative to the rockfall
niches) for the network training and the testing set (considering the
remaining 50% of the pixels relative to the rockfall niches) to assess
the network accuracy by overlaying the rockfall niches belonging to
the testing set with the obtained susceptibility map.

KEYWORDS

Analysis Neural Networks
(ANNSs); Basilicata; GIS; Italy;
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1. Introduction

The rockfalls represent a particularly widespread problem in Italy. The gravity of these
phenomena is tied not only to the risks for people’s safety, but also to the enormous
damage they can cause to inhabited centres and to linear communication infrastructures.
The assessment of the mass movement hazard and risk, with particular reference to
rockfalls, is a topic well-felt by the international scientific community and by the territorial
management authorities because of the speed and the unpredictability with which they
can occur. In particular, rockfalls develop mainly in mountainous and hilly areas which
often cause serious damages to the population and to the exposed elements. The warning
signs that announce an imminent detachment or movement are often, at least initially,
slow and subtle except through instrumental observation, so only an assiduous control of
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the territory allows to obtain such precious information that, even though they can’t give
an accurate date of the event, provide clues about the possible accelerations of movements
and deformations in progress. As it is well known, it is not possible, at the present state
of knowledge, to simultaneously provide detailed information about the time and place
the phenomenon can occur. However, it is possible to know a priori where the most dan-
gerous areas are located, thanks to the analysis of the many predisposing factors and the
triggering ones. Assessing the landslide risk of an area is a necessary and indispensable
operation for proper land management and conservation. This step represents the first
phase of the study for the purpose of assessing and drafting thematic mapping of land-
slide risk. The choice of the scale and of the detail degree are the first elements to con-
sider when starting a geological and geomorphological study of landslide susceptibility
(Losasso, Jaboyedoff et al. 2017). In particular, this choice is tied both to the type of the
available data useful for the assessment of susceptibility, and to the methodology of the
analysis to be used.

The regional scale makes possible to focus on more local problems than the
national scale, although its use is still reserved for studies involving large territories,
extending for thousands of kilometre squares. These studies are usually carried out
using aggregate data to identify large geomorphological units presenting some struc-
tural, geological and morphological uniformity. Regional-level studies are also useful
primarily for statistical purposes, in the process of defining general plans for emer-
gency control and in the process of planning the resources at national level.

The hazard is, as is well known, the characterization of the unpredictability of a
phenomenon with certain characteristics. This evaluation is generally complex and
requires quantification, both at spatial and temporal levels, of the probability of
occurrence of the phenomenon. More specifically, the landslide susceptibility provides
the assessment of the probability that a phenomenon occurs in a given area.

Spatial hazard maps can be realized using different modelling approaches (Carrara
et al. 1977, 1991; Carrara 1983; van Westen 1993; van Westen and Terlien 1996;
Guzzetti et al. 1999; Ercanoglu and Temiz 2011; Lee et al. 2012) with different com-
plexity degrees (Figures 1 and 2).

In particular, it is possible to adopt qualitative methods, using direct heuristic
approaches based on a careful analysis of the territory (through field surveys, archive
data collection, etc.), in order to analyse existing or previous phenomena, or indirect
heuristic approaches based on the knowledge of the mass movement distribution in
the area under consideration and of the predisposing or triggering factors (to every
factor it is assigned a weight according to its importance within the process).

The quantitative approaches, however, can be led back to statistical models (Ayalew
and Yamagishi 2005), probabilistic models (Chung and Fabbri 1999) and may also refer
to Soft Computing methods such as Artificial Neuronal Networks. The assessment of
the rockfall spatial susceptibility is a particularly important process since it is essential to
be able to assess in advance the predisposition of a slope to collapse.

The main objective of the research in this paper is to provide an example of how
the proposed approach could be used. Specifically, a map of the rockfall spatial haz-
ard in a sample area of the Province of Potenza territory, heavily affected by rockfalls,
especially along the communication lines has been created. In fact, the SP13
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Figure 1. Qualitative methods to assess the mass movement hazard.

Figure 2. Quantitative methods to assess the mass movement hazard.

connecting the SS Basentana with two villages of growing touristic importance,
Castelmezzano and Pietrapertosa, has been closed several times because of the col-
lapse of large rocky blocks from the adjacent slopes.

