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Abstract:We study nonnegative solutions of the Cauchy problem

{
∂tu + ∂x[φ(u)] = 0 inℝ × (0, T),
u = u0 ≥ 0 inℝ × {0},

where u0 is a Radon measure and φ : [0,∞) 󳨃→ ℝ is a globally Lipschitz continuous function. We construct
suitably defined entropy solutions in the space of Radon measures. Under some additional conditions on φ,
we prove their uniqueness if the singular part of u0 is a finite superposition of Dirac masses. Regarding the
behavior of φ at infinity, we give criteria to distinguish two cases: either all solutions are function-valued
for positive times (an instantaneous regularizing effect), or the singular parts of certain solutions persist
until some positive waiting time (in the linear case φ(u) = u this happens for all times). In the latter case,
we describe the evolution of the singular parts.

Keywords: First order hyperbolic conservation laws, Radon measure-valued solutions, entropy inequalities,
uniqueness

MSC 2010: Primary 35D99, 35K55, 35R25; secondary 28A33, 28A50

1 Introduction
In this paper we consider the Cauchy problem

{
∂tu + ∂x[φ(u)] = 0 inℝ × (0, T) =: S,
u = u0 inℝ × {0},

(P)

where T > 0, u0 is a nonnegative finite Radon measure on ℝ, and φ : [0,∞) 󳨃→ ℝ, φ(0) = 0, is a Lipschitz
continuous function (see assumption (H1)). Therefore, φ grows at most linearly.

Problem (P) with a superlinear φ of the type φ(u) = up, p > 1, was studied in [19], proving existence
and uniqueness of nonnegative entropy solutions (see also [8]). By definition, in that paper the solution for
positive times takes values in L1(ℝ), although the initial data u0 is a finite Radonmeasure. Interesting, albeit
sparse results concerning (P) with φ at most linear at infinity can be found in the pioneering paper [10], in
which the same definition of Radonmeasure-valued solutions used below (see equality (3.8)) was proposed.
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2 | M. Bertsch et al., Measure-valued solutions

When φ(u) = Cu (C ∈ ℝ), problem (P) is the Cauchy problem for the linear transport equation

{
∂tu + C∂xu = 0 in S,
u = u0 inℝ × {0},

whose solution is trivially the translated of u0 along the lines x = Ct + x0 (x0 ∈ ℝ). In particular, the singular
part us( ⋅ , t) of the solution is nonzero for t > 0 if and only if the same holds for t = 0.

It is natural to askwhat happens if φ is sublinear. To address this casewemust consider solutions of prob-
lem (P) which, for t > 0, possibly are finite Radon measures on ℝ as the initial data u0. Therefore, throughout
the paper we consider solutions of problem (P) as maps from [0, T] to the cone of nonnegative finite Radon
measures onℝ, which satisfy (P) in the following sense: for a suitable class of test functions ζ , we have

∬
S

[ur∂tζ + φ(ur)∂xζ ] dx dt +
T

∫
0

⟨us( ⋅ , t), ∂νζ( ⋅ , t)⟩ℝdt = −⟨u0, ζ( ⋅ , 0)⟩ℝ

(see Definition 3.3). Here the measure u(t) is defined for a.e. t ∈ (0, T), ur ∈ L1(S) is the density of its abso-
lutely continuous part, ⟨ ⋅ , ⋅ ⟩ℝ denotes the duality map, and

∂νζ := ∂tζ + Cφ∂xζ, Cφ := lim
u→∞

φ(u)
u

.

Measure-valued entropy solutions are defined similarly (see Definition 3.3).
We use an approximation procedure to construct measure-valued entropy solutions of problem (P) (see

Theorem 3.7). In addition, we prove that the singular part us of an entropy solution of problem (P) does not
increase along the lines x = x0 + Cφ t (see Proposition 3.8). In particular, if Cφ = 0, the map t 󳨃→ us( ⋅ , t) is
nonincreasing.

Concerning the case when φ is sublinear, the following example is particularly instructive:

{
∂tu + ∂x[φ(u)] = 0 in S,
u = δ0 inℝ × {0},

(1.1)

with S := ℝ × (0, T), T > 1 and

φ(u) = sgn p[(1 + u)p − 1] (p < 1, p ̸= 0). (1.2)

The function in (1.2) is increasing and concave, with Cφ = 0, and belongs to a class for which the constructed
entropy solution of problem (1.1)–(1.2) is unique (see Theorem 3.22). Hence, the following holds.

Proposition 1.1. (i) Let p < 0. Let ξ(t) be defined by

ξ 󸀠 = −(|p|tξ
−1)

p
1−p − 1

(|p|tξ−1)
1

1−p − 1
in (1, T), ξ(1) = 0.

Let
A := {(x, t) ∈ S | 0 < x ≤ |p|t, 0 ≤ t ≤ 1} ∪ {(x, t) ∈ S | ξ(t) ≤ x ≤ |p|t, 1 < t ≤ T}

and
us(t) := max{1 − t, 0}δ0, ur(x, t) := [(|p|tx−1)

1
1−p − 1]χA(x, t) ((x, t) ∈ S). (1.3)

Then u = ur + us is the unique constructed entropy solution of problem (1.1)–(1.2).
(ii) Let 0 < p < 1. Let ξ(t) be defined by

ξ 󸀠 = (|p|tξ
−1)

p
1−p − 1

(|p|tξ−1)
1

1−p − 1
in (0, T), ξ(0) = 0.

If B := {(x, t) ∈ S | ξ(t) ≤ x ≤ |p|t, 0 < t ≤ T}, then

u(x, t) = ur(x, t) := [(|p|tx−1)
1

1−p − 1]χB(x, t) ((x, t) ∈ S) (1.4)

is the unique constructed entropy solution of problem (1.1)–(1.2).
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Let us define the waiting time t0 ∈ [0, T] for solutions u of (P):

t0 := inf{τ ∈ (0, T] | us( ⋅ , t) = 0, ur( ⋅ , t) ∈ L∞(ℝ) for a.e. t ∈ (τ, T)} (1.5)

(by abuse of language, we call t0 “waiting time” even if t0 = T). Then, by Proposition 1.1,
(∗) positive waiting times occur in problem (1.1)–(1.2) if and only if p < 0.
More precisely, if p < 0, the singular part us( ⋅ , t) persists until the waiting time t0 = 1 at which it disappears,
whereas for 0 < p < 1, the singular part vanishes for all t > 0, thus t0 = 0 – an instantaneous regularizing
effect. Instantaneous regularization also occurs if p > 1 (see [19] and Remark 3.24), whereas, as already
remarked, in the linear case p = 1, we have t0 = T if u0s ̸= 0.

Since φ(u) = sgn p[(1 + u)p − 1] (p < 1, p ̸= 0) is bounded if and only if p < 0, and Cφ = 0, statement (∗)
could be rephrased as follows.

Proposition 1.2. Positive waiting times occur in problem (1.1) if and only if the map u 󳨃→ φ(u) − Cφu, with φ
as in (1.2), is bounded in [0,∞).

The above result is generalized to problem (P), by Theorem 3.18, for functions φ which satisfy for u large
a condition implying either concavity or convexity (see assumption (H4) and Remark 3.13). The proof of
Theorem 3.18 makes use of estimates of the density ur of the solution of (P), which are strongly reminiscent
of the Aronson–Bénilan inequality for the porous medium equation (see Proposition 6.2). The main results
on the waiting time and the regularity of solutions of (P) are collected in Section 3.3. The existence and an
upper bound, in terms of φ and u0, of a waiting time was already pointed out in [10, Proposition 2.1] (see
also Theorem 3.8 (ii)).

Another interesting feature of the solution of (1.1)–(1.2), with p < 0, is that for t ∈ (0, 1), i.e., as long as
us( ⋅ , t) > 0, we have

lim
x→0+

ur(x, t) = ∞.

Namely, the regular part ur( ⋅ , t) diverges when approaching from the right the point x0 = 0, where us( ⋅ , t)
is concentrated. As we shall see below (see (3.24)–(3.25)), this property can be generalized to entropy solu-
tions of a larger class of problems, characterized by the concavity/convexity property on φmentioned before.
In this class a generalized form of this property will also be used as a uniqueness criterion, provided that
φ(u) − Cφu is bounded in [0,∞) and u0s is a finite superposition of Dirac masses (see Proposition 3.17
and Theorem 3.22). In [10] it was already observed that Kruzkov’s entropy inequalities do not guarantee
the uniqueness of solutions (see also Remark 3.23 below), and the formulation of an additional uniqueness
criterion was left as an open problem. This problem is addressed in a forthcoming paper, where more general
compatibility conditions are given, which ensure uniqueness also for non-convex or non-concave functions φ
(see [3]).

Apart from the intrinsic mathematical interest of problem (P), it is worth pointing out its connection with
a class of relevant models. Ion etching is a common technique for the fabrication of semiconductor devices,
also relevant in other fields of metallurgy, in which the material to be etched is bombarded with an ion beam
(see [16, 24, 25]). Mathematical modelling of the process leads to the Hamilton–Jacobi equation in one space
dimension

{
∂tU + φ(∂xU) = 0 inℝ × (0, T),
U = U0 inℝ × {0},

(HJ)

where U = U(x, t) denotes the thickness of the material and φ is bounded, non-convex and vanishing at
infinity. Formal differentiation with respect to x suggests to describe the problem in terms of the unknown
u := ∂xU, which formally solves (P) with u0 = U󸀠0. In this way, discontinuous solutions of (HJ) correspond to
Radon measure-valued solutions of (P) having a Dirac mass δx0 concentrated at any point x0, where U( ⋅ , t)
is discontinuous (t ∈ (0, T)). A rigorous justification of the above argument, relating discontinuous viscosity
solutions of (HJ) to Radon measure-valued entropy solutions of (P), is to our knowledge an open problem (in
this connection, see [7, 14]).

In the context of conservation laws, the term “measure-valued solution” usually refers to solutions in
the sense of Young measures, after DiPerna’s seminal paper [11]. We stress that this concept of “statistical
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4 | M. Bertsch et al., Measure-valued solutions

solutions” is completely different from that of Radonmeasure-valued solutions, introduced by Demengel and
Serre [10], and discussed in the present paper. On the other hand, we do use Young measures in this paper,
since they are an important ingredient in the construction of Radon measure valued solutions (see Section 3
and, in particular, Section 5).

A number of ideas used in the present paper go back to papers dealing with Radonmeasure-valued solu-
tions of quasilinear parabolic problems, also of forward-backward type (in particular, see [4–6, 21, 23, 27]).

The results presented in this paper naturally lead to someopenproblems. Among themwemention a gen-
eral statement about an instantaneous regularizing effect for fluxes with superlinear growth (singular parts
should disappear instantaneously for t > 0), and an appropriate generalization of our results to the case of
solutions with changing signs, when additional nonuniqueness phenomena (such as N-waves, see [19]) may
occur; in this regard, the general case of an initial signed Radonmeasure u0 in problem (P) will be considered
in a forthcoming paper. Another open problem is whether new phenomena occur if φ is uniformly Lipschitz
continuous on [0,∞) but the limit φ(s)/s as s →∞ does not exist.

The paper is organized as follows. In Section 2 we recall several known results used in the sequel and
introduce some notation. In Section 3 we present the main results of the paper. In Section 4 we introduce the
approximation procedure needed for the construction of solutions. Sections 5–7 are devoted to the proofs of
existence, qualitative properties and uniqueness of solutions.

2 Preliminaries

2.1 Function spaces and Radon measures

We denote by M(ℝ) the Banach space of finite Radon measures on ℝ, with norm ‖μ‖M(ℝ) := |μ|(ℝ). By
M+(ℝ), we denote the cone of nonnegative finite Radon measures; if μ1, μ2 ∈M(ℝ), then we write μ1 ≤ μ2
if μ2 − μ1 ∈M+(ℝ). We denote the convex set of probability measures on ℝ by P(ℝ) ⊂M+(ℝ). We have
‖τ‖M(ℝ) = τ(ℝ) = 1 for τ ∈ P(ℝ).

We denote by Cc(ℝ) the space of continuous real functions with compact support in ℝ. The space of the
functions of bounded variation inℝ is denoted by BV(ℝ) := {u ∈ L1(ℝ) | u󸀠 ∈M(ℝ)}, where u󸀠 is the distribu-
tional derivative of u. It is endowed with the norm ‖u‖BV(ℝ) := ‖u‖L1(ℝ) + ‖u󸀠‖M(ℝ). We say that u ∈ BVloc(ℝ) if
u ∈ BV(Ω) for every open bounded subset Ω ⊂ ℝ.

The Lebesgue measure, either on ℝ or S := ℝ × (0, T), is denoted by | ⋅ |. Integration with respect to the
Lebesgue measure on ℝ or on S will be denoted by the usual symbols dx, respectively dx dt. A Borel set E is
null if |E| = 0. The expression “almost everywhere”, or shortly “a.e.”, means “up to null sets”. For every mea-
surable function f defined onℝ and x0 ∈ ℝ, we write ess limx→x0 f(x) = l ∈ ℝ if there is a null set E∗ ⊆ ℝ such
that f(xn) → l for any sequence {xn} ⊆ ℝ \ (E∗ ∪ {x0}), xn → x0. We set f± := max{±f, 0} for every measurable
function f onℝ.

We denote the duality map between M(ℝ) and Cc(ℝ) by ⟨μ, ρ⟩ℝ := ∫ℝ ρ dμ. By abuse of notation,
we extend ⟨μ, ρ⟩ℝ to any μ-integrable function ρ. A sequence {μn} converges strongly to μ in M(ℝ) if
‖μn − μ‖M(ℝ) → 0 as n →∞. A sequence {μn} of (possibly not finite) Radon measures on ℝ converges
weakly∗ to a (possibly not finite) Radon measure μ, i.e., μn ∗⇀ μ, if ⟨μn , ρ⟩ℝ → ⟨μ, ρ⟩ℝ for all ρ ∈ Cc(ℝ).
Similar definitions are used for (possibly not finite) Radon measures on Ω × (0, T), with Ω ⊆ ℝ.

Every μ ∈M(ℝ) has a unique decomposition μ = μac + μs, with μac ∈M(ℝ) absolutely continuous and
μs ∈M(ℝ) singular with respect to the Lebesgue measure. We denote by μr ∈ L1(ℝ) the density of μac. Every
function f ∈ L1(ℝ) can be identified to a finite absolutely continuous Radon measure on ℝ; we shall denote
this measure by the same symbol f used for the function.

The restriction μ E of μ ∈M(ℝ) to a Borel set E ⊆ ℝ is defined by (μ E)(A) := μ(E ∩ A) for any Borel
set A ⊆ ℝ. Similar notations are used for the spaces of finite Radon measures M(Ω), with Ω ⊆ ℝ, M(S) and
M(S × ℝ), where S := ℝ × (0, T).
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We shall use measures u ∈M(S) which, roughly speaking, admit a parametrization with respect to the
time variable.

Definition 2.1. We denote by L∞(0, T;M+(ℝ)) the set of finite nonnegative Radon measures u ∈M+(S) such
that for a.e. t ∈ (0, T), there is a measure u( ⋅ , t) ∈M+(ℝ) with the following properties:
(i) if ζ ∈ C([0, T]; Cc(ℝ)), the map t 󳨃→ ⟨u( ⋅ , t), ζ( ⋅ , t)⟩ℝ belongs to L1(0, T) and

⟨u, ζ ⟩S =
T

∫
0

⟨u( ⋅ , t), ζ( ⋅ , t)⟩ℝ dt, (2.1)

(ii) the map t 󳨃→ ‖u( ⋅ , t)‖M(ℝ) belongs to L∞(0, T).
Accordingly, we set

‖u‖L∞(0,T;M(ℝ)) := ess sup
t∈(0,T)
‖u( ⋅ , t)‖M(ℝ) for u ∈ L∞(0, T;M+(ℝ)).

Remark 2.2. The definition implies that for all ρ ∈ Cc(ℝ), the map t 󳨃→ ⟨u( ⋅ , t), ρ⟩ℝ is measurable, thus the
map u : (0, T) →M(ℝ) is weakly∗measurable (e.g., see [22, Section 6.7]). For simplicity, we prefer the nota-
tion L∞(0, T;M(ℝ)) to the more correct one L∞w∗(0, T;M(ℝ)), which is used in [22].

If u ∈ L∞(0, T;M+(ℝ)), then also uac, us ∈ L∞(0, T;M+(ℝ)) and, by (2.1),

⟨uac, ζ ⟩S = ∬
S

urζ dx dt, ⟨us , ζ ⟩S =
T

∫
0

⟨us( ⋅ , t), ζ( ⋅ , t)⟩ℝ dt (2.2)

for ζ ∈ C([0, T]; Cc(ℝ)). One can easily check that for a.e. t ∈ (0, T),

uac( ⋅ , t) = [u( ⋅ , t)]ac, us( ⋅ , t) = [u( ⋅ , t)]s , ur( ⋅ , t) = [u( ⋅ , t)]r , (2.3)

where [u( ⋅ , t)]r denotes the density of the measure [u( ⋅ , t)]ac. For ρ ∈ Cc(ℝ), we have

⟨[u( ⋅ , t)]ac, ρ⟩ℝ = ∫
ℝ

[u( ⋅ , t)]rρ dx = ∫
ℝ

ur( ⋅ , t)ρ dx for a.e. t ∈ (0, T).

In view of (2.2)–(2.3), we shall always identify the quantities which appear on either side of equalities (2.3).
For any μ ∈M(ℝ) and a ∈ ℝ, the translated measure Ta(μ) is defined by

⟨Ta(μ), ρ⟩ℝ := ⟨μ, ρ−a⟩ℝ

for any ρ ∈ Cc(ℝ), where ρ−a(x) := ρ(x + a) (x ∈ ℝ). Clearly, Ta(μ) ∈M(ℝ) and

[Ta(μ)]ac = Ta(μac), [Ta(μ)]s = Ta(μs).

2.2 Young measures

We recall the following result [2].

Theorem 2.3. Let Ω ⊆ ℝN be Lebesgue measurable, let K ⊆ ℝ be closed, and let un : Ω 󳨃→ ℝ be a sequence of
Lebesgue measurable functions such that

lim
n→∞
󵄨󵄨󵄨󵄨{x ∈ Ω | un(x) ∉ U}

󵄨󵄨󵄨󵄨 = 0

for any open neighborhood U of K in ℝ. Then there exist a subsequence {uj} ≡ {unj } ⊆ {un} and a family {τx} of
nonnegative measures onℝ, depending measurably on x ∈ Ω, such that
(i) ‖τx‖M(ℝ) := ∫ℝ dτx ≤ 1 for a.e. x ∈ Ω,
(ii) supp τx ⊆ K for a.e. x ∈ Ω,
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6 | M. Bertsch et al., Measure-valued solutions

(iii) for every continuous function f : ℝ 󳨃→ ℝ satisfying lim|ξ |→∞ f(ξ ) = 0, we have

f(uj) ∗⇀ f∗ in L∞(Ω),

where
f∗(x) := ⟨τx , f ⟩ℝ = ∫

ℝ

f(ξ ) dτx(ξ ) for a.e. x ∈ Ω. (2.4)

Suppose further that {uj} satisfies the boundedness condition

lim
k→∞

sup
j

󵄨󵄨󵄨󵄨{x ∈ Ω ∩ BR | |uj(x)| ≥ k}󵄨󵄨󵄨󵄨 = 0 (2.5)

for every R > 0, where BR := {x ∈ ℝN | |x| < R}. Then
(iv) τx is a probability measure for a.e. x ∈ Ω,
(v) given any measurable subset A ⊆ Ω, we have

f(uj) ⇀ f∗ in L1(A) (2.6)

for all continuous functions f : ℝ 󳨃→ ℝ such that {f(uj)} is sequentially weakly compact in L1(A).

Below we shall always refer to the family {τx} of probability measures given by the previous theorem as the
disintegration of the Young measure τ (or briefly Young measure) associated to the sequence {uj}. We denote
the set of Young measures on Ω × ℝ by Y(Ω;ℝ); in particular, Y(S;ℝ) denotes the set of Young measures on
S × ℝ, with S := ℝ × (0, T).

Remark 2.4. (i) The argument used in the proof of Theorem2.3 shows that, under hypothesis (2.5), the con-
vergence in (2.6) holds true for Carathéodory functions f : A × ℝ 󳨃→ ℝ if {f( ⋅ , uj)} is sequentially weakly
relatively compact in L1(A).

(ii) Condition (2.5) is very weak. It is equivalent to the statement that for any R > 0, there is a continuous
nondecreasing function gR : [0,∞) 󳨃→ ℝ such that

lim
ξ→∞

gR(ξ ) = ∞, sup
j
∫

Ω∩BR

gR(|uj(x)|) dx < ∞.

Therefore, Theorem 2.3 applies to bounded sequences {uj} in L1(Ω) (in which case gR(ξ ) = ξ ).

If Ω ⊂ ℝN is bounded and {uj} is a bounded but not uniformly integrable sequence in L1(Ω), it is possible to
extract a uniformly integrable subsequence “by removing sets of small measure”. This is the content of the
following “Biting lemma” (e.g., see [17, 28] and references therein).

