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Abstract: We study nonnegative solutions of the Cauchy problem

o + ox[ew)] =0 inRx(0,T),
Uu=uyg=0 in R x {0},

where ug is a Radon measure and ¢: [0, co) — R is a globally Lipschitz continuous function. We construct
suitably defined entropy solutions in the space of Radon measures. Under some additional conditions on ¢,
we prove their uniqueness if the singular part of uy is a finite superposition of Dirac masses. Regarding the
behavior of ¢ at infinity, we give criteria to distinguish two cases: either all solutions are function-valued
for positive times (an instantaneous regularizing effect), or the singular parts of certain solutions persist
until some positive waiting time (in the linear case ¢(u) = u this happens for all times). In the latter case,
we describe the evolution of the singular parts.

Keywords: First order hyperbolic conservation laws, Radon measure-valued solutions, entropy inequalities,
uniqueness
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1 Introduction

In this paper we consider the Cauchy problem

{ O+ dx[@(w)] =0 inRx(0,T)=:S, @

u=ug in R x {0},

where T > 0, ugp is a nonnegative finite Radon measure on R, and ¢: [0, c0) — R, ¢(0) = 0, is a Lipschitz
continuous function (see assumption (H1)). Therefore, ¢ grows at most linearly.

Problem (P) with a superlinear ¢ of the type @(u) = uP, p > 1, was studied in [19], proving existence
and uniqueness of nonnegative entropy solutions (see also [8]). By definition, in that paper the solution for
positive times takes values in L1 (IR), although the initial data ug is a finite Radon measure. Interesting, albeit
sparse results concerning (P) with ¢ at most linear at infinity can be found in the pioneering paper [10], in
which the same definition of Radon measure-valued solutions used below (see equality (3.8)) was proposed.
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2 —— M. Bertsch et al., Measure-valued solutions DE GRUYTER

When ¢(u) = Cu (C € R), problem (P) is the Cauchy problem for the linear transport equation
][ oiu+Cou=0 inS§,

Uu=up in]Rx{O},

whose solution is trivially the translated of ug along the lines x = Ct + xo (xo € R). In particular, the singular
part us(-, t) of the solution is nonzero for ¢ > 0 if and only if the same holds for t = 0.

Itis natural to ask what happens if ¢ is sublinear. To address this case we must consider solutions of prob-
lem (P) which, for t > 0, possibly are finite Radon measures on R as the initial data ug. Therefore, throughout
the paper we consider solutions of problem (P) as maps from [0, T] to the cone of nonnegative finite Radon
measures on R, which satisfy (P) in the following sense: for a suitable class of test functions ¢, we have

T

”W@K+WWWMHUW+J@du&&ﬂwﬂ&m=—Wmaumm
S 0

(see Definition 3.3). Here the measure u(t) is defined for a.e. t € (0, T), u, € L(S) is the density of its abso-
lutely continuous part, (-, - )r denotes the duality map, and

0v{:=0¢( + Cpox(, Cyp:= lim

o)
u—oo U
Measure-valued entropy solutions are defined similarly (see Definition 3.3).

We use an approximation procedure to construct measure-valued entropy solutions of problem (P) (see
Theorem 3.7). In addition, we prove that the singular part us of an entropy solution of problem (P) does not
increase along the lines x = xo + Cyt (see Proposition 3.8). In particular, if Cyp =0, themap t — us(-, t) is
nonincreasing.

Concerning the case when ¢ is sublinear, the following example is particularly instructive:

{ O+ Ox[@(u)] =0 inS, L.1)
u= 60 il’l R x {0},
withS:=Rx (0, T), T > 1and

o) =sgnp[(1+u)? -1] (p<1,p+0). (1.2)

The function in (1.2) is increasing and concave, with Cy = 0, and belongs to a class for which the constructed
entropy solution of problem (1.1)—(1.2) is unique (see Theorem 3.22). Hence, the following holds.

Proposition 1.1. (i) Let p < 0. Let &(t) be defined by

-1y _
gD, ) -o.
(Ipltg=H)™ -1
Let
A={(,)eS|0<x<plt,0<t<1}u{x,t) eS| &) <x<Iplt, 1 <t< T}
and

us(t) := max{1 - t, 0}8o, Ur(x, t) := [(Ipltx‘l)ﬁ - 1xal6, t) ((x,t) €8). (1.3)
Then u = u, + ug is the unique constructed entropy solution of problem (1.1)—(1.2).
(ii) Let O < p < 1. Let &(t) be defined by
g UplEET) 7 - 1
(Iplt&1)™= -1
IfB:={(x,t) e S| &(t) <x<|plt, O < t < T}, then

in(0,T),  &0)=0.

1
u(x, t) = ur(x, t) := [(Ipltx )™ - 1]xp(x, t) ((x, 1) €S) (1.4)
is the unique constructed entropy solution of problem (1.1)-(1.2).
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DE GRUYTER M. Bertsch et al., Measure-valued solutions =— 3

Let us define the waiting time ty € [0, T] for solutions u of (P):
to :=inf{T € (0, T] | us(-,t) =0, uy(-,t) € L°(R) fora.e. t € (7, T)} (1.5)

(by abuse of language, we call to “waiting time” even if ty = T). Then, by Proposition 1.1,
(*) positive waiting times occur in problem (1.1)—(1.2) if and only if p < 0.
More precisely, if p < 0, the singular part us( -, t) persists until the waiting time ¢, = 1 at which it disappears,
whereas for 0 < p < 1, the singular part vanishes for all ¢ > 0, thus ty = 0 — an instantaneous regularizing
effect. Instantaneous regularization also occurs if p > 1 (see [19] and Remark 3.24), whereas, as already
remarked, in the linear case p = 1, we have tg = T if ugs # O.

Since @(u) = sgnp[(1 +u)? - 1] (p < 1, p # 0) is bounded if and only if p < 0, and C, = 0, statement ()
could be rephrased as follows.

Proposition 1.2. Positive waiting times occur in problem (1.1) if and only if the map u — @(u) - Cyu, with ¢
asin (1.2), is bounded in [0, c0).

The above result is generalized to problem (P), by Theorem 3.18, for functions ¢ which satisfy for u large
a condition implying either concavity or convexity (see assumption (H4) and Remark 3.13). The proof of
Theorem 3.18 makes use of estimates of the density u, of the solution of (P), which are strongly reminiscent
of the Aronson-Bénilan inequality for the porous medium equation (see Proposition 6.2). The main results
on the waiting time and the regularity of solutions of (P) are collected in Section 3.3. The existence and an
upper bound, in terms of ¢ and ug, of a waiting time was already pointed out in [10, Proposition 2.1] (see
also Theorem 3.8 (ii)).
Another interesting feature of the solution of (1.1)-(1.2), with p < 0, is that for ¢ € (0, 1), i.e., as long as

us(-, t) > 0, we have

lim u,(x, t) = oco.

x—0*

Namely, the regular part u,(-, t) diverges when approaching from the right the point xo, = 0, where ug(-, t)
is concentrated. As we shall see below (see (3.24)-(3.25)), this property can be generalized to entropy solu-
tions of a larger class of problems, characterized by the concavity/convexity property on ¢ mentioned before.
In this class a generalized form of this property will also be used as a uniqueness criterion, provided that
@(u) — Cyu is bounded in [0, co) and ugs is a finite superposition of Dirac masses (see Proposition 3.17
and Theorem 3.22). In [10] it was already observed that Kruzkov’s entropy inequalities do not guarantee
the uniqueness of solutions (see also Remark 3.23 below), and the formulation of an additional uniqueness
criterion was left as an open problem. This problem is addressed in a forthcoming paper, where more general
compatibility conditions are given, which ensure uniqueness also for non-convex or non-concave functions ¢
(see [3]).

Apart from the intrinsic mathematical interest of problem (P), it is worth pointing out its connection with
a class of relevant models. Ion etching is a common technique for the fabrication of semiconductor devices,
also relevant in other fields of metallurgy, in which the material to be etched is bombarded with an ion beam
(see[16, 24, 25]). Mathematical modelling of the process leads to the Hamilton—Jacobi equation in one space
dimension

(H])

o0U+p(0,U)=0 inRx(0,7),
U="U, in R x {0},

where U = U(x, t) denotes the thickness of the material and ¢ is bounded, non-convex and vanishing at
infinity. Formal differentiation with respect to x suggests to describe the problem in terms of the unknown
u := 0, U, which formally solves (P) with uo = U, In this way, discontinuous solutions of (HJ) correspond to
Radon measure-valued solutions of (P) having a Dirac mass 8y, concentrated at any point xo, where U(-, t)
is discontinuous (t € (0, T)). A rigorous justification of the above argument, relating discontinuous viscosity
solutions of (HJ) to Radon measure-valued entropy solutions of (P), is to our knowledge an open problem (in
this connection, see [7, 14]).

In the context of conservation laws, the term “measure-valued solution” usually refers to solutions in
the sense of Young measures, after DiPerna’s seminal paper [11]. We stress that this concept of “statistical
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4 = M. Bertsch et al., Measure-valued solutions DE GRUYTER

solutions” is completely different from that of Radon measure-valued solutions, introduced by Demengel and
Serre [10], and discussed in the present paper. On the other hand, we do use Young measures in this paper,
since they are an important ingredient in the construction of Radon measure valued solutions (see Section 3
and, in particular, Section 5).

A number of ideas used in the present paper go back to papers dealing with Radon measure-valued solu-
tions of quasilinear parabolic problems, also of forward-backward type (in particular, see [4-6, 21, 23, 27]).

The results presented in this paper naturally lead to some open problems. Among them we mention a gen-
eral statement about an instantaneous regularizing effect for fluxes with superlinear growth (singular parts
should disappear instantaneously for ¢t > 0), and an appropriate generalization of our results to the case of
solutions with changing signs, when additional nonuniqueness phenomena (such as N-waves, see [19]) may
occur; in this regard, the general case of an initial signed Radon measure ug in problem (P) will be considered
in a forthcoming paper. Another open problem is whether new phenomena occur if ¢ is uniformly Lipschitz
continuous on [0, co) but the limit ¢(s)/s as s — co does not exist.

The paper is organized as follows. In Section 2 we recall several known results used in the sequel and
introduce some notation. In Section 3 we present the main results of the paper. In Section 4 we introduce the
approximation procedure needed for the construction of solutions. Sections 5-7 are devoted to the proofs of
existence, qualitative properties and uniqueness of solutions.

2 Preliminaries

2.1 Function spaces and Radon measures

We denote by M(IR) the Banach space of finite Radon measures on R, with norm |ullamw) := |[uI(R). By
M*(R), we denote the cone of nonnegative finite Radon measures; if u1, yy € M(R), then we write yy < ys
if pp — u1 € M*(R). We denote the convex set of probability measures on R by P(R) ¢ M*(R). We have
ITllvr) = T(R) = 1 for T € P(R).

We denote by C.(R) the space of continuous real functions with compact support in R. The space of the
functions of bounded variation in R is denoted by BV(R) := {u € L1(R) | u' € M(R)}, where u' is the distribu-
tional derivative of u. It is endowed with the norm [Julpy(r) := lullp () + lu' [lve(ry- We say that u € BVioc(R) if
u € BV(Q) for every open bounded subset Q ¢ R.

The Lebesgue measure, either on R or S := R x (0, T), is denoted by | - |. Integration with respect to the
Lebesgue measure on R or on S will be denoted by the usual symbols dx, respectively dx dt. A Borel set E is
null if |E| = 0. The expression “almost everywhere”, or shortly “a.e.”, means “up to null sets”. For every mea-
surable function f defined on R and xo € R, we write ess lim,_,x, f(x) = | € Rif thereisanull set E* ¢ Rsuch
that f(x,) — [ for any sequence {x,} € R\ (E* U {xo}), Xn — Xo. We set f* := max{+f, 0} for every measurable
function f on RR.

We denote the duality map between M(R) and C.(R) by (i, p)r := I]Rp du. By abuse of notation,
we extend (u, p)r to any p-integrable function p. A sequence {u,} converges strongly to p in M(R) if
lun — pllvery — 0 as n — oco. A sequence {u,} of (possibly not finite) Radon measures on R converges
weakly* to a (possibly not finite) Radon measure y, i.e., un = u, if (un, p)r — (U, p)r for all p € C.(R).
Similar definitions are used for (possibly not finite) Radon measures on Q x (0, T), with Q < RR.

Every u € M(R) has a unique decomposition p = pac + ps, with g € M(R) absolutely continuous and
Us € M(R) singular with respect to the Lebesgue measure. We denote by i, € L(R) the density of uac. Every
function f € L'(RR) can be identified to a finite absolutely continuous Radon measure on R; we shall denote
this measure by the same symbol f used for the function.

The restriction uL E of u € M(R) to a Borel set E € R is defined by (uL E)(A) := u(E n A) for any Borel
set A ¢ R. Similar notations are used for the spaces of finite Radon measures M(Q), with Q ¢ R, M(S) and
M(S x R), where S := R x (0, T).
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We shall use measures u € M(S) which, roughly speaking, admit a parametrization with respect to the
time variable.

Definition 2.1. We denote by L*°(0, T; M*(R)) the set of finite nonnegative Radon measures u € M*(S) such
that for a.e. t € (0, T), there is a measure u(-, t) € M*(R) with the following properties:
(@) if ¢ € C([0, T]; Cc(R)), themap ¢t +— (u(-, t), {(-, t))r belongs to L' (0, T) and

T
<u1(>5= J(u("t)’ ((:t)>]Rdt’ (2~1)
0

(i) themap t — [lu(-, t)lmm) belongs to L*(0, T).
Accordingly, we set

lullzeo 0, T;(w)) 1= eSS( supllu(-, Hllamw foru e L0, T; M*(R)).
te(0,T)

Remark 2.2. The definition implies that for all p € C.(R), the map ¢ — (u(-, t), p)r is measurable, thus the
map u: (0, T) — M(RR) is weakly = measurable (e.g., see [22, Section 6.7]). For simplicity, we prefer the nota-
tion L (0, T; M(R)) to the more correct one LS, (0, T; M(R)), which is used in [22].