2, Study area

2.1. Geological characteristics and types of involved materials in a zone of the
Province of Potenza territory

The study area lies with the side of the Lucan Apennine in front of the valley of the
Basento river.

The importance of assessing the susceptibility level due to natural phenomena in this
area is related to the presence of numerous mass movements and landslides many of
which are due to rockfalls (Figure 3(a)), often causing the closure of the roads and the
partial isolation of the small villages that arise right in the heart of the Dolomites:
Castelmezzano and Pietrapertosa (Figure 3(c)) (Losasso, Pascale et al. 2017).

The Apennine Chain constitutes a fold orogene originated by the Upper
Oligocene-Myocene (Figure 3(b)). The Basilicata Region occupies the central part of
the southern section of the Apennine Chain, which is known in the specialist litera-
ture as Lucan Apennines (Figure 4).

The area in the analysed territory (province of Potenza) from the geological point of
view falls in the north-western sector of Sheet n. 490 ‘Stigliano’, scale 1:50,000 of the
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Figure 3. (a) Study area of about 42km? falling in the territory of Castelmezzano and
Pietrapertosa villages: landslide inventory map (Sdao and Sole, 2013); (b) Geological map of
Southern Italy (Bentivenga et al., 2015); (c) Location of the study area.

Figure 4. Detailed geological-structural scheme of the Lucan Apennines.

Geological Map of Italy. This area is made up of arenaceous-clay rocks linked to the
Gorgoglione Flysch, represented by a dense alternation of turbiditic sandstone with
intertwining of siltite and grey-blue clays. The arenaceous benches are well stratified and
very slatted. In some places, especially near Pietrapertosa, there is a dense alternation of
clay and silty clay complex with arenaceous intercalation. The Gorgoglione Flysh is



GEOMATICS, NATURAL HAZARDS AND RISK 741

disposed in a very inclined monoclinal characterized by NO-SE orientation and inclin-
ation of 40°/50°. Along the analysed slope, the layers show an orientation at an oblique
angle to slope and hogback morphological shapes. The slope steepness, coupled with the
intense stratification and cracking of the arenaceous benches, makes the area particularly
fragile from the morphological point of view which is revealed by collapsing phenom-
ena. From a morphological point of view, the territory under consideration has typical
morphological characteristics of the mountain territory, with an altitude varying between
750 and 1100 m above sea level (a.s.l.).

The nature of the soils, constituting the geological substrate, directly influences the
physiography of the area, through the presence of slopes and rocky walls with a good
degree of steepness and included among the hydrographic auctions of seasonal
streams, which drain limited quantities of water towards the south-eastern sector.

The hydrographic network is characterized by the presence of lower waterways, also
defined as incisions or erosive ditches, with south-west towards north-east-oriented feed-
ing the Caperrino stream that physically divides the villages of Castelmezzano and
Pietrapertosa. The surfaces present steep slopes in some cases with very high altimetric
variations. The area is also affected by abnormal morphological shapes such as ancient
and recent niches of detachment, landslides, ‘concave—convex’ surfaces, as well as the
downstream presence of ancient instability phenomena. The presented lithotypes have
been subjected to subsequent gravitational elaborations which have determined the gra-
nulometric characteristics observed in the outcrop.

From the morphological point of view, there are selective erosion forms developed
in the area because of the presence of soils with different characteristics of resistance
to the erosion action of exogenous agents. Within the pelitic-arenaceous facies, where
the silty-clayey pelitic component prevails, slight slopes and soft morphological con-
figurations are found; in correspondence of the argillitic, marly-clay and arenaceous
components, instead, rougher morphologies prevail. From the geomorphological
forms observed during the surface relief, it is noted that the area is affected by signifi-
cant destruction phenomena that could compromise its stability. In particular, the
analysed slopes of interest are characterized by reliefs widely modified by the external
agents with steep slopes in correspondence of the arenaceous banks. The area under
consideration presents sometimes degradation phenomena that affect not only the
arenaceous-marly cover but also the arenaceous banks. In fact, especially during the
winter months, big rock masses fall from the slope creating problems both to infra-
structure lines and to socio-economic activities.