Theorem 2.5. Let {un} be a bounded sequence in L1(Ω), where Ω ⊂ ℝN is a bounded open set. Moreover, let
{uj} ⊆ {un} and {τx} be the subsequence and the Young measure given in Theorem 2.3, respectively. Then there
exist a subsequence {uk} ≡ {ujk } ⊆ {uj} and a decreasing sequence of measurable sets Ek ⊆ Ω of Lebesgue mea-
sure |Ek| → 0 such that the sequence {ukχΩ\Ek } is uniformly integrable and

ukχΩ\Ek ⇀ Z := ∫
ℝ

ξ dτ(ξ ) in L1(Ω),

where Z ∈ L1(Ω) is called the barycenter of the disintegration {τx}.

3 Main results
Throughout the paper we assume that u0 ∈M+(ℝ). Concerning φ, we always suppose that
(H1) φ ∈ C([0,∞)), φ(0) = 0, φ󸀠 ∈ L∞(0,∞), and limu→∞

φ(u)
u =: Cφ exists.

Hence, there exists M > 0 such that

|φ󸀠(u)| ≤ M, |φ(u)| ≤ Mu for a.e. u > 0. (3.1)
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3.1 Definition of solution

In the following definitions, we denote by

∂νζ := ∂tζ + Cφ∂xζ (3.2)

the derivative of any ζ ∈ C1(S) along the vector τ ≡ (Cφ , 1).

Definition 3.1. By a solution of problem (P) in the sense of Young measures, we mean a pair (u, τ) such that
(i) u ∈ L∞(0, T;M+(ℝ)), τ ∈ Y(S;ℝ),
(ii) supp τ(x,t) ⊆ [0,∞) for a.e. (x, t) ∈ S, and

ur(x, t) = ∫
[0,∞)

ξ dτ(x,t)(ξ ), (3.3)

where τ(x,t) ∈ P(ℝ) is the disintegration of τ,
(iii) for all ζ ∈ C1([0, T]; C1c (ℝ)), with ζ( ⋅ , T) = 0 inℝ, we have

∬
S

[ur∂tζ + φ∗∂xζ ] dx dt +
T

∫
0

⟨us( ⋅ , t), ∂νζ( ⋅ , t)⟩ℝ dt = −⟨u0, ζ( ⋅ , 0)⟩ℝ, (3.4)

where ∂νζ is defined by (3.2) and

φ∗(x, t) := ∫
[0,∞)

φ(ξ ) dτ(x,t)(ξ ) for a.e. (x, t) ∈ S. (3.5)

By an entropy solution of problem (P) in the sense of Young measures, we mean a solution such that

∬
S

[E∗∂tζ + F∗∂xζ ] dx dt + CE
T

∫
0

⟨us( ⋅ , t), ∂tζ( ⋅ , t)⟩ℝ dt + CF
T

∫
0

⟨us( ⋅ , t), ∂xζ( ⋅ , t)⟩ℝ dt

≥ −∫
ℝ

E(u0r)ζ(x, 0) dx − CE⟨u0s , ζ( ⋅ , 0)⟩ℝ (3.6)

for all ζ as above, ζ ≥ 0, and for every pair (E, F), E, F : [0,∞) 󳨃→ ℝ, such that
(C1) E is convex, E󸀠, F󸀠 ∈ L∞(0,∞), F󸀠 = E󸀠φ󸀠 in (0,∞), and limu→∞

E(u)
u =: CE, limu→∞

F(u)
u =: CF exist.

In (3.6), for a.e. (x, t) ∈ S, we set

E∗(x, t) := ∫
[0,∞)

E(ξ ) dτ(x,t)(ξ ), F∗(x, t) := ∫
[0,∞)

F(ξ ) dτ(x,t)(ξ ).

Entropy subsolutions (respectively supersolutions) of problem (P) in the sense of Young measures are defined
by requiring that inequality (3.6) be satisfied for all ζ and (E, F) as above, with E nondecreasing (respectively
nonincreasing).

Observe that choosing E(u) = ±u in the entropy inequality (3.6) plainly gives the weak formulation (3.4).

Remark 3.2. (i) By (3.1), (3.3) and (3.5),

|φ∗(x, t)| ≤ M ∫
[0,∞)

ξ dτ(x,t)(ξ ) = Mur(x, t) for a.e. (x, t) ∈ S. (3.7)

Since ur ∈ L∞(0, T; L1(ℝ)), by (3.7), we have that φ∗ ∈ L∞(0, T; L1(ℝ)).
(ii) By (C1), the functions E, F have at most linear growth. Arguing as in (i), it follows that E∗ and F∗ belong

to L∞(0, T; L1loc(ℝ)) and L
∞(0, T; L1(ℝ)), respectively, if E(0) = F(0) = 0.
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8 | M. Bertsch et al., Measure-valued solutions

Definition 3.3. Ameasure u∈L∞(0, T;M+(ℝ)) is calleda solutionof problem (P) if for all ζ ∈C1([0, T]; C1c (ℝ)),
ζ( ⋅ , T) = 0 inℝ, we have

∬
S

[ur∂tζ + φ(ur)∂xζ ] dx dt +
T

∫
0

⟨us( ⋅ , t), ∂νζ( ⋅ , t)⟩ℝ dt = −⟨u0, ζ( ⋅ , 0)⟩ℝ, (3.8)

where ∂νζ is defined by (3.2). A solution of problem (P) is called an entropy solution if for all ζ ≥ 0 as above
and for all (E, F) as in (C1), it satisfies the entropy inequality

∬
S

[E(ur)∂tζ + F(ur)∂xζ ] dx dt + CE
T

∫
0

⟨us( ⋅ , t), ∂tζ( ⋅ , t)⟩ℝ dt + CF
T

∫
0

⟨us( ⋅ , t), ∂xζ( ⋅ , t)⟩ℝ dt

≥ −∫
ℝ

E(u0r)ζ(x, 0) dx − CE⟨u0s , ζ( ⋅ , 0)⟩ℝ. (3.9)

Entropy subsolutions (respectively supersolutions) of problem (P) are defined by requiring (3.9) to be satisfied
for all ζ and (E, F) as before, with E nondecreasing (respectively nonincreasing).

A solution of problem (P) is also a solution in the sense of Young measures. Moreover, it follows from (3.1)
that φ(ur) ∈ L∞(0, T; L1(ℝ)). Similar remarks hold for entropy solutions, subsolutions and supersolutions.

Remark 3.4. (i) If Cφ = 0, equality (3.8) reads

∬
S

[u∂tζ + φ(ur)∂xζ ] dx dt = −⟨u0, ζ( ⋅ , 0)⟩ℝ,

whence ∂tu = −∂x[φ(ur)] inD󸀠(S).
(ii) For the Kružkov entropies E(u) = |u − k|, F(u) = sgn(u − k)[φ(u) − φ(k)] (k ∈ [0,∞)), we have CE = 1,

CF = Cφ. Then inequality (3.9), for all k ∈ [0,∞), reads

∬
S

{|ur − k|∂tζ + sgn(ur − k)[φ(ur) − φ(k)]∂xζ } dx dt +
T

∫
0

⟨us( ⋅ , t), ∂νζ( ⋅ , t)⟩ℝ dt

≥ −∫
ℝ

|u0r − k|ζ(x, 0) dx − ⟨u0s , ζ( ⋅ , 0)⟩ℝ. (3.10)

The following proposition states that for any solution of (P) in the sense of Youngmeasures, themap t 󳨃→ u(t),
possibly redefined in a null set, is continuous up to t = 0 with respect to the weak∗ topology of M+(ℝ). In
particular, it explains in which sense the initial condition is satisfied.

Proposition 3.5. Let (H1) be satisfied, let (u, τ) be a solution of problem (P) in the sense of Young measures,
and let ρ ∈ Cc(ℝ). Then

ess lim
t→0+
⟨u( ⋅ , t), ρ⟩ℝ = ⟨u0, ρ⟩ℝ, (3.11)

ess lim
t→t0
⟨u( ⋅ , t), ρ⟩ℝ = ⟨u( ⋅ , t0), ρ⟩ℝ for a.e. t0 ∈ (0, T). (3.12)

The map t 󳨃→ u(t) has a representative, defined for all t ∈ [0, T], such that

lim
t→t0
⟨u( ⋅ , t), ρ⟩ℝ = ⟨u( ⋅ , t0), ρ⟩ℝ for all t0 ∈ [0, T]. (3.13)

3.2 Existence and monotonicity

The existence of solutions is proven by an approximation procedure. If u0 ∈M+(ℝ), then there exist u0n ∈
L1(ℝ) ∩ L∞(ℝ) such that

u0n ≥ 0 inℝ, ‖u0n‖L1(ℝ) ≤ ‖u0‖M(ℝ), (3.14)
u0n ∗⇀ u0, u0n → u0r a.e. inℝ, ‖u0n − u0r‖L1loc(ℝ\supp u0s) → 0 (3.15)

Brought to you by | Lancaster University
Authenticated

Download Date | 10/3/18 12:25 PM



M. Bertsch et al., Measure-valued solutions | 9

(e.g., see [23, Lemma 4.1]). Consider the approximating problem

{
∂tun + ∂x[φ(un)] = 0 in S,
un = u0n inℝ × {0} (n ∈ ℕ).

(Pn)

Let us recall the definition of entropy solution of problem (Pn) (e.g., see [9]).

Definition 3.6. A function un ∈ L∞(0, T; L1(ℝ)) ∩ L∞(S) is called an entropy solution of problem (Pn) if for
every ζ ∈ C1([0, T]; C1c (ℝ)), with ζ( ⋅ , T) = 0 in ℝ and ζ ≥ 0, and for any couple (E, F), with E convex and
F󸀠 = E󸀠φ󸀠, we have

∬
S

[E(un)∂tζ + F(un)∂xζ ] dx dt ≥ −∫
ℝ

E(u0n)ζ(x, 0) dx. (3.16)

Entropy solutions are weak solutions if ζ ∈ C1([0, T]; C1c (ℝ)), ζ( ⋅ , T) = 0 inℝ and

∬
S

[un∂tζ + φ(un)∂xζ ] dx dt + ∫
ℝ

u0nζ(x, 0) dx = 0. (3.17)

By studying the limiting points of the sequence {un}, we shall prove the following result.

Theorem 3.7. (i) Let (H1) be satisfied. Then problem (P) has a solution u, which is obtained as a limiting
point of the sequence {un} of entropy solutions to problems (Pn). In addition, u is an entropy solution of
problem (P) in the sense of Young measures.

(ii) Let (H1) and the following assumption be satisfied:
(C2) φ ∈ C1([0,∞)), and for every ū > 0, there exist a, b ≥ 0, a + b > 0, such that φ󸀠 is strictly monotone

in [ū − a, ū + b].
Then u is an entropy solution of problem (P).

Hypothesis (C2) fails if for example φ is affine in an interval (a, b) ⊂ (0,∞). In that case, Proposition 5.9 (iii),
which characterizes the limiting Young measure, gives some additional information.

The following proposition shows that the singular part of an entropy subsolution of (P) does not increase
along the lines x = Cφ t + x0.

Proposition 3.8. Let (H1) be satisfied.
(i) Let u be an entropy subsolution of problem (P) in the sense of Young measures. Then

us( ⋅ , t2) ≤ TCφ(t2−t1) (us( ⋅ , t1)) inM+(ℝ), for a.e. 0 ≤ t1 ≤ t2 ≤ T. (3.18)

In particular,

us( ⋅ , t) ≤ TCφ t (u0s) inM+(ℝ), for a.e. t ∈ (0, T), (3.19)

whence ‖us( ⋅ , t)‖M(ℝ) ≤ ‖u0s‖M(ℝ) for a.e. t ∈ (0, T).
(ii) Let u be a solution of problem (P). Then there is conservation of mass, i.e.,

‖u( ⋅ , t)‖M(ℝ) = ‖u0‖M(ℝ) for a.e. t ∈ (0, T).

The linear case φ(u) = u shows that equality may hold in (3.18). Moreover, if Cφ = 0, it follows from (3.18)
that the map t 󳨃→ us( ⋅ , t) is nonincreasing.

3.3 Waiting time and regularity

It is convenient to distinguish two cases: Cφ = 0 (sublinear growth at infinity) and Cφ ̸= 0 (linear growth at
infinity), with Cφ defined by (H1).
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10 | M. Bertsch et al., Measure-valued solutions

3.3.1 Sublinear growth

Beside (H1), we will use the following assumption:
(H2) φ ∈ C∞([0,∞)), Cφ = 0, there exist H ≥ −1, K ∈ ℝ such that φ󸀠󸀠(u) [Hφ(u) + K] ≤ −[φ󸀠(u)]2 < 0 for all

u ∈ [0,∞).
By (H2) the map u 󳨃→ φ󸀠󸀠(u) [Hφ(u) + K] is strictly negative and continuous in [0,∞), hence two cases are
possible: either (a) Hφ + K > 0, φ󸀠󸀠 < 0, or (b) Hφ + K < 0, φ󸀠󸀠 > 0 in [0,∞). In case (a), we have φ󸀠 > 0 in
[0,∞), since φ󸀠󸀠 < 0 and limu→∞ φ󸀠(u) = Cφ = 0. Similarly, in case (b), we have plainly φ󸀠 < 0 in [0,∞). In
particular, in both cases (H2) implies (C2). Moreover, if also (H1) holds, thus φ(0) = 0, we have Hφ + K > 0
in [0,∞) if and only if K > 0.

Remark 3.9. The following examples show that all values of H ≥ −1 may occur in (H2):

φ(u) = sgn p[(1 + u)p − 1] (p < 1, p ̸= 0) ⇒ H = p
1 − p ∈ (−1, 0) ∪ (0,∞), K = |H|,

φ(u) = 1 − e−αu (α > 0) ⇒ H = −1, K = 1,

φ(u) = log(1 + u) or φ(u) = 1 − 1
log(e + u) ⇒ H = 0, K = 1.

The following property of constructed entropy solutions plays an important role as a uniqueness criterion
(see its generalized form given by Proposition 3.17 and Theorem 3.22 below).

Proposition 3.10. Let (H1)–(H2) be satisfied, and let φ be bounded in [0,∞). Then every entropy solution u
of problem (P) given by Theorem 3.7 satisfies, for a.e. t ∈ (0, T) and all x0 ∈ supp us( ⋅ , t),

ess lim
x→x+0

ur(x, t) = ∞ if φ󸀠 > 0 in [0,∞), (3.20)

ess lim
x→x−0

ur(x, t) = ∞ if φ󸀠 < 0 in [0,∞).

Theorem 3.11. (i) Let (H1)be satisfied, let u0s({x0}) > 0 for some x0 ∈ ℝand let u be a solution of problem (P).
If φ is bounded in (0,∞) (in particular, Cφ = 0), then the waiting time t0 defined by (1.5) satisfies

t0 ≥ min{T, u0s({x0})
‖φ‖L∞(0,∞)

} > 0. (3.21)

(ii) Let (H1)–(H2) be satisfied, and let u be the entropy solution of problem (P) given by Theorem 3.7.
(a) If φ is bounded in (0,∞) and, moreover, H > −1, |K| < limu→∞ |φ(u)| =: γ, then

t0 ≤ min{T,
(H + 1)‖u0‖M(ℝ)

γ − |K| }. (3.22)

(b) If φ is unbounded in (0,∞), then t0 = 0.

Remark 3.12. Concerning estimates (3.21) and (3.22), it is worth considering the case in which u0 = δ0 and
φ(u) = 1 − (1 + u)p, p < 0. By explicit calculations, in Proposition 1.1, we show that in this case the waiting
time defined in (1.5) is t0 = 1. Hence, in this case, estimates (3.21)–(3.22) are sharp, since

δ0({0})
‖φ‖L∞(0,∞)

= 1 and
(H + 1)‖δ0‖M(ℝ)

γ − |K|
=
(p/(1 − p) + 1)‖δ0‖M(ℝ)

1 + p/(1 − p) = 1.

Remark 3.13. In part (ii) of Theorem 3.11, it is enough to require condition (H2) for large values of u. More
precisely (see Remark 6.10), Theorem 3.11 (ii) remains valid if instead of (H2), for some k > 0, the following
holds:
(H3) the function φk : [0,∞) → ℝ, φk(u) := φ(u + k) − φ(k), satisfies (H2).

In this connection, observe that the conditions H > −1 and |K| < limu→∞|φ(u)| exclude the function
φ(u) = 1 − e−u. The same conditions also exclude the function φ(u) = 1 − 1

log(e+u) , where K = 1 = γ. However,
in this case, we can use hypothesis (H3) for k > 0, which is satisfied with H = 0 and K = log−2(e + k) < γk =
log−1(e + k).
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Let us finally mention the following regularization result.

Proposition 3.14. Let (H1)–(H2) be satisfied, and let φ be bounded in [0,∞) (in particular, Cφ = 0). Then, for
a.e. t ∈ (0, T), supp us(t) is a null set.

Remark 3.15. It suffices to prove Proposition 3.10, Theorem 3.11 and Proposition 3.14 by assuming φ󸀠󸀠 < 0
in (H2) (hence, K > 0, by (H2) and the assumption φ(0) = 0). Otherwise, it can be easily seen that if
u ∈ L∞(0, T;M+(ℝ)) is a solution of problem (P), the map ũ defined by setting

⟨ũ, ζ ⟩S :=
T

∫
0

⟨u( ⋅ , t), ζ(− ⋅ , t)⟩ℝ dt

for every ζ ∈ C([0, T]; Cc(ℝ)) is a solution of the problem

{
∂t ũ + ∂x[φ̃(ũ)] = 0 in S,
ũ = ũ0 inℝ × {0}.

(3.23)

Here ⟨ũ0, ρ⟩ℝ := ⟨u0, ρ(− ⋅ )⟩ℝ for all ρ ∈ Cc(ℝ), and the function φ̃ := −φ satisfies (H2) with K̃ := −K. The
same holds for entropy solutions.

3.3.2 Linear growth

Let φ satisfy the following assumption:
(H4) φ ∈ C∞([0,∞)) and there exist H ≥ −1, K ∈ ℝ such that

φ󸀠󸀠(u){H[φ(u) − Cφu] + K} ≤ −[φ󸀠(u) − Cφ]2 < 0 for all u ∈ [0,∞)

(observe that (H4) reduces to (H2) if Cφ = 0). If (H4) holds, the function φ̃ := φ(u) − Cφu satisfies (H2) since
Cφ̃ = 0.

Remark 3.16. It is easily seen that if u is a solution (respectively an entropy solution) of problem (P), then
v ∈ L∞(0, T;M+(Ω)), defined by

v( ⋅ , t) = T−h(u( ⋅ , t)) inM(ℝ)

for any h ∈ ℝ, is a solution (respectively an entropy solution) of (P) with u0 replaced by v0 := T−h(u0). Simi-
larly, ũ( ⋅ , t) := T−Cφ t(u( ⋅ , t)) is a solution (respectively an entropy solution) of problem (3.23), with ũ0 = u0
and φ̃(u) = φ(u) − Cφu.

By Remark 3.16, the above results for the case Cφ = 0 can be generalized as follows.

Proposition 3.17. Let (H1) and (H4) be satisfied, and let u 󳨃→ φ(u) − Cφu be bounded in (0,∞). Then every
entropy solution u of problem (P) given by Theorem 3.7 satisfies, for a.e. t ∈ (0, T) and all x0 ∈ supp us( ⋅ , t),

ess lim
x→x+0

ur(x + Cφ t, t) = ∞ if φ󸀠 > Cφ in [0,∞), (3.24)

ess lim
x→x−0

ur(x + Cφ t, t) = ∞ if φ󸀠 < Cφ in [0,∞). (3.25)

Theorem 3.18. (i) Let (H1) be satisfied, let u0s({x0}) > 0 for some x0 ∈ ℝ, and let u be a solution of prob-
lem (P). If u 󳨃→ φ(u) − Cφu is bounded in (0,∞), then

t0 ≥ min{T, u0s({x0})
‖φ − Cφu‖L∞(0,∞)

} > 0.

(ii) Let (H1) and (H4) be satisfied, and let u be the entropy solution of problem (P) given by Theorem 3.7.
(a) Let u 󳨃→ φ(u) − Cφu be bounded in (0,∞). If H > −1 and |K| < limu→∞|φ(u) − Cφu| =: γ̃, then

t0 ≤ min{T,
(H + 1) ‖u0‖M(ℝ)

γ̃ − |K| }.

(b) Let u 󳨃→ φ(u) − Cφu be unbounded in (0,∞). Then t0 = 0.
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12 | M. Bertsch et al., Measure-valued solutions

Again, Theorem 3.18 (ii) remains valid if, for some k > 0, the function φk defined in Remark 3.13 satis-
fies (H4).

Proposition 3.19. Let (H1) and (H4) be satisfied, and let u 󳨃→ φ(u) − Cφu be bounded in (0,∞). Then for a.e.
t ∈ (0, T), supp us(t) is a null set.

3.4 Uniqueness

In connection with equality (3.11), observe that if u0s ̸= 0 and the waiting time t0 is equal to 0, then
the map t 󳨃→ u( ⋅ , t) is not continuous at t = 0 in the strong topology of M(ℝ) (otherwise we would have
limt→0+‖us( ⋅ , t)‖M(ℝ) = 0 = ‖u0s‖M(ℝ), a contradiction). Instead, continuity along the lines x = x0 + Cφ t
may occur if the waiting time t0 is positive.