If u € L®(0, T; M*(R)), then also uac, us € L*(0, T; M*(R)) and, by (2.1),

T
(Uaes O)s = ” w{dxdt, (us,()s = j(us(-,r), (- 1)y dt 2.2)
S 0

for { € C([0, T]; C-(R)). One can easily check that for a.e. t € (0, T),
uac("t): [u('yt)]ac’ us('yt) = [u("t)]sa ur("t) = [u(')t)]r) (2'3)

where [u(-, t)], denotes the density of the measure [u(-, t)]ac. For p € C.(R), we have

(-, Olac PIR = j[u( L B)]p dx = ju,( ., pdx forae.te(0,T).
R R

In view of (2.2)—(2.3), we shall always identify the quantities which appear on either side of equalities (2.3).
For any p € M(R) and a € R, the translated measure T,(u) is defined by

(Ta(u), PYw 2= (M, P-a)R

for any p € C.(R), where p_4(x) := p(x + a) (x € R). Clearly, T,(u) € M(R) and

[Ta]ac = Ta(Mac), [Ta()]s = Talpts).

2.2 Young measures

We recall the following result [2].

Theorem 2.3. Let Q ¢ RN be Lebesgue measurable, let K < R be closed, and let u,: Q — R be a sequence of
Lebesgue measurable functions such that

nlLIgo|{x €Qlun(x) ¢ U}|=0

for any open neighborhood U of K in R. Then there exist a subsequence {u;} = {uy} < {un} and a family {t} of
nonnegative measures on R, depending measurably on x € Q, such that

() el := [ dTx < 1forae.x e Q,

(ii) suppty S K fora.e. x € Q,
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6 —— M. Bertsch et al., Measure-valued solutions DE GRUYTER

(iii) for every continuous function f: R — R satisfying lims| ., f(§) = 0, we have
flu) = f* inL®(Q),

where

£100 1= (T on = [ O dra(®) foraexco. (2.4)
R
Suppose further that {u;} satisfies the boundedness condition

lim sup|{x € QN Bg | [uj(x)| > k}| =0 (2.5)
k—00 j

for every R > 0, where By := {x € RN | |x| < R}. Then
(iv) T4 is a probability measure for a.e. x € Q,
(v) given any measurable subset A < Q, we have

fuj) = f* inL'(A) (2.6)
for all continuous functions f: R — R such that {f(u;)} is sequentially weakly compact in L1 (A).

Below we shall always refer to the family {7} of probability measures given by the previous theorem as the
disintegration of the Young measure 7 (or briefly Young measure) associated to the sequence {u;}. We denote
the set of Young measures on Q x R by Y(Q; R); in particular, Y(S; R) denotes the set of Young measures on
Sx R, with S := Rx (0, T).

Remark 2.4. (i) Theargument used in the proof of Theorem 2.3 shows that, under hypothesis (2.5), the con-
vergence in (2.6) holds true for Carathéodory functions f: A x R — Rif {f(-, u;)} is sequentially weakly
relatively compact in L1 (A).

(ii) Condition (2.5) is very weak. It is equivalent to the statement that for any R > 0, there is a continuous
nondecreasing function gg: [0, co) — R such that

Jim gr(§) = o, sup | entiuyoon dx < co.
J QNBg

Therefore, Theorem 2.3 applies to bounded sequences {u;} in LY(Q) (in which case gr(¢) = &).
If @ ¢ RY is bounded and {u;} is a bounded but not uniformly integrable sequence in L(Q), it is possible to

extract a uniformly integrable subsequence “by removing sets of small measure”. This is the content of the
following “Biting lemma” (e.g., see [17, 28] and references therein).

Theorem 2.5. Let {u,} be a bounded sequence in L*(Q), where Q c RY is a bounded open set. Moreover, let
{u;} < {un} and {14} be the subsequence and the Young measure given in Theorem 2.3, respectively. Then there
exist a subsequence {uy} = {u;,} < {u;} and a decreasing sequence of measurable sets Ey < Q of Lebesgue mea-
sure |[Ex| — O such that the sequence {uixq\E, } is uniformly integrable and

uors, — 2= [ £dr() in1'(@),
R

where Z € L1(Q) is called the barycenter of the disintegration {Ty}.

3 Main results

Throughout the paper we assume that uy € M*(RR). Concerning ¢, we always suppose that
(H1) ¢ € C([0, )), p(0) = 0, ¢’ € L*®(0, co), and lim,_, @ =: C, exists.
Hence, there exists M > 0 such that

l'(w)| <M, |eu)|<Mu forae.u>O0. (3.1)
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3.1 Definition of solution

In the following definitions, we denote by

0y := 0¢0 + Cpox( (3.2)
the derivative of any ¢ € C(S) along the vector T = (Cyp, 1).

Definition 3.1. By a solution of problem (P) in the sense of Young measures, we mean a pair (u, T) such that
(i) ueL*®, T; M*(R)), T € Y(S; R),
(i) supp T, S [0, c0) fora.e. (x,t) € S, and

up(x, t) = j £ dt (&), (3.3)
[0,00)

where 7(y,s) € P(R) is the disintegration of 7,
(iii) for all { € C1([0, T]; CL(R)), with {(-, T) = 0 in R, we have

T
[[twors + o7 oxgTdxae s [ (ust-. 0,08, 0y dt = ~(uo. ¢, O, (3.4)
S 0
where 0, is defined by (3.2) and
P*(x, t) = J Q&) drx,pn(¢) fora.e. (x,t)€S. (3.5)
[0,00)

By an entropy solution of problem (P) in the sense of Young measures, we mean a solution such that

T T
” [E* 3¢ + F*0,{] dx dt + Ci J(us( 0,0+, ) dt + C J(us( 0,0l ) dt
S 0 0

> j Euor){(x, 0) dx — Cr{utos, {(-, O))r (3.6)
R

for all { as above, { > 0, and for every pair (E, F), E, F : [0, c0) — R, such that
(C1) Eisconvex, E', F' € L*(0, ), F' = E'¢' in (0, co), and lim,_,, @ =: Cg, limy_,o @ =: Cr exist.

In (3.6), fora.e. (x, t) € S, we set

E*(x, t) = j E@©) dten@), F*(x,0) = j F(&) dt(x.0)(£).

[0,00) [0,00)

Entropy subsolutions (respectively supersolutions) of problem (P) in the sense of Young measures are defined
by requiring that inequality (3.6) be satisfied for all { and (E, F) as above, with E nondecreasing (respectively
nonincreasing).

Observe that choosing E(u) = +u in the entropy inequality (3.6) plainly gives the weak formulation (3.4).

Remark 3.2. (i) By (3.1), (3.3)and (3.5),

lp*(x, )| < M J Edt (&) = Mu,(x,t) fora.e. (x,t) €S. 3.7)
[0,00)

Since u, € L*(0, T; L' (R)), by (3.7), we have that ¢* € L*®(0, T; L} (R)).
(ii) By (C1), the functions E, F have at most linear growth. Arguing as in (i), it follows that E* and F* belong
to L°(0, T; LL (R)) and L*°(0, T; L'(R)), respectively, if E(0) = F(0) = 0.

loc
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8 —— M.Bertsch etal., Measure-valued solutions DE GRUYTER

Definition 3.3. AmeasureucL®(0, T; M*(R)) s called a solution of problem (P) if for all { € C*([0, T]; CL(R)),
{(-, T) = 0in R, we have
T

” (000 + 9(ur)dx{] dxdt + j(us( 0,00, )y dt = (o, (-, O, (3.8)
S 0

where 0, ( is defined by (3.2). A solution of problem (P) is called an entropy solution if for all { > 0 as above
and for all (E, F) as in (C1), it satisfies the entropy inequality

T T
” [Eu)d:{ + F(uy)dx(] dx dt + Cs J(us( 0, 0(-, D) g dt + Cr J(us( 0,000, D) g dt
S 0 0
> - [ Eaton)x, 0) dx = Cruos, &+, O (3.9)

R
Entropy subsolutions (respectively supersolutions) of problem (P) are defined by requiring (3.9) to be satisfied
for all { and (E, F) as before, with E nondecreasing (respectively nonincreasing).

A solution of problem (P) is also a solution in the sense of Young measures. Moreover, it follows from (3.1)
that @(u,) € L*(0, T; L*(RR)). Similar remarks hold for entropy solutions, subsolutions and supersolutions.

Remark 3.4. (i) If C, = 0, equality (3.8) reads

” [0 + (u)dxg] dx dt = —(uo, (-, 0)) g,
S
whence oiu = —9x[@(u,)] in D'(S).
(ii) For the Kruzkov entropies E(u) = |u — k|, F(u) = sgn(u — k)[¢@(u) — ¢(k)] (k € [0, 0)), we have Cg = 1,
Cr = Cy. Then inequality (3.9), for all k € [0, 00), reads

T
”ﬂur ~k1oed + sgn(uy - K puy) — 9]0y} dx dt + j<us< 0,000, )y dt
S 0

> —Jlum—kl((x, 0) dx — (uos, ¢(+, 0))r. (3.10)
R

The following proposition states that for any solution of (P) in the sense of Young measures, the map t — u(t),
possibly redefined in a null set, is continuous up to ¢t = 0 with respect to the weakx topology of M*(R). In
particular, it explains in which sense the initial condition is satisfied.

Proposition 3.5. Let (H1) be satisfied, let (u, T) be a solution of problem (P) in the sense of Young measures,
and let p € C.(R). Then

esslim(u(-, ), p)r = (o, P)w, (3.11)
esslim(u(-, ), p)wr = (u(-, to), p)r  fora.e.to € (0, 7). (3.12)
—lo
The map t — u(t) has a representative, defined for all t € [0, T, such that

}Lrg<u(-,t),p>m =(u(-, to),p)r forallto € [0, T]. (3.13)

3.2 Existence and monotonicity
The existence of solutions is proven by an approximation procedure. If uy € M*(R), then there exist ug, €
L1(R) n L (R) such that

Uop 20 inRR, luonliwry < lluollvw)s (3.14)

Uon = Uo,  Uon — Uor AL inR,  fuon — Uorlll (mysuppug) — O (3.15)
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DE GRUYTER M. Bertsch et al., Measure-valued solutions =— 9

(e.g., see [23, Lemma 4.1]). Consider the approximating problem

{ Oy + ax[(P(un)] =0 inS, (Pn)

Up = Ugn in R x {0} (n € IN).
Let us recall the definition of entropy solution of problem (Pn) (e.g., see [9]).

Definition 3.6. A function u, € L®(0, T; L1(IR)) n L™°(S) is called an entropy solution of problem (Pn) if for
every { € C([0, T]; CL(R)), with {(-, T) =0 in R and { > 0, and for any couple (E, F), with E convex and
F' =FE'¢', we have

” [E(un)0¢¢ + F(un)ox¢] dx dt > - j E(uon){(x, 0) dx. (3.16)
S R

Entropy solutions are weak solutions if { € C1([0, T]; C}(R)), {(-, T) = 0in Rand

”[unat( +@(un)ox¢] dxdt + J uon{(x, 0) dx = 0. (3.17)
S R

By studying the limiting points of the sequence {u,}, we shall prove the following result.

Theorem 3.7. (i) Let (H1) be satisfied. Then problem (P) has a solution u, which is obtained as a limiting
point of the sequence {uy,} of entropy solutions to problems (Pn). In addition, u is an entropy solution of
problem (P) in the sense of Young measures.

(ii) Let (H1) and the following assumption be satisfied:

(C2) pe C'([0, 00)), and for every i1 > O, there exist a, b > 0, a + b > 0, such that @' is strictly monotone
in(iu—-a,u+bl.
Then u is an entropy solution of problem (P).

Hypothesis (C2) fails if for example ¢ is affine in an interval (a, b) ¢ (0, co). In that case, Proposition 5.9 (iii),
which characterizes the limiting Young measure, gives some additional information.

The following proposition shows that the singular part of an entropy subsolution of (P) does not increase
along the lines x = Cyt + Xo.

Proposition 3.8. Let (H1) be satisfied.
(i) Let u be an entropy subsolution of problem (P) in the sense of Young measures. Then

us(-, t2) STC¢(t2,tl)(us(-,t1)) in M+(IR),fOTa.€.OS ti1 <t) <T. (3.18)
In particular,
us(-,t) < Tc,t (uos) in M*(R), fora.e. te(0,T), (3.19)

whence |us(-, Hlnvmw) < luoslmm) for a.e. t € (0, T).
(ii) Let u be a solution of problem (P). Then there is conservation of mass, i.e.,

lu(-, Olnvew = luolnvwy fora.e. t € (0, T).

The linear case ¢(u) = u shows that equality may hold in (3.18). Moreover, if C,, = 0, it follows from (3.18)
that the map t — us(-, t) is nonincreasing.

3.3 Waiting time and regularity

It is convenient to distinguish two cases: C, = 0 (sublinear growth at infinity) and C, # O (linear growth at
infinity), with C,, defined by (H1).
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10 —— M. Bertsch et al., Measure-valued solutions DE GRUYTER

3.3.1 Sublinear growth

Beside (H1), we will use the following assumption:
(H2) ¢ € C*([0, 00)), Cyp = 0, there exist H > -1, K € R such that ¢" (u) [Hp(u) + K] < —[¢'(w)]? < 0 for all
u € [0, c0).

By (H2) the map u — ¢ (u) [Hp(u) + K] is strictly negative and continuous in [0, co), hence two cases are
possible: either (a) Hp + K > 0, ¢"' < 0, or (b) Hp + K < 0, ¢" > 0 in [0, 00). In case (a), we have ¢’ > 0 in
[0, 00), since ¢ < 0 and limy ., ¢'(u) = C, = 0. Similarly, in case (b), we have plainly ¢’ < 0 in [0, c0). In
particular, in both cases (H2) implies (C2). Moreover, if also (H1) holds, thus ¢(0) = 0, we have Hp + K > 0
in [0, co0) if and only if K > 0.

Remark 3.9. The following examples show that all values of H > —1 may occur in (H2):

o) =sgnpl(1+uf -1](p<1,p#0) = H= € (-1,0)u (0, c0), K = |H],

1-p
pw=1-e"(@a>0 = H=-1,K=1,

o) =log(l+u)orp(u) =1 = H=0,K=1.

N log(e + u)

The following property of constructed entropy solutions plays an important role as a uniqueness criterion
(see its generalized form given by Proposition 3.17 and Theorem 3.22 below).

Proposition 3.10. Let (H1)-(H2) be satisfied, and let ¢ be bounded in [0, co). Then every entropy solution u
of problem (P) given by Theorem 3.7 satisfies, for a.e. t € (0, T) and all xy € supp us(-, t),
esslimu,(x,t) =co ifp' >0in[0, c0), (3.20)
X—=Xx3
esslimu,(x, t) =co if 9’ <0in|0, c0).
X‘)X0
Theorem 3.11. (i) Let(H1) besatisfied, let ugs({xo}) > O for some xy € R and let u be a solution of problem (P).
If ¢ is bounded in (0, co) (in particular, C, = 0), then the waiting time t, defined by (1.5) satisfies

to > min{T, M} >0 (3.21)
l@llLe0,00)
(ii) Let (H1)-(H2) be satisfied, and let u be the entropy solution of problem (P) given by Theorem 3.7.
(@) If g is bounded in (0, co) and, moreover, H > -1, |K| < limy_,, |@(u)| =: y, then
H+1
to < min{T, m} (3.22)
y - K]

(b) If ¢ is unbounded in (0, co), then to = 0.