3. The soft computing methods and the analysis neural network (ANN)

The evolutionary genetic algorithms were created from the necessity to simulate the
human brain with the available electronic computers, in order to solve the most com-
plicated problems. They have been, since the 1980, successfully applied to many diffi-
cult or impossible to treat real world problems. The genetic evolutionary algorithms,
together with the fuzzy logic and the artificial neural networks, are part of the soft
computing methods in opposition to the traditional ones, hard computing, based on
criteria such as precision, determinism and containment of complexity (Tettamanzi
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et al. 2004). The soft computing is distinguished from the conventional techniques
(hard computing) for tolerating the inaccuracy, the uncertainty and the partial truths.
It is a discipline in which each methodology completes the others. Among the differ-
ent Soft Computing (SC) techniques, the artificial neural networks (ANNs) play an
essential role. In the field of the automatic learning, an artificial neural network
(ANN) is a mathematical model, composed of artificial neurons, inspired by the
neural network present in the human brain.

In the recent years, the artificial neural networks (ANNs), frequently applied to the
study of complex systems for solving engineering problems of artificial intelligence such
as problems related to the various technological fields and, alongside to satellite data, are
used to estimate the thematic information at a sub-pixel scale, for the risk analysis
(Foody 1997), to classify images, to quantify the land use changes (Kanungo et al. 2006)
and finally for the prediction of the environmental dynamics (Follador et al. 2008).

An ANN is a set of simple computational units, called neurons, cells or nodes,
linked by a system of connections, the synapses, which work in parallel to realize the
input/output transformations. The number of neurons and connections defines the
topology of the neural network. An artificial neuron is a mathematical model that
simulates a biological neuron (Figure 5).

It is the basic unit of information processing in an ANN and consists of
three elements:

e A series of input cells (X;) i=0 ... m’ corresponding to the biological cells that
receive the pulse;

e A series of synapses or connections, each of which is characterized by a certain
weight (W;) i=0, ... m’; a positive value is associated with an excitatory synapse
and a negative value to an inhibitor synapse. The input information will be inte-
grated through an additive function X

e An output cell representing the perceptron response to receive stimuli and is the
result of the weighted sum of inputs, limited by a ‘g’ transfer function (or activation).

A neuron is therefore described mathematically by the following formulas (Mas
and Ahlfeld 2007)

m
Vie = 2221 Wiy + Wok

k= @(Vi) M

where ‘wg.’ is called bias or activation threshold.

The received inputs are the dendritic analogues in a biological neuron; they are
combined, often through a simple weighted sum, to form the internal activation level
(Figure 5).

The activation function ‘g (V) defines the output of a neuron as a linear combin-
ation of inputs ‘V’. The neuron layout in the network, the number of synapses and
nodes define the topology of the ANN. Like biological networks, therefore, the artifi-
cial neural ones are composed by a number of processing units operating in parallel.
These units are called artificial neurons and they can be broken down into multiple
subset of the network, called ‘layers’.
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Figure 5. Graphical representation of a network, in which each neuron is described by Eq. (1).

The neurons of each layer can communicate through the weighted connections
similar to the biological synapses. Based on the organization of these connections it is
possible to distinguish:

e Totally connected networks where each neuron of one layer is connected to each
neuron of another layer;

e Partially connected networks, where each neuron of a layer is connected to a par-
ticular subset of neurons of another layer;
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Or according to the signal flow:

e Probabilistic prediction models for unidirectional entry-exit networks and, for this
reason, the model is considered static. The Multi-Layer Perceptron (MLP) is the
most used unidirectional class;

e Feedback networks (or recurring networks), where the connections also carry the
signal backwards. They are dynamic networks in which a neuron is pushed back
directly or passing through intermediate nodes and is reused as input. By means
of updating mechanisms, the weights and the bias are modified to the input level.
This cycle is repeated until the network converges to a solution.

The most important feature of these systems is to be able to learn mathematical--
statistical models through experience, i.e. by reading experimental data, without deter-
mining the mathematical relationships that link the solutions to the problem. The
artificial neural network is not programmed, but ‘trained’ through a learning process
based on empirical data.