Proposition 3.20. Let (H1) be satisfied. Let u 󳨃→ φ(u) − Cφu be bounded in (0,∞), and let u0 satisfy

u0s =
N
∑
l=1

clδxl , with cl ∈ [0,∞), l = 1, . . . , N for some N ∈ ℕ. (3.26)

(i) If condition (C2) holds, then every entropy solution u of problem (P) given by Theorem 3.7 (ii) satisfies

ess lim
t→0+
‖T−Cφ t(u( ⋅ , t)) − u0‖M(ℝ) = 0. (3.27)

(ii) All entropy solutions u of problem (P) satisfy T−Cφ t(u( ⋅ , t)) ∈ C((0, T];M(ℝ)).

Let us mention that the above statement (ii) holds for any u0 ∈M+(ℝ) if φ satisfies (H1) and (H4) (see Propo-
sition 6.2).

The following uniqueness result will be proven in Section 7.

Theorem 3.21. Let (H1) be satisfied and let u 󳨃→ φ(u) − Cφu be bounded and monotonic in (0,∞). Let u0 sat-
isfy (3.26). Then there exists atmost one entropy solution u of problem (P)which satisfies either (3.24) or (3.25),
and the condition

ess lim
t→0+
‖ur( ⋅ , t) − u0r‖L1(ℝ) = 0. (3.28)

By Propositions 3.17, 3.20 and Theorem 3.21, we have the following existence and uniqueness result
(observe that (H4) implies (C2)).

Theorem 3.22. Let (H1) and (H4) be satisfied, and let u 󳨃→ φ(u) − Cφu be bounded in (0,∞). Let u0 satisfy
(3.26). Then there exists a unique entropy solution of problem (P) which satisfies (3.24)–(3.25).

Remark 3.23. Conditions (3.24)–(3.25) in Theorem 3.22 cannot be omitted. In fact, there exist entropy
solutions of problem (P) which do not satisfy either (3.24) or (3.25), depending on φ. Therefore, by Proposi-
tion 3.17, they are different from those given by Theorem 3.7, thus uniqueness fails.

For example, let u0s ̸= 0 and u0r ∈ L1(ℝ) ∩ L∞(ℝ). Let u ∈ L∞(0, T;M+(ℝ)) be defined by

u( ⋅ , t) := ur( ⋅ , t) + TCφ t(u0s) for a.e. t ∈ (0, T),

where ur ∈ C([0, T]; L1(ℝ)) ∩ L∞(S) is the unique entropy solution of problem (P) with u0 replaced by u0r.
Since u( ⋅ , 0) = ur( ⋅ , 0) + u0s = u0r + u0s = u0, one easily checks that (3.8)–(3.9) are satisfied, thus u is an
entropy solution of (P). On the other hand, ur ∈ L∞(S), so ur( ⋅ , t) ∈ L∞(ℝ) for a.e. t ∈ (0, T), and (3.24)–
(3.25) fails.

Remark 3.24. If u 󳨃→ φ(u) − Cφu is unbounded and satisfies assumptions (H1) and (H4), by [19, Theo-
rem 1.1] and Theorem 3.18, for every u0 ∈M+(ℝ) there exists a unique entropy solution of problem (P) with
waiting time t0 equal to 0. In fact, every entropy solution u given by Theorem 3.18 is a solution according
to [19]. This follows if we show that

u = ur ∈ L∞(ℝ × (τ, T)) for every τ > 0 (3.29)
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and ess limt→0 u( ⋅ , t) = u0 narrowly in M(ℝ), i.e. ess limt→0⟨u( ⋅ , t), ρ⟩ = ⟨u0, ρ⟩ for all bounded ρ ∈ C(ℝ).
The latter follows from (3.11) and Proposition 3.8 (ii) (see [17, Proposition 2, p. 38]).

To prove (3.29) we fix τ > 0. By (1.5) we may assume that ur( ⋅ , τ) ∈ L∞(ℝ) and u( ⋅ , t) = ur( ⋅ , t)
for all t ≥ τ. By standard approximation arguments, we may substitute in the entropy inequality (3.9)
E(u) = [s − kτ]+, with kτ = ‖ur( ⋅ , τ)‖L∞(ℝ), and ζ(x, t) ≡ χ[τ,t](t). Hence, ∫ℝ[ur( ⋅ , t) − kτ]+ dx ≤ 0 for a.e. t ≥ τ
and (3.29) follows.

4 Approximating problems
In this section we consider problem (Pn). Let u0n ∈ L1(ℝ) ∩ L∞(ℝ) satisfy (3.14) and let {uε0n} ⊆ C∞c (ℝ),
uε0n ≥ 0 be any sequence such that

‖uε0n‖L1(ℝ) ≤ ‖u0n‖L1(ℝ) ≤ ‖u0‖M(ℝ), ‖u
ε
0n‖L∞(ℝ) ≤ ‖u0n‖L∞(ℝ), (4.1)

uε0n → u0n in L1(ℝ), uε0n
∗⇀ u0n in L∞(ℝ). (4.2)

Let η ∈ C∞c (ℝ) be a standard mollifier, let ηε(u) := 1
ε η(

u
ε ) for ε > 0, and set

φε(u) := (ηε ∗ φ)(u) − (ηε ∗ φ)(0) = ∫
ℝ

ηε(u − v)φ(v)dv − ∫
ℝ

ηε(−v)φ(v) dv, u ∈ ℝ

(here φ(u) = φ(u) for u ≥ 0 and φ(u) = 0 for u < 0). The regularized problem associated with (Pn) is

{
∂tuεn + ∂x[φε(uεn)] = ε∂2xuεn in S,
uεn = uε0n inℝ × {0}

(4.3)

(where ε > 0, n ∈ ℕ), has aunique strong solution uεn ∈ C([0, T];H2(ℝ)) ∩ L∞(S), ∂tuεn ∈ L2(S) (e.g., see [20]).
Some properties of the family {uεn} are collected in the following lemmata. Up to minor changes, the proof is
standard (e.g., see [9]), thus is omitted.

Lemma 4.1. Let uεn be the solution of problem (4.3). Then, for every n ∈ ℕ and ε > 0,

uεn ≥ 0 in S, ‖uεn‖L∞(S) ≤ ‖u0n‖L∞(ℝ), (4.4)

∫
ℝ

uεn(x, t) dx = ∫
ℝ

uε0n(x) dx (t ∈ (0, T)),

sup
t∈(0,T)
‖uεn( ⋅ , t)‖L1(ℝ) ≤ ‖u0n‖L1(ℝ) ≤ ‖u0‖M(ℝ), (4.5)

sup
t∈(0,T)
‖uεn( ⋅ + h, t) − uεn( ⋅ , t)‖L1(ℝ) ≤ ‖uε0n( ⋅ + h) − u

ε
0n‖L1(ℝ) for any h ∈ ℝ. (4.6)

Lemma 4.2. Let φ satisfy (3.1). Then there exists C > 0, which only depends on ‖u0‖M(ℝ), such that for all
n ∈ ℕ, ε ∈ (0, 1) and p ∈ (0, 1),

ε∬
S

(1 + uεn)p−2(∂xuεn)2 dx dt ≤
C

p(1 − p) . (4.7)

Proof. Let U ∈ C2([0,∞)), U󸀠 ≥ 0 in (0,∞), and set

ΘU,ε(u) :=
u

∫
0

U󸀠(s)φ󸀠ε(s) ds + θU (θU ∈ ℝ). (4.8)

Multiplying the first equation in (4.3) by U󸀠(uεn) gives

∂t[U(uεn)] + ∂x[ΘU,ε(uεn)] = ε∂2x[U(uεn)] − εU󸀠󸀠(uεn)(∂xuεn)2 in S. (4.9)
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14 | M. Bertsch et al., Measure-valued solutions

Hence, for all ζ ∈ C1([0, T]; C2c (ℝ)),

ε∬
S

U󸀠󸀠(uεn)(∂xuεn)2ζ dx dt + ∫
ℝ

U(uεn(x, T))ζ(x, T) dx

= ∫
ℝ

U(uε0n)ζ(x, 0) dx +∬
S

{U(uεn)∂tζ + ΘU,ε(uεn)∂xζ + εU(uεn)∂2x ζ } dx dt. (4.10)

By (3.1) and the definition of the function φε, for all u ≥ 0,

|ΘU,ε(u)| ≤
u

∫
0

U󸀠(s)|φ󸀠ε(s)| ds + |θU | ≤ M[U(u) − U(0)] + |θU |. (4.11)

Choose θU = 0, U(u) = (1 + u)p − 1, with p ∈ (0, 1), and

ζ = ρk := χ{|x|≤k} + ρ( ⋅ − k)χ{k≤x<k+1} + ρ( ⋅ + k)χ{−(k+1)<x≤−k} (k ∈ ℕ),

with any ρ ∈ C2c ((−1, 1)) such that ρ(0) = 1, 0 ≤ ρ ≤ 1, and the derivatives ρ󸀠, ρ󸀠󸀠 vanish at 0. Then0≤U(u) ≤ u
for u ≥ 0 and, by (4.5), (4.10) and (4.11),

εp(1 − p)∬
S

(1 + uεn)p−2(∂xuεn)2ρk dx dt ≤ ∫
ℝ

uε0n(x) dx +∬
S

{M uεn |ρ󸀠k| + εu
ε
n |ρ󸀠󸀠k | } dx dt

≤ {1 + (M + 1)T‖ρ‖C2([−1,1])}‖u0‖M(ℝ) =: C

for all ε ∈ (0, 1) and k ∈ ℕ. Passing to the limit as k →∞, we obtain (4.7).

Lemma 4.3. Let φ satisfy (3.1) and let U ∈ C2([0,∞)) be such that

|U󸀠󸀠(u)| ≤ K (1 + u)p−2 for all u ∈ [0,∞), for some K ≥ 0 and p ∈ (0, 1). (4.12)

Then there exists Cp > 0 such that for all n ∈ ℕ and ε > 0,

ε∬
S

|U󸀠󸀠(uεn)|(∂xuεn)2 dx dt ≤ Cp . (4.13)

If, moreover, U󸀠 ∈ L∞(0,∞), then the family {Uε
n,ρ}, where

Uε
n,ρ(t) := ∫

ℝ

U(uεn)(x, t)ρ(x) dx (t ∈ (0, T)) (4.14)

and ρ ∈ C2c (ℝ), is bounded in BV(0, T).

Proof. Inequality (4.13) follows immediately from (4.7) and (4.12). To prove that {Uε
n,ρ} is bounded in

BV(0, T), observe that, by (4.9),

(Uε
n,ρ)
󸀠(t) = ∫

ℝ

[ΘU,ε(uεn)ρ󸀠 + εU(uεn)ρ󸀠󸀠 − εU󸀠󸀠(uεn)(∂xuεn)2ρ](x, t) dx. (4.15)

Since U󸀠 ∈ L∞(0,∞), there exists N > 0 such that |U(u)| ≤ N (1 + u) for u ≥ 0. Hence, |U(uεn)| ≤ N(1 + uεn)
and, by (4.8), (3.1) and the definition of φε, we have

|ΘU,ε(uεn)| ≤ ‖φ󸀠εU󸀠‖L∞((0,∞))|uεn| + |θU | =: M̃uεn + |θU |.

Then it follows from (4.15) that

|(Uε
n,ρ)
󸀠|(t) ≤ ‖ρ‖C2(ℝ) ∫

supp ρ

{(M̃ + εN)uεn(x, t) + εN + |θU |} dx + ε‖ρ‖L∞(ℝ) ∫
ℝ

[|U󸀠󸀠(uεn)| (∂xuεn)2](x, t) dx,
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and, by (4.5) and (4.13), there exists a constant Cp,ρ > 0 such that

T

∫
0

|(Uε
n,ρ)
󸀠|(t) dt ≤ ‖ρ‖C2(ℝ){(M̃ + N)T‖u0‖M(ℝ) + Cp,ρ}. (4.16)

On the other hand, by (4.5) and since |U(uεn)| ≤ N(1 + uεn), we have

T

∫
0

|Uε
n,ρ|(t) dt ≤ NT‖ρ‖L∞(ℝ)(‖u0‖M(ℝ) + |supp ρ|), (4.17)

whence the result follows.

From the above lemmata, we get the following convergence results.

Lemma 4.4. (i) If φ ∈ C([0,∞)), there exist a subsequence {uεmn } ⊆ {uεn} and un ∈ L∞(S) ∩ L∞(0, T; L1(ℝ))
such that, as εm → 0,

uεmn ∗⇀ un in L∞(S), uεmn → un and φεm (u
εm
n ) → φ(un) a.e. in S, (4.18)

uεmn → un in L1((−L, L) × (0, T)), for all L > 0. (4.19)

Moreover, un ≥ 0 a.e. in S, ‖un‖L∞(S) ≤ ‖u0n‖L∞(ℝ) and

sup
t∈(0,T)
‖un( ⋅ , t)‖L1(ℝ) ≤ ‖u0n‖L1(ℝ) ≤ ‖u0‖M(ℝ). (4.20)

(ii) Let φ satisfy (3.1), let ρ ∈ C2c (ℝ), and let U ∈ C2([0,∞)), with U󸀠 ∈ L∞(0,∞), satisfy (4.12). Let U
εm
n,ρ be

defined by (4.14) and set

Un,ρ(t) := ∫
ℝ

U(un)(x, t)ρ(x) dx (t ∈ (0, T)). (4.21)

Then

Uεm
n,ρ → Un,ρ in L1(0, T) and a.e. in (0, T). (4.22)

Proof. By (4.4), uεmn ∗⇀ un in L∞(S), where un ∈ L∞(S), ‖un‖L∞(S) ≤ ‖u0n‖L∞(ℝ) and un ≥ 0 a.e. in S. The a.e.-
convergence of uεmn and part (ii) follow from (4.19), and since φε converges uniformly to the continuous
function φ on compact subsets ofℝ, we also obtain the a.e.-convergence of φεm (u

εm
n ).

It remains to prove (4.19) and (4.20). We claim that for a.e. t ∈ (0, T),

uεmn ( ⋅ , t) ∗⇀ un( ⋅ , t) in L∞(ℝ) as εm → 0. (4.23)

Set Iεmn,ρ(t) := ∫ℝ u
εm
n (x, t)ρ(x) dx for t ∈ (0, T)) and let ρ ∈ C2c (ℝ). By Lemma 4.3, with U(u) = u, the sequence

{Iεmn,ρ} is bounded in BV(0, T) and has a subsequence (not relabeled) {I
εm
n,ρ} such that

Iεmn,ρ → In,ρ in L1(0, T) as εm → 0 (4.24)

for some In,ρ ∈ BV(0, T). Since uεmn ∗⇀ un in L∞(S),

lim
m→∞

T

∫
0

Iεmn,ρ(t) dt = ∬
S

un(x, t)ρ(x) dx dt =
T

∫
0

(∫
ℝ

un(x, t)ρ(x) dx) dt,

whence In,ρ = ∫ℝ un(x, t)ρ(x) dx for a.e. t ∈ (0, T)), and the convergence in (4.24) is satisfied along the whole
sequence {Iεmn,ρ}. Hence, for all ρ ∈ C2c (ℝ), there exists a null set N ⊂ (0, T) such that

lim
εm→0
∫
ℝ

uεmn (x, t)ρ(x) dx = ∫
ℝ

un(x, t)ρ(x) dx for all t ∈ (0, T) \ N.
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16 | M. Bertsch et al., Measure-valued solutions

Since C2c (ℝ) is dense in L1(ℝ) and L1(ℝ) is separable, the choice of the set N can be made independent of ρ.
Hence, we have proven (4.23).

By (4.2), (4.5), (4.6), and theFréchet–Kolmogorov theorem, {uεmn ( ⋅ , t)} is relatively compact in L1((−L, L))
for all t ∈ (0, T) and L > 0. Hence, by (4.23),

uεmn ( ⋅ , t) → un( ⋅ , t) in L1((−L, L)) as εm → 0, for L > 0 and a.e. t ∈ (0, T), (4.25)

and (4.20) follows from (4.5). Finally, (4.19) follows from (4.5), (4.25) and the dominated convergence the-
orem.

Proposition 4.5. Let φ ∈ C([0,∞)). For all n ∈ ℕ, problem (Pn) has an entropy solution un, which is unique if
φ is locally Lipschitz continuous. For a.e. t ∈ (0, T), we have

‖un( ⋅ + h, t) − un( ⋅ , t)‖L1(ℝ) ≤ ‖u0n( ⋅ + h) − u0n‖L1(ℝ) for any h ∈ ℝ, (4.26)

∫
ℝ

un(x, t) dx = ∫
ℝ

u0n(x) dx. (4.27)

Moreover, given ρ ∈ C2c (ℝ) and U ∈ C2([0,∞)), with U󸀠 ∈ L∞(0,∞), satisfying (4.12), the sequence {Un,ρ}
defined by (4.21) is bounded in BV(0, T).

Proof. Let ζ and E be as in Definition 3.6, and F󸀠ε = E󸀠φ󸀠ε. Then

∬
S

{E(uεn)(∂tζ + ε∂2x ζ) + Fε(uεn)∂xζ } dx dt + ∫
ℝ

E(uε0n)ζ(x, 0) dx ≥ 0, (4.28)

where uεmn is defined by Lemma 4.4. By (4.4), it is not restrictive to assume that E(u) = |u − k| and Fε(u) =
sgn(u − k)[φε(u) − φε(k)] (k ∈ [0,∞)). By (4.4),

‖φεm (u
εm
n )‖L∞(S) ≤ sup

|v|≤‖u0n‖L∞(ℝ)

|φεm (v)| ≤ sup
|v|≤‖u0n‖L∞(ℝ)+1

|φ(v)|.

Since φεm (u
εm
n ) → φ(un) a.e. in S (see (4.18)), it follows from (4.19) and the dominated convergence theorem

that
∬
S

Fεm (u
εm
n )∂xζ dx dt →∬

S

F(un)∂xζ dx dt as εm → 0.

The remaining terms in (4.28) (with ε = εm) are dealt with similarly. Letting εm → 0, we obtain (3.16), so un
is an entropy solution of problem (Pn). Its uniqueness follows from Kružkov’s theorem [26].

Inequality (4.26) follows from (4.6) and (4.25). Concerning (4.27), it follows from (3.17) that for all
ρ ∈ C1c (ℝ) and a.e. t ∈ (0, T),

∫
ℝ

un(x, t)ρ(x) dx − ∫
ℝ

u0n(x)ρ(x) dx =
t

∫
0

∫
ℝ

φ(un)(x, s)ρ󸀠(x) dx ds. (4.29)

Let {ρk} ⊆ C1c (ℝ) be such that ρk(x) = 1 for x ∈ [−k, k], ρk(x) = 0 if |x| ≥ k + 1, and ‖ρ󸀠k‖L∞(ℝ) ≤ 2. Setting
ρ = ρk in (4.29) and letting k →∞, we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

t

∫
0

∫
ℝ

φ(un)(x, s)ρ󸀠k(x) dx ds
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 2M

t

∫
0

∫
{x∈ℝ|k≤|x|≤k+1}

|un(x, s)| dx ds → 0,

since un ∈ L1(S). On the other hand, by the monotone convergence theorem,

∫
ℝ

un(x, t)ρk(x) dx → ∫
ℝ

un(x, t) dx, ∫
ℝ

u0n(x)ρk(x) dx → ∫
ℝ

u0n(x) dx,

and (4.27) follows from (4.29).
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Finally, let us show that {Un,ρ} is bounded in BV(0, T). By (4.17) and (4.22),

T

∫
0

|Un,ρ(t)| dt = lim
εm→0

T

∫
0

|Uεm
n,ρ(t)| dt ≤ N‖ρ‖L∞(ℝ)(T‖u0‖M(ℝ) + |supp ρ|),

and, by (4.16) and the lower semicontinuity of the total variation in L1(0, T) ([15, Theorem1, Section 5.2.1]),
we get

‖U󸀠n,ρ‖M(0,T) ≤ ‖ρ‖C2(ℝ){(M̃ + N)T‖u0‖M(ℝ) + Cp,ρ},

with Cp,ρ > 0 as in (4.16). This completes the proof.

5 Existence and monotonicity: Proofs
We proceed with the proof of Theorem 3.7.

Proposition 5.1. Let (H1) hold and let un be the entropy solution of problem (Pn). Then there exist a sequence
{unj } and u ∈ L∞(0, T;M+(ℝ)) such that

unj
∗⇀ u inM(S). (5.1)

For all L > 0, there exists a decreasing sequence {Ej} ⊂ (−L, L) × (0, T) of Lebesgue measurable sets, with
|Ej| → 0 as j →∞, such that

unj χ((−L,L)×(0,T))\Ej ⇀ ub := ∫
[0,∞)

ξ dτ(ξ ) in L1((−L, L) × (0, T)), (5.2)

where τ ∈ Y(S;ℝ) is the Young measure associated with {unj }, and

unj χEj
∗⇀ μ := u − ub inM((−L, L) × (0, T)). (5.3)

Proof. By (4.20), there exist u ∈M+(S) and a sequence {unj } such that unj
∗⇀ u in M(S). Arguing as in [27,

Proposition 4.2], we obtain that u ∈ L∞(0, T;M+(ℝ)).
Since by (4.20) the sequence {unj } is bounded in L1(S), by Theorem 2.3 there exist a subsequence of {unj }

(not relabeled) and a Young measure τ ∈ Y(S;ℝ) such that
(i) for every measurable set A ⊆ S, (2.4)–(2.6) are valid for any f ∈ C(ℝ) such that the sequence {f(unj )} is

sequentially weakly relatively compact in L1(A),
(ii) supp τ(x,t) ⊆ [0,∞) for a.e. (x, t) ∈ S (here τ(x,t) is the disintegration of τ).
Then the result follows by Theorem 2.5 and a standard diagonal procedure.