Remark 3.12. Concerning estimates (3.21) and (3.22), it is worth considering the case in which ug = 69 and
o(u) =1-(1+u)?, p <0.By explicit calculations, in Proposition 1.1, we show that in this case the waiting
time defined in (1.5) is to = 1. Hence, in this case, estimates (3.21)—(3.22) are sharp, since

5d0h) g H* Dlidollewy _ /(1 = p) + DliSollvewy _

O 1.
l@llze0,00) y - IK]| 1+p/(1-p)

Remark 3.13. In part (ii) of Theorem 3.11, it is enough to require condition (H2) for large values of u. More
precisely (see Remark 6.10), Theorem 3.11 (ii) remains valid if instead of (H2), for some k > 0, the following
holds:
(H3) the function @k : [0, 00) — R, @x(u) := @(u + k) - p(k), satisfies (H2).

In this connection, observe that the conditions H > -1 and |K| < lim,_,«|¢(u)| exclude the function
¢@(u) = 1 — e”*. The same conditions also exclude the function ¢(u) = 1 - log(%u)’ where K = 1 = y. However,
in this case, we can use hypothesis (H3) for k > 0, which is satisfied with H = 0 and K = log‘z(e +k)<yx=

log’l(e + k).
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Let us finally mention the following regularization result.

Proposition 3.14. Let (H1)-(H2) be satisfied, and let ¢ be bounded in [0, co) (in particular, C, = 0). Then, for
a.e.t € (0, T), supp us(t) is a null set.

Remark 3.15. It suffices to prove Proposition 3.10, Theorem 3.11 and Proposition 3.14 by assuming ¢'' < 0
in (H2) (hence, K > 0, by (H2) and the assumption ¢(0) = 0). Otherwise, it can be easily seen that if
u € L*°(0, T; M*(R)) is a solution of problem (P), the map i defined by setting

T
(it O)s = j(u(-,t), =0 ) g dt
(0]

for every { € C([0, T]; C.(R)) is a solution of the problem

{ Ocll + Ox[@(@)] =0 in S, (3.23)
i = il inR x {O}.

Here (iig, p)r := {(Uo, p(—-))r for all p € C.(R), and the function ¢ := —¢ satisfies (H2) with K := -K. The
same holds for entropy solutions.

3.3.2 Linear growth

Let ¢ satisfy the following assumption:
(H4) ¢ € C*([0, 00)) and there exist H > -1, K € R such that

" W{H[pu) - Cou] + K} < ~[¢'(w) - Cy]* <0 forallu € [0, c0)
(observe that (H4) reduces to (H2) if C,, = 0). If (H4) holds, the function ¢ := ¢(u) - C,u satisfies (H2) since
Cq) =0.

Remark 3.16. It is easily seen that if u is a solution (respectively an entropy solution) of problem (P), then
v € L*°(0, T; M*(Q)), defined by

v(-,t) =T_p(u(-,t) in M(R)
for any h € R, is a solution (respectively an entropy solution) of (P) with uq replaced by vo := T_5(ug). Simi-
larly, @(-, t) := T_c,¢(u(-, t)) is a solution (respectively an entropy solution) of problem (3.23), with iip = uo
and @(u) = (u) - Cpu.

By Remark 3.16, the above results for the case C, = 0 can be generalized as follows.

Proposition 3.17. Let (H1) and (H4) be satisfied, and let u — @(u) — Cyu be bounded in (0, co). Then every
entropy solution u of problem (P) given by Theorem 3.7 satisfies, for a.e. t € (0, T) and all xy € supp us(-, t),

esslimu,(x + Cyt, t) =00 if @' > Cyin [0, 00), (3.24)
X—X4

esslimu,(x + Cyt, t) = 00 if @' < Cyin [0, c0). (3.25)
xaxa

Theorem 3.18. (i) Let (H1) be satisfied, let ugs({xo}) > O for some xo € R, and let u be a solution of prob-
lem (P). Ifu — @(u) — Cyu is bounded in (0, co), then
to = min{T, M} > 0.
lp = CpullL=(0,00)
(ii) Let (H1) and (H4) be satisfied, and let u be the entropy solution of problem (P) given by Theorem 3.7.
(@) Letu — @(u)— Cyu be bounded in (0, co). If H > -1 and |K| < limy_,cl@(u) — Cpu| =: y, then

(H+1) "uO”M(]R)}
v - K|

(b) Letu — @(u) - Cyu be unbounded in (0, o). Then ty = 0.

to < min{T,
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12 —— M. Bertsch et al., Measure-valued solutions DE GRUYTER

Again, Theorem 3.18 (ii) remains valid if, for some k > 0, the function ¢ defined in Remark 3.13 satis-
fies (H4).

Proposition 3.19. Let (H1) and (H4) be satisfied, and let u — ¢ (u) — Cyu be bounded in (0, co). Then for a.e.
t € (0, T), supp us(t) is a null set.

3.4 Uniqueness

In connection with equality (3.11), observe that if ugs # O and the waiting time tq is equal to 0, then
the map t — u(-, t) is not continuous at t = 0 in the strong topology of M(R) (otherwise we would have
im0+ flus(-, O)llavcw) = 0 = lluosllv(r), @ contradiction). Instead, continuity along the lines x = xo + Cyt
may occur if the waiting time ¢ is positive.

Proposition 3.20. Let (H1) be satisfied. Let u — @(u) — C,u be bounded in (0, co), and let u satisfy

N
Ugs = Z €16y, withcy e [0,00),1=1,...,N forsomeN € N. (3.26)
=1

(i) If condition (C2) holds, then every entropy solution u of problem (P) given by Theorem 3.7 (ii) satisfies

efig{nllic‘pt(u( -, 0) = uollvw) = 0. (3.27)

(ii) All entropy solutions u of problem (P) satisfy T_c,,(u(-, t)) € C((0, T]; M(R)).

Let us mention that the above statement (ii) holds for any up € M*(R) if ¢ satisfies (H1) and (H4) (see Propo-
sition 6.2).
The following uniqueness result will be proven in Section 7.

Theorem 3.21. Let (H1) be satisfied and let u — ¢(u) — Cyu be bounded and monotonic in (0, co). Let ug sat-
isfy (3.26). Then there exists at most one entropy solution u of problem (P) which satisfies either (3.24) or (3.25),
and the condition

e?ig}nﬂur( - 8 —uorlimwy = 0. (3.28)

By Propositions 3.17, 3.20 and Theorem 3.21, we have the following existence and uniqueness result
(observe that (H4) implies (C2)).

Theorem 3.22. Let (H1) and (H4) be satisfied, and let u — ¢(u) — Cou be bounded in (0, co). Let uq satisfy
(3.26). Then there exists a unique entropy solution of problem (P) which satisfies (3.24)—(3.25).

Remark 3.23. Conditions (3.24)—(3.25) in Theorem 3.22 cannot be omitted. In fact, there exist entropy
solutions of problem (P) which do not satisfy either (3.24) or (3.25), depending on ¢. Therefore, by Proposi-
tion 3.17, they are different from those given by Theorem 3.7, thus uniqueness fails.

For example, let ugs #+ 0 and ug, € LY(R) N L®(R). Let u € L*(0, T; M*(RR)) be defined by

u(-, ) := up(-, t) + Ie,t(uos) fora.e. t € (0, T),

where u, € C([0, T]; LY(IR)) n L*(S) is the unique entropy solution of problem (P) with u replaced by uo,.
Since u(-,0) = uy(-, 0) + Ugs = Ugy + Ugs = Ug, One easily checks that (3.8)—(3.9) are satisfied, thus u is an
entropy solution of (P). On the other hand, u, € L*(S), so u,(-, t) € L°(R) for a.e. t € (0, T), and (3.24)-
(3.25) fails.

Remark 3.24. If u — @(u) - Cpu is unbounded and satisfies assumptions (H1) and (H4), by [19, Theo-
rem 1.1] and Theorem 3.18, for every ug € M*(R) there exists a unique entropy solution of problem (P) with
waiting time ¢, equal to O. In fact, every entropy solution u given by Theorem 3.18 is a solution according
to [19]. This follows if we show that

u=u, € L°Rx(tr,T)) foreveryt >0 (3.29)
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DE GRUYTER M. Bertsch et al., Measure-valued solutions =— 13

and esslim;,o u(-, t) = up narrowly in M(R), i.e. esslim;o{u(-, t), p) = (uop, p) for all bounded p € C(R).
The latter follows from (3.11) and Proposition 3.8 (ii) (see [17, Proposition 2, p. 38]).

To prove (3.29) we fix 7 > 0. By (1.5) we may assume that u,(-,7) € L°(R) and u(-,t) =u,(-,t)
for all t > 7. By standard approximation arguments, we may substitute in the entropy inequality (3.9)
E(uw) = [s - kels, with kr = [[uy(-, T)llzo(w), and {(x, t) = x(r,q(t). Hence, I]R[u,( ) -kl dx <Oforae.t>71
and (3.29) follows.

4 Approximating problems

In this section we consider problem (Pn). Let uo, € L1(R) N L®(R) satisfy (3.14) and let {uf,} ¢ CX(R),
ug,, > 0 be any sequence such that

lug ey < luonliwy < luollvwy,  Nud,lzeom) < luonllizom), (4.1)

ub, - uon inL'(R),  u5, = uon inL®(R). (4.2)

Let n € CX(R) be a standard mollifier, let n.(u) := %n(%) for € > 0, and set
Petw) i= (e * D)W - (1 + PNO) = [ nelu - VPOIdY - [ n(-v)B) v, wer
R R

(here p(u) = @(u) for u > 0 and @(u) = 0 for u < 0). The regularized problem associated with (Pn) is

{atu,ﬁ + Ox[pe(uf)] = ed3uy inS, (4.3)

us = ug, in R x {0}
(where e > 0, n € IN), has a unique strong solution ué € C([0, T]; H>(R)) N L*®(S), o¢u, € L*(S) (e.g., see [20]).

Some properties of the family {u%} are collected in the following lemmata. Up to minor changes, the proof is
standard (e.g., see [9]), thus is omitted.

Lemma 4.1. Let ué be the solution of problem (4.3). Then, for every n € N and € > 0,

ut >0 inS, lugllzeo(sy < luonllzeom), (4.4)
J us(x, t)dx = J us, (x)dx (te(0,T),

R R

sup lus(-, Hlrw) < luonlziw) < luollvw), (4.5)
t€(0,T)

S(upT)IIu,i( c+h, t) —up (-, Ol w) < lugy(-+h) —ug,llywy forany h e R (4.6)
te(0,

Lemma 4.2. Let ¢ satisfy (3.1). Then there exists C > 0, which only depends on |uolla), such that for all
nelN,ee(0,1)andp € (0, 1),

£\p-2 £\2
€ ”(1 + U P2 (0xub) dxdt < d-p) (4.7)
S
Proof. Let U e C?([0, 00)), U’ > 0in (0, 00), and set
u
Oue(u) = j U'(s)pl(s)ds + 0y (O € R). “.8)
0
Multiplying the first equation in (4.3) by U’ (u%) gives
0t[UWE)] + 0x[Op.e(U5)] = €02[UE)] - eU" (uE)(0xut)*  in S. (4.9)
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14 — M. Bertsch et al., Measure-valued solutions DE GRUYTER

Hence, for all { € C'([0, T]; C3(R)),

€ ” U" (u)(0xus)?¢ dx dt + I Uué(x, T){(x, T) dx
s R

- j UG, )¢(x, 0) dx + ”{U(u‘,ﬁ)at( + Ou(UE)dx( + eUWE)2() dx dt. (4.10)
R S

By (3.1) and the definition of the function ¢, for all u > 0,
u
[Oy,e(u) < I U'(s)lpi(s)l ds + [0y| < M[U(u) - U(0)] + |8yl (4.11)
0

Choose Oy = 0, U(u) = (1 + u)? — 1, with p € (0, 1), and

¢ =pi = Xgxsig + PG = KX ikex<ke1y + PO+ X —r1)<x<-ky (kK € N),
withanyp € C2((-1, 1)) such thatp(0) = 1,0 < p < 1, and the derivatives p’, p"’' vanishat 0. Then 0 < U(u) < u
for u > 0 and, by (4.5), (4.10) and (4.11),

ep(1-p) ”(1 + US)P 2 (05UE) 2 py dx dt < I ug, (x) dx + ”{M us |ppl +eud Ipyl |} dx dt
S R S

<{1+ W+ DTlplc2-1,1 Huollvm =: C
forall € € (0, 1) and k € N. Passing to the limit as k — oo, we obtain (4.7). O
Lemma 4.3. Let ¢ satisfy (3.1) and let U € C?([0, co)) be such that
[U" () < K1 +u)P~? forallu € [0, o), forsome K > 0andp € (0, 1). (4.12)
Then there exists Cp > O such that for alln € N and € > 0,
s”|U”(uf,)|(axuf,)2 dx dt < Cp. (4.13)
S
If, moreover, U' € L*(0, 0o), then the family {Ufl’p}, where
Upp(t) = J Uud)(x, hp(x)dx (t€(0,T)) (4.14)
R
and p € C2(R), is bounded in BV(0, T).
Proof. Inequality (4.13) follows immediately from (4.7) and (4.12). To prove that {U5,p} is bounded in
BV(0, T), observe that, by (4.9),
(U)'(6) = J[@U,e(ui)P' +eUup)p" - eU" (uf)(0xuf)p](x, t) dx. (4.15)
R

Since U’ € L®(0, 00), there exists N > 0 such that |U(u)| < N (1 + u) for u > 0. Hence, |U(u%)| < N(1 + ut)
and, by (4.8), (3.1) and the definition of ¢, we have

100, W5)] < QLU Lo (0,000 [UE| + 10u] =2 Mus, + |6y].

Then it follows from (4.15) that

(U010 < lIpllcmy J {(M + eN)up(x, t) + €N + |0y} dx + gllplleo(w) J[IU"(ui)l (0xu8)?(x, t) dx,
suppp R
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and, by (4.5) and (4.13), there exists a constant Cp,, > 0 such that

T
[ 1050110 de < Bl G + D Thoca + - (4.16)
0

On the other hand, by (4.5) and since |U(u%)| < N(1 + u%), we have

T
JIUﬁ,pl(t) dt < NTlpllzemw) (Iuollvw) + Isupp pl), (4.17)
0

whence the result follows. O
From the above lemmata, we get the following convergence results.