It is considered a black box model, which contrasts with the ‘white box’ one
because the components inside the system are not known and it cannot be explained
logically as it reaches a determined result. There are two different learning/training
rules (Kanevski and Maignan 2004 ): Supervised and Not Supervised.

e Supervised Learning: this is used in this work and it is the most common method.
It is based on a training phase, building a dataset to ‘train’ the network, consisting
of a series of experimental pairs (real-input, real-output). After reviewing the
entire subset of data, the network is updated and the weights modified; this oper-
ation aims to minimize the error between output-real and simulated output-net-
work. If the training succeeds, the network learns to recognize the implicit
relationship that links the input variables to the output ones and it is able to cor-
rectly respond to the stimuli that weren’t in the training set;

o Unsupervised Learning: only a series of real-input resources are provided to the net-
work, as this method is not accompanied by the ‘training” phase (real-output) and it
realizes a kind of self-learning. The weights vary according to an a priori defined rule.

3.1. The rockfall susceptibility mapping using the artificial neural network
model: the MLP

In this work, a MLP, a three-layer unidirectional input-output model is used to assess
the rockfall susceptibility:

o An Input: the number of neurons depends on the number of incoming data, such
as the thematic maps;

e An Output: the number of neurons depends on our goals, such as rockfall suscep-
tibility maps;

o An hidden layer: its size and parameterization are chosen on the basis of the
results of the network optimization phase.
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The MLP is the most important class of a feedforward neural network with super-
vised training. It consists of a set of inputs (input layer), of computational nodes
(hidden layers) and of output nodes (output layer).

A neuron on a ‘7’ level is always connected to the neuron on the next level ‘i + I’, with-
out any feedback. The MLP learns through a supervised algorithm called ‘backpropagation
algorithm’. The training of a MLP is based on the following operational steps:

1. [Initialization of the weights: random numbers are assigned to synaptic connec-
tions and nodes, using a uniform random distribution;

2. Elaboration of the results (forward phase);

3. Error calculation (backpropagation phase).

The forward and backpropagation phases are repeated until a condition completes
the learning process. The quality of the results of a trained ANN is verified by calcu-
lating the average quadratic error between the network output and the desired real-
output. Numerous studies have been carried out to determine the optimum parame-
ters of an ANN (Kavzoglu et al. 2014); this choice depends closely on the examined
problem and by the available data.

A last consideration must be made about the data chosen for the network training.
The distribution of information and the size of the dataset presented to the ANN,
condition the result: to minimize the total error, a network has to process the data
that are representative of the real proportions of the studied categories. The data
entry order may also affect the network training, since the latest pairs (inputs, out-
puts) presented to the ANN are more important in updating synaptic weights. In
general, this problem is solved by adopting a random introduction order.

3.2. Application of the artificial neural networks (ANN) for the rockfall spatial
hazard assessment to the study area

The implemented artificial neural network aims to create a mass movement suscepti-
bility map of the study areas (outputs) subject to rockfalls, by determining: the input
parameters, a training phase represented by a portion of the rockfall niches (mass
movements already occurred in the past) and a testing phase used to test the network
performance. In particular, the methodology used for assessing the rockfall suscepti-
bility for this study involves different phases:

1. Data collection and choice of the input parameters that more influence the slope
instability linked to the detachment of rocky blocks from a wall;

2. Analysis of the inventory map of the rockfall phenomenon and detection of rock-
fall detachment niches with the consequent identification of a representative sam-
ple (50% of pixels interested by rockfall — training set and 50% of pixels not
interested by the phenomenon - testing set);

3. Realization of the related thematic cartography in 1:25,000 scale through the
implementation and the processing of data in GIS environment with relative spa-
tial analysis. Therefore, this phase has resulted in the realization of raster maps
of each parameter used as input data in the neural network (GRID format with
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resolution 20 x 20) with the help of the ArcGis 9.3 software. The obtained maps
has been then transformed into ASCII format for the implementation in the
IDRISI TAIGA software for the realization of the neuronal network;

4. Training phase using the back-propagation algorithm that consists, precisely, in
modifying the weight of each connection until the weight set for each parameter is
obtained, training the network with reference to 50% of rockfalls niches and 50% of
the area not affected by rockfalls until the final map of susceptibility is obtained;