Remark 5.2. The function ub in (5.2) is defined for a.e. in (x, t) ∈ S, since τ is globally defined in S. In addi-
tion, by (4.20) and the arbitrariness of L in Proposition 5.1, a routine proof shows that ub ∈ L∞(0, T; L1(ℝ))
and ub ≥ 0 a.e. in S. Therefore, the Radon measure μ ≥ 0 (see (5.3)) is defined on S, μ ∈ L∞(0, T;M+(ℝ)),
and

μ = u − ub ⇒ u = ub + μ inM(S). (5.4)

Proposition 5.3. Let (H1) hold, let μ be as in (5.4) and let U ∈ C([0,∞)). If

lim
u→∞

U(u)
u
=: CU ∈ [0,∞), (5.5)

then, for all L > 0,
U(unj )

∗⇀ U∗ + CUμ inM((−L, L) × (0, T)), (5.6)

where U∗ ∈ L∞(0, T; L1loc(ℝ)) is defined by

U∗(x, t) := ∫
[0,∞)

U(ξ ) dτ(x,t)(ξ ) for a.e. (x, t) ∈ S.
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18 | M. Bertsch et al., Measure-valued solutions

Remark 5.4. If U ∈ C([0,∞)) satisfies (5.5), there exists N > 0 such that

|U(u)| ≤ N(1 + u) for u ≥ 0. (5.7)

Moreover, U∗ ∈ L∞(0, T; L1(ℝ)) if |U(u)| ≤ Nu, since ub ∈ L∞(0, T; L1(ℝ)) and

|U∗(x, t)| ≤ ∫
[0,∞)

|U(ξ )| dτ(x,t)(ξ ) ≤ N ∫
[0,∞)

ξ dτ(x,t)(ξ ) = Nub(x, t) for a.e. (x, t) ∈ S.

Proof of Proposition 5.3. For all ε > 0, there exist mε > 0 such that

−εu < U(u) − CUu < εu if u > mε . (5.8)

For anym ∈ ℕ,m > mε, let l1m , l2m ∈ C([0,∞)) be such that 0 ≤ l1m ≤ 1, 0 ≤ l2m ≤ 1, l1m + l2m = 1 in [0,∞),
supp l1m ⊆ [0,m + 1] and supp l2m ⊆ [m,∞). Then, by (5.8),

󵄨󵄨󵄨󵄨U(unj ) − [U(unj )l1m(unj ) + CUunj l2m(unj )]
󵄨󵄨󵄨󵄨 < εunj l2m(unj ) for j ∈ ℕ. (5.9)

Since supS[|U(unj )|l1m(unj )] ≤ supu∈[0,m+1]|U(u)| < ∞, it follows that {U(unj )l1m(unj )} is uniformly integrable
in (−L, L) × (0, T). Hence, by Theorem 2.3, for all L > 0,

U(unj )l1m(unj ) ⇀ U∗1m := ∫
[0,∞)

U(ξ )l1m(ξ ) dτ(ξ ) (5.10)

in L1((−L, L) × (0, T)). Here U∗1m belongs to L∞(0, T; L1loc(ℝ)), since, by (5.7),

|U∗1m| ≤ ∫
[0,∞)

|U(ξ )|l1m(ξ ) dτ(ξ ) ≤ N ∫
[0,∞)

(1 + ξ ) dτ(ξ ) ≤ N(1 + ub). (5.11)

Similarly, by (5.1), (5.2), (5.4) and (5.10), with U(u) = u,

unj l2m(unj ) = unj − unj l1m(unj )
∗⇀ u − ∫

[0,∞)

ξl1m(ξ ) dτ(ξ )

= ub − ∫
[0,∞)

ξl1m(ξ ) dτ(ξ ) + μ

= ∫
[0,∞)

ξ[1 − l1m(ξ )] dτ(ξ ) + μ

= ∫
[0,∞)

ξl2m(ξ ) dτ(ξ ) + μ

=: l∗2m + μ inM((−L, L) × (0, T)). (5.12)

From (5.9)–(5.12), for any ζ ∈ Cc((−L, L) × (0, T)), ζ ≥ 0, and m as above, we get

∬
(−L,L)×(0,T)

[U∗1m + (CU − ε)l
∗
2m]ζ dx dt + (CU − ε)⟨μ, ζ ⟩(−L,L)×(0,T)

≤ lim inf
nj→∞

∬
(−L,L)×(0,T)

U(unj )ζ dx dt

≤ lim sup
nj→∞

∬
(−L,L)×(0,T)

U(unj )ζ dx dt

≤ ∬
(−L,L)×(0,T)

[U∗1m + (CU + ε)l
∗
2m]ζ dx dt + (CU + ε)⟨μ, ζ ⟩(−L,L)×(0,T). (5.13)
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Since U∗1m ∈ L∞(0, T; L
1
loc(ℝ)),

0 ≤ l∗2m ≤ ∫
[m,∞)

ξ dτ(ξ ) ≤ ub ∈ L∞(0, T; L1(ℝ))

and
lim
εm→0

l∗2m(x, t) = 0, lim
εm→0

U∗1m(x, t) = U
∗(x, t) for a.e. (x, t) ∈ S,

by letting m →∞ in (5.13), we get plainly

∬
(−L,L)×(0,T)

U∗ζ dx dt + (CU − ε)⟨μ, ζ ⟩(−L,L)×(0,T) ≤ lim inf
nj→∞

∬
(−L,L)×(0,T)

U(unj )ζ dx dt

≤ lim sup
nj→∞

∬
(−L,L)×(0,T)

U(unj )ζ dx dt

≤ ∬
(−L,L)×(0,T)

U∗ζ dx dt + (CU + ε)⟨μ, ζ ⟩(−L,L)×(0,T),

whence

0 ≤ lim sup
nj→∞

∬
(−L,L)×(0,T)

U(unj )ζ dx dt − lim inf
nj→∞

∬
(−L,L)×(0,T)

U(unj )ζ dx dt ≤ 2ε⟨μ, ζ ⟩(−L,L)×(0,T).

From the above inequalities, the conclusion follows.

Proposition 5.5. Let (H1) hold. Let μ, U and U∗ be as in Proposition 5.3. Then

T

∫
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
ℝ

U(unj )(x, t)ρ(x) dx − ∫
ℝ

U∗(x, t)ρ(x) dx − CU⟨μ( ⋅ , t), ρ⟩ℝ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dt → 0 (5.14)

as j →∞ for ρ ∈ Cc(ℝ). Moreover, for all L > 0, there exist a null set N ⊂ (0, T) and a subsequence of {unj } (not
relabeled), such that for all t ∈ (0, T) \ N,

U(unj )( ⋅ , t)
∗⇀ U∗( ⋅ , t) + CUμ( ⋅ , t) inM((−L, L)). (5.15)

Remark 5.6. Choosing U(u) = u in (5.15), we obtain that

unj ( ⋅ , t)
∗⇀ u( ⋅ , t) inM((−L, L)) for a.e. t ∈ (0, T) and L > 0. (5.16)

If U ∈ C([0,∞)) satisfies (5.5), U∗ ∈ L∞(0, T; L1loc(ℝ)) and {U(un)} is bounded in L∞(0, T; L1loc(ℝ)) (see
(4.20) and (5.7)). Since every ζ ∈ C(ℝ2) ∩ L∞(ℝ2) can be uniformly approximated in bounded sets by finite
sums ∑pi=1 f

i,p(x)gi,p(t), with f i,p, gi,p bounded and continuous functions (1 ≤ i ≤ p; e.g., see [12, Théo-
rème D.1.1]), it follows from (5.14) that, as j →∞, for all ζ ∈ C([0, T]; Cc(ℝ)),

T

∫
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
ℝ

[U(unj )ζ ](x, t) dx − ∫
ℝ

[U∗ζ ](x, t) dx − CU⟨μ( ⋅ , t), ζ( ⋅ , t)⟩ℝ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dt → 0. (5.17)

Proof of Proposition 5.5. (i) Let us first prove (5.14) for U ∈ C2([0,∞)), with U󸀠 ∈ L∞(0,∞), satisfying (4.12)
and (5.5). Let ρ ∈ Cc(ℝ), h ∈ Cc(0, T), and fix any L > 0 such that supp ρ ⊂ (−L, L). Then, by (5.6),

T

∫
0

Unj ,ρ(t)h(t) dt →
T

∫
0

U∗ρ (t)h(t) dt + CU
T

∫
0

h(t)⟨μ( ⋅ , t), ρ⟩ℝ dt, (5.18)

where Unj ,ρ is defined by (4.21) and U∗ρ (t) := ∫ℝ U
∗(x, t)ρ(x) dx. Since, by Proposition 4.5, {Unj ,ρ} is bounded

in BV(0, T) if ρ ∈ C2c (ℝ), there exists a subsequence which converges in L1(0, T). Combined with (5.18),
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20 | M. Bertsch et al., Measure-valued solutions

this yields that Unj ,ρ → U∗ρ + CU⟨μ( ⋅ , ⋅ ), ρ⟩ℝ inD(0, T) and in L1(0, T) for all ρ ∈ C2c (ℝ). Since the sequence
{U(unj )} is bounded in L∞(0, T; L1((−L, L))) and U∗ ∈ L∞(0, T; L1((−L, L))), the condition ρ ∈ C2c (ℝ)may be
relaxed to ρ ∈ Cc(ℝ), and we have found (5.14).

(ii) Next we prove (5.14) for all U ∈ C([0,∞)) ∩ L∞((0,∞)) (in this case CU = 0). To this end, let
Uk(u) := (Uχ[0,k] ∗ θk)(u) for any u ≥ 0, where θk ≥ 0 is a sequence of standard mollifiers (k ∈ ℕ). Then
{Uk} ⊆ C2c ([0,∞)), Uk → U uniformly on compact subsets of [0,∞) and ‖Uk‖L∞(ℝ) ≤ ‖U‖L∞(ℝ). By part (i)
and (4.20), for all ρ ∈ Cc(ℝ) and k ∈ ℕ, M > 0,

lim sup
j→∞

T

∫
0

dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
ℝ

U(unj )ρ(x) dx − ∫
ℝ

U∗(x, t)ρ(x) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ lim sup
j→∞

∬
{0≤unj≤M}

|U(unj ) − Uk(unj )||ρ| dx dt + lim sup
j→∞

∬
{unj>M}

|U(unj ) − Uk(unj )||ρ| dx dt

+∬
S

|U∗ − U∗k ||ρ| dx dt

≤ ‖ρ‖∞|supp ρ|T‖U − Uk‖L∞(0,M) + ‖ρ‖∞{
2T
M
‖u0‖M(ℝ)‖U‖L∞(ℝ)

+ ∬
supp ρ×(0,T)

dx dt ∫
[0,∞)

|Uk(ξ ) − U(ξ )| dτ(x,t)(ξ )}

≤ 2‖ρ‖∞|supp ρ|T‖U − Uk‖L∞(0,M) + 2‖ρ‖∞‖U‖L∞(ℝ){
T‖u0‖M(ℝ)

M

+ ∬
supp ρ×(0,T)

dx dt ∫
{ξ>M}

dτ(x,t)(ξ )},

where we have used Chebychev’s inequality and the inequality

∫
{0≤ξ≤M}

|Uk(ξ ) − U(ξ )| dτ(x,t)(ξ ) + ∫
{ξ>M}

|Uk(ξ ) − U(ξ )| dτ(x,t)(ξ ) ≤ ‖Uk − U‖L∞(0,M) + 2‖U‖L∞(ℝ) ∫
{ξ>M}

dτ(x,t)(ξ ).

Letting k →∞, since Uk → U uniformly on compact sets in [0,∞), we obtain

lim sup
j→∞

T

∫
0

dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
ℝ

U(unj )ρ(x) dx − ∫
ℝ

U∗(x, t)ρ(x) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2‖ρ‖C(ℝ)‖U‖L∞(ℝ){
T‖u0‖M(ℝ)

M
+ ∬
supp ρ×(0,T)

dx dt ∫
{ξ>M}

dτ(x,t)(ξ )}. (5.19)

Since τ(x,t) is a probability measure, we have ∫{ξ>M} dτ(x,t)(ξ ) → 0 as M →∞ for a.e. (x, t) ∈ S, thus, by the
dominated convergence theorem,

∬
supp ρ×(0,T)

dx dt ∫
{ξ>M}

dτ(x,t)(ξ ) → 0 as M →∞.

Then, letting M →∞ in (5.19), we obtain (5.14).
(iii) Now let U ∈ C([0,∞)) be any function satisfying (5.5). Arguing as in the proof of Proposition 5.3,

let l1m , l2m ∈ C2([0,∞)) (m ∈ ℕ) satisfy l1m , l2m ≥ 0 and l1m + l2m = 1 in [0,∞), supp l1m ⊆ [0,m + 1], and
supp l2m ⊆ [m,∞). Then

U(unj ) = U(unj )l1m(unj ) + U(unj )l2,m(unj ) (5.20)

and, by (5.8), for all ε > 0 and m > mε,

(CU − ε)unj l2m(unj ) ≤ U(unj )l2m(unj ) ≤ (CU + ε)unj l2m(unj ). (5.21)
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Since ‖Ul1m‖L∞(ℝ) ≤ ‖U‖C([0,m+1]) < ∞, the function Ul1m belongs to C([0,∞)) ∩ L∞(ℝ). Then, by part (ii),

T

∫
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
ℝ

[U(unj )l1m(unj )](x, t)ρ(x) dx − ∫
ℝ

U∗1m(x, t)ρ(x) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dt → 0 (5.22)

as j →∞, where ρ ∈ Cc(ℝ) and U∗1m is defined by (5.10). By (5.21) and (4.20),

T

∫
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
ℝ

[U(unj )l2m(unj ) − CUunj l2m(unj )](x, t)ρ(x) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dt ≤ ε∬

S

|unj ||ρ(x)| dx ≤ εT‖u0‖M(ℝ)‖ρ‖∞.

Then we obtain that
T

∫
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
ℝ

[U(unj )l2m(unj ) − CU l∗2m](x, t)ρ(x) dx − CU⟨μ( ⋅ , t), ρ⟩ℝ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dt

≤ εT‖u0‖M(ℝ)‖ρ‖∞ + CU
T

∫
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
ℝ

[unj l2m(unj ) − l∗2m](x, t)ρ(x) dx − ⟨μ( ⋅ , t), ρ⟩ℝ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dt,

with l∗2m defined as in (5.12). The map u 󳨃→ ul2m(u) belongs to C2([0,∞)), has bounded derivative and sat-
isfies (4.12) and (5.5), with CU = 1. Then, by part (i), (5.20) and (5.22),

lim sup
j→∞

T

∫
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
ℝ

[U(unj )−U∗1m−CU l
∗
2m](x, t)ρ(x) dx−CU⟨μ( ⋅ , t), ρ⟩ℝ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dt ≤ εT ‖u0‖M(ℝ)‖ρ‖∞ if m > mε . (5.23)

To complete the proof of (5.14), we show that

lim
m→∞
∬
S

|U∗ − U∗1m − CU l
∗
2m|(x, t)|ρ(x)| dx dt = 0. (5.24)

By (5.21),

|U∗ − U∗1m − CU l
∗
2m|(x, t) ≤ ∫

[0,∞)

󵄨󵄨󵄨󵄨U(ξ ) − U(ξ )l1m(ξ ) − CU ξl2m(ξ )
󵄨󵄨󵄨󵄨 dτ(x,t)(ξ )

= ∫
[0,∞)

󵄨󵄨󵄨󵄨U(ξ )l2m(ξ ) − CU ξl2m(ξ )
󵄨󵄨󵄨󵄨 dτ(x,t)(ξ )

≤ ε ∫
[m,∞)

ξ dτ(x,t)(ξ ) ≤ εub(x, t)

for a.e. (x, t) ∈ S. Since ub ∈ L∞(0, T; L1(ℝ)) and ∫[m,∞) ξ dτ(x,t)(ξ ) → 0 as m →∞ for a.e. (x, t) ∈ S, (5.24)
follows from the dominated convergence theorem.

Letting m →∞ in (5.23), it follows from (5.24) that

lim sup
j→∞

T

∫
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
ℝ

[U(unj ) − U∗](x, t)ρ(x) dx − CU⟨μ( ⋅ , t), ρ⟩ℝ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dt

≤ lim sup
m→∞
(lim sup

j→∞

T

∫
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
ℝ

[U(unj ) − U∗1m − CU l
∗
2m]ρ dx − CU⟨μ( ⋅ , t), ρ⟩ℝ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dt)

≤ εT‖u0‖M(ℝ)‖ρ‖∞,

and (5.14) follows from the arbitrariness of ε.
Finally, (5.15) follows from (5.14), the separability of Cc(ℝ) andadiagonal argument;we leave thedetails

to the reader.
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Proposition 5.7. Let (H1) hold. Then (5.4) is the Lebesgue decomposition of u, i.e.,

ub = ur a.e. in S, μ = us inM(S). (5.25)

Proof. Let U be a convex function with U(0) = 0 and U󸀠 ∈ L∞(0,∞). By (3.16),

∫
ℝ

U(unj )(x, ̄t)ζ(x, ̄t) dx − ∫
ℝ

U(u0nj )(x)ζ(x, 0) dx ≤ ∬
ℝ×(0, ̄t)

{U(unj )∂tζ + ΘU(unj )∂xζ }dx dt (5.26)

for all ζ ∈ C1([0, T]; C1c (ℝ)) and a.e. ̄t ∈ (0, t), where

ΘU(u) :=
u

∫
0

U󸀠(s)φ󸀠(s) ds + θU (θU ∈ ℝ). (5.27)

LetUm(u) = (u − m)χ[m,∞)(u)and θUm = 0 (m ∈ ℕ). SinceUm(u)/u → CUm = 1andΘUm (u)/u → Cφ as u →∞
(with Cφ as in (H1)), it follows from (5.17) that

̄t

∫
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
ℝ

[Um(unj )∂tζ ](x, t) dx − ∫
ℝ

[U∗m∂tζ ](x, t) dx − ⟨μ( ⋅ , t), ∂tζ( ⋅ , t)⟩ℝ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dt → 0

and
̄t

∫
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
ℝ

[ΘUm (unj )∂xζ ](x, t) dx − ∫
ℝ

[Θ∗Um
∂xζ ](x, t) dx − Cφ⟨μ( ⋅ , t), ∂xζ( ⋅ , t)⟩ℝ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dt → 0

as j →∞, where

U∗m(x, t) := ∫
[0,∞)

Um(ξ ) dτ(x,t)(ξ ), Θ∗Um
(x, t) := ∫

[0,∞)

ΘUm (ξ ) dτ(x,t)(ξ )

belong to L∞(0, T; L1loc(ℝ)). In particular, setting ∂νζ := ∂tζ + Cφ∂xζ , we have that

∬
ℝ×(0, ̄t)

{Um(unj )∂tζ +ΘUm (unj )∂xζ } dx dt → ∬
ℝ×(0, ̄t)

{U∗m∂tζ +Θ∗Um
∂xζ } dx dt+

̄t

∫
0

⟨μ( ⋅ , t), ∂νζ( ⋅ , t)⟩ℝ dt. (5.28)

By (5.15) and a diagonal argument, there exist a null set N ⊂ (0, T) and a subsequence, denoted again
by {unj }, such that for all ̄t ∈ (0, T) \ N and m ∈ ℕ,

lim
nj→∞
∫
ℝ

Um(unj )(x, ̄t)ζ(x, ̄t) dx = ∫
ℝ

U∗m(x, ̄t)ζ(x, ̄t) dx + ⟨μ( ⋅ , ̄t), ζ(x, ̄t)⟩ℝ. (5.29)

Since {Um(u0nj ) − u0nj } is bounded in L∞(ℝ) and converges a.e. to Um(u0r) − u0r, it follows from (3.15) that

lim
nj→∞
∫
ℝ

Um(u0nj )(x)ζ(x, 0) dx = ∫
ℝ

Um(u0r)(x)ζ(x, 0) dx + ⟨u0s , ζ( ⋅ , 0)⟩ℝ. (5.30)

Setting U = Um in (5.26) and letting j →∞, we obtain from (5.28)–(5.30) that

∫
ℝ

U∗m(x, ̄t)ζ(x, ̄t) dx + ⟨μ( ⋅ , ̄t), ζ( ⋅ , ̄t)⟩ℝ ≤ ∬
ℝ×(0, ̄t)

{U∗m∂tζ + Θ∗Um
∂xζ } dx dt +

̄t

∫
0

⟨μ( ⋅ , t), ∂νζ( ⋅ , t)⟩ℝ dt

+ ∫
ℝ

Um(u0r)(x)ζ(x, 0) dx + ⟨u0s , ζ( ⋅ , 0)⟩ℝ (5.31)

for all ̄t ∈ (0, T) \ N and m ∈ ℕ. Since for all u ≥ 0 (see (3.1)),

0 ≤ Um(u) ≤ uχ[m,∞)(u), |ΘUm (u)| = |φ(u) − φ(m)|χ[m,u)(u) ≤ Muχ[m,∞)(u),
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we have that |U∗m| ≤ ub, |Θ∗Um
| ≤ Mub, U∗m → 0 and Θ∗Um

(x, t) → 0 (as m →∞) a.e. in S. Thus, by the domi-
nated convergence theorem and (5.31), for all ̄t ∈ (0, T) \ N,

⟨μ( ⋅ , ̄t), ζ( ⋅ , ̄t)⟩ℝ ≤
̄t

∫
0

⟨μ( ⋅ , t), ∂νζ( ⋅ , t)⟩ℝ dt + ⟨u0s , ζ( ⋅ , 0)⟩ℝ. (5.32)

Let ρ ∈ C1c (ℝ) and ζ(x, t) = ρ(x − Cφ t), so ζν ≡ 0. By (5.32), ⟨μ( ⋅ , ̄t), ρ( ⋅ − Cφ ̄t)⟩ℝ ≤ ⟨u0s , ρ⟩ℝ. Hence,
μ( ⋅ , ̄t) is singularwith respect to theLebesguemeasure and, since μ( ⋅ , ̄t) = [μ( ⋅ , ̄t)]s = μs( ⋅ , ̄t) for a.e. ̄t∈(0, T)
(see (2.3)), (5.25) follows from the uniqueness of the Lebesgue decomposition.