Lemma 4.4. (i) If ¢ € C([0, 0)), there exist a subsequence {uim {ut} and u, € L°(S) n L*°(0, T; L1(R))
such that, as ey, — 0,

usm Aoy, in L%(S), us" — up and @, (uy") — @(uy) ae.in, (4.18)
utm > u, inLY((-L,L)x (0, T)), forallL > 0. (4.19)

Moreover, un > 0 a.e.in S, ||unllLe(s) < luonlreowy and

sup |lun(-, Ol < luonlimw) < luolvw)- (4.20)
te(0,T)

(ii) Let @ satisfy (3.1), let p € CA(R), and let U € C*([0, 00)), with U’ € L*®(0, c0), satisfy (4.12). Let Uy", be
defined by (4.14) and set

U p(t) := J Ulun)(x, Dp() dx (¢ € (0, T)). 4.21)
R

Then
Uyt — Unp inL'(0,T) and a.e.in (0, T). (4.22)

Proof. By (4.4), ui™ = up in L®(S), where u, € L®(S), lunllze(s) < lluonllzo@w) and u, > 0 a.e. in S. The a.e.-
convergence of uj" and part (ii) follow from (4.19), and since @ converges uniformly to the continuous
function @ on compact subsets of R, we also obtain the a.e.-convergence of ¢, (uy").

It remains to prove (4.19) and (4.20). We claim that for a.e. t € (0, T),

usm (-, ) 2 up(-, ) inL®(R)as &, — O. (4.23)

Set Ifg",,(t) = I]R usm(x, t)p(x)dx fort e (0, T))andletp € C%(]R). By Lemma 4.3, with U(u) = u, the sequence
{Ifl’fp} is bounded in BV(0, T) and has a subsequence (not relabeled) {I f{,”p} such that

I — Inp inL'(0, T)aséen — O (4.24)

for some I, , € BV(0, T). Since uy" = uy in L®(S),

lim j]f,:"p(t) dt = g un(x, () dx dt = j(n! Un(x, )P(X) dx) dt,

whence I, , = LR un(x, t)p(x) dx fora.e. t € (0, T)), and the convergence in (4.24) is satisfied along the whole
sequence {If{,"p}. Hence, forallp € C%(IR), there exists a null set N ¢ (0, T) such that

lim j U (x, O)p(x) dx = J un(x, p(x) dx  forall ¢ € (0, T) \ N.
Em—
R R
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Since C2(R) is dense in L (R) and L' (R) is separable, the choice of the set N can be made independent of p.
Hence, we have proven (4.23).

By (4.2), (4.5), (4.6), and the Fréchet-Kolmogorov theorem, {u5" (-, t)} is relatively compactin L*((-L, L))
forall t € (0, T) and L > 0. Hence, by (4.23),

uim (-, ) > up(-,t) inLY((-L,L))as &y — O, for L > 0and a.e. t € (0, T), (4.25)

and (4.20) follows from (4.5). Finally, (4.19) follows from (4.5), (4.25) and the dominated convergence the-
orem. OJ

Proposition 4.5. Let ¢ € C([0, 00)). For all n € N, problem (Pn) has an entropy solution u,, which is unique if
@ is locally Lipschitz continuous. For a.e. t € (0, T), we have

lun(-+ hy t) —un(-, Ollpiwy < luon(- + h) —uonliiwy foranyh e R, (4.26)
J Un(x, t)dx = J Uon(X) dx. (4.27)
R R

Moreover, given p € C2(R) and U € C*([0, c0)), with U’ € L*(0, c0), satisfying (4.12), the sequence {Uy,}
defined by (4.21) is bounded in BV(0, T).

Proof. Let { and E be as in Definition 3.6, and F}, = E'¢.. Then

”{E(uﬁ)(at( +£320) + Fo(u6)dx() dx dt + j EQS,){(x, 0) dx > 0, (4.28)
S R

where u?" is defined by Lemma 4.4. By (4.4), it is not restrictive to assume that E(u) = |u — k| and Fe(u) =
sgn(u — k)[@e(u) - (k)] (k € [0, 00)). By (4.4),

I@e, (Ur™)llLeo(s) < sup  |@e, (V)| < sup lp(v)l.
[vI<lluonllzeo () [vI<|luon Lo ry+1
Since @, (uy") — @(up) a.e. in S (see (4.18)), it follows from (4.19) and the dominated convergence theorem
that
” Fe, (uy")0x( dx dt — ” F(un)ox{ dxdt asem — 0.
S S

The remaining terms in (4.28) (with € = &,,,) are dealt with similarly. Letting £,, — 0, we obtain (3.16), so uy
is an entropy solution of problem (Pn). Its uniqueness follows from Kruzkov’s theorem [26].

Inequality (4.26) follows from (4.6) and (4.25). Concerning (4.27), it follows from (3.17) that for all
peCl(R)andae. t e (0,7),

t
[ ntx, 900 dx = [ won(0p00 dx = [ [ plan)x, 9)p' () dx . (4.29)
R R 0O R

Let {pi} < CZ(R) be such that pi(x) = 1 for x € [k, k], px(x) = 0 if |x| > k + 1, and [|p} [lzeow) < 2. Setting
p = pk in (4.29) and letting k — oo, we get

t
j @ (un)(x, $)p; (x) dx dsl < ZME! j |lun(x, s)|dxds — 0,

{xeR|k<|x|<k+1}

O t—
=

since u, € L1(S). On the other hand, by the monotone convergence theorem,
J Un(x, )pr(x) dx — I un(x, t) dx, J Uon(X)pi(x) dx — I Uon(x) dx,
R R R R

and (4.27) follows from (4.29).
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DE GRUYTER M. Bertsch et al., Measure-valued solutions = 17

Finally, let us show that {Up ,} is bounded in BV(0, T). By (4.17) and (4.22),

T T
[ 1wnpo1de = lim [1UEz5 (01 de < Nlplimo (Tluo iy + supp oD,
0 0

and, by (4.16) and the lower semicontinuity of the total variationin L1(0, T) ([15, Theorem 1, Section 5.2.1]),
we get
I U,'1,p||M(o,T) < lplie@{(M + N)Tluollnvw) + Cp,p}s

with Cp,, > 0 as in (4.16). This completes the proof. O

5 Existence and monotonicity: Proofs

We proceed with the proof of Theorem 3.7.

Proposition 5.1. Let (H1) hold and let u, be the entropy solution of problem (Pn). Then there exist a sequence
{un} and u € L*°(0, T; M*(R)) such that
Uy, = u  inM(S). (5.1)

For all L > 0, there exists a decreasing sequence {E;} c (-L, L) x (0, T) of Lebesgue measurable sets, with
|Ejl — 0 asj — oo, such that

Un X ((-L,L)x(0, H\E; — Ub = I &dr(é) inL'((-L,L)x (0, 1)), (5.2)
[0,00)

where T € Y(S; R) is the Young measure associated with {uy,}, and
UnXE; — M:i=u-up inM((-L,L)x(0,T)). (5.3)

Proof. By (4.20), there exist u € M*(S) and a sequence {un,;} such that up, = u in M(S). Arguing as in [27,
Proposition 4.2], we obtain that u € L*°(0, T; M*(R)).
Since by (4.20) the sequence {up,} is bounded in L1(S), by Theorem 2.3 there exist a subsequence of {un}
(not relabeled) and a Young measure 7 € Y(S; R) such that
(i) for every measurable set A C S, (2.4)-(2.6) are valid for any f € C(R) such that the sequence {f(un,)} is
sequentially weakly relatively compact in L1(A),
(ii) suppTx,p S [0, c0) for a.e. (x, t) € S (here Ty, is the disintegration of 7).
Then the result follows by Theorem 2.5 and a standard diagonal procedure. O

Remark 5.2. The function uy in (5.2) is defined for a.e. in (x, t) € S, since T is globally defined in S. In addi-
tion, by (4.20) and the arbitrariness of L in Proposition 5.1, a routine proof shows that u; € L*(0, T; L1(RR))
and up > 0 a.e. in S. Therefore, the Radon measure y > 0 (see (5.3)) is defined on S, p € L*°(0, T; M*(R)),
and

U=U-up = u=up+u inM(S). (5.4)

Proposition 5.3. Let (H1) hold, let y be as in (5.4) and let U € C([0, 00)). If

lim b =: Cy € [0, 00), (5.5)
u—co Y
then, forall L > 0,
U(un,) 2 U*+Cyu inM((-L, L)% (0, 7)), (5.6)

where U* € L°(0, T; LL (R)) is defined by

loc

U* (x, £) = J U() dTgeo(&)  forae. (x, t) € S.

[0,00)
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18 —— M. Bertsch et al., Measure-valued solutions DE GRUYTER

Remark 5.4. If U € C([0, co)) satisfies (5.5), there exists N > O such that
|U(u)| < N(1 +u) foru>D0. (5.7)
Moreover, U* € L*®(0, T; LY(R)) if |U(u)| < Nu, since up € L*®(0, T; L'(R)) and
|U*(x, t)] < J U dt,pn(&) <N J &dti,n(&) = Nup(x, t) forae. (x,t) €S.
[0,00) [0,00)

Proof of Proposition 5.3. For all € > 0, there exist m, > 0 such that
—eu < U()-Cyu<eu ifu>me. (5.8)

Foranym € N, m > mg, let liy, lam € C([0, 0co0)) besuchthatO < 11y, < 1,0 < by < 1, lim + b = 1in [0, 00),
supp l1m € [0, m + 1] and supp Ly, € [m, 00). Then, by (5.8),

|U(un,~) - [U(un,-)llm(un,-) + CUun;IZm(un,-)]l < gun;IZm(unj) forj e N. (5.9)

Since supg[|U(un,)|lim(uUn;)] < SUPyefo,m+1)/UW)| < 00, it follows that {U(un,)l1m(un;)} is uniformly integrable
in (-L, L) x (0, T). Hence, by Theorem 2.3, forall L > 0,

Ulttn ) lym(ttn)) — Uy 1= j U lum () dT(E) (5.10)

[0,00)

in LY((~L, L) x (0, T)). Here U7, belongs to L*°(0, T; L! (R)), since, by (5.7),

loc

Us, | < j \UE)lim(€) dT(€) < N j (1+&)dt(¢) < N(1 + up). (5.11)

[0,00) [0,00)

Similarly, by (5.1), (5.2), (5.4) and (5.10), with U(u) = u,

Un; om (Un;) = Un; = Un;lim (Uny) - u- j §lim(8) dT(8)

[0,00)

—wp - | (@ dr) e
[0,00)

- j £1 — ()] de(®) +

[0,00)
- j Elom (&) dT(2) + 1
[0,00)
=13, +u inM((-L,L)x (0, T)). (5.12)

From (5.9)-(5.12), for any { € C.((-L, L) x (0, T)), { = 0, and m as above, we get

(Ul + (Cu -5, 1¢ dxdt + (Cy — €)M, {)(-1,1)x(0,T)
(=L, D)x(0,T)

< liminf ” Uun,)¢ dx dt

nj—oo
(-L,L)x(0,T)

< limsup ” U(un;)¢ dx dt

n;—»oo
(-L,L)x(0,T)
< ” (UL, + (Cu + )5, 1¢ dxdt + (Cu + ), () r.m0.D)- (5.13)
(-L,L)x(0,T)
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Since U;,, € L®(0, T; L. (R)),

loc

2m =

o<l < j &dr(é) <up € L0, T; LY(R))

[m,c0)

and
lim0 La(x,t)=0, limo Ui (6, t)=U"(x, t) forae.(x,t) €S,
Em— Em—

by letting m — co in (5.13), we get plainly

U*{dxdt+ (Cy—e)u, {)-L,L)x0,T) < I%I?Lior},f ” U(un;){ dx dt
]

(=L,L)x(0,T) (=L, D)x(0,T)
< limsup ” U(up,)¢ dx dt
T L Dx.T)
< ” U*¢dxdt+ (Cy+&)(u, {)(-L,Lyx0,T)>
(=L, D)x(0,T)
whence

0 < limsup j U, )¢ dx dt - lim inf ﬂ Uun)¢ dx dt < 26, )1 1yx(0.1-
e (-L,L)x(0,T) ' (-L,L)x(0,T)

From the above inequalities, the conclusion follows. O

Proposition 5.5. Let (H1) hold. Let u, U and U* be as in Proposition 5.3. Then

T
” J U(un))(x, )p(x) dx — J U*(x, t)p(x) dx — Cy{u(-, t), p)r|dt — O (5.14)
0 R R

asj — oo forp € Cc(R). Moreover, for all L > 0, there exist a null set N ¢ (0, T) and a subsequence of {un,} (not
relabeled), such that for all t € (0, T) \ N,
Uup)(-,t) = U (-, ) + Cyp(-, t)  inM((-L, L)). (5.15)
Remark 5.6. Choosing U(u) = u in (5.15), we obtain that
Up; (-, t) = u(-,t) inM((-L,L))fora.e.t e (0,T)and L > 0. (5.16)

If U € C([0, 00)) satisfies (5.5), U* € L°(0, T; L; .(R)) and {U(u,)} is bounded in L*(0, T; L. (R)) (see
(4.20) and (5.7)). Since every { € C(R?) N L®(IR?) can be uniformly approximated in bounded sets by finite
sums ¥ | fiP(x)g"P(t), with P, gbP bounded and continuous functions (1 <i < p; e.g., see [12, Théo-

réme D.1.1]), it follows from (5.14) that, as j — oo, for all { € C([0, T]; C.(R)),

T
” J[U(uni)(](x, ) dx - I[U*(](X, £ dx - Cy (-, ), (-, )| dt — 0. (5.17)
0 R R

Proof of Proposition 5.5. (i) Let us first prove (5.14) for U € C%([0, 00)), with U’ € L®(0, 00), satisfying (4.12)
and (5.5). Let p € C¢(R), h € C.(0, T), and fix any L > O such that suppp < (-L, L). Then, by (5.6),
T T T
| U pon@ dt - [ Uz @nOde+ cu [ exuc. 0. pwat, (5.18)
0 0 0

where Uy, ,, is defined by (4.21) and Uy (t) := IIR U*(x, t)p(x) dx. Since, by Proposition 4.5, {Uy, ,} is bounded
in BV(0, T) if p € C3(R), there exists a subsequence which converges in L(0, T). Combined with (5.18),
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20 —— M. Bertsch et al., Measure-valued solutions DE GRUYTER

this yields that Uy, , — Uy + Cu(u(-,-), p)r in DO, T) and in L1(0, T) for all p € C2(R). Since the sequence
{U(up,)} is bounded in L (0, T; L*((-L, L))) and U* € L*(0, T; L*((-L, L))), the condition p € CZ(IR) may be
relaxed to p € C.(R), and we have found (5.14).