5. Testing phase useful to verify the performance of the model using the remaining
50% of the pixel not affected by mass movements;

6. Development of landslide susceptibility map using the IDRISI TAIGA MLP.

The used module allows to set some parameters such as the value of training pixels
for each category, the number of hidden layer (equal to 2n+ 1 where # is the number
of parameters used as input data in the neural network) (Hecht-Nielsen 1987), the
learning rate that is a positive constant that controls the weights associated with the
connections, the momentum factor that prevents the divergence problem during the
research of the minimum error value and it is used to accelerate the convergence, the
RMSE (the square minimum error) and the number of iteration carried out.

Depending on the entered data, the program returns several maps that are proc-
essed in the GIS environment by choosing the definitive susceptibility map, subse-
quently reclassified into several classes (low, medium, high and very high) based on
the inflection points of the cumulative curve of the output provided by the ANN.

The architecture of the neural network for a better understanding has been
described in detail below, applying the approach proposed to the considered study
area. The area on which the neural network has been ‘designed’ has an extension of
approximately 42 km® (Figure 6).

3.2.1. Predisposing factors and relationship with the mass movements

One of the crucial points for the realization of the susceptibility map is the preparation of
a spatial database (Lan et al. 2004). The choice of the parameters has been made consider-
ing the geomorphological, kinematics and mechanical characteristics of the rockfalls. The
basic thematic maps, including the causes or the factors of the mass movement distribu-
tion in the study area, have been obtained with the support of the ArcGIS software. Some
factors are nominal variables, such as lithology and soil use, the other ones are morpho-
metric (ie. the slopes) and they have been derived from the Digital Elevation Model
(DEM), which has a cell resolution of 20 m x 20 m (Losasso, Rinaldi et al. 2017).

After rasterizing all the parameters, they have been then converted to ASCII data,
that is to say text data that could be processed with any software. The data can be
reworked and classified using IDRISI Taiga (Eastman 2009) software for the elabor-
ation of the input maps to be introduced into the MLP module (Multy Layer
Perceptron), as shown below, used to generate the artificial neural network. The pro-
posed parameters (Figure 7) to be implemented in an artificial neural network for
assessing the rockfall susceptibility in this case study are:

o Source areas (for each morphological complex)
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Figure 6. Study area in a portion of the Province of Potenza territory.
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Figure 7. Predisposing input factors: (a) rockfall niches, (b) land use, (c) lythology, (d) kinetic
energy value for each morphological unit (Losasso et al, 2016), (e) source areas assessed at a
regional scale (Losasso et al., 2016), (f) slope.

Obviously, in different geomorphological conditions, other parameters for the
ANN architecture (slope curvature, cracking density, etc.) may be considered.

The input parameters can be both nominal and numeric variables. For this work,
starting from previous validated studies (Caniani et al. 2008; Sdao et al. 2013, etc.), it
has been decided to use each variable as a sequence of binary numbers to uniform
the typology of used data. For this reason, both the numerical and nominal variables
have been divided into several classes defined by the influence they exert on the
mechanisms of the rockfall phenomena (Losasso et al. 2016).

For the adopted parameters, the following reclassification has been performed
(Table 1).

The importance of the analysis of outcropping lithology where rockfalls may occur
near a given territory or infrastructure is linked to the dynamics with which the phe-
nomenon occurs, consequently influenced by the type of rock and material that char-
acterizes the analysed territory. Not without reason, the flithology’ information layer
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Table 1. Reclassification of the parameters used for the Analysis
Neural Network.