The following result is based on the concept of compensated compactness (e.g., see [13]).

Proposition 5.8. Let (H1) hold. Then φ(ur) = ∫[0,∞) φ(ξ ) dτ(ξ ) a.e. in S.

Proof. Let U, V ∈ C2([0,∞)) ∩ L∞((0,∞)) satisfy (4.12), and assume that ΘU , ΘV , defined by (5.27), belong
to L∞((0,∞)). By (4.13), we have

ε‖U󸀠󸀠(uεn)(∂xuεn)2‖L1(S) ≤ Cp and ε‖V󸀠󸀠(uεn)(∂xuεn)2‖L1(S) ≤ Cp

for all ε ∈ (0, 1) and n ∈ ℕ, and up to a subsequence,

εU󸀠󸀠(uεn)(∂xuεn)2
∗⇀ λn , εV󸀠󸀠(uεn)(∂xuεn)2

∗⇀ μn inM(S) as ε → 0, (5.33)

for some λn , μn ∈M(S). By the lower semicontinuity of the norm,

‖λn‖M(S) ≤ Cp , ‖μn‖M(S) ≤ Cp for n ∈ ℕ. (5.34)

Let ζ ∈ C2c (S). Then (see (4.9))

ε∬
S

U󸀠󸀠(uεn)(∂xuεn)2ζ dx dt = ∬
S

{U(uεn)∂tζ + ΘU,ε(uεn)∂xζ + εU(uεn)∂2x ζ } dx dt, (5.35)

where ΘU,ε(u) = ∫
u
0 U󸀠(s)φ󸀠ε(s) ds + θU , θU ∈ ℝ. By (3.1) and (4.4), for all n ∈ ℕ,

|ΘU,ε(uεn)| ≤
‖u0n‖∞

∫
0

|U󸀠(s)φ󸀠ε(s)| ds + |θU | ≤ M
‖u0n‖∞

∫
0

|U󸀠(s)| ds + |θU | ≤ γn,U

for some γn,U ≥ 0, so for fixed n ∈ ℕ, the family {ΘU,ε(uεn)}ε is uniformly bounded in L∞(S). Similar results
hold for V and ΘV,ε(u) = ∫

u
0 V󸀠(s)φ󸀠ε(s) ds + θV , and letting ε → 0 in (5.35) along some subsequence {εm} (see

the proof of Proposition 4.5), it follows from by (5.33) that for all n ∈ ℕ and ζ ∈ C1c (S),

∬
S

{U(un)∂tζ + ΘU(un)∂xζ } dx dt = ⟨λn , ζ ⟩S , ∬
S

{V(un)∂tζ + ΘV (un)∂xζ } dx dt = ⟨μn , ζ ⟩S , (5.36)

where un is the entropy solution of the approximating problem (Pn) (see (4.18)).
Let A ⊂⊂ S be a bounded open set and let Yn , Zn : A → ℝ2 be defined by

Yn := (ΘU(un), U(un)), Zn := (V(un), −ΘV (un)).

By (5.36),
div Yn = −λn , curl Zn = −μn inD󸀠(A). (5.37)

Since U, ΘU , V, ΘV are bounded in (0,∞), the sequences U(un), ΘU(un), V(un) and ΘV (un) are bounded
in L1(A) and uniformly integrable, and, by Theorem 2.3,

U(un) ⇀ U∗ := ∫
[0,∞)

U(ξ ) dτ( ⋅ ,⋅ )(ξ ), ΘU(un) ⇀ Θ∗U := ∫
[0,∞)

ΘU(ξ ) dτ( ⋅ ,⋅ )(ξ ),

V(un) ⇀ V∗ := ∫
[0,∞)

V(ξ ) dτ( ⋅ ,⋅ )(ξ ), ΘV (un) ⇀ Θ∗V := ∫
[0,∞)

ΘV (ξ ) dτ( ⋅ ,⋅ )(ξ )
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in L1(A), where τ( ⋅ ,⋅ ) denotes the disintegration of the Young measure τ associated with {un}. Since the
sequences U(un), ΘU(un), V(un) and ΘV (un) are bounded in L∞(A) ⊂ L2(A), they also converge weakly
in L2(A), so

Yn ⇀ Y∗ := (Θ∗U , U
∗), Zn ⇀ Z∗ := (V∗, −Θ∗V ) in [L2(A)]2.

By a similar argument,

Yn ⋅ Zn := ΘU(un)V(un) − ΘV (un)U(un) ⇀ ∫
[0,∞)

[ΘU(ξ )V(ξ ) − ΘV (ξ )U(ξ )] dτ( ⋅ ,⋅ )(ξ ) in L2(A). (5.38)

By (5.34) and (5.37), {div Yn} and {curl Zn} are precompact inW−1,2(A) (see [13, Chapter 1, Corollary 1]) and,
by the div-curl lemma,

Yn ⋅ Zn → Y∗ ⋅ Z∗ = Θ∗UV
∗ − Θ∗VU

∗ inD󸀠(A). (5.39)

By (5.38) and (5.39),

∫
[0,∞)

[ΘU(ξ ) − Θ∗U]V(ξ ) dτ(ξ ) = ∫
[0,∞)

[U(ξ ) − U∗]ΘV (ξ ) dτ(ξ ) a.e. in A. (5.40)

For every U as above with U󸀠 > 0 in (0,∞), by a standard approximation argument, we may choose
V(u) = |U∗ − U(u)|, so ΘV (u) = sgn(U(u) − U∗)[ΘU(u) − ΘU(U−1(U∗))] and, by (5.40),

[Θ∗U − ΘU(U−1(U∗))] ∫
[0,∞)

|U∗ − U(ξ )| dτ(ξ ) = 0. (5.41)

Let Uk ∈ C2([0,∞)) ∩ L∞((0,∞)) satisfy (4.12) and

Uk(0) = 0, 0 < U󸀠k ≤ U
󸀠
k+1 ≤ 1 in [0,∞), U󸀠k(u) → 1 for u ≥ 0 as k →∞. (5.42)

By (3.1),

|ΘUk (u)| ≤
u

∫
0

U󸀠k(s)|φ
󸀠(s)| ds + |θUk | ≤ MUk(u) + |θUk |,

thus ΘUk is bounded in (0,∞)) for every k ∈ ℕ. We claim that, as k →∞,

U∗k := ∫
[0,∞)

Uk(ξ ) dτ(ξ ) → ur a.e. in A, (5.43)

Θ∗Uk
− ΘUk (Uk

−1(U∗k )) → ∫
[0,∞)

φ(ξ ) dτ(ξ ) − φ(ur) a.e. in A, (5.44)

where Θ∗Uk
:= ∫[0,∞) ΘUk (ξ ) dτ(ξ ) (recall that φ ∈ L1([0,∞); dτ(x,t)), see Remark 3.2). By (5.43) and the dom-

inated convergence theorem, for a.e. (x, t) ∈ A,

∫
[0,∞)

|U∗k (x, t) − Uk(ξ )| dτ(x,t)(ξ ) → ∫
[0,∞)

|ur(x, t) − ξ | dτ(x,t)(ξ ) as k →∞,

since 0 ≤ Uk(ξ ) ≤ ξ for all k ∈ ℕ and I(ξ ) := ξ belongs to L1([0,∞), dτ(x,t)) (recall that, by (5.25) and the
definition of ub in (5.2), ur(x, t) = ∫[0,∞) ξ dτ(x,t)(ξ ) < ∞ for a.e. (x, t) ∈ S). Letting k →∞ in (5.41), with
U = Uk, we obtain that for a.e. (x, t) ∈ A,

[ ∫
[0,∞)

φ(ξ ) dτ(x,t)(ξ ) − φ(ur)(x, t)] ∫
[0,∞)

|ur(x, t) − ξ | dτ(x,t)(ξ ) = 0,

and Proposition 5.8 follows from the arbitrariness of A.
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It remains to prove (5.43) and (5.44). By (5.42) and the monotone convergence theorem, Uk(ξ ) → ξ for
any ξ ∈ [0,∞), and (5.43) follows (recall that I(ξ ) = ξ ∈ L1([0,∞), dτ)). Concerning (5.44), we observe that

Θ∗Uk
− ΘUk (Uk

−1(U∗k )) = ∫
[0,∞)

(
ξ

∫
0

U󸀠k(s)φ
󸀠(s) ds) dτ(ξ ) −

Uk
−1(Uk

∗)

∫
0

U󸀠k(s)φ
󸀠(s) ds. (5.45)

Since U󸀠k(ξ ) → 1 and |U󸀠k(ξ )φ
󸀠(ξ )| ≤ M for ξ ≥ 0 (see (5.42) and (3.1)), it follows from the dominated conver-

gence theorem that

∫
[0,∞)

(
ξ

∫
0

U󸀠k(s)φ
󸀠(s) ds) dτ(x,t)(ξ ) → ∫

[0,∞)

φ(ξ ) dτ(x,t)(ξ ). (5.46)

On the other hand,

Uk
−1(U∗

k (x,t))

∫
0

U󸀠k(s)φ
󸀠(s) ds − φ(ur)(x, t) =

ur(x,t)

∫
0

[U󸀠k(s) − 1]φ
󸀠(s) ds +

Uk
−1(U∗

k (x,t))

∫
ur(x,t)

U󸀠k(s)φ
󸀠(s) ds. (5.47)

Arguing as before, one can show that the first term in the right-hand side of (5.47) vanishes as k →∞. As for
the second term, we observe, by (5.42) and (5.43), that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Uk
−1(U∗

k (x,t))

∫
ur(x,t)

U󸀠k(s)φ
󸀠(s) ds
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ M|ur(x, t) − Uk

−1(U∗k (x, t))|

≤ M(|ur(x, t) − U−1k (ur(x, t))| + sup
s∈Iδ(ur(x,t))

1
U󸀠1(s)
|ur(x, t) − U∗k (x, t)|)

for some δ > 0 and k ∈ ℕ sufficiently large, where Iδ(q) ≡ (q − δ, q + δ). Hence,

Uk
−1(U∗

k (x,t))

∫
0

U󸀠k(s)φ
󸀠(s) ds → φ(ur)(x, t) for a.e. (x, t) ∈ A, (5.48)

and we obtain (5.44) from (5.45), (5.46) and (5.48).

To prove the second part of Theorem 3.7, we need the following result which characterizes the disintegration
of the Young measure τ.

Proposition 5.9. Let (H1) hold and φ ∈ C1([0,∞)) satisfy for all ū > 0 either (C2) or the following:
(C3) there exist a > 0, b ∈ (0,∞] such that φ󸀠 is constant in Ia,b = [ū − a, ū + b] and, if b < ∞, then φ󸀠 is

strictly monotone in [ū + b, ū + b̃] and [ū − ã, ū − a] for some b̃ > b and ã ∈ (a, ū).
Then, for a.e. (x, t) ∈ S, the following hold:
(i) If ur(x, t) = 0, then τ(x,t) = δ0.
(ii) If φ󸀠 is strictly monotone in Ia,b = [ur(x, t) − a, ur(x, t) + b], with a, b ≥ 0, a + b > 0, then

τ(x,t) = δur(x,t). (5.49)

(iii) If φ󸀠 is constant in the above interval Ia,b for some a > 0, b > 0, then

supp τ(x,t) ⊆ I(x,t) for a.e. (x, t) ∈ S, (5.50)

where I(x,t) ⊇ Ia,b is the maximal interval where φ󸀠( ⋅ ) ≡ φ󸀠(ur(x, t)).

Proof. Let (x, t) ∈ S be fixed. If ur(x, t) = 0, it follows from (5.25) and the definition of ub in (5.2) that
∫[0,∞) ξ dτ(x,t)(ξ ) = 0, which implies part (i): τ(x,t) = δ0.

So let ur(x, t) > 0. Let l1 := ur(x, t), l2 > l1 and

Vk(u) := k(u − l1)χ(l1 ,l1+ 1k )(u) + χ[l1+ 1k ,l2)(u) + k(l2 +
1
k
− u)χ[l2 ,l2+ 1k )(u)
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26 | M. Bertsch et al., Measure-valued solutions

for u ≥ 0 and sufficiently large k ∈ ℕ. Then Vk(u) → χ(l1 ,l2](u) as k →∞, and

ΘVk (u) =
u

∫
0

V󸀠k(s)φ
󸀠(s) ds → φ󸀠(l1)χ(l1 ,l2](u) + [φ󸀠(l1) − φ󸀠(l2)]χ(l2 ,∞)(u) (u ≥ 0).

By standard approximation arguments, (5.40) is satisfiedwithU = Uk andV = Vk, where {Uk} is the sequence
in the proof of Proposition 5.8 (see (5.42)), i.e.,

∫
[0,∞)

[ΘUk (ξ ) − Θ∗Uk
(x, t)]Vk(ξ ) dτ(x,t)(ξ ) = ∫

[0,∞)

[Uk(ξ ) − U∗k (x, t)]ΘVk (ξ ) dτ(x,t)(ξ ).

Letting k →∞ and arguing as in the proof of Proposition 5.8, we obtain that

Uk(ξ ) − U∗k (x, t) → ξ − ∫
[0,∞)

ξ dτ(x,t)(ξ ) = ξ − ur(x, t) = ξ − l1,

Θ∗Uk
(x, t) − ΘUk (ξ ) → ∫

[0,∞)

φ(ξ )dτ(x,t)(ξ ) − φ(ξ ) = φ(ur)(x, t) − φ(ξ ) = φ(l1) − φ(ξ )

for all ξ ≥ 0 (see (5.25) and Proposition 5.8). This implies that

∫
[0,∞)

[ΘUk (ξ ) − Θ∗Uk
(x, t)]Vk(ξ ) dτ(x,t)(ξ ) → ∫

(l1 ,l2]

[φ(ξ ) − φ(l1)] dτ(x,t)(ξ ),

∫
[0,∞)

[Uk(ξ ) − U∗k (x, t)]ΘVk (ξ ) dτ(x,t)(ξ ) → ∫
(l1 ,l2]

φ󸀠(l1)(ξ − l1) dτ(x,t)(ξ )

+ [φ󸀠(l1) − φ󸀠(l2)] ∫
(l2 ,∞)

(ξ − l1) dτ(x,t)(ξ ),

whence

∫
(l1 ,l2]

[φ(ξ ) − φ(l1) − φ󸀠(l1)(ξ − l1)] dτ(x,t)(ξ ) = [φ󸀠(l1) − φ󸀠(l2)] ∫
(l2 ,∞)

(ξ − l1) dτ(x,t)(ξ ). (5.51)

Similarly, let l0 ∈ (0, l1) and set

Ṽk(u) := k(u − l0)χ[l0 ,l0+ 1k ](u) + χ(l0+ 1k ,l1− 1k )(u) + k(l1 − u)χ[l1− 1k ,l1](u).

Then Ṽk(u) → χ(l0 ,l1)(u) and

ΘṼk
(u) =

u

∫
l1

Ṽ󸀠k(s)φ
󸀠(s) ds → φ󸀠(l1)χ(l0 ,l1)(u) + [φ󸀠(l1) − φ󸀠(l0)]χ[0,l0](u) (u ≥ 0).

Letting k →∞ in (5.40), with U = Uk as above and V = Ṽk, we obtain that

∫
(l0 ,l1)

[φ(ξ ) − φ(l1) − φ󸀠(l1)(ξ − l1)] dτ(x,t)(ξ ) = [φ󸀠(l1) − φ󸀠(l0)] ∫
[0,l0]

(ξ − l1) dτ(x,t)(ξ ). (5.52)

By (C2) and (C3), we can distinguish two cases.

(a) If φ is strictly convex or strictly concave in [l1, l2], it follows from (5.51) that

∫
(l1 ,l2]

󵄨󵄨󵄨󵄨φ(ξ ) − φ(l1) − φ
󸀠(l1)(ξ − l1)󵄨󵄨󵄨󵄨 dτ(x,t)(ξ ) + |φ

󸀠(l1) − φ󸀠(l2)| ∫
(l2 ,∞)

|l1 − ξ | dτ(x,t)(ξ ) = 0,

where
χ(l1 ,l2](ξ )|φ(ξ ) − φ(l1) − φ󸀠(l1)(ξ − l1)| > 0 and |φ󸀠(l1) − φ󸀠(l2)| > 0.
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This implies that supp τ(x,t) ⊆ [0, l1]. Since τ(x,t) is a probability measure and l1 := ur(x, t),

ur(x, t) = ∫
[0,ur(x,t)]

ξ dτ(x,t)(ξ ) = ∫
[0,ur(x,t)]

[ξ − ur(x, t)] dτ(x,t)(ξ ) + ur(x, t)

(see (5.2) and (5.25)), thus

∫
[0,ur(x,t)]

|ξ − ur(x, t)| dτ(x,t)(ξ ) ⇒ τ(x,t)([0, ur(x, t))) = 0.

Hence, supp τ(x,t) = {ur(x, t)} and (5.49) follows since τ(x,t) is a probability measure.
Similarly, if φ is strictly convex or strictly concave in (l0, l1), it follows from (5.52) that τ(x,t)([0, l1)) = 0

(we omit the details). Thus, supp τ(x,t) ⊆ [l1,∞), and arguing as above we obtain (5.49).

(b) If φ is affine in [l1 − c, l1 + c] for some c > 0, let I = [ ̄l0, ̄l2] be the maximal interval containing l1, where
φ󸀠(ξ ) = φ󸀠(l1). If I = [0,∞), (5.50) is satisfied. If ̄l2 < ∞, by (C3) and the maximality of I, φ is strictly convex
(or concave) in [ ̄l2, ̄l2 + b] for some b > 0 (and affine in [l1, ̄l2]). By (5.51), with l2 ∈ ( ̄l2, ̄l2 + b), we obtain that

∫

( ̄l2 ,l2]

󵄨󵄨󵄨󵄨φ(ξ ) − φ(l1) − φ
󸀠(l1)(ξ − l1)󵄨󵄨󵄨󵄨 dτ(x,t)(ξ ) + |φ

󸀠(l1) − φ󸀠(l2)| ∫
(l2 ,∞)

|l1 − ξ | dτ(x,t)(ξ ) = 0,

where
χ( ̄l2 ,l2](ξ )

󵄨󵄨󵄨󵄨φ(ξ ) − φ(l1) − φ
󸀠(l1)(ξ − l1)󵄨󵄨󵄨󵄨 > 0 and |φ󸀠(l1) − φ󸀠(l2)| > 0.

It follows that τ(x,t)(( ̄l2,∞)) = 0, whence supp τ(x,t) ⊆ [0, ̄l2]. Similarly, if ̄l0 > 0, by (C3) and the maximality
of I, φ is strictly convex (or concave) in [ ̄l0 − a, ̄l0] for some a > 0 (and affine in [ ̄l0, l1]). Arguing as before,
we obtain from (5.52), with l0 ∈ ( ̄l0 − a, ̄l0), that supp τ(x,t) ⊆ [ ̄l0,∞) (we omit the details). Summing up, we
obtain (5.50): supp τ(x,t) ⊆ [0, ̄l2] ∩ [ ̄l0,∞) = I.

Remark 5.10. If (C2) is satisfied for all ū > 0, it follows from (5.49) and standard properties of narrow con-
vergence of Young measures (see [28]) that unj → ur in measure, where {unj } is the subsequence in Propo-
sition 5.1. Therefore, up to a subsequence, unj → ur a.e. in S. Hence, if φ is bounded, it follows from the
dominated convergence theorem that φ(unj ) → φ(ur) in L1((−L, L) × (0, T)) for all L > 0.

Now we can prove Theorem 3.7.

Proof of Theorem 3.7. Let ζ ∈ C1([0, T]; C1c (ℝ)), with ζ( ⋅ , T) = 0 in ℝ, and let L > 0 be such that supp ζ ⊂
(−L, L) × [0, T]. By (5.17), with U(u) = u and U(u) = φ(u),

∬
S

unj∂tζ dx dt →∬
S

ur∂tζ dx dt +
T

∫
0

⟨us( ⋅ , t), ∂tζ( ⋅ , t)⟩ℝ dt,

∬
S

φ(unj )∂xζ dx dt →∬
S

φ∗∂xζ dx dt + Cφ
T

∫
0

⟨us( ⋅ , t), ∂xζ( ⋅ , t)⟩ℝ dt

(see also (5.25)). Letting j →∞ in (3.17), with n = nj, we obtain (3.4). Inequality (3.6) is proven similarly,
since by arguing as in Proposition 5.3, we get

E(u0nj )
∗⇀ E(u0r) + CEu0s inM(ℝ)

(in this regard, see also (3.15)). Thus, the function u ∈ L∞(0, T;M+(ℝ)) givenbyProposition5.1 is an entropy
solution of problem (P) in the sense of Young measures. By Proposition 5.8, it is also a solution in the sense
of Definition 3.3. This proves the first part of the theorem. The second part is an immediate consequence of
Proposition 5.9; in fact, (3.9) follows from (3.6) and (5.49).