(ii) Next we prove (5.14) for all U € C([0, 0o0)) N L°°((0, 0o)) (in this case Cy = 0). To this end, let
U(u) := (Ux[o,k * Ok)(u) for any u > 0, where 6 > 0 is a sequence of standard mollifiers (k € N). Then
{Uk} < C2([0, 0)), Ux — U uniformly on compact subsets of [0, co) and [|Uk|lromw) < IIUllLeo(w)- By part (i)
and (4.20), forallp € C.(R)and k € N, M > 0O,

linIlilc.)lp j dtu U(un,)p(x) dx - Il U*(x, t)p(x) dx

< lim sup ” |U(un;) — Ur(un)llpl dx dt +lim sup U [U(un,) = Ur(un)llp| dx dt

{OSun}.SM} {u,,].>M}

v ”IU* ~ UZ|lpl dx dt
S

2T
< lpllcolsupp pITIU — UgllLeoo,m) + "p”oo{ﬁ”uO"M(]R)”U"L"O(IR)

v [ axar [ 1w - v@ldneo©)
supp px(0,T) [0,00)

Tluollvew)

< 2[|pllco|supp pITIU = Ukllzeo (o, + 2llpllcoll U||L°°(IR){ i

o] e | anel,
supp px(0,T) {&>M}
where we have used Chebychev’s inequality and the inequality
| 10 - v@ldran®@ + [ 10 - UOIdrio@ < U= Ulimon + 200hmay | dreo(@.
{o<é<M} {&>M} {&>M}
Letting k — oo, since Uy — U uniformly on compact sets in [0, co), we obtain

T
lim sup J dtu U(un;)p(x) dx —Il U*(x, t)p(x) dxl

j—oo
Tluollvi(w)

< 2lple@lUl=@]——r + dx dt dt,n (&) (5.19)

supp px(0,T) {&E>M}
Since 7(x,¢) is a probability measure, we have f{ e dtx,1n(§) - 0as M — oo for a.e. (x, t) € S, thus, by the

dominated convergence theorem,
” dx dt J dt(x,pn(&) - 0 asM — oo.
supp px(0,T) {&>M}

Then, letting M — oo in (5.19), we obtain (5.14).

(iii) Now let U € C([0, c0)) be any function satisfying (5.5). Arguing as in the proof of Proposition 5.3,
let l1m, lm € C2([0, 00)) (m € N) satisfy lipm, lom > 0 and Iy, + lom = 1 in [0, 00), supp lim < [0, m + 1], and
supp b € [m, o). Then

U(un;) = U(un,-)llm(un;) + U(un,-)lz,m(un;) (5.20)
and, by (5.8), forall € > 0 and m > m,,
(Cy - S)Mn,-IZm(un;) < U(un;)IZm(un;) <(Cy+ g)un;IZm(unj)- (5.21)
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Since [|[Ulimllzom) < 1Ullco,m+1]) < 00, the function Uly,, belongs to C([0, o)) N L(R). Then, by part (ii),

T
[| [ 1wt tmtun 1, 0p00) dx ~ [ U0, 0px) | de = 0 (5.22)
0 R R

asj — oo, where p € C.(R) and Uj,, is defined by (5.10). By (5.21) and (4.20),

T

j| j[U(un,.)Imen,.) ~ Cut m(un)] 05, 0p(X) d¥| dt < & ”|un].||p(x)| dx < eTluolim 2 llo-
0 R S

Then we obtain that

T
jl j[U(un»lm(un) ~Cyl, ] (x, B0 dx — Colu(-, t),pm] dt
0 R

T
< eTluolnimlolleo + Cu j] j[undZm(unj) 15,106 0p(0 dx - (u(-, ), py] dt,
0 R

with I3, defined as in (5.12). The map u — ul;n(u) belongs to C2%(]0, c0)), has bounded derivative and sat-
isfies (4.12) and (5.5), with Cy = 1. Then, by part (i), (5.20) and (5.22),

T
lim sup ” J'[U(unl.)—U{m—CUl;m](x, tHp(x) dx—Cy{u(-, t), p)r| dt < T luollmm)llpllo  if m > mg. (5.23)

j—oo
To complete the proof of (5.14), we show that

lim ”IU* - Ui, — Culb,l(x, Hlp(x)| dx dt = 0. (5.24)

m—-oo

S

By (5.21),

[U* = Uty = Culsl(x, t) < j |U&) — U)1m(8) ~ Cyélam(§)| dT(x,(&)
[0,00)

- j U m(€) - Cu&lam(@)] dT 0 (E)

[0,00)

<e J §dtx,n(8) < eup(x, 1)

[m,00)

for a.e. (x, t) € S. Since uy € L*°(0, T; L1(R)) and f[m o) Edt,pn(¢) > 0asm — coforae. (x,t) €8, (5.24)
follows from the dominated convergence theorem.
Letting m — oo in (5.23), it follows from (5.24) that

T
timsup [| [ [UGur) - U106, 0900 dx = Cu (-, 0, pi e

J7 5 R

T
< limsup(lim sup ” J[U(”ni) - Ui — Culblpdx — Cylu(-, t),p)]Rl dt)
R

m—o0 j—o0
< eTlluollvery P llcos

and (5.14) follows from the arbitrariness of ¢.
Finally, (5.15) follows from (5.14), the separability of C.(R) and a diagonal argument; we leave the details
to the reader. O
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Proposition 5.7. Let (H1) hold. Then (5.4) is the Lebesgue decomposition of u, i.e.,
up, =u, a.e.ins§, u=us inM(S). (5.25)

Proof. Let U be a convex function with U(0) = 0 and U’ € L*(0, co). By (3.16),

J Ulun,) (%, D, ) dx J Ultton,)(0){(x, 0) dx < ” {UGun)0C + O ()0, Hdx dt (5.26)
R R Rx(0,f)

forall { € C1([0, T]; C}(R)) and a.e. t € (O, t), where
Ouu) = I U'(s)p'(s)ds + 0y (O € R). (5.27)
0

Let Up(u) = (U — M)Xm,00) (1) and Oy,, = 0(m € N). Since Up,(u)/u — Cy,, = 1and Oy, (u)/u — Cypasu — co
(with C, as in (H1)), it follows from (5.17) that

t
” J[Um(u,,].)at(](x, ) dx - j[U;;atc](x, £ dx = (-, £), (-, t))IR’ dt >0
0

R R
and

t
[| 100, aun)axg106, 0 dx - [ 105, 04100 6 dx = o (- 1, 080+ D) dt = 0
0 R R

asj — oo, where
Une. 0= | Un@dro(®. 05,00:= [ 8u,(dren(®
[0,00) [0,00)

belong to L®(0, T; LL (R)). In particular, setting 0,{ := 9:{ + Cy0x{, we have that

loc

t
” {Un(ttn)00¢ + Oy, (un,)0x(} dx dt — ” {U;at(+e;]maxg}dxdt+[(y(-,t),avc(-,t»]Rdt. (5.28)
Rx(0,7) Rx(0,7) 0

By (5.15) and a diagonal argument, there exist a null set N ¢ (0, T) and a subsequence, denoted again
by {un,}, such that forall £ € (0, T) \ Nand m € N,

Jim_ [ U6 B0, B dx = [ U, B0 B e+ (- B 60 B e (5.29)
! R R
Since {Up(uon;) — Uon,} is bounded in L*°(RR) and converges a.e. to Uy (uor) — Uoy, it follows from (3.15) that
Jim_ [ Un(uon 0006, 0) d = [ Un(aton) 04(x, 0) -+ Catos, (- O (5.30)
R R

Setting U = Uy, in (5.26) and letting j — co, we obtain from (5.28)-(5.30) that

t
J U206 B0 B dx + (u(-, B, 4 D)y < ” [U30:C + 0, 0,¢} dxdt + J(y(-, 0, 0,0(-, ) dt
R Rx(0,7) 0

+ J U (uor)(x)¢(x, 0) dx + (uos, §(-, 0))r (5.31)
R

forall t € (0, T) \ N and m € N. Since for all u > 0 (see (3.1)),
0 < Un(u) < Uxpm,c0)(W), 10y, (W] = o) — @(m)IX[m,u) (W) < Mux(m,co0)(u),
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we have that |U},| < up, |9l*lm| < Muy, U, — 0 and @;‘]m (x,t) — 0 (as m — o0) a.e. in S. Thus, by the domi-
nated convergence theorem and (5.31), forall € (0, T) \ N,

t
U B, 0L D) < j<u<-, £, 04(-, D) dt + (ttos, {(-, ). (5.32)
0

Let p € CL(R) and {(x, t) = p(x — Cyt), so §, = 0. By (5.32), (u(-, 1), p(- - Cpb))r < (uos, p)r. Hence,
u(-, t)issingular with respect to the Lebesgue measure and, since (-, £) = [u(-, )]s = pus(-, t) fora.e. t€ (0, T)
(see (2.3)), (5.25) follows from the uniqueness of the Lebesgue decomposition. O

The following result is based on the concept of compensated compactness (e.g., see [13]).
Proposition 5.8. Let (H1) hold. Then ¢(u,) = I[o o) P dT(§) ae.in.

Proof. Let U, V e C%([0, 00)) N L®((0, co)) satisfy (4.12), and assume that Oy, Oy, defined by (5.27), belong
to L*((0, 00)). By (4.13), we have

elU" (u5)(0xus)’llis) < Cp  and e V" (u)(0xud)lLis) < Cp
forall € € (0, 1) and n € N, and up to a subsequence,
eU"(WE)(0xus)? 2 An, eV (WE)(0xus)? = yp inM(S)ase — 0, (5.33)
for some A, pn € M(S). By the lower semicontinuity of the norm,
IAnlves) < Cps  lptnllveesy) < Cp forn e N. (5.34)

Let { € C%(S). Then (see (4.9))

e ” U (uE)(3xu)?¢ dx dt = ”{U(u,‘i)atg’ + Oy (Ud)dx + eUWE)OLL) dx dt, (5.35)
S S

where Oy ¢ (u) = fg U'(s)pL(s)ds + 0y, Oy € R. By (3.1) and (4.4), forall n € N,

lluonllco lluonllco
10y, (u)] < j U (s)pl(s)| ds + |8yl < M j U'(s)|ds + |0yl < yn.u
0 0

for some y,,y > 0, so for fixed n € N, the family {0y, (u%)}, is uniformly bounded in L*°(S). Similar results
hold for Vand Oy (u) = J‘(;l V'(s)pL(s) ds + Oy, and letting ¢ — 0in (5.35) along some subsequence {&,,} (see
the proof of Proposition 4.5), it follows from by (5.33) that forall n € N and { € CL(S),

H{U(un)atueu<un>axc}dxdt=<An,c>s, ”{V(un)amev(un)ax(}dxdt:<un,(>s, (5.36)
S S

where u, is the entropy solution of the approximating problem (Pn) (see (4.18)).
Let A cc S be a bounded open set and let Yy, Z,: A — R? be defined by

Yo := (Ou(un), Ulun)),  Zn := (V(un), Oy (un)).

By (5.36),
divY, = -A,, curlZ,=-u, inD'(A4). (5.37)

Since U, Oy, V, Oy are bounded in (0, c0), the sequences U(u,), Oy(uy,), V(u,) and Oy (u,) are bounded
in L' (A) and uniformly integrable, and, by Theorem 2.3,

Ulup) — U* := J Ué)dr(..y(&), Oy(un) — Of := J Ou(&)dr(. (&),

[0,00) [0,00)
Vin = V' i= [ V@ dreo@. vl = 0) = | ey dre, @)
[0,00) [0,00)
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in L1(A), where 7. ., denotes the disintegration of the Young measure 7 associated with {u,}. Since the
sequences U(uy), Oy(uy), V(u,) and Oy (uy,) are bounded in L®(A) ¢ L?(A), they also converge weakly
in LZ(A), so

Yo — Y*:=(0;,U%), Z,—Z":=(V",-0}) in[L*A)]°.
By a similar argument,

Yo Zn := Oy(un) V(up) — Ov(un)Ulun) — J [Ou(&V(E) - By (&)UE)] dr(. () inL*(A).  (5.38)
[0,00)

By (5.34) and (5.37), {div Y,;} and {curl Z,,} are precompact in W~1-2(A) (see [13, Chapter 1, Corollary 1]) and,
by the div-curl lemma,

Yn-Zn > Y*-Z* =0,V -03U* inD'(A). (5.39)
By (5.38) and (5.39),
j [O0(&) - O31V(8) dT(§) = j [U(§) - U*10y(&) dT(¢) ae.inA. (5.40)
[0,00) [0,00)

For every U as above with U’ > 0 in (0, co), by a standard approximation argument, we may choose
V(u) = |U* - U(u)l, so Oy(u) = sgn(U(u) - U*)[0y(u) - Oy(U~'(U*))] and, by (5.40),

[0 - 00 W] [ 107 - Ul dr) = o. (5.41)
[0,00)

Let Uy € C%([0, 00)) N L*((0, 00)) satisfy (4.12) and
U(0)=0, 0<U,<Up,,<1 in[0,c0), Ui (w) > 1 foru>0ask— oo. (5.42)

By (3.1),

u
1Oy, ()] < J U(9)l@'(s) ds + 0y, | < MUk(u) + |6y,|,
0
thus Oy, is bounded in (0, co)) for every k € IN. We claim that, as k — oo,

Uy := J Ur(&) dt(€) — uy a.e.in4, (5.43)
[0,00)
0}, - Oy, (U (U) — J 0 dT() - p(uy) ae.inA, (5.44)
[0,00)

where 07, := j[o o) Oy, (&) dt(¢) (recall that ¢ € L([0, 00); dT(x.r)), see Remark 3.2). By (5.43) and the dom-
inated convergence theorem, for a.e. (x, t) € A,

j U2 (x, )~ Ug(&)] dTgep(8) — j ur(x, ) — €l dT (@) ask — oo,

[0,00) [0,00)

since 0 < Ux(&) < ¢ for all k € N and I(¢) := & belongs to L([0, c0), dT(x,¢)) (recall that, by (5.25) and the
definition of uy in (5.2), u,(x, t) = I[o o0) &dtx,pn(€) < 0o for a.e. (x, t) € S). Letting k — oo in (5.41), with
U = Uy, we obtain that for a.e. (x, t) € A,

| j 0 A (&) - 0, 0| j s (x, ) — €1 dT (e (&) = O,
[0,00) [0,00)

and Proposition 5.8 follows from the arbitrariness of A.
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It remains to prove (5.43) and (5.44). By (5.42) and the monotone convergence theorem, Uy (&) — ¢ for
any ¢ € [0, c0), and (5.43) follows (recall that I(¢) = ¢ € L1([0, c0), d7)). Concerning (5.44), we observe that

¢ U (Ux")
0y, - Ou, (U 1 (Uy)) = J ( J U (8)9'(s) ds) dr(é) - I U (s)g'(s)ds. (5.45)
[0,00) * 0 0

Since U, (¢§) — 1and |U; (&)@’ (&)| < M for & > 0 (see (5.42) and (3.1)), it follows from the dominated conver-
gence theorem that

¢
J ( J U (8)9'(s) ds) At (&) — J ©(&) dt(x,p(&). (5.46)
[0,00) O [0,00)
On the other hand,
U U () 0 (x,) U U (1)
J U (s)g'(s)ds — p(u)(x, t) = J [U(s) - 11¢'(s) ds + J U (s)p'(s) ds. (5.47)
0 0 u,(x,t)

Arguing as before, one can show that the first term in the right-hand side of (5.47) vanishes as k — oo. As for
the second term, we observe, by (5.42) and (5.43), that

U (U (1)

U(s)9'(s) ds| < Mluy(x, t) = U (Uy (x, 1))

ur(x,t)

< MG, 0 - Ut a0+ sup

s, ) - U, 0
selstu,(x,0) UL(s) k

for some 6 > 0 and k € N sufficiently large, where Is(q) = (g — 6, q + ). Hence,

U (U (x,0)

J U (s)g'(s)ds — puy)(x, t) forae. (x,t) € A, (5.48)
0
and we obtain (5.44) from (5.45), (5.46) and (5.48). O

To prove the second part of Theorem 3.7, we need the following result which characterizes the disintegration
of the Young measure 7.