Parameter Classes Reclassification

DEM 0
0-200
200-400
400-600
600-800
800-1,000
1,000-1,200
1,200-1,400
1,400-1,600
1,600-1,800
Land use Agricultural areas
Natural areas
Infrastructures and urban areas
Lithology Debris complex
Conglomeratic complex
Flyschoid complex
Conglomerate kinetic energy 0-30
30-300
>300
Flysch kinetic energy 0-30
30-300
>300
Debris kinetic energy 0-30
30-300
>300
Rockfall source areas Potential source areas
Slope 0-5
5-10
10-15
15-20
20-25
25-30
30-35
>35

—

S, O0ONOUPAWN= =2 WN=_2WN=_2, W=, W=, W20 0vooNO U WN =

Detachement niches

is the main predisposing cause of slope instability. The intrinsic characteristics con-
sidered in the lithological parameter are the weaving of the materials (nature, shape,
size of the grains, nature of the matrix, etc.) and the lithostratigraphic characteristics
influencing the stability. The outcropping geological formations in the study area
have been grouped in several main complexes based on qualitative assessments (struc-
ture, morphology, similar geomechanical behaviour). For the sampling area, three dif-
ferent geological complexes have been recognized: the debris complex, the
conglomerate complex and the flyschoid complex.

The DEM (Digital Elevation Models) represent a spatial elevation variation of an area.
It has been obtained by digitalizing the level curves from the topographic map 1:25,000 of
the Basilicata Region. After the digitalization, the vectorial layer has been converted in ras-
ter format with a cell size of 20 m x 20 m. In the study area, the DEM vary between 200
and 1800 meters a.s.l. and it has been subdivided in 8 classes of 200 m.

The slope is another important parameter that belongs to the rockfall predisposing
causes of a territory. It represents one of the morphological conditions more affecting
the rockfalls. As a consequence, the material accumulated at the base of the slope can be
involved in other gravitational phenomena when the morphological conditions allow it.



750 L. LOSASSO AND E. SDAO

Further clarification is necessary: the material accumulated at the feet of the slope gen-
erally does not participate to the morfoevolutive processes but allows to protect the terri-
tory from erosion if the phenomenon occurs near a slope limited to the foot by a stream.

Through the morphological analysis of the digital elevation model it is possible to
perform a parametrization of the surface, whose purpose is the numerical description
of the continuous form of the surface itself.

Among the topographic attributes most commonly calculated by DEM, the slope
plays a fundamental role, used for the evaluation of various parameters linked to
numerous geological and geomorphological processes. The slope angle is a parameter
that is easily correlated with the movement of a slope, since it is significantly linked
to the acting forces. This parameter for the study area varies between 0° and 75° and
has been divided into 8 classes.

Land use refers to the different coverage of the land resulting from a 1:50,000 scale
cartography with a 44-item legend on 3 hierarchical levels (CORINE LAND COVER
2000). This parameter, used to distinguish the different types of the soil in relation to the
type of the use, is useful for identifying the drainage network and the infiltration, since
studies have shown that a greater contribution to mass movements is also offered by the
exploitation of areas called ‘fragile’. In this regard it is important the lack of vegetation
that exposes the slopes to the erosive action of rainwater in proportion to their acclivity.

The presence of woods, or the widespread vegetation, in addition to the action of
increasing the resistance of the soil by the roots, promotes the interception of signifi-
cant amounts of rain, avoiding erosion and degradation. This parameter then defines
the degree of protection of the soil from the action of atmospheric agents and pro-
motes an important regulating action against the infiltration of surface water, slowing
down its time of correction.

The classes identified for this parameter have been reduced to three main classes:

1. Agricultural Areas;
2. Natural Areas;
3. Infrastructures and urban areas.

Another important parameter to take into consideration during the analysis of the
rockfall phenomenon is represented by the rockfall niches, that is to say the areas of
detachment that can be interpreted as those areas of slope break, often with an
arched contour, which can be detected upstream of the collapsed material. Precisely
from the morphological point of view, in a mass movement it is possible to distin-
guish, in addition to the area just described, a riverbed or slope (along which the
landslide body moves) and a zone of accumulation.