Let us end this section by proving Proposition 3.8.
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Proof of Proposition 3.8. For every ̃ζ ∈ C1([0, T]; C1c (ℝ)), ̃ζ ( ⋅ , T) = 0, we set E(u) = Um(u) = (u − m)χ{u>m}(u)
and F(u) = Fm(u) = ∫

u
0 U󸀠m(ξ )φ󸀠(ξ ) dξ = (φ(u) − φ(m))χ{u>m}(u) in the entropy inequalities (3.6) (m ∈ ℕ).

Then we get

∬
S

{U∗m∂t ̃ζ + F∗m∂x ̃ζ } dx dt +
T

∫
0

⟨us( ⋅ , t), ∂t ̃ζ ( ⋅ , t)⟩ℝ dt + Cφ
T

∫
0

⟨us( ⋅ , t), ∂x ̃ζ ( ⋅ , t)⟩ℝ dt

≥ −∫
ℝ

Um(u0r) ̃ζ (x, 0) dx − ⟨u0s , ̃ζ ( ⋅ , 0)⟩ℝ,

where, for a.e. (x, t) ∈ S,

U∗m(x, t) := ∫
[0,∞)

Um(ξ ) dτ(x,t)(ξ ), F∗m(x, t) := ∫
[0,∞)

Fm(ξ ) dτ(x,t)(ξ ).

As in the proof of Proposition 5.7, we have∬S{U
∗
m∂t ̃ζ + F∗m∂x ̃ζ } dx dt → 0 and ∫ℝ Um(u0r) ̃ζ (x, 0) dx → 0 as

m →∞, whence
T

∫
0

⟨us( ⋅ , t), ∂t ̃ζ ( ⋅ , t)⟩ℝ dt + Cφ
T

∫
0

⟨us( ⋅ , t), ∂x ̃ζ ( ⋅ , t)⟩ℝ dt ≥ −⟨u0s , ̃ζ ( ⋅ , 0)⟩ℝ. (5.53)

Let ζ ∈ C([0, T]; Cc(ℝ)). By Definition 2.1 (for L∞(0, T;M(ℝ))), the map t 󳨃→ ⟨us( ⋅ , t), ζ( ⋅ , t)⟩ℝ belongs
to L∞(0, T). Hence,

lim
h→0

1
h

̄t+h

∫
̄t

⟨us( ⋅ , t), ζ( ⋅ , t)⟩ℝ dt = ⟨us( ⋅ , ̄t), ζ( ⋅ , ̄t)⟩ℝ for every ̄t ∈ (0, T) \ N, (5.54)

for some null set N ⊂ (0, T) (by separability arguments, we have that N is independent of ζ ; see the proof
of [23, Lemma 3.1]). Let t1, t2 ∈ (0, T) \ N, 0 < t1 < t2 < T. By standard approximation arguments, we can
choose ̃ζ (x, t) = gh(t)ζ(x, t) in (5.53), where

gh(t) :=
1
h
(t − t1)χ{t1≤t≤t1+h}(t) + χ{t1+h<t<t2}(t) +

1
h
(t2 + h − t)χ{t2≤t≤t2+h}(t) (5.55)

and h ∈ (0, min{t2 − t1, T − t2}). Letting h → 0 in (5.53), we obtain that

⟨us( ⋅ , t2), ζ( ⋅ , t2)⟩ℝ ≤
t2

∫
t1

⟨us( ⋅ , t), ζν( ⋅ , t)⟩ℝ dt + ⟨us( ⋅ , t1), ζ( ⋅ , t1)⟩ℝ. (5.56)

Similarly, let fh(t) := χ{0≤t<t2}(t) + 1
h (t2 + h − t)χ{t2≤t≤t2+h}(t). Setting ̃ζ (x, t) = fh(t)ζ(x, t) in (5.53) and let-

ting h → 0+, we obtain that

⟨us( ⋅ , t), ζ( ⋅ , t)⟩ℝ ≤
t

∫
0

⟨us( ⋅ , τ), ζν( ⋅ , τ)⟩ℝ dτ + ⟨u0s , ζ( ⋅ , 0)⟩ℝ. (5.57)

Arguing as in the last part of the proof of Proposition 5.7, we obtain (3.18) and (3.19) from, respectively,
(5.56) and (5.57) (we omit the details).

(ii) It follows from (3.8) that for a.e. τ ∈ (0, T) and m ∈ ℕ,

⟨u( ⋅ , τ), ρm⟩ℝ − ⟨u0, ρm⟩ℝ =
τ

∫
0

{ ∫
Ωm

φ(ur)(x, t)ρ󸀠m dx + Cφ⟨us( ⋅ , t) Ωm , ρ󸀠m⟩ℝ} dt, (5.58)

where {ρm} ⊂ C1c (ℝ) is such that ρm = 1 in [−m,m], supp ρm ⊆ [−m − 1,m + 1], 0 ≤ ρm ≤ 1 and |ρ󸀠m| ≤ 2 inℝ,
and Ωm := [−m − 1, −m] ∪ [m,m + 1]. Since us ∈ L∞(0, T;M+(ℝ)) and φ(ur) ∈ L∞(0, T; L1(ℝ)), a routine
proof shows that

lim
m→∞

τ

∫
0

∫
ℝ

φ(ur)(x, t)ρ󸀠m(x) dx dt = lim
m→∞

τ

∫
0

⟨us( ⋅ , t) Ωm , ρ󸀠m⟩ℝ dt = 0.
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Since ρm(x) → 1 for all x ∈ ℝ, we also get that ⟨u( ⋅ , τ), ρm⟩ℝ → ‖u( ⋅ , τ)‖M(ℝ) and ⟨u0, ρm⟩ℝ → ‖u0‖M(ℝ) as
m →∞. Letting m →∞ in (5.58), we obtain claim (ii).

6 Regularity: Proofs
The first regularity result which we prove is Proposition 3.5. Hence, we need the following lemma.

Lemma 6.1. Let (H1) be satisfied. Let (u, τ) be a Young measure solution of problem (P). Then there exists a
null set F∗ ⊂ (0, T) such that for every t0, t1 ∈ (0, T) \ F∗, t0 < t1, and any ρ ∈ C1c (ℝ), we have

⟨u( ⋅ , t1), ρ⟩ℝ − ⟨u0, ρ⟩ℝ =
t1

∫
0

{∫
ℝ

φ∗(x, t)ρ󸀠(x) dx + Cφ⟨us( ⋅ , t), ρ󸀠⟩ℝ} dt, (6.1)

⟨u( ⋅ , t1), ρ⟩ℝ − ⟨u( ⋅ , t0), ρ⟩ℝ =
t1

∫
t0

{∫
ℝ

φ∗(x, t)ρ󸀠(x) dx + Cφ⟨us( ⋅ , t), ρ󸀠⟩ℝ} dt. (6.2)

Proof. Since u ∈ L∞(0, T;M+(ℝ)), there exists a null set F0 ⊆ (0, T) such that the spatial disintegration
u( ⋅ , t) ∈M+(ℝ) is defined for every t ∈ (0, T) \ F0. Arguing as in the proof of [23, Lemma 3.1], we can show
that there exists a null set F∗ ⊂ (0, T), F0 ⊆ F∗, such that for every ρ ∈ Cc(ℝ) and t ∈ (0, T) \ F∗,

lim
q→∞
{2q

t+ 1q

∫
t− 1q

󵄨󵄨󵄨󵄨⟨u( ⋅ , s), ρ⟩ℝ − ⟨u( ⋅ , t), ρ⟩ℝ
󵄨󵄨󵄨󵄨 ds} = 0. (6.3)

The proof of (6.1) is based on (3.4) and (6.3). Let ρ ∈ C1c (ℝ) and t1 ∈ (0, T) \ F∗. By standard regulariza-
tion arguments, we can set ζ = ρ(x)kq(t) in (3.4), with q ≥ 1

T−t1 + 1 (q ∈ ℕ) and

kq(t) := min {1, q(t1 +
1
q
− t)
+
} → χ(0,t1] in (0, T) as q →∞

to get

q

t1+ 1q

∫
t1

⟨u( ⋅ , t), ρ⟩ℝ dt − ⟨u0, ρ⟩ℝ =
T

∫
0

{∫
ℝ

φ∗(x, t)ρ󸀠(x) dx + Cφ⟨us( ⋅ , t), ρ󸀠⟩ℝ}kq(t) dt.

Letting q →∞, we obtain (6.1) from (3.7) and (6.3). Subtracting from (6.1) the same inequality with t1
replaced by t0, we obtain (6.2).

Proof of Proposition 3.5. Let F∗ ⊂ (0, T) be the null set given by Lemma 6.1. Let {τn} ⊆ (0, T) \ F∗, with
τn → 0+ as n →∞. Since, by (3.7), u ∈ L∞(0, T;M+(ℝ)) and φ∗ ∈ L∞(0, T; L1(ℝ)), it follows from (6.1) that
⟨u( ⋅ , τn), ρ⟩ℝ → ⟨u0, ρ⟩ℝ for all ρ ∈ C1c (ℝ). Since, by Definition 2.1 (ii), supn‖u( ⋅ , τn)‖M(ℝ) ≤ C, there exist
μ0 ∈M+(ℝ) and a subsequence {τnk } such that u( ⋅ , τnk )

∗⇀ μ0 inM(ℝ) as k →∞. By standard density argu-
ments, this implies that μ0 = u0. Hence, u( ⋅ , τn) ∗⇀ u0 along the whole sequence {τn}, and (3.11) follows
from (6.1) and the arbitrariness of {τn}.

Similarly, it follows from (6.2) that ⟨u( ⋅ , τn), ρ⟩ℝ → ⟨u( ⋅ , t0), ρ⟩ℝ for all ρ ∈ C1c (ℝ) as τn → t0 if t0, τn ∈
(0, T) \ F∗, and we obtain (3.12).

To prove (3.13), we observe that, given t0 ∈ [0, T] and two sequences τ1n and τ2n contained in (0, T) \ F∗

andconverging to t0,wehave ⟨u( ⋅ , τ1n) − u( ⋅ , τ2n), ρ⟩ℝ → 0 for all ρ ∈ Cc(ℝ). Hence, if t0 ̸∈ F∗, the continuous
extension of u( ⋅ , t) from (0, T) \ F∗ with respect to the weak∗ topology is well-defined.

Let us now prove the results of Section 3.3. As explained there, replacing x by x − Cφ t we may assume,
without loss of generality, that Cφ = 0; namely, it suffices to prove Proposition 3.10, Theorem3.11 andPropo-
sition 3.14. Moreover, replacing x by −x and φ by −φ, it suffices to do so by assuming that (H2) is satisfied
with φ󸀠󸀠 < 0, φ󸀠 > 0 in (0,∞) (see Remark 3.15). Therefore, we make use of the following assumption:
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(H5) φ ∈ C∞([0,∞)), Cφ = 0, φ󸀠󸀠(u) < 0, and there exist H ≥ −1, K > 0 such that

φ󸀠󸀠(u)[Hφ(u) + K] ≤ −[φ󸀠(u)]2 < 0 for all u ∈ [0,∞).

(Recall that in this case φ󸀠 > 0 and Hφ(u) + K > 0 in [0,∞).)
First we prove some estimates of the constructed entropy solutions. As already said, these estimates are

analogous to the Aronson–Bénilan inequality for the convex case up, p > 1 (see [1]).

Proposition 6.2. Let (H1) and (H5) be satisfied, and let u be an entropy solution of problem (P) given by Theo-
rem 3.7. Then, for a.e. 0 < t1 < t2 ≤ T,

φ(ur)( ⋅ , t2) +
K
H
≤ (

t2
t1
)
H
[φ(ur)( ⋅ , t1) +

K
H ]

a.e. inℝ if H ̸= 0, (6.4)

φ(ur)( ⋅ , t2) − K log(t2) ≤ φ(ur)( ⋅ , t1) − K log t1 a.e. inℝ if H = 0. (6.5)

Moreover, if
(C4) there exists L > 0 such that

Hφ(u) + K ≤ L(1 + u)φ󸀠(u) for u ≥ 0,

then ∂tu ∈M(Ω × (τ, T)), ∂t[φ(ur)] ∈M(Ω × (τ, T)), and u ∈ C((0, T];M(Ω)) for every bounded open set
Ω ⊂ ℝ and τ > 0.

Remark 6.3. If φ(u) = sgn p[(1 + u)p − 1] (p < 1, p ̸= 0), (6.4) becomes

ur( ⋅ , t2) ≤ (
t2
t1
)

1
1−p
[1 + ur( ⋅ , t1)] − 1 a.e. inℝ, for a.e. 0 < t1 ≤ t2 ≤ T

(see Remark 3.9). Similarly, if φ(u) = log(1 + u), (6.5) becomes

ur( ⋅ , t2) ≤ (
t2
t1
)[1 + ur( ⋅ , t1)] − 1 a.e. inℝ, for a.e. 0 < t1 ≤ t2 ≤ T .

Let (H5) hold. To prove Proposition 6.2, we use a different regularization of (Pn), that is,

{
∂tyεn + ∂x[φ(yεn)] = ε∂2x[φ(yεn)] in S,
yεn = uε0n inℝ × {0},

(6.6)

where {uε0n} satisfies (4.1)–(4.2). The existence, uniqueness and regularity results recalled in Section 4
for problem (4.3), as well as the a priori estimates in Lemma 4.1 and the convergence results in Lem-
ma 4.4 (i), continue to hold for solutions of (6.6) (see [18]). In particular, there exist a sequence {yεmn } and
yn ∈ L∞(S) ∩ L∞(0, T; L1(ℝ)) such that yεmn ∗⇀ yn in L∞(S) and for all L > 0,

yεmn → yn in L1((−L, L) × (0, T)) as εm → 0. (6.7)

From (6.6), for every E convex, F󸀠 = E󸀠φ󸀠, and ζ as in Definition 3.6, we get

∬
S

{E(yεmn )∂tζ + F(y
εm
n )∂xζ } dx dt + ∫

ℝ

E(uε0n)ζ(x, 0) dx ≥ εm∬
S

F󸀠(yεmn )∂xy
εm
n ∂xζ dx dt.

Arguing as in the proof of Proposition 4.5 and letting εm → 0, we obtain that

∬
S

[E(yn)∂tζ + F(yn)∂xζ ] dx dt ≥ −∫
ℝ

E(u0n)ζ(x, 0) dx.

So yn satisfies (3.16) and, by Kružkov’s uniqueness theorem, yn = un. Hence, we have shown the following
lemma.

Lemma 6.4. Let (H1) and (H5) be satisfied, and let un be the unique entropy solution of problem (Pn) given by
Proposition 4.5. Then there exists a subsequence {yεmn } of solutions of (6.6) such that y

εm
n
∗⇀ un in L∞(S) and

satisfies (6.7).
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Lemma 6.5. Let (H1) and (H5) be satisfied. Then

∂t[
Hφ(yεn)( ⋅ , t) + K

tH
]
{
{
{

≤ 0 inℝ if H > 0,
≥ 0 inℝ if H < 0,

(6.8)

∂t[φ(yεn)( ⋅ , t) − K log t] ≤ 0 inℝ if H = 0, (6.9)

for all t ∈ (0, T), ε > 0 and n ∈ ℕ. Moreover, if (C4) is satisfied, then

t∂tyεn ≤ L(1 + yεn) in S. (6.10)

Proof. For convenience, we set A ≡ ε∂2x − ∂x, thus ∂tyεn = A[φ(yεn)] in S. Let

zεn := t∂tyεn − g(yεn), where g(yεn) :=
Hφ(yεn) + K
φ󸀠(yεn)

(n ∈ ℕ).

It follows from (H5) and a straightforward calculation that

∂tzεn = A[φ󸀠(yεn)zεn] + [H + 1 − g󸀠(yεn)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≤0

zεn + g(yεn)
t
≤ A[φ󸀠(yεn)zεn] + [H + 1 − g󸀠(yεn)]

zεn
t

in S. Since zεn = −g(uε0n) ≤ 0 inℝ × {0}, it follows from the comparison principle for parabolic equations that
zεn ≤ 0 in S for all n ∈ ℕ. Hence, t∂tyεn( ⋅ , t) ≤ g(yεn)( ⋅ , t) inℝ for all t ∈ (0, T), which implies (6.8), (6.9) and,
if (C4) is satisfied, (6.10).

Proof of Proposition 6.2. Let {yεmn } be as in the proof of Lemma 6.4. By (6.8)–(6.9),

φ(yεmn )( ⋅ , t2) +
K
H
≤ (

t2
t1
)
H
[φ(yεmn )( ⋅ , t1) +

K
H ]

inℝ if H ̸= 0,

φ(yεn)(x, t2) − K log(t2) ≤ φ(yεn)(x, t1) − K log t1 inℝ if H = 0,

for all 0 < t1 ≤ t2 ≤ T and n ∈ ℕ. Hence, by Lemma 6.4,

φ(un)( ⋅ , t2) +
K
H
≤ (

t2
t1
)
H
[φ(un)( ⋅ , t1) +

K
H ]

a.e. inℝ if H ̸= 0, (6.11)

φ(un)( ⋅ , t2) − K log(t2) ≤ φ(un)( ⋅ , t1) − K log t1 a.e. inℝ if H = 0, (6.12)

for a.e. 0 < t1 ≤ t2 ≤ T. Since φ󸀠 is strictly decreasing in [0,∞) (recall that φ is concave by assumption (H5)),
possibly extracting another subsequence (denoted again by {nj}), φ(unj ) → φ(ur) a.e. in S (see Remark 5.10).
Letting j →∞ in (6.11)–(6.12) (with n = nj), we obtain (6.4)–(6.5).

Let Ω = (−L, L). If (C4) is satisfied, it follows from (6.10) and (4.5) that

t∫
Ω

[∂tyεn]+(x, t) dx ≤ L|Ω| + ‖u0‖M(ℝ) for all t ∈ (0, T]. (6.13)

Since |∂tyεn| = 2[∂tyεn]+ − ∂tyεn a.e. in S, there exists CΩ > 0 such that

T

∫
τ

∫
Ω

|∂tyεn|(x, t) dx dt ≤ 2(T − τ)
L|Ω| + ‖u0‖M(ℝ)

τ
+ ∫
Ω

{yεn(x, τ) − yεn(x, T)} ≤
CΩ
τ

for all τ > 0, ε > 0 and n ∈ ℕ, and, by (3.1),

T

∫
τ

∫
Ω

|∂tyεn| dx dt ≤
CΩ
τ
,

T

∫
τ

∫
Ω

|∂t[φ(yεn)]|dx dt ≤
MCΩ
τ

. (6.14)

Let {εm} and {nj} be as in Lemma 6.4 and (5.1). Then

lim
nj→∞

lim
εm→0
⟨yεmnj , ∂tζ ⟩Ω×(τ,T) = ⟨u, ∂tζ ⟩Ω×(τ,T) for all ζ ∈ C1c (Ω × (τ, T)),
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whence, by (6.14) and the lower semicontinuity of the total variation,

‖∂tu‖M(Ω×(τ,T)) ≤
CΩ
τ
.

Similarly, by (5.6), (5.25) and Proposition 5.8,

lim
nj→∞

lim
εm→0
⟨φ(yεmnj ), ∂tζ ⟩Ω×(τ,T) =

T

∫
τ

∫
Ω

φ(ur)∂tζ dx dt for all ζ ∈ C1c (Ω × (τ, T)),

and, by (6.14) and the lower semicontinuity of the total variation,

‖∂t[φ(ur)]‖M(Ω×(τ,T)) ≤
MCΩ
τ

.

It remains to prove that u ∈ C((0, T];M(Ω)). Observe that for all t1, t2 ∈ (0, T], 0 < τ < t1 < t2, and
ρ ∈ C2c (ℝ), 0 ≤ ρ ≤ 1 inℝ, ρ = 1 in Ω,

∫
Ω

󵄨󵄨󵄨󵄨y
ε
n(x, t2) − yεn(x, t1)

󵄨󵄨󵄨󵄨 dx ≤ ∫
ℝ

󵄨󵄨󵄨󵄨y
ε
n(x, t2) − yεn(x, t1)

󵄨󵄨󵄨󵄨ρ(x) dx

≤
t2

∫
t1

∫
ℝ

|∂tyεn|ρ dx dt

=
t2

∫
t1

∫
ℝ

(2[∂tyεn]+ − ∂tyεn)ρ dx dt

= 2
t2

∫
t1

∫
ℝ

[∂tyεn]+ρ dx dt −
t2

∫
t1

∫
ℝ

{φ(yεn)ρ󸀠(x) + εφ(yεn)ρ󸀠󸀠(x)} dx dt

≤ 2
L|supp ρ| + ‖u0‖M(ℝ)

τ
(t2 − t1) −

t2

∫
t1

∫
ℝ

{φ(yεn)ρ󸀠 + εφ(yεn)ρ󸀠󸀠} dx dt,

where we have used (6.13). We let ε = εm → 0 and use (3.1) and (4.20) to obtain

∫
Ω

|un(x, t2) − un(x, t1)| dx ≤ 2
L|supp ρ| + ‖u0‖M(ℝ)

τ
(t2 − t1) −

t2

∫
t1

∫
ℝ

φ(un)ρ󸀠(x) dx dt

≤ (2
L|supp ρ| + ‖u0‖M(ℝ)

τ
+M‖u0‖M(ℝ)‖ρ󸀠‖L∞(ℝ))(t2 − t1) =:

C̃
τ
(t2 − t1).