Proposition 5.9. Let (H1) hold and ¢ € C'([0, 0o)) satisfy for all it > O either (C2) or the following:

(C3) there exist a > 0, b € (0, 0o] such that ¢' is constant in 1, = [it — a, it + b] and, if b < co, then ¢’ is
strictly monotone in [ + b, it + b] and & — @, it — a] for some b > b and @ € (a, Q).

Then, for a.e. (x, t) € S, the following hold:

(i) Ifu,(x,t) =0, then 1 = bo.

(ii) If @' is strictly monotone in I = [uy(x, t) — a, u,(x, t) + b], witha, b > 0, a + b > 0, then

Tt = Ou,(x,0)- (5.49)

(iii) If ' is constant in the above interval I, j, for some a > 0, b > 0, then
Supp Tty € I,y forae. (x,t) €S, (5.50)

where I(y.¢) 2 I4,p is the maximal interval where ¢'(-) = @' (uy(x, t)).

Proof. Let (x,t) € S be fixed. If u,(x, t) = 0, it follows from (5.25) and the definition of u; in (5.2) that
.[[0,00) & dt(x,1(&) = 0, which implies part (i): T(x,) = 0.
Solet u,(x, t) > 0. Let I := u,(x, t), I > l; and

1
Vi) := k(u = L)X, 1,41 @) + X411,y (W) + k(lz T u)X[lz,lz+%)(u)
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for u > 0 and sufficiently large k € N. Then Vi (u) — x,,1,1(u) as k — oo, and
u
O, (u) = J Vi)@' (s)ds — @' (l)xa,,L1W) + (@' (1) = @' ()X (1,000 (W) (u > 0).
0

By standard approximation arguments, (5.40) is satisfied with U = Uy and V = Vj, where {Uy} is the sequence
in the proof of Proposition 5.8 (see (5.42)), i.e.,

j [00,(&) - 0}, (6, DIVi(®) dr(e,(&) = j [U(®) - U2 (x, )]0y, (&) AT (8.
[0,00) [0,00)
Letting k — oo and arguing as in the proof of Proposition 5.8, we obtain that
Uk() - U (x, ) — & - j Edrin(®) =& —u(x, 0= £ 1,
[0,00)

07, (x, ) - 0y, (§) — J @(&)dt(x,0n(8) — (&) = p(ur)(x, t) = 9(§) = p(l1) — p(¢)
[0,00)

for all £ > 0 (see (5.25) and Proposition 5.8). This implies that
| 1eu® - 05 VO druo® = [ 19 - 0] dreen (©),
[0,00) (I1,12]

J [Uk(§) = U (x, D10y, (§) dT(x,0(§) — J @' (1) ~ 1) dTx,n(&)

[0,00) (L, 1]
10" (1) - ¢' (1) j (& — 1)) dT (e (&),
(13,00)
whence
j [0&) - (L) - @' (1)(E — )] dT(ep@) = [9'(11) - ' (12)] j (& — 1) dTn(6). (5.51)
(I1,1] (I5,00)

Similarly, let Iy € (0, 11) and set
View) 1= k= 10)X (19,104 21 W) + X (1o ,1,- 1)) + Kl = X, -1 1,7 ().

Then Vk(u) — X(lo,ll)(u) and
u

O, (u) = j Vi)@' (s) ds — @' (1)X(to,1) (W) + [@" (1) = @' (To)IX 10,15 (W) (u > 0).
I

Letting k — oo in (5.40), with U = Uy as above and V = V, we obtain that
J [9(&) - @(l1) - @' ()€ - )] dT(r,0(&) = [@'(11) - @' (10)] I (¢ = 1) dt(x,0(8). (5.52)
(lo,11) [0,1o]
By (C2) and (C3), we can distinguish two cases.
(@) If ¢ is strictly convex or strictly concave in [l1, 5], it follows from (5.51) that
J [p(&) = o) — ' (11)(€ = 1)] dTx,(&) + @' (1) — @' (1) J Ili = §1dT(x,n(§) =0,
(I1,12] (15,00)

where
X, Ol@) =) — " (1)(E -11)| >0 and |¢'(l1) - ¢'(12)] > 0.
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This implies that supp 7(x,¢) € [0, I1]. Since 7, is a probability measure and [; := u,(x, t),

(X, ) = j £ dtio(©) = j € — ur(x, )] AT (E) + ur(x, )
[0,uy(x,t)] [0,uy(x,t)]

(see (5.2) and (5.25)), thus

[€—ur(x, )] dtx,0(&) = T,0(0, ur(x, t))) = 0.
[0,u,(x, )]

Hence, supp 7(x,n = {ur(x, t)} and (5.49) follows since 74 ¢ is a probability measure.
Similarly, if ¢ is strictly convex or strictly concave in (o, l1), it follows from (5.52) that T(x, ([0, 11)) = 0
(we omit the details). Thus, supp 7(x,¢) < [l1, ©0), and arguing as above we obtain (5.49).

(b) If pisaffinein[l; - c,l; + c] forsome c > 0, let I = [lo, ] be the maximal interval containing l;, where
@'(&) = @'(I1). If I = [0, 00), (5.50) is satisfied. If I, < co, by (C3) and the maximality of I, ¢ is strictly convex
(or concave) in [I, I, + b] for some b > 0 (and affinein [I1, I5]). By (5.51), with I, € (I, I, + b), we obtain that

J |p(&) = p(l1) — @' (L)€ - 1) dT(x,0(&) + 19" (1) - @' (1) J [1y = &l dt () = 0,
(iz,lz] (I2,00)

where
X010 - o) - @' (11)(E -1)| >0 and |¢'(l) - ¢'(I2)| > 0.

It follows that 7y ¢ ((I2, 00)) = 0, whence supp T(x.¢) < [0, I]. Similarly, if lo > 0, by (C3) and the maximality
of I, @ is strictly convex (or concave) in [Iy — a, ly] for some a > 0 (and affine in [lo, 1;]). Arguing as before,
we obtain from (5.52), with Iy € (Io - a, lp), that supp 7(x,s) < [lo, 00) (we omit the details). Summing up, we
obtain (5.50): supp T(x,¢) < [0, 2] N [lp, 00) = I. O

Remark 5.10. If (C2) is satisfied for all &t > 0, it follows from (5.49) and standard properties of narrow con-
vergence of Young measures (see [28]) that Un, — Uy in measure, where {uy} is the subsequence in Propo-
sition 5.1. Therefore, up to a subsequence, Up, — Uy a.e. in S. Hence, if ¢ is bounded, it follows from the
dominated convergence theorem that ¢ (un;) — @(u,) in LY((-=L,L)x (0, T)) forall L > 0.

Now we can prove Theorem 3.7.

Proof of Theorem 3.7. Let { € C([0, T]; CL(R)), with {(-, T) = 0 in R, and let L > 0 be such that supp{ ¢
(=L, L) x [0, T]. By (5.17), with U(u) = u and U(u) = ¢(u),

T

Lj n, 0, dx dt — Jsj w9 dxdt + J@S( 0,00 O) s

” @O(Up,)0x{ dx dt — ” P ox{dxdt+Cy JT<HS( 0, 0{(-, D) g dt
s S 5

(see also (5.25)). Letting j — oo in (3.17), with n = nj, we obtain (3.4). Inequality (3.6) is proven similarly,
since by arguing as in Proposition 5.3, we get

Euon,)  E(uor) + Cgligs  in M(R)

(in this regard, see also (3.15)). Thus, the function u € L*®(0, T; M*(R)) given by Proposition 5.1 is an entropy
solution of problem (P) in the sense of Young measures. By Proposition 5.8, it is also a solution in the sense
of Definition 3.3. This proves the first part of the theorem. The second part is an immediate consequence of
Proposition 5.9; in fact, (3.9) follows from (3.6) and (5.49). O

Let us end this section by proving Proposition 3.8.
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Proof of Proposition 3.8. For every { € C1([0, T1; CL(R)), {(-,T)=0,weset E(u) = Up(u) = (u- m)X wsm} (W)
and F(u) = Fp(u) = j(;‘ UL(&)e' (&) dé = (pu) — e(m)Xusmy(u) in the entropy inequalities (3.6) (m € IN).
Then we get

T T
”{U;‘nath Fr 0.} dxdt + j(us(-, 0, 08(-, ) g dt + Cp j(us(.,t), (-, ) g dt
S 0 0

> j Un(uon)E(x, 0) dx — (ttos, &(-, 0)),
R

where, for a.e. (x, t) € S,
UL(x, ) o= j Un(@) dTo@),  Fiy( t) = j Fon(&) dT(0.0)(£).
[0,00) [0,00)

As in the proof of Proposition 5.7, we have jjS{U;;,atZ + F;,0,{} dx dt — 0 and [N Un(uor){(x, 0) dx — 0 as
m — oo, whence

T T
j(us(-, 0, 0:E(-, D) dt + Cy j(us(-, 0, 0:E(-, ) dt = ~(uos, £(-, 0. (5.53)
0 0

Let { € C([0, T]; Cc(R)). By Definition 2.1 (for L (0, T; M(R))), the map t — (us(-, t), {(-, t))r belongs
to L*°(0, T). Hence,

t+h

}llln(l)% J <us("t)’(("t)>IRdt: (us(-,f),((-,f))]R foreveryie (O’T)\N’ (5-54)

t

for some null set N c (0, T) (by separability arguments, we have that N is independent of {; see the proof
of [23, Lemma 3.1]). Let t1,t; € (0, T)\ N, O < t; < t; < T. By standard approximation arguments, we can
choose Z(x, t) = gn(t)¢(x, t) in (5.53), where

1 1
gn(t) = H(t = )Xt <t<t +h) (E) + X{t,+het<t,} (£) + E(fz +h = OXit,<t<t,+y () (5.55)

and h € (0, min{t, — t1, T — t,}). Letting h — 0 in (5.53), we obtain that
(us(-, t2), {(-, t2)) < T(us(', 6, §u(-, ) g dt + (us(-, 1), 4+, t1)) - (5.56)
Similarly, let fu(f) := X{ost<t,) (£) + %(t;r h — OXit,<t<t,+n} (D). Setting (x, t) = fr(t){(x, t) in (5.53) and let-
ting h — 0*, we obtain that
(us(-, 6),¢(-, )R < Jt(us(- )5 (-, T)) g AT + (Uos, ¢+, 0))w. (5.57)
0

Arguing as in the last part of the proof of Proposition 5.7, we obtain (3.18) and (3.19) from, respectively,
(5.56) and (5.57) (we omit the details).
(ii) It follows from (3.8) that for a.e. T € (0, T) and m € N,

WU, T, Prd — (Uos P = H j DX, 0P}y dx+ Cpus(+ OLOm, ph)e} dts  (5.58)
0 O

where {p,;} C C}(IR) is such that py, = 1in [-m, m], supppm, S [-m-1,m+1],0 < ppy < 1and |p},| < 2inTR,
and Q,, := [-m -1, -m] U [m, m + 1]. Since us € L®(0, T; M*(R)) and ¢(u,) € L*(0, T; L' (R)), a routine
proof shows that

lim
m—o0

Oty 4

T
J O (Uy) (X, )ph, (x) dx dt = n%gr(l)o J(us(-, )L Qm, Py ) dt = 0.
R 0
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Since p,y(x) — 1forall x € R, we also get that (u(-, 1), pm)r — llu(-, 7)lmmw) and (uo, pm)r — lluolvm) as
m — oo. Letting m — oo in (5.58), we obtain claim (ii). O

6 Regularity: Proofs

The first regularity result which we prove is Proposition 3.5. Hence, we need the following lemma.