The preparation of this theme implies a reclassification with assignment of the
identifier 1 in the attribute table in correspondence of each rockfall detachment niche.
To assess the rockfall susceptibility, it is essential to evaluate the probability of trigger
to identify the potential rockfall source areas and consequently the propagation char-
acteristics of the detrital masses, that is to say their path along the slope (probability
that the rocky block reaches a certain position in the space). Generally, the triggering
cause is linked to an increment in the shear stresses and these mass movements occur
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mainly in fractured, stratified and/or karstic mass rocks such as limestones, dolomitic
limestones, sandstones, conglomerates and magmatic and metamorphic rocks if not
altered. Various methods have been proposed in the literature to evaluate both the
probability of triggering (Hoek and Bray 1981; Jaboyedoff et al. 1999; Chau et al
2003; Hantz et al. 2003) and propagation (Desceoudres and Zimmermann 1987;
Pfeiffer and Bowen 1989; Evans and Hungr 1993; Agliardi and Crosta 2003), but few
attempts have been made to evaluate both (Pierson et al. 1990; Cancelli and Crosta
1993). Also in this case the preparation of this theme implied a reclassification with
assignment of the identifier 1 in the attribute table in correspondence with each cell
recognized as the source area. The intensity and the recurrence of a phenomenon of
falling rocks represent very variable factors that characterize the phenomenon. This
process, as it is well known, exhibits itself with high speed, frequency, kinetic energy
and mobility, although it involves limited volumes compared with other types of
landslides (Evans and Hungr 1993). The rock collapse is predominantly dominated
by the free falling motion governed by the gravity. This process is usually described
by parabolic trajectories. During the free fall, the potential energy of the boulder is
transformed into kinetic energy. Rarely, the main movement of a boulder occurs by
pure rolling: usually this tends to be accomplished by a close sequence of rebounds
that generate modal height parabolic trajectories (Broili 1973; Azzoni et al. 1991).

3.2.2. Training phase
Training or learning phase is the process that is used to represent the effects of the
input parameters and their subgroups on the rockfall probability. The probability of
occurrence is determined through a training process, based on a set of examples
(training set). In this work, the learning phase of the network is based on a sample of
50% of the pixels falling into the areas represented by the rockfalls (i.e. the niches
formed by the blocks already collapsed in the past) and 50% of the pixels in the areas
not interested by rockfalls (Figure 8). The training model has been realized with GIS
support, starting from a GRID image of the areas represented by the rockfalls niches
with 20 m x 20 m resolution.

The areas interested by the rockfalls are marked with the value 1, while the areas not
interested by rockfalls are marked with value 2; the value 0 is assigned to the remaining
pixels (NO DATA pixel set). In so doing, the layer used for this study is produced.

3.3. Susceptibility map

The rockfall spatial susceptibility in the study area has been carried out using an arti-
ficial neural network tool as widely described above. The used parameters as input
data in the network are listed in Figure 9.

So, in light of this, it has been possible to set in the adopted MLP module, a num-
ber of hidden layers equal to 2n+1, that is to say 2x9+1=19 hidden layers
(Table 1) with a number of carried out simulations equal to 6,996.

In accordance with the data entered, the program allows to obtain several maps
drawn up with GIS softwares choosing the definitive susceptibility map.

After the treatment of the images, a map reclassified in Very Low or Nil, Low,
Medium, High and Very High susceptibility has been obtained through the
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Figure 8. Map representing the 100% of areas interested by mass movements (in blue) and 100%
of area not interested by mass movements (in black) divided into training sets and testing sets.

cumulative output distribution provided by the network. The subdivision of the sus-
ceptibility ranges in several classes has been carried out according to the natural
breaks defined by Jenks (1989) (Jenks Algorithm) (Ruff and Czurda 2008; Falaschi

et al. 2009; Nandi and Shakoor 2009).

The natural breaks criterion sets the limits between two classes corresponding to

discontinuities or jumps’ in the frequency distribution (Figure 10).
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Figure 9. Architecture and running of the artificial neural network for the rockfall susceptibil-
ity assessment.

Following the reclassified map according to the five susceptibility classes
is presented.

3.3.1. Testing phase

This phase is used to assess the model performance on the data that have not taken
part in the training process, and therefore provide a ‘test’ phase for testing a new set
of data called ‘testing set’.

This set consists of input and output values unknown by the network and represents,
for the study area, approximately the 50% of the remaining pixels containing the rockfall
niches. Based on the network response, during the learning iterations, the testing phase
demonstrates that most of the mass movements presented as starting data (map of rock-
falls detachment niches) fall into the susceptible area considered by the model.

3.4. Validation of the procedure and results

The final phase of the artificial neural network application to the study case is the
validation of the procedure that involves two primary goals:

e To analyse where the model is sufficiently accurate, comparing the susceptibility
map obtained with the inventory map of the rockfall niches;
e To determine a scheme that can represent instability.