By (5.16) and the lower semicontinuity of the total variation,

‖u( ⋅ , t2) − u( ⋅ , t1)‖M(Ω) ≤
C̃
τ
|t1 − t2| for a.e. 0 < τ < t1 < t2 ≤ T .

So we may define u( ⋅ , t) for all t ∈ [τ, T] such that u ∈ C([τ, T];M(Ω)). Since τ > 0 is arbitrary, the proof is
complete.

To prove Proposition 3.10, we need the following lemma.

Lemma 6.6. Let (H1) be satisfied, and let u be the solution of problem (P) given by Theorem 3.7. Let {unj } be as
in the proof of Theorem 3.7. Then, for a.e. t ∈ (0, T) and all x0 ∈ supp us( ⋅ , t), there exist a sequence {x0k} ⊂ ℝ
and a subsequence {unk } of {unj } such that x0k → x0 and unk (x0k , t) → ∞ as k →∞.

Proof. Let x0 ∈ supp us( ⋅ , t). We may assume that the convergence in (5.16) is satisfied for this t. Since
x0 ∈ supp us( ⋅ , t), there is no neighborhood Iδ(x0) such that the sequence {unj ( ⋅ , t)} lies in a bounded sub-
set of L∞(Iδ(x0)). Otherwise, up to a subsequence, unj ( ⋅ , t)

∗⇀ ft in L∞(Iδ(x0)) for some ft ∈ L∞(Iδ(x0)),
ft ≥ 0. However, this would imply that us( ⋅ , t) = 0 in Iδ(x0), a contradiction.

Setting δ = 1/k, we obtain that supnj∈ℕ‖unj ( ⋅ , t)‖L∞(I1/k(x0)) = ∞ for all k ∈ ℕ. Hence, for all k ∈ ℕ, there
exists x0k ∈ I1/k(x0) such that unk (x0k , t) ≥ k.

Brought to you by | Lancaster University
Authenticated

Download Date | 10/3/18 12:25 PM



M. Bertsch et al., Measure-valued solutions | 33

Proof of Proposition 3.10. As pointed out above, it suffices to prove equality (3.20) by assuming (H5). Let
{unj } be as in the proof of Lemma 6.6. By Lemma 6.4, for every nj ∈ ℕ, there exists εm → 0 such that

yεmnj ( ⋅ , t) → unj ( ⋅ , t) in L1loc(ℝ) as εm → 0 for a.e. t ∈ (0, T). (6.15)

By the proof of Lemma 6.5, for all t ∈ (0, T),

εm∂2x[φ(y
εm
nj )( ⋅ , t)] − ∂x[φ(y

εm
nj )( ⋅ , t)] = ∂t(y

εm
nj ) ≤

g(yεmnj )( ⋅ , t)
t

inℝ, (6.16)

where g(u) = Hφ(u)+K
φ󸀠(u) > 0. For every x < x, let ρ ∈ C

1
c ((x, x̄)), ρ ≥ 0. Multiplying (6.16) by ρ/g(y

εm
nj ( ⋅ , t)), inte-

grating by parts and setting Ψ(y) := ∫y0
φ󸀠(u)
g(u) du, we find that

x̄

∫
x

Ψ(yεmnj )(x, t)[εmρ
󸀠󸀠(x) + ρ󸀠(x)] dx ≤ 1

t

x̄

∫
x

ρ(x) dx − εm
x̄

∫
x

φ󸀠(yεmnj )g󸀠(y
εm
nj )[(y

εm
nj )x]

2

[g(yεmnj )]2
(x, t)ρ(x) dx ≤ 1

t

x̄

∫
x

ρ(x) dx

(observe that by (H5) we have g󸀠(u) ≥ H + 1 ≥ 0 and Ψ is bounded). Hence, by (6.15),

x̄

∫
x

Ψ(unj )(x, t)ρ󸀠(x) dx ≤
1
t

x̄

∫
x

ρ(x) dx. (6.17)

Let x0 ∈ supp us( ⋅ , t), and let {x0k} ⊂ ℝ, {unk } be as in Lemma 6.6, for a.e. t ∈ (0, T). Let x̄ > x0 be fixed.
Since x0k → x0, there exists k̄ ∈ ℕ such that x̄ > x0k for all k > k̄. Consider any sequence {ρm} ⊂ C1c ((x0k , x̄)),
0 ≤ ρm ≤ 1, ρm → χ(x0k ,x̄) in ℝ. Without loss of generality, we may assume that both x0k and x̄ are Lebesgue
points of unk ( ⋅ , t) for all k ∈ ℕ. Setting ρ = ρm and x = x0k in (6.17), and letting m →∞, we find that

Ψ(unk )(x0k , t) ≤ Ψ(unk )(x̄, t) +
1
t
(x̄ − x0k) for all nk .

Since Ψ is continuous, by Lemma 6.6 and Remark 5.10 (recall that φ satisfies (C2), since φ is strictly concave
by assumption (H5)), letting nk →∞ gives

Ψ(ur)(x̄, t) +
1
t
(x̄ − x0) ≥ Ψ(∞) for a.e. x̄ > x0,

whence, by the invertibility of Ψ,

ur(x̄, t) ≥ Ψ−1(Ψ(∞) −
1
t
(x̄ − x0)) for a.e. x̄ > x0. (6.18)

Letting x̄ → x+0 in the previous inequality, we obtain (3.20).

To prove Theorem 3.11, we need the following result.

Proposition 6.7. Let (H1) be satisfied. Let Cφ = 0, and let u be a solution of problem (P). Then, for a.e.
0 ≤ t1 ≤ t2 ≤ T,
(i) the map x 󳨃→ Φ(x, t1, t2) := ∫

t2
t1
φ(ur)(x, t) dt belongs to BV(ℝ),

(ii) for all x0, x1 ∈ ℝ, x0 ≤ x1,

u( ⋅ , t2)([x0, x1]) − u( ⋅ , t1)([x0, x1]) = Φ(x−0 , t1, t2) − Φ(x
+
1 , t1, t2), (6.19)

u( ⋅ , t2)([x0, x1]) − u0([x0, x1]) = Φ(x−0 , 0, t2) − Φ(x
+
1 , 0, t2). (6.20)

Remark 6.8. It is easily seen that for Cφ ̸= 0, equalities (6.19)–(6.20) are replaced by

u( ⋅ , t2)([x0, x1]) − TCφ(t2−t1)(u( ⋅ , t1))([x0, x1]) = Φ(x−0 , t1, t2) − Φ(x
+
1 , t1, t2), (6.21)

u( ⋅ , t2)([x0, x1]) − TCφ t2 (u0)([x0, x1]) = Φ(x−0 , 0, t2) − Φ(x
+
1 , 0, t2),

where now

Φ(x, t1, t2) :=
t2

∫
t1

[φ(ur) − Cφur](x + Cφ(t − t1), t) dt. (6.22)
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Proof of Proposition 6.7. (i) By (3.1), | ∫t2t1 φ(ur)(x, t) dt| ≤ M ∫
t2
t1
ur(x, t) dt ∈ L1(ℝ). We argue as in the proof

of Proposition 3.8 (see (5.54)). There exists a null set N ⊂ (0, T) such that

lim
h→0

1
h

̄t+h

∫
̄t

⟨u( ⋅ , t), ρ⟩ℝ dt = ⟨u( ⋅ , ̄t), ρ⟩ℝ for all ρ ∈ Cc(ℝ) and ̄t ∈ (0, T) \ N. (6.23)

Let t1, t2 ∈ (0, T) \ N, 0 < t1 < t2 < T, ρ ∈ C1c (ℝ), and ζ(x, t) = gh(t)ρ(x), with gh as in (5.55). Since Cφ = 0,
we obtain from (3.8) that

1
h

t1+h

∫
t1

⟨u( ⋅ , t), ρ⟩ℝ dt −
1
h

t2+h

∫
t2

⟨u( ⋅ , t), ρ⟩ℝ dt +
T

∫
0

∫
ℝ

gh(t)ρ󸀠(x)φ(ur)(x, t) dx dt = 0.

Letting h → 0, it follows from (6.23) that

⟨u( ⋅ , t2), ρ⟩ℝ − ⟨u( ⋅ , t1), ρ⟩ℝ = ∫
ℝ

Φ(x, t1, t2)ρ󸀠(x) dx. (6.24)

Hence, the distributional derivative Φx(x, t1, t2) belongs toM(ℝ).
(ii) We set, for m ∈ ℕ and x ∈ ℝ,

ρm(x) := m(x − x0 +
1
m )

χ[x0− 1m ,x0] + χ(x0 ,x1)(x) + m( − x + x1 +
1
m )

χ[x1 ,x1+ 1m ].

By standard regularization arguments, we can choose ρ = ρm in (6.24) to obtain

⟨u( ⋅ , t2), ρm⟩ℝ − ⟨u( ⋅ , t1), ρm⟩ℝ = m
x0

∫
x0− 1m

Φ(x, t1, t2) dx − m
x1+ 1m

∫
x1

Φ(x, t1, t2) dx. (6.25)

By the dominated convergence theorem, ⟨u( ⋅ , ti), ρm⟩ℝ → u( ⋅ , ti)([x0, x1]) asm →∞ (i = 1, 2), whereas, by
part (i),

m
x0

∫
x0− 1m

Φ(x, t1, t2) dx → Φ(x−0 , t1, t2), m
x1+ 1m

∫
x1

Φ(x, t1, t2) dx → Φ(x+1 , t1, t2).

Hence, (6.19) follows from (6.25). The proof of (6.20) is similar.

Remark 6.9. Observe that, by (3.18) and (6.21) with x0 = x1 = x, all entropy solutions of problem (P) satisfy,
for a.e. 0 ≤ t1 ≤ t2 ≤ T,

Φ(x−, t1, t2) ≤ Φ(x+, t1, t2) for all x ∈ ℝ,

with Φ defined by (6.22).

Nowweare ready to prove Theorem3.11 andProposition3.14. As pointed out at the beginning of this section,
in doing so it is not restrictive to assume that (H5) holds.

Proof of Theorem 3.11. (i) By (6.20), for a.e. 0 ≤ t ≤ T,

us(t)({x0}) = u0s({x0}) + Φ(x−0 , 0, t) − Φ(x
+
0 , 0, t) ≥ u0s({x0}) − ‖φ‖L∞(0,∞)t,

whence us(t)({x0}) > 0 if t ∈ (0, u0s({x0})
‖φ‖L∞(0,∞)

). Hence, (3.21) follows.
(ii) Let un be the entropy solution of problem (Pn) given by Proposition 4.5. We argue as in the proof

of Proposition 6.7. For all n ∈ ℕ, the map x 󳨃→ Φn(x, t1, t2) := ∫
t2
t1
φ(un)(x, t) dt belongs to BV(ℝ) and, for

a.e. 0 ≤ t1 ≤ t2 ≤ T and a.e. x0 ≤ x1 ∈ ℝ,
x1

∫
x0

un(x, t2) dx −
x1

∫
x0

un(x, t1) dx = Φn(x−0 , t1, t2) − Φn(x+1 , t1, t2).
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Letting x1 →∞, it follows from (4.27) and (3.14) that

t2

∫
t1

φ(un)(x, t) dt ≤ ‖u0‖M(ℝ) for n ∈ ℕ and a.e. x ∈ ℝ. (6.26)

Let {yεmn } be the subsequence used in the proof of Lemma 6.4. By (6.8) and (6.9), for every 0 < t1 ≤ t ≤ T
and x ∈ ℝ,

t

∫
t1

φ(yεmn )(x, s) ds =
1
H

t

∫
t1

Hφ(yεmn )(x, s) + K
sH

sH ds − K
H
(t − t1)

≥
Hφ(yεmn )(x, t) + K

HtH
tH+1 − tH+11

H + 1 −
K
H
(t − t1) if H ̸= 0,

t

∫
t1

φ(yεmn )(x, s) ds =
t

∫
t1

[φ(yεmn )(x, s) − K log s] ds + K
t

∫
t1

log s ds

≥ [φ(yεmn )(x, t) − K log t](t − t1) + K[t log t − t] − K[t1 log t1 − t1] if H = 0.

Letting εm → 0, by (6.26), we obtain, for a.e. t ∈ (t1, T) and a.e. x ∈ ℝ,

‖u0‖M(ℝ) ≥ Φn(x, t1, t) ≥
{{{{
{{{{
{

Hφ(un)(x, t) + K
HtH

tH+1 − tH+11
H + 1 −

K
H
(t − t1) if H ̸= 0,

[φ(un)(x, t) − K](t − t1) + Kt1 log
t
t1

if H = 0.

Letting t1 → 0+, we find in both cases that

φ(un)(x, t) ≤
(H + 1)‖u0‖M(ℝ)

t
+ K for a.e. t ∈ (t1, T) and a.e. x ∈ ℝ (6.27)

(recall that we have assumed H > −1 if φ is bounded; otherwise, if φ is unbounded, we have H ≥ 0, since
φ󸀠 > 0andHφ + K > 0 in [0,∞)by (H5)). If limu→∞ φ(u) =: γ < ∞,K < γ andH > −1, the sequence {un( ⋅ , t)}
lies in a bounded subset of L∞(ℝ) (thus, by (5.16) us( ⋅ , t) = 0 and ur( ⋅ , t) ∈ L∞(ℝ)) for a.e. t ∈ (0, T) such
that

(H + 1)‖u0‖M(ℝ)
t

+ K < γ ⇔ t >
(H + 1)‖u0‖M(ℝ)

γ − K
.

This proves claim (ii) (a).
If γ = ∞, we have H ≥ 0, since Hφ + K > 0 in [0,∞) (see (H5)). Then, by (6.27), the sequence {un( ⋅ , t)}

lies in a bounded subset of L∞(ℝ) for a.e. t ∈ (0, T), hence, by (5.16) as n →∞, we obtain that t0 = 0. Thus,
claim (ii) (b) follows. This completes the proof.

Remark 6.10. As we claimed in Remark 3.13, in Theorem 3.11 (ii), we may relax hypothesis (H2) to (H3),
with k > 0. To prove this, for every u0 ∈M+(Ω), let {u0n} be any sequence as in (3.14)–(3.15), and let un be
the entropy solution of problem (Pn). Set v0n := Gk(u0n), where Gk(u) := (u − k)+ for every u ≥ 0, and let vn
be the entropy solution of the following problem:

{
∂tvn + ∂x[φk(vn)] = 0 in S,
vn = v0n inℝ × {0}

(φk(u) = φ(u + k) − φ(k)). A standard calculation shows that Gk(un) is an entropy subsolution of the above
problem, whence

Gk(un) ≤ vn a.e. in S. (6.28)

Following the proof of Theorem 3.7, the sequence {vn} converges to an entropy solution v of problem (P)
with initial datum v0 = u0s + Gk(u0r). Moreover, by assumption (H3), φk satisfies (H2) and we may apply
Theorem 3.11 (ii) to v. Therefore, the conclusion follows from (6.28).
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Proof of Proposition 3.14. By the proof of Proposition 3.10, inequality (6.18) is satisfied for a.e. t ∈ (0, T) and
all x0 ∈ supp us( ⋅ , t). We fix such t. Let x1 ∈ supp us( ⋅ , t) and set I1 := (x1 − ε, x1 + ε) with ε > 0. By (6.18),

∫
I1

ur(x, t) dx ≥
x1+ε

∫
x1

Ψ−1(Ψ(∞) − 1t (x − x1)) dx =
ε

∫
0

Ψ−1(Ψ(∞) − yt ) dy =: Bε .

If supp us( ⋅ , t) ̸⊂ I1, let x2 ∈ supp us( ⋅ , t) \ I1 and set I2 := (x2 − ε, x2 + ε). Since (x1, x1 + ε)∩(x2, x2 + ε) = 0,
we have that

∫
I1∪I2

ur(x, t) dx ≥
x1+ε

∫
x1

ur(x, t) dx +
x2+ε

∫
x2

ur(x, t) dx ≥ 2Bε .

We continue this construction recursively as long as supp us( ⋅ , t) ̸⊂ I1 ∪ ⋅ ⋅ ⋅ ∪ In−1, with In−1 := (xn−1 − ε,
xn−1 + ε): there exists xn ∈ supp us( ⋅ , t) \ {I1 ∪ ⋅ ⋅ ⋅ ∪ In−1} such that, setting In := (xn − ε, xn + ε),

nBε ≤ ∫
I1∪⋅⋅⋅∪In

ur(x, t) dx ≤ ‖u0‖M(ℝ).

Hence, this construction stops at some n = nε, and nεBε ≤ ‖u0‖M(ℝ). Therefore,

supp us( ⋅ , t) ⊂ I1 ∪ ⋅ ⋅ ⋅ ∪ Inε , |supps( ⋅ , t)| ≤ |I1 ∪ ⋅ ⋅ ⋅ ∪ Inε | ≤ 2nεε ≤
2ε
Bε
‖u0‖M(ℝ).

Since Bε/ε →∞ as ε → 0, the claim follows.

7 Uniqueness: Proofs
Again, without loss of generality, we may assume that Cφ = 0 in the following proofs (see Remark 3.16).

Proof of Proposition 3.20. (i) The first step of the proof consists in showing that

ess lim
t→0+
‖ur( ⋅ , t) − u0r‖L1(ℝ) = 0. (7.1)

Let {uεn} be the sequence of solutions to problems (4.3) considered in Section 4, and let {xl} (l = 1, . . . , N)
be as in (3.26). We set Il := (xl , xl+1), Ql := Il × (0, τ) (l = 1, . . . , N − 1), I− := (−∞, x1), I+ := (xN ,∞), and
Q± := I± × (0, τ).

Let 1 ≤ l ≤ N − 1 and ρ ∈ C2c (Il), ρ ≥ 0. Let h0 > 0 be such that x + h ∈ Il if x ∈ supp ρ and |h| < h0. Let
δ > 0. Setting vεn(x, t) := uεn(x + h, t) and z := (uεn − vεn)(ρ + δ), we apply the L1-contraction property to the
parabolic equation

∂tz + ∂x[(R +
2ερ󸀠
ρ + δ)

z] − ε∂2xz = (
Rρ󸀠

ρ + δ
+

ερ󸀠󸀠

ρ + δ)
z = (φε(uεn) − φε(vεn))ρ󸀠 + ε[uεn − vεn]ρ󸀠󸀠,

where

R :=
{{
{{
{

φε(uεn) − φε(vεn)
uεn − vεn

if uεn ̸= vεn ,

φ󸀠ε(uεn) otherwise.

Hence,

∫
Il

|z(x, τ)| dx ≤ ∫
Il

|z(x, 0)| dx +
τ

∫
0

∫
Il

󵄨󵄨󵄨󵄨φε(uεn(x, t)) − φε(uεn(x + h, t))
󵄨󵄨󵄨󵄨|ρ
󸀠(x)| dx dt

+ ε
τ

∫
0

∫
Il

󵄨󵄨󵄨󵄨u
ε
n(x, t) − uεn(x + h, t)

󵄨󵄨󵄨󵄨|ρ
󸀠󸀠(x)| dx dt for τ ∈ (0, T).
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First we let δ → 0 and then ε = εm → 0, where {εm} is as in Lemma 4.4. Hence,

∫
Il

󵄨󵄨󵄨󵄨un(x, τ) − un(x + h, τ)
󵄨󵄨󵄨󵄨ρ(x) dx ≤ ∫

Il

|u0n(x) − u0n(x + h)|ρ(x) dx

+
τ

∫
0

∫
Il

󵄨󵄨󵄨󵄨φ(un(x, t)) − φ(un(x + h, t))
󵄨󵄨󵄨󵄨|ρ
󸀠(x)| dx dt (7.2)

for a.e. τ ∈ (0, T), where un is the entropy solution of problem (Pn) (n ∈ ℕ). Since, by (5.16), un( ⋅ , t) ∗⇀ u( ⋅ , t)
inM(Il) for a.e. t ∈ (0, T) and, by (3.19) and (3.26), us( ⋅ , t) Il ≤ u0s Il = 0, the lower semicontinuity of the
total variation implies that for a.e. τ ∈ (0, T),

∫
Il

|ur(x, τ) − ur(x + h, τ)|ρ(x) dx ≤ lim inf
n→∞
∫
Il

|un(x, τ) − un(x + h, τ)|ρ(x) dx.