Lemma 6.1. Let (H1) be satisfied. Let (u, T) be a Young measure solution of problem (P). Then there exists a
null set F* c (0, T) such that for every to, t; € (0, T) \ F*, ty < t1,and any p € C} (R), we have

ty

(-, t1), PR — (Uo, PIr = j{ j 0™ (x, D' () dx + Cp (us( -, t>,p’>m} t, (6.1)
0 R
t
(-, t1), P — (-, to), pYR = H j 0" (6, 0" 00 dx + Cylus(-, 0, p')w} . (6.2)
to R

Proof. Since u € L*(0, T; M*(R)), there exists a null set Fy € (0, T) such that the spatial disintegration
u(-,t) € M*(R) is defined for every t € (0, T) \ Fo. Arguing as in the proof of [23, Lemma 3.1], we can show
that there exists a null set F* ¢ (0, T), Fo € F*, such that forevery p € C.(R) and t € (0, T) \ F*,

1
t+q

(}LI‘.}O{Z‘I J [u(-,s), pym = (u(-, 1), p)g| ds} = 0. (6.3)

t—

Q=

The proof of (6.1) is based on (3.4) and (6.3). Let p € CL(R) and ¢, € (0, T) \ F*. By standard regulariza-
tion arguments, we can set { = p(x)k4(t) in (3.4), with g > ﬁ +1(g € N)and

kq(t) := min {1, q(t1 + % - t>+} — X0,t;1 in(0,T)asq — oo

to get
t1+% T
g | w0 pmde - wo.pyn = [{ [ 070 0900 dx+ Cotust-, 0. pm g 0) d.
6 0 R
Letting g — oo, we obtain (6.1) from (3.7) and (6.3). Subtracting from (6.1) the same inequality with ¢;
replaced by to, we obtain (6.2). O

Proof of Proposition 3.5. Let F* c (0, T) be the null set given by Lemma 6.1. Let {r,} € (0, T) \ F*, with
T, — 0" as n — oo. Since, by (3.7), u € L®(0, T; M*(R)) and ¢* € L*(0, T; L1(R)), it follows from (6.1) that
(u(-, o), p)r — (Uo, p)r for all p € CL(R). Since, by Definition 2.1 (ii), sup,/lu(-, 7o)l mr) < C, there exist
Mo € M*(R) and a subsequence {T,,} such that u(-, ,,) = po in M(R) as k — oo. By standard density argu-
ments, this implies that po = up. Hence, u(-, 7,) = uo along the whole sequence {r,}, and (3.11) follows
from (6.1) and the arbitrariness of {1,}.

Similarly, it follows from (6.2) that (u(-, Tn), p)r — (u(-, to), p)r forall p € CL(R) as 7, — toif ty, T €
(0, T) \ F*, and we obtain (3.12).

To prove (3.13), we observe that, given ty € [0, T] and two sequences T,ll and T% contained in (0, T) \ F*
and converging to ty, we have (u(-, T,ll) -u(-, Tﬁ),p)m — Oforallp € C.(R).Hence,ifty ¢ F*, the continuous
extension of u( -, t) from (0, T) \ F* with respect to the weak= topology is well-defined. O

Let us now prove the results of Section 3.3. As explained there, replacing x by x — C,t we may assume,
without loss of generality, that C;, = 0; namely, it suffices to prove Proposition 3.10, Theorem 3.11 and Propo-
sition 3.14. Moreover, replacing x by —x and ¢ by -, it suffices to do so by assuming that (H2) is satisfied
with ¢ < 0, ¢’ > 0in (0, co) (see Remark 3.15). Therefore, we make use of the following assumption:
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(H5) @ € C*([0, 00)), Cy =0, ¢"'(u) < 0, and there exist H > -1, K > 0 such that
" (W[Hpw) + K] < -[¢'w)]* <0 forall u € [0, co).

(Recall that in this case ¢’ > 0 and Hp(u) + K > 01in [0, 00).)
First we prove some estimates of the constructed entropy solutions. As already said, these estimates are
analogous to the Aronson-Bénilan inequality for the convex case u?, p > 1 (see [1]).

Proposition 6.2. Let (H1) and (H5) be satisfied, and let u be an entropy solution of problem (P) given by Theo-
rem 3.7. Then, fora.e.0 < t; < t, < T,

K H K
P, ) + 5 < (i—i) [<p(u,)(-,t1) + ﬁ] ae.inRifH #0, (6.4)
@) (-, t2) — Klog(ty) < o(uy)(-, t1) - Klogt; a.e.inRifH =0. (6.5)

Moreover, if
(C4) there exists L > 0 such that
How)+ K<L +u)e'(u) foru=0,

then oiu e M(Q x (1, T)), o¢[o(uy)] € M(Q x (1, T)), and u € C((0, T]; M(Q)) for every bounded open set
QcRandTt > 0.

Remark 6.3. If p(u) =sgnp[(1 +u)’ - 1] (p < 1, p # 0), (6.4) becomes

1
tr\Tp .
u,(-,tz)s(t—z)lp[1+u,(-,t1)]—1 a.e.inR, fora.e.0<t; <t, <T
1

(see Remark 3.9). Similarly, if ¢ (u) = log(1 + u), (6.5) becomes
u,(-,t) < (;—2)[1 +U(-,t1)]-1 a.e.inR,fora.e.0<t; <t <T.
1

Let (H5) hold. To prove Proposition 6.2, we use a different regularization of (Pn), that is,

Ory + x[p(V5)] = €02[@(¥5)] inSS, 66
Yn = Uon in R x {0}, '

where {ug,} satisfies (4.1)-(4.2). The existence, uniqueness and regularity results recalled in Section 4
for problem (4.3), as well as the a priori estimates in Lemma 4.1 and the convergence results in Lem-
ma 4.4 (i), continue to hold for solutions of (6.6) (see [18]). In particular, there exist a sequence {y5"} and
Vn € L%(S) N L*°(0, T; LY(R)) such that " = y,, in L°°(S) and for all L > 0,

Yo" -y, inLY((-L,L)x (0, T))as ey — O. (6.7)

From (6.6), for every E convex, F' = E'¢p’, and { as in Definition 3.6, we get

” [EGEM0e + FO50x() dx de + j E(u, ){(x, 0) dx > £m ” F'(/5")0,y5" 0x¢ dx dt.
S R S

Arguing as in the proof of Proposition 4.5 and letting €,, — 0, we obtain that

” [E(/n)0ed + Fym)dx(] dxdt > — J E(uon){(x, 0) dx.
S R

So yj, satisfies (3.16) and, by Kruzkov’s uniqueness theorem, y, = u,. Hence, we have shown the following
lemma.

Lemma 6.4. Let (H1) and (H5) be satisfied, and let u,, be the unique entropy solution of problem (Pn) given by
Proposition 4.5. Then there exists a subsequence {y5"} of solutions of (6.6) such that yi" = uy in L°(S) and
satisfies (6.7).
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Lemma 6.5. Let (H1) and (H5) be satisfied. Then

Y H(p(yfl)(.,t)+K] {SO inRifH >0, ©6.8)
tH >0 inRifH <O,
oe[e(y5)(-,t)—Klogt] <0 inRifH =0, (6.9)
forallt € (0, T), e >0andn € N. Moreover, if (C4) is satisfied, then
torys <L(1+y5) inS. (6.10)

Proof. For convenience, we set A = €02 — Jy, thus d;y% = A[@(y%)] in S. Let

_ Ho(yp) +K

z5 = torys, — 8(y5), where g(y%) = 00 (n € N).

It follows from (H5) and a straightforward calculation that

£
025 = Alp' (VE)ZE] + [H + 1 - g'(v5)] 2"

+8(yp)
<0 t

<Alp'(yZ5] + [H+1 —g’(yi)]ZT"

in S. Since z;; = —g(u§,) < 0in R x {0}, it follows from the comparison principle for parabolic equations that
z& <0in Sforall n € N. Hence, to¢y4(-, t) < g(y5)(-, t)in Rforall t € (0, T), which implies (6.8), (6.9) and,
if (C4) is satisfied, (6.10). O

Proof of Proposition 6.2. Let {y:"} be as in the proof of Lemma 6.4. By (6.8)—(6.9),

K /t\H Ky . .
wﬁm«¢n+ﬁs(ﬁ)[wﬁﬂtJ0+ﬁ] inRifH # 0,

p(yo)(x, t2) — Klog(ty) < p(yy)(x, t1) —Klogt; inRifH =0,

forall0 < t; < t; < Tand n € N. Hence, by Lemma 6.4,

K t\H K . .
(p(un)(-,t2)+ﬁ S(H> [(p(un)(-,t1)+ﬁ] a.e.inRif H # 0, (6.11)
@(un)(-, t2) - Klog(ty) < @(un)(-,t1) —Klogt; a.e.inRifH =0, (6.12)

fora.e.0 < t; < t, < T.Since ¢’ is strictly decreasing in [0, co) (recall that ¢ is concave by assumption (H5)),
possibly extracting another subsequence (denoted again by {n;}), ¢(uy,;) — ¢(u,) a.e.in S (see Remark 5.10).
Letting j — oo in (6.11)-(6.12) (with n = n;), we obtain (6.4)—(6.5).

Let Q = (-L, L). If (C4) is satisfied, it follows from (6.10) and (4.5) that

t[[atyf,]’r(x, t) dx < L|Q| + lluollary forall t e (0, T]. (6.13)
Q

Since |0:y4] = 2[0:y5]" — 0:y5 a.e. in S, there exists Cq > 0 such that

T
J j [0¢y51(x, t) dx dt < 2(T - T)M + J{yf,(x, ) -yax, )} < C—TQ
Ta Q
forallT > 0,e > 0andn € N, and, by (3.1),
T T
J J|aty;;| dxdt < % J j|at[<p(y§)]|dx dt < MTC“. (6.14)
TQ TQ

Let {e} and {n;} be as in Lemma 6.4 and (5.1). Then
Aim glimo()/ij-", Otax(r,n = (U, 0)ax(r,my forall { € Ce(Qx (1, 1)),
J m—
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whence, by (6.14) and the lower semicontinuity of the total variation,

Co
loculveaxcr, 1) < i

Similarly, by (5.6), (5.25) and Proposition 5.8,

nj—oo g, —0

T
lim lim (p(y2"), 0:)axcr, ) = Jjgo(u,)at(dx de forall { € CH(Qx (7, T)),
70

and, by (6.14) and the lower semicontinuity of the total variation,

MC
19elp @) Iaecemy < —-

It remains to prove that u € C((0, T]; M(Q)). Observe that for all t1, t, € (0, T], 0< T < t; < tp, and
peC3(R),0<p<linR,p=1inQ,

[Ivaen e - yaec el dx < [lyace &) - v tolpeo dx
Q R
ty
< | [lowilp axat
t1 R
t

y

t1

(2[0eyR]" - ory)p dx dt

B —

6 t

j[atyi]*p dxdt - J I{(p(yi)p’(X) +ep(yy)p” (x)} dx dt
R

t; R ty

=2

—

ty

(6 - t1) - J J{cv(yi)p’ +ep(ypp"} dx dt,

t; R

where we have used (6.13). We let € = ¢, — 0 and use (3.1) and (4.20) to obtain

< 2Llsupppl + lluollv(wy
T

53

j|un(x, £2) - un(x, )] dx < 2 B (6~ 1) - j j P(un)p' (x) dx dt
Q t1 R

. (2L|suppp| + luollnvewry
T

Lisupp p| + lluollove
T

c
+ Mol 1ol ) (62 = t2) =5 (62~ t0).

By (5.16) and the lower semicontinuity of the total variation,

C
lu(-, £2) —u(-, t)lw) < ?ltl —t;| forae.0<T<t;<t, <T.

So we may define u(-, t) for all t € [7, T] such that u € C([r, T]; M(Q)). Since T > 0 is arbitrary, the proof is
complete. O

To prove Proposition 3.10, we need the following lemma.

Lemma 6.6. Let (H1) be satisfied, and let u be the solution of problem (P) given by Theorem 3.7. Let {uy;} be as
in the proof of Theorem 3.7. Then, for a.e. t € (0, T) and all xy € supp us(-, t), there exist a sequence {xor} ¢ R
and a subsequence {up, } of {un;} such that xox — xo and un, (Xok, t) — co as k — oco.

Proof. Let xo € supp us(-, t). We may assume that the convergence in (5.16) is satisfied for this t. Since
Xo € supp us(-, t), there is no neighborhood I5(xo) such that the sequence {uy,(-, t)} lies in a bounded sub-
set of L (Is(xo)). Otherwise, up to a subsequence, Un;(-, t) 2 fr in L®(I5(x0)) for some f; € L®(I5(xo)),
ft = 0. However, this would imply that us(-, t) = 0 in Is(xo), a contradiction.

Setting 6 = 1/k, we obtain that SuPpenllun (- Ollzeo(ry x(x0)) = 00 for all k € IN. Hence, for all k € IN, there
exists xox € I1/x(xo) such that up, (xok, t) > k. O
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Proof of Proposition 3.10. As pointed out above, it suffices to prove equality (3.20) by assuming (H5). Let
{un,} be as in the proof of Lemma 6.6. By Lemma 6.4, for every n; € N, there exists £, — 0 such that

Yar(,t) = un (-, t) inLp (R)asen — Oforae. te (0, T). (6.15)
By the proof of Lemma 6.5, forall t € (0, T),
g(y )( 0
02PN (-, O] - RPN, D] = oY) « =~ inR, (6.16)
where g(u) = H‘”(“)+K > 0. For every x <X, letp € CL((x, X)), p = 0. Multlplylng (6.16) by p/g(yy (-, 1)), inte-

grating by parts and setting ¥(y) := j'g L ALY (”) du, we find that

@' (Y8 Yy x)?
(a2

X 1 X X 1 X
| oo otenp" 0o +p'001dx < 7 [ 00 dx - | (6 0p() dx < [ p0o) dx
X x X X
(observe that by (H5) we have g’(u) > H + 1 > 0 and ¥ is bounded). Hence, by (6.15),

W (up,)(x, t)p' (x) dx %

122 o, 51

Ip(x) dx. (6.17)

Let xo € suppus(-, t), and let {xor} C R, {uyn,} be as in Lemma 6.6, for a.e. t € (0, T). Let X > x¢ be fixed.
Since xor — Xo, there exists k € N such that X > xoi for all k > k. Consider any sequence {pm} ¢ Cg((xok, X)),
0<pm <1, pm = Xxor,n in R. Without loss of generality, we may assume that both xox and X are Lebesgue
points of up, (-, t) for all k € IN. Setting p = pp, and x = xox in (6.17), and letting m — oo, we find that

W(up, )Xok, t) < W(up, )X, t) + %()‘( — Xxor) for all ny.

Since ¥ is continuous, by Lemma 6.6 and Remark 5.10 (recall that ¢ satisfies (C2), since ¢ is strictly concave
by assumption (H5)), letting ny — oo gives

W(uy)(x, t) + %()‘c -Xxp) = ¥Y(co) fora.e. X > xo,
whence, by the invertibility of ¥,
uy(x, t) >l (‘I’(oo) - %()‘c - xo)) for a.e. x > xg. (6.18)

Letting X — x{ in the previous inequality, we obtain (3.20). O
To prove Theorem 3.11, we need the following result.