Based on the obtained results, it is possible to decide whether the obtained suscep-
tibility map adequately reflects the initial expectations or if it is necessary to choose
an alternative training model and different parameters, repeating the iterative process.
For this work, the overlapping of the susceptibility map obtained from the training
phase and the map representing the rockfall niches belonging to the testing set has
been chosen for the validation of the procedure (Figure 11).

The limited accuracy of the model (Table 2) is certainly due to the preparation of the
original shapes concerning the rockfall niches. In particular, after the digitalization of
rockfall detachment niches, represented by linear patterns, it has been necessary to turn
them into polygons for the creation of the training set and the testing set.

A single niche belonging to the testing set falls into the middle-high hazard class
(Figure 12) and therefore this datum is considered a false positive. It consists of 54
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Figure 11. Rockfall susceptibility map compared to the rockfall detachment niches.

Table 2. Assessment of the accuracy of the model.

Pixels interested Pixels not
by the interested by the
mass movements False positive mass movements  False negative  Tot Error Accuracy
Training 153 113 0 266 0% 100%
0
Testing 188 181 0 369 14.63% 85.37%
54 pixels not
interested by
the mass
movements
fall in the
high class

pixels (this value is very indicative because it depends on the detail scale used for the
niches digitalization) which represents a susceptibility estimation error equal to
14.63% (related to false positive in fact there aren’t false negative), with subsequent

accuracy equal to 85.37%.

Finally, in the considered study area which occupies an area of about 42km? and
constituted by 105,000 pixels, 36% fall into the very low hazard class, 36% fall into
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Figure 13. Rockfall susceptibility level in the “Margiass” location (Figure 12).

the low class, 14% fall in the middle class, 12% in the high class and finally 1% falls
into the very high class of rockfall spatial hazard.

The rockfall event that occurred in ‘Margiass” location (Figure 12) near Castelmezzano
on 14 April 2017 effectively falls into the very high hazard class (Figure 13).

4, Conclusions

The rockfall susceptibility analysis in the present study has been carried out using an
artificial neural network model with a backpropagation learning algorithm and con-
sidering the factors that better describe the predisposition of a slope to collapse. In
particular, the predisposing factors have been used to obtain a susceptibility map of
the study area (lithology, land use, DEM, slope, rockfall niches, rockfall source areas
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and kinetic energy values for each lithological formation: flyshoid and conglomeratic
complex). The training set has been chosen randomly and it is characterized by the
50% of the total pixels interested by the rockfall phenomenon and the 50% of the pix-
els not interested by the phenomenon in order to train the neural network model.

The number of iteration, carried out by the model in the study area with an exten-
sion of about 42 km?, is equal to 7,000 with an accuracy of about 85%. The final suscep-
tibility map obtained by the elaboration of the input data in the Idrisi Taiga Software
has a minimum value equal to 0 and a maximum value equal to 0.89: this means that
the pixels with a number close to 0 show low probability of slope instability, while the
pixels with a value near to 1 show an high propensity of the slope to collapse. The five
susceptibility classes are obtained exporting the data in ASCII format provided by the
software IDRISI TAIGA in the GIS environment, finally using the Natural breaks of
Jenks that underline the break points according to the identification of the grouped
similar values, maximizing the differences between the classes (Federici et al. 2007).

One of the greatest advantages of the Soft Computing methods use such as the artifi-
cial neural networks applied in this work is, precisely, the ability of the network to pre-
dict a value from a given input data set after the training phase, allowing to solve several
problems. Finally, the obtained results underline the fundamental importance of a deep-
ened specialized knowledge of the territorial characteristics predisposing the mass
movements for the evaluation of the potential risk conditions, also for planning and
civil protection purposes. This characteristic represents the essential and preparatory
phase for the hazard and risk assessment. Very important, in fact, is to integrate the sub-
jective experience with the effective use of geo-environmental analysis tools.

A reliable map of susceptibility represents the fundamental step to arrive, through
further specialized analyses, to risk and hazard maps. Such documents allow a careful
spatial planning and can be usefully integrated in the civil protection systems.
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