By (3.15), ∫Il |u0n(x) − u0n(x + h)|ρ(x) dx → ∫Il |u0r(x) − u0r(x + h)|ρ(x) dx. In addition, φ(unj ) → φ(ur) in
L1(Ql) for a subsequence {unj } of {un} (see Remark 5.10). Letting n = nj →∞ in (7.2), we obtain, for
a.e. τ ∈ (0, T),

∫
Il

|ur(x, τ) − ur(x + h, τ)|ρ(x) dx

≤ ∫
Il

|u0r(x) − u0r(x + h)|ρ(x) dx +
τ

∫
0

∫
Il

󵄨󵄨󵄨󵄨φ(ur(x, t)) − φ(ur(x + h, t))
󵄨󵄨󵄨󵄨|ρ
󸀠(x)| dx dt. (7.3)

Let {τn} ⊂ (0, T) be any sequence such that τn → 0+ and (7.3) is satisfied with τ = τn. Since u0r ∈ L1(ℝ)
and φ(ur) ∈ L1(S), it follows from (7.3) and the Fréchet–Kolmogorov theorem that the sequence {ur( ⋅ , τn)ρ}
is relatively compact in L1(ℝ). Then, by (3.11) and a standard argument,

ur( ⋅ , τn)ρ → u0rρ in L1(ℝ). (7.4)

It follows from (3.8) and (3.13) that for each n ∈ ℕ,

∫
Il

[ur(x, τn) − u0r(x)]ρ(x) dx =
τn

∫
0

∫
Il

φ(ur)(x, t)ρ󸀠(x) dx dt. (7.5)

For sufficiently small δ > 0, the characteristic function χ(xl ,xl+δ)∪(xl+1−δ,xl+1) can be approximated by functions
ρk ∈ C2c (Il), ρk ≥ 0 such that ∫Il |ρ

󸀠
k(x)| dx ≤ 4 for all k ∈ ℕ. Setting ρ = ρk in (7.5) and letting k →∞, we find

that
xl+δ

∫
xl

ur(x, τn) dx +
xl+1

∫
xl+1−δ

ur(x, τn) dx ≤
xl+δ

∫
xl

u0r(x) dx +
xl+1

∫
xl+1−δ

u0r(x) dx + 4‖φ‖L∞(0,∞)τn . (7.6)

Since u0r ∈ L1(ℝ), for every σ > 0, there exists δ > 0 such that
xl+δ

∫
xl

u0r(x) dx +
xl+1

∫
xl+1−δ

u0r(x) dx ≤ σ. (7.7)

If ρ ∈ Cc(Il) is such that 0 ≤ ρ ≤ 1 in Il, ρ = 1 in [xl + δ, xl+1 − δ], then

|ur( ⋅ , τn) − u0r| = |ur( ⋅ , τn) − u0r|ρ + |ur( ⋅ , τn) − u0r|(1 − ρ)χ(xl ,xl+δ)∪(xl+1−δ,xl+1) in Il.

Hence, by (7.6) and (7.7),

∫
Il

|ur( ⋅ , τn) − u0r| dx ≤ 2{
xl+δ

∫
xl

u0r dx +
xl+1

∫
xl+1−δ

u0r dx} + 4‖φ‖L∞(0,∞)τn + ∫
Il

|ur( ⋅ , τn) − u0r|ρ dx

≤ ∫
Il

|ur( ⋅ , τn) − u0r|ρ dx + 4‖φ‖L∞(0,∞)τn + 2σ.
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Letting n →∞ in the above inequality, by (7.4), we obtain that

lim sup
n→∞
∫
Il

|ur( ⋅ , τn) − u0r| dx ≤ 2σ,

whence, by the arbitrariness of σ,

lim
n→∞
∫
Il

|ur(x, τn) − u0r(x)| dx = 0 (l = 1, . . . , N − 1).

A similar argument shows that ∫I± |ur(x, τn) − u0r(x)| dx → 0 as n →∞, thus (7.1) follows.
To complete the proof of (3.27), observe that by (3.19) we have us( ⋅ , t) ≤ u0s inM(ℝ) (recall that Cφ = 0,

by assumption). Hence,
⟨u0s − us( ⋅ , t), ρ⟩ℝ ≥ ‖us( ⋅ , t) − u0s‖M(ℝ)

for all ρ ∈ Cc(ℝ) such that ρ(x) = 1 for every x ∈ supp u0s. From the previous inequality, (3.11) and (7.1), we
get

ess lim
t→0+
‖us( ⋅ , t) − u0s‖M(ℝ) ≤ ess lim

t→0+
⟨u0s − us( ⋅ , t), ρ⟩ℝ

= ess lim
t→0+
{⟨u0 − u( ⋅ , t), ρ⟩ℝ − ∫

ℝ

(ur(x, t) − u0r)ρ(x) dx} = 0. (7.8)

Then (3.27) follows.
(ii) Let ζ± ∈ C1c (Q±), ζ± ≥ 0, and for every 1 ≤ l ≤ N − 1 let ζl ∈ C1c (Ql), ζl ≥ 0. Let h0 > 0 be such that

(x + h, t) ∈ Ql (respectively (x + h, t) ∈ Q±) if (x, t) ∈ supp ζl (respectively if (x, t) ∈ supp ζ±) and |h| < h0.
Let u be an entropy solution of problem (P), thus v( ⋅ , t) = T−h(u( ⋅ , t)) is an entropy solution of prob-

lem (P) with u0 replaced by v0 := T−h(u0) (see Remark 3.16). We shall prove, for all l = 1, . . . , N − 1 and ζl as
above, that

∬
Ql

{|vr − ur|∂tζl + sgn(vr − ur)[φ(vr) − φ(ur)]∂xζl} dx dt ≥ 0 (7.9)

and, for all ζ± as above,

∬
Q±

{|vr − ur|∂tζ± + sgn(vr − ur)[φ(vr) − φ(ur)]∂xζ±} dx dt ≥ 0. (7.10)

Relying on (7.9)–(7.10) we can conclude the proof by an argument similar to that used in (i). Let
ρ ∈ C1c (Il), 0 ≤ ρ ≤ 1, be such that x + h ∈ Il if x ∈ supp ρ and |h| < h0. By a proper choice of the function
ζl in (7.9), for a.e. 0 < t0 < t1 ≤ T, we get

∫
Il

|ur(x, t1) − vr(x, t1)|ρ(x) dx ≤ ∫
Il

|ur(x, t0) − vr(x, t0)|ρ(x) dx +
t1

∫
t0

|φ(ur) − φ(vr)||ρ󸀠(x)| dx dt.

Let t0 > 0 be fixed. Then, for every τ ∈ (t0, T], there exists a sequence τn → τ such that τn ∈ (t0, T], and the
above inequality holds true with t1 = τn for every n, that is,

∫
Il

󵄨󵄨󵄨󵄨ur(x + h, τn) − ur(x, τn)
󵄨󵄨󵄨󵄨ρ(x) dx ≤ ∫

Il

󵄨󵄨󵄨󵄨ur(x + h, t0) − ur(x, t0)
󵄨󵄨󵄨󵄨ρ(x) dx

+ ‖ρ󸀠‖∞
T

∫
0

󵄨󵄨󵄨󵄨φ(ur(x + h, t)) − φ(ur(x, t))
󵄨󵄨󵄨󵄨 dx dt. (7.11)

Since φ(ur) ∈ L1(S) and ur( ⋅ , t0) ∈ L1(ℝ), inequality (7.11) and the Fréchet–Kolmogorov theorem imply that
the sequence {ur( ⋅ , τn)ρ} is relatively compact in L1(ℝ), whence, by Proposition 3.5 and a standard argu-
ment,

ur( ⋅ , τn)ρ → ur( ⋅ , τ)ρ in L1(ℝ). (7.12)
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Moreover, by arguing as in (7.6) and (7.7) with u0r replaced by ur( ⋅ , τ), for every σ > 0, there exists δ > 0
such that

xl+δ

∫
xl

ur(x, τn) dx +
xl+1

∫
xl+1−δ

ur(x, τn) dx ≤ σ + 4‖φ‖L∞(0,∞)|τn − τ|. (7.13)

As in the proof of claim (i), combining (7.12) and (7.13) gives

lim
n→∞
∫
Il

|ur(x, τn) − ur(x, τ)| dx = 0, l = 1, . . . , N − 1

(by a similar argument, ∫I± |ur(x, τn) − ur(x, τ)| dx → 0 as n →∞), whence

ess lim
t→τ
‖ur( ⋅ , t) − ur( ⋅ , τ)‖L1(ℝ) = 0.

Since Cφ = 0, it follows from (3.18) that us( ⋅ , t2) ≤ us( ⋅ , t1) inM(ℝ) if t2 > t1, whence, by arguing as in (7.8),
we also obtain

ess lim
t→τ+
‖us( ⋅ , t) − us( ⋅ , τ)‖M(ℝ) = ess lim

t→τ−
‖us( ⋅ , t) − us( ⋅ , τ)‖M(ℝ) = 0,

and claim (ii) follows.
Finally, it remains to prove (7.9) (the proof of (7.10) is analogous). Let 1 ≤ l ≤ N − 1 and ζl ∈ C1c (Ql),

ζl ≥ 0, be fixed as above. Since Cφ = 0, it follows from (3.19) and (3.26) that us( ⋅ , t) = vs( ⋅ , t) = 0 on
supp ζl( ⋅ , t) for a.e. t ∈ (0, T), and from (3.10) that, for k ∈ [0,∞),

∬
Ql

{|ur − k|∂tζl + sgn(ur − k)[φ(ur) − φ(k)]∂xζl} dx dt ≥ 0, (7.14)

∬
Ql

{|vr − k|∂tζl + sgn(vr − k)[φ(vr) − φ(k)]∂xζl} dx dt ≥ 0. (7.15)

We apply Kružkov’s method of doubling variables. Let Zl = Zl(x, t, y, s) ∈ C1c (Ql × Ql), Zl ≥ 0. It follows from
(7.14)–(7.15) that

∬
Ql

{|ur(x, t) − vr(y, s)|∂tZl(x, t, y, s)

+ sgn(ur(x, t) − vr(y, s))[φ(ur(x, t)) − φ(vr(y, s))]∂xZl(x, t, y, s)} dx dt ≥ 0

and

∬
Ql

{|vr(y, s) − ur(x, t)|∂sZl(x, t, y, s)

+ sgn(vr(y, s) − ur(x, t))[φ(vr(y, s)) − φ(ur(x, t))]∂yZl(x, t, y, s)} dy ds ≥ 0,

whence

∫∫∫∫
Ql×Ql

{|ur(x, t) − vr(y, s)|(∂tZl + ∂sZl)(x, t, y, s)

+ sgn(ur(x, t) − vr(y, s))[φ(ur)(x, t) − φ(vr)(y, s)](∂xZl + ∂yZl)(x, t, y, s)} dx dt dy ds ≥ 0.

We choose
Zl(x, t, y, s) = Zεl (x, t, y, s) := ζl(x, t)ζε(x − y, t − s) (ε > 0),

where ζε is a smooth approximation of the Dirac mass δ(0,0),

ζε(x, y) =
1
ε2
θ( xε )

η( tε )
≥ 0, with supp θ ⊆ (−1, 1), supp η ⊆ (−1, 1).
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Then ∂tZl + ∂sZl = ∂tζlζε and ∂xZl + ∂yZl = ∂xζlζε, whence, for sufficiently small ε,

∫∫∫∫
Ql×Ql

{|ur(x, t) − vr(y, s)|∂tζl(x, t)

+ sgn(ur(x, t) − vr(y, s))[φ(ur)(x, t) − φ(vr)(y, s)]∂xζl(x, t)}ζε(x − y, t − s) dx dt dy ds ≥ 0.

Now (7.9) follows by letting ε → 0+, and we claim that

lim
ε→0+
∫∫∫∫
Ql×Ql

|ur(x, t) − vr(y, s)|∂tζl(x, t)ζεn (x − y, t − s) dx dt dy ds = ∬
Ql

|ur(x, t) − vr(x, t)|∂tζl(x, t) dx dt. (7.16)

Analogously, it can be proven that, as εn → 0+,

∫∫∫∫
Q2
l

sgn[ur(x, t) − vr(y, s)][φ(ur)(x, t) − φ(vr)(y, s)]∂xζl(x, t)ζεn (x − y, t − s)dx dt dy ds

→∬
Ql

sgn(ur(x, t) − vr(y, s))[φ(ur)(x, t) − φ(vr)(x, t)]∂xζl(x, t) dx dt.

In order to prove (7.16), for every sequence {εn}, with εn → 0, we set

Fn(x, t) := ∬
Ql

|ur(x, t) − vr(y, s)|ζεn (x − y, t − s) dy ds for (x, t) ∈ Kl := supp ζl ,

and observe that Fn → |ur − vr| a.e. in (x, t) ∈ Kl and

|Fn(x, t)| ≤ |ur(x, t)| +∬
Ql

|vr(y, s)|ζεn (x − y, t − s) dy ds

= |ur(x, t)| + (ζεn ∗ |vr|)(x, t) → |ur(x, t)| + |vr(x, t)| in L1(Kl).

Thus, by a variant of the dominated convergence theorem (e.g., see [15, Theorem 4, Section 1.3]), we have
Fn → |ur − vr| in L1(Kl), and we obtain (7.16). This completes the proof of (7.9), thus the result follows.

Proof of Theorem 3.21. Without loss of generality, wemay assume that φ is nondecreasing, see Remark 3.15.
By Theorem 3.11 (i),

τ := sup{t ∈ [0, T) | uis( ⋅ , t)({xl}) > 0 for all l = 1, . . . , N, i = 1, 2} > 0.

Let us first prove that
u1r = u2r a.e. inℝ × (0, τ). (7.17)

To this end, let x1, . . . , xN be the points in (3.26). Set Il := (xl , xl+1), Ql := Il × (0, τ) (l = 1, . . . , N − 1),
I− := (−∞, x1), I+ := (xN ,∞), and Q± := I± × (0, τ). By arguing as in the last part of the proof of Propo-
sition 3.20 (ii) (in particular, see the proof of (7.9)–(7.10)), it follows that, for all l = 1, . . . , N − 1 and
ζl ∈ C1c (Ql), ζl ≥ 0,

∬
Ql

{|u1r − u2r|∂tζl + |φ(u1r) − φ(u2r)(x, t)|∂xζl} dx dt ≥ 0 (7.18)

and, for all ζ± ∈ C1c (Q±), ζ± ≥ 0,

∬
Q±

{|u1r − u2r|∂tζ± + |φ(u1r) − φ(u2r)|∂xζ±(x, t)} dx dt ≥ 0 (7.19)

(recall that φ, by assumption, is increasing). We must show that (7.18) and (7.19) imply (7.17). For this
purpose, let h ∈ C1c (0, τ1), h ≥ 0, and

ρl,p(x) = p(x − xl −
1
p )

χ[xl+1/p,xl+2/p) + χ[xl+2/p,xl+1−2/p)(x)

− p(x − xl+1 +
1
p )

χ[xl+1−2/p,xl+1−1/p)(x) (l = 1, . . . , N − 1),
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with p ∈ ℕ sufficiently large. By standard approximation arguments, wemay choose ζl = ζl,p := ρl,p(x)h(t) in
(7.18) to get

0 ≤ ∬
Ql

{|u1r − u2r|ρl,p(x)h󸀠(t) + |φ(u1r) − φ(u2r)|ρ󸀠l,p(x)h(t)} dx dt. (7.20)

By the dominated convergence theorem, as p →∞,

∬
Ql

{|u1r − u2r|ρl,p(x)h󸀠(t) dx dt →
τ

∫
0

dt h󸀠(t)
xl+1

∫
xl

|u1r − u2r| dx.

Since ρ󸀠l,p(x) = pχ(xl+1/p,xl+2/p)(x) − pχ(xl+1−2/p,xl+1−1/p)(x) and φ is bounded, it follows from (3.20) and the
dominated convergence theorem that

lim sup
p→∞
∬
Ql

|φ(u1r) − φ(u2r)|ρ󸀠l,p(x)h(t) dx dt ≤
τ

∫
0

h(t)( lim
p→∞

p

xl+ 2p

∫
xl+ 1p

|φ(u1r) − φ(u2r)| dx) dt = 0.

Hence, by (7.20),
τ

∫
0

dt h󸀠(t)
xl+1

∫
xl

|u1r(x, t) − u2r(x, t)| dx ≥ 0

and, by a proper choice of h,

‖u1r( ⋅ , t) − u2r( ⋅ , t)‖L1(Il) ≤ ‖u1r( ⋅ , t1) − u2r( ⋅ , t1)‖L1(Il) for every 0 < t1 ≤ t ≤ τ (7.21)

(recall that uir ∈ C((0, T];M(ℝ)), i = 1, 2, by Proposition 3.20 (ii)). Letting t1 → 0+, it follows from (3.28)
that ‖u1r( ⋅ , t) − u2r( ⋅ , t)‖L1(Il) = 0 for a.e. t ∈ (0, τ) and all l = 1, . . . , N − 1. Similarly, we can prove that
‖u1r( ⋅ , t) − u2r( ⋅ , t)‖L1(I−∪I+) = 0 for a.e. t ∈ (0, τ), so we have proven (7.17).

Next let us prove that
u1 = u2 inM(ℝ × (0, τ)). (7.22)

By (3.8) and (7.17), for every ζ ∈ C1([0, τ]; C1c (ℝ)), with ζ( ⋅ , τ) = 0 inℝ, we have
T

∫
0

⟨u1s( ⋅ , t) − u2s( ⋅ , t), ∂tζ( ⋅ , t)⟩ℝ dt = ∬
S

{(u1r − u2r)∂tζ + [φ(u1r) − φ(u1r)]∂xζ } dx dt = 0.

Arguing as in the proof of Lemma6.1, there exists a null set F0 ⊂ (0, τ) such that ⟨u1s( ⋅ , t) − u2s( ⋅ , t), ρ⟩ℝ = 0
for all t ∈ (0, τ) \ F0 and ρ ∈ C1c (ℝ). Hence, u1 = u2 in L∞(0, τ;M(ℝ)) and, by (7.17), equality (7.22) follows.

If τ = T, the proof is complete. Otherwise, there exist N1 < N different points xlk ∈ {x1, . . . , xN} such that
uis( ⋅ , τ)({xlk }) > 0 for each k = 1, . . . , N1 and i = 1, 2; moreover, for every point xl ∈ {x1, . . . , xN}, xl ̸= xlk ,
it follows from (6.20), with x0 = x1 = xl, that u1s( ⋅ , τ)({xl}) = u2s( ⋅ , τ)({xl}) = 0, since φ(u1r) = φ(u2r) in
ℝ × (0, τ) by (7.17). Then we set

τ1 := sup{t ∈ [τ, T) | uis( ⋅ , t)({xlk }) > 0 for all k = 1, . . . , N1, i = 1, 2}.

We can argue as in the proof of (7.17) to obtain that inequality (7.21) holds for every τ < t1 ≤ t ≤ τ1. Since
uir ∈ C((0, T];M(ℝ)), i = 1, 2 (see Proposition 3.20 (ii)), and u1r( ⋅ , τ) = u2r( ⋅ , τ), letting t1 → τ+, we get
u1r = u2r a.e. in ℝ × (τ, τ1) (whence, also, u1 = u2 in M(ℝ × (τ, τ1)) and the proof is completed in a finite
number of steps.

Let us finally prove Proposition 1.1.

Proof of Proposition 1.1. A calculation proves that the solution defined by (1.3) if p < 0, respectively, by
(1.4) if 0 < p < 1 is an entropy solution of problem (1.1)–(1.2). If p < 0, the solution also satisfies (3.20) for
0 < t < 1 and (3.28), so claim (i) follows from the uniqueness result in Theorem3.22. If 0 < p < 1, uniqueness
of entropy solutions such that us(t) = 0 for t > 0 and ur ∈ L∞(ℝ × (τ, T)) for τ ∈ (0, T) can be used (the proof
of this uniqueness result is very similar to that given in [19], thus we omit the details; see also Remark 3.24).
Hence, claim (ii) follows.
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Remark 7.1. It is instructive to describe the approximation procedure which gives the solutions mentioned
in Proposition 1.1. Consider the family of approximating problems

{
{
{

∂tun + ∂x[φ(un)] = 0 in S,

un =
n
2 χ(−

1
n ,

1
n )

inℝ × {0},
(7.23)

with φ given by (1.2). It is easily seen that the entropy solution of (Rn) is

un(x, t) :=

{{{{{{{{{{
{{{{{{{{{{
{

0 if x ≥ |p|t + 1
n
,

(
n|p|t
nx − 1)

1
1−p − 1 if |p|t + 1

n
> x ≥ ( 2

n + 2)
1−p
|p|t + 1

n
,

n
2 if ( 2

n + 2)
1−p
|p|t + 1

n
> x ≥ 2(sgn p)

n [(
n + 2
2 )

p
− 1]t − 1n ,

0 if 2(sgn p)
n [(

n + 2
2 )

p
− 1]t − 1n > x,

for 0 ≤ t ≤ tn := 1
φ( n2 )−

n
2 φ󸀠( n2 )

. At t = tn a shock x = ξ(t) stems from x = xn := 1
n

φ( n2 )+
n
2 φ

󸀠( n2 )
φ( n2 )−

n
2 φ󸀠( n2 )

, which solves the
problem

{{{{
{{{{
{

ξ 󸀠n(t) =
φ(u(1)n (ξn(t), t))
u(1)n (ξn(t), t)

= sgn p
( n|p|tnξ−1 )

p
1−p − 1

( n|p|tnξ−1 )
1

1−p − 1
if t > tn,

ξn(tn) = xn .

Hence, for t > tn, the entropy solution of (7.23) is

un(x, t) :=

{{{{{
{{{{{
{

0 if x ≥ |p|t + 1
n
,

(
n|p|t
nx − 1)

1
1−p − 1 if |p|t + 1

n
> x ≥ ξn(t),

0 if ξn(t) ≥ x.

Letting n →∞, we obtain the entropy solution defined in parts (i) (if p < 0) and (ii) (if 0 < p < 1) of Proposi-
tion 1.1.
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