Proposition 6.7. Let (H1) be satisfied. Let C, = 0, and let u be a solution of problem (P). Then, for a.e.
0<t;<t,<T,

(i) themap x — ®(x, t1, t2) jt @(u,)(x, t) dt belongs to BV(R),

(ii) forall xo,x1 € R, xg < X1,

u(-, t2)([xo0, x11) — u(-, t1)([xo0, x1]) = @(xy, t1, t2) - D(x7, t1, t2), (6.19)
u(-, t2)([xo, x1]) — uo([x0, x1]) = ®(xg, 0, t2) - D(x7, 0, t2). (6.20)
Remark 6.8. It is easily seen that for C,, # 0, equalities (6.19)—(6.20) are replaced by

u(-, t2)([xo, x11) = T, (ty-t) (U( -, 1)) ([x0, X1]) = DXy, t1, 2) = (X7, t1, t2), (6.21)
u(-, t2)([xo0, x11) = Te, 1, (o) ([xo0, x11) = D(xy, 0, t2) = P(x7, 0, t2),

where now
t

D(x, ty, tp) := I[(p(u,) - Cour](x + Cy(t - t1), t) dt. (6.22)

ty
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Proof of Proposition 6.7. (i) By (3.1), | f: ouy)(x, t)dt| < M fttlz u,(x, t) dt € LY(R). We argue as in the proof
of Proposition 3.8 (see (5.54)). There exists a null set N ¢ (0, T) such that

t+h
}lir%% J (u(-, t), p)rdt ={u(-,t),p)r forallp e C.(R)andt e (0, T)\ N. (6.23)

i
Lett1,t, € (0, T)\N,0<t1 <ty <T,pe C%(]R), and ¢(x, t) = gn(t)p(x), with g, as in (5.55). Since C,, = 0,
we obtain from (3.8) that

t1+h t2+h

1 1
= j (-, 0, prde - 3 j (-, 1), pw dt +

t; t

=TS

J gh()p' (X)) (x, t) dx dt = 0.
R

Letting h — 0, it follows from (6.23) that

(u(' s tZ)y P)]R - <Ll( ) tl)’ P)]R = J CD(X, tl, tz)P’(X) dx. (6~24)
R

Hence, the distributional derivative ®(x, t1, t>) belongs to M(R).
(ii) We set, form e Nand x € R,

pm(X) := m(x —Xo+ %)X[XO—%,XO] + X (xo,x1) (X) + m( X+ XA %)X[Xw{ﬁ%]'

By standard regularization arguments, we can choose p = p, in (6.24) to obtain

Xo X1+%
W 62), prdR — U £1), pr)R = M j O(x, t1, t2) dx - m j O(x, t1, t2) dx. (6.25)
XO—% X1

By the dominated convergence theorem, (u(-, t;), pm)r — u(-, t;)([xo, X1])asm — oo (i = 1, 2), whereas, by
part (i),
Xo Xp+
m J (D(Xs ty, tz) dx — (D(X(_)r t1, tz), m J ®(X7 t1, tz) dx — (D(X-{i t1, tz)

1 X
X0~ 1 1

Hence, (6.19) follows from (6.25). The proof of (6.20) is similar. O
Remark 6.9. Observe that, by (3.18) and (6.21) with xo = x; = x, all entropy solutions of problem (P) satisfy,

forae.0<t; <t <T,
O(x, t1, 1) < DK, ty,t) forallx e R,

with @ defined by (6.22).

Now we are ready to prove Theorem 3.11 and Proposition 3.14. As pointed out at the beginning of this section,
in doing so it is not restrictive to assume that (H5) holds.

Proof of Theorem 3.11. (i) By (6.20), fora.e.0 <t < T,
us(t)({xo}) = uos({xo}) + @(xg, 0, t) = D(x{, 0, t) = uos({Xo}) = 1Pllr(0,00) 5

whence ug(t)({xo}) > 0if t € (0, M). Hence, (3.21) follows.
(ii) Let u, be the entropy solution of problem (Pn) given by Proposition 4.5. We argue as in the proof
of Proposition 6.7. For all n € N, the map x — ®,(x, t1, t3) := Ltlz @(uy)(x, t) dt belongs to BV(R) and, for

ae.0<t;<ty<Tanda.e.xgp <x; € R,

X1 X1
J un(x, t2) dx - J Un(x, t1) dx = ®p(xg, t1, t2) — Ou(x7, t1, t2).
Xo Xo
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Letting x; — oo, it follows from (4.27) and (3.14) that
ty
j P (x, O dt < Juolwm forn € Nand a.e. x € R. (6.26)
t1
Let {y5"} be the subsequence used in the proof of Lemma 6.4. By (6.8) and (6.9), forevery0 < t; <t < T
and x € R,
‘ 1 ‘ Ho(/5™(x, s) + K K
e 1 Py, 8)+K g, K
J¢(yn )(x,s)ds = HJ ST st ds H(t t1)
t

ty

N Ho(yim)(x, t) + K T+ — ¢fi+1

HtH H+1
¢ ¢

t
J Pyn")(x, s)ds = j[qo(yim)(x, s) - Klogs]ds + K j log s ds

t1 t1 ty
> [(/5m) (x, ) — Klog £](t - t1) + K[tlog ¢ — t] — K[t1 log t, — t1] if H = 0.

—g(t—ﬁ) ifH #0,

Letting £,;, — 0, by (6.26), we obtain, for a.e. t € (t;, T) and a.e. x € R,

Ho(uy)(x, t) + K tH+1 — ¢+l g .
HeH He1 glot) iHH#O,

luollver) = Pn(x, t1, t) = ;
[o(un)(x, t) — K](t — t1) + Kt1 log o if H=0.
1

Letting t; — 0%, we find in both cases that

(H + Dlluollv(w)
t

oup)(x, t) < +K fora.e.te(ty,T)anda.e.x € R (6.27)

(recall that we have assumed H > -1 if ¢ is bounded; otherwise, if ¢ is unbounded, we have H > 0, since
@' >0and Hp + K > 0in [0, co) by (H5)). Iflim, o, @(u) =: y < 00, K < yand H > -1, the sequence {un( -, t)}
lies in a bounded subset of L>°(R) (thus, by (5.16) us(-,t) = 0 and u,(-, t) € L*(R)) for a.e. t € (0, T) such

that Hal Hil
(H + Duollviw) iK<y o t>( + )||uo||M(1R)'

t y-K
This proves claim (ii) (a).
If y = co, we have H > 0, since Hp + K > 0 in [0, co) (see (H5)). Then, by (6.27), the sequence {u,(-, t)}
lies in a bounded subset of L*(R) for a.e. t € (0, T), hence, by (5.16) as n — oo, we obtain that tyg = 0. Thus,
claim (ii) (b) follows. This completes the proof. O

Remark 6.10. As we claimed in Remark 3.13, in Theorem 3.11 (ii), we may relax hypothesis (H2) to (H3),
with k > 0. To prove this, for every ug € M*(Q), let {ug,} be any sequence as in (3.14)—(3.15), and let u, be
the entropy solution of problem (Pn). Set vo, := Gi(uon), where Gy (u) := (u — k)* for every u > 0, and let v,
be the entropy solution of the following problem:

OtVn + Ox[@r(vy)] =0 inS,
Vn = Von in R x {0}

(pr(u) = p(u + k) — (k). A standard calculation shows that G (uy) is an entropy subsolution of the above
problem, whence
Gi(up) <v, a.e.inS. (6.28)

Following the proof of Theorem 3.7, the sequence {v,} converges to an entropy solution v of problem (P)
with initial datum vo = ugs + G (uor). Moreover, by assumption (H3), ¢ satisfies (H2) and we may apply
Theorem 3.11 (ii) to v. Therefore, the conclusion follows from (6.28).
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Proof of Proposition 3.14. By the proof of Proposition 3.10, inequality (6.18) is satisfied fora.e. t € (0, T) and
all xo € supp us(-, t). We fix such t. Let x; € suppus(-, t) and setJ; := (x; — &, x1 + €) with € > 0. By (6.18),

J uy(x, t) dx > X] ‘I’_l(‘P(oo) - %(x - x1)) dx = ng-l(\P(oo) - }-t') dy =: Be.
J1 X1 0

Ifsupp us(-, t) ¢ Jq,letx, € suppus(-,t)\ JyandsetJ, :=(x; — €, x5 + €).Since (x1, x1 + €)N(x2, X2 + €) =0,
we have that

X1+€ X2+€
J uy(x, t)dx > j u,(x, t) dx + J u,(x, t)dx > 2B,.
J1UJ, X1 X2

We continue this construction recursively as long as supp us(-,t) ¢ J1 U---UJy_1, with Jp_1 := (xp-1 — &,
Xn-1 + €): there exists x, € supp ug(-, t)\ {J; U---UJ,_1} such that, setting J,, := (x, — €, X, + &),

nB, < j uy(x, 1) dx < [uolnecwy-
J,UUT,

Hence, this construction stops at some n = n, and n.B; < [[uoll(w). Therefore,
2¢e
suppus(-,t) cJpU---Udn,, [supps(-, Ol < I3 U---UTn| < 2nee < B—Iluollmam.
&

Since B;/e — oo as € — 0, the claim follows. O

7 Uniqueness: Proofs

Again, without loss of generality, we may assume that C, = 0 in the following proofs (see Remark 3.16).

Proof of Proposition 3.20. (i) The first step of the proof consists in showing that
esslimllu; (-, t) - uorl @ = 0. (7.1)

Let {ué} be the sequence of solutions to problems (4.3) considered in Section 4, and let {x;} I=1,...,N)
be as in (3.26). We set I} := (x;, xi41), Q1 :=I1 x 0, 7) (I=1,...,N-1), I_ := (00, x1), I := (xy, 00), and
Q+ :=L. x(0,71).

Lletl1<I<N-1landpe C%(Il),p > 0. Let hg > 0 be such that x + h € I; if x € suppp and |h| < hg. Let
8 > 0. Setting v&(x, t) := uS(x + h, t) and z := (ué - v&)(p + 5), we apply the L!-contraction property to the
parabolic equation

! "

2ep’ R g
oz + ou (R 205 )2| —eoiz= (75 + 05 ) = (@t — et + el ~ilo,
where . .
R —<p£(u;3 - ff(v”) ifug # vE,
= n n
oLud) otherwise.
Hence,

le(x, )| dx < le(x, 0)| dx + j |pe(us(x, ) — @ (Ui (x + h, £)|Ip" (X)| dx dt
II 11 0 II

T
iy J J]ui(x, t)—ub(x +h, t)|lp" ()| dxdt fort e (0, T).
00
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First we let § — 0 and then ¢ = ¢,, — 0, where {€,,} is as in Lemma 4.4. Hence,
Jlun(x, T) — up(X + h, T)|p(x) dx < J|u0n(X) — Uon(x + h)|p(x) dx
11 II

+ | [le@nx, ) = @ua(x + h, )|lp" (Ol dx dt (7.2)

I

Ot

fora.e. T € (0, T), where u,, is the entropy solution of problem (Pn) (n € IN). Since, by (5.16), un(-, t) = u(-, t)
in M(I;) for a.e. t € (0, T) and, by (3.19) and (3.26), us(-, t)L I; < ugsL I; = 0, the lower semicontinuity of the
total variation implies that for a.e. T € (0, T),

jlu,(x, T) —u;(x+h, 7)|p(x) dx < li,ﬂ%}olf Jlun(x, T) — up(x + h, 7)|p(x) dx.

I I
By (3.15), L [Uon(X) = uon(x + h)|p(x) dx — L luor(x) — uor(x + h)|p(x) dx. In addition, @(u) — @(u,) in
L1(Q)) for a subsequence {un;} of {un} (see Remark 5.10). Letting n = nj — oo in (7.2), we obtain, for
a.e.7€(0,7),

Jlur(x, 7) - ur(x + h, 7)|p(x) dx
I

< Jlum(X) — uor(x + h)|p(x) dx + J JI(p(ur(x, t) - pur(x + h, t)|lp' (x)] dx dt. (7.3)
11 0 Il

Let {5} c (0, T) be any sequence such that 7, — 0* and (7.3) is satisfied with T = 1,,. Since ug, € L*(R)
and @(u,) € L1(S), it follows from (7.3) and the Fréchet-Kolmogorov theorem that the sequence {u, (-, T,)p}
is relatively compact in L' (RR). Then, by (3.11) and a standard argument,

u(-, Ty)p = uorp  in LY(R). (7.4)
It follows from (3.8) and (3.13) that for each n € IN,

Tn
J[ur(x Tn) — Uor(X)]p(x) dx = J J @uy)(x, t)p' (x) dx dt. (7.5)
I[ 0 Il
For sufficiently small § > 0, the characteristic function yx,,x,+6)u(x,.1-6,x.,) €an be approximated by functions
Pk € C%(Il), Pk = 0 such that LI Ip;{(x)l dx < 4for all k € IN. Setting p = py in (7.5) and letting k — oo, we find
that

X +6 X131 X+6 X141
j Uy (x, Tp) dx + J Uy(x, Ty) dx < J Uor(x) dx + J Uor(x) dx + 4l @llLeo0,00)Tn- (7.6)
Xi X141—6 X1 X151-6

Since ug, € LY(R), for every ¢ > 0, there exists § > 0 such that

x1+6 X141
J Uor(x) dx + J Uor(x) dx < 0. (7.7)

X X116
Ifp e Cc(I;)issuchthatO<p < 1linl;, p =1in[x;+ 8, X141 — 6], then
[ur(-, Tn) = Uorl = lUur(-, Tn) = Uorlp + [Uur (-, Tn) = Uorl(1 = PIX (304 6) 0011 -6,x0) 1L

Hence, by (7.6) and (7.7),

Xi+6 Xi+1
jlur( -, Tn) — Uor| dx < 2{ J’ Uor dx + I Uor dX} + 4]l @llze0,00)Tn + Jlur( “, Tn) — Uorlp dx
I X1 X141—6 I

< Jlur(-,rn) — Uorlp dx + 4[@llr=(0,00)Tn + 20.
I
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Letting n — oo in the above inequality, by (7.4), we obtain that

lim sup J|ur( -, Tn) — Ugr| dx £ 20,
n—.oo
I

whence, by the arbitrariness of o,

lim Jlur(x, Tp) —Uor(x)|dx=0 (I=1,...,N-1).
n—.oo
I

A similar argument shows that fh luy(x, Tn) — Ugr(x)| dx — 0 as n — oo, thus (7.1) follows.
To complete the proof of (3.27), observe that by (3.19) we have us(-, t) < ups in M(R) (recall that C,, = 0,
by assumption). Hence,
(uos — us(+, ), PIwr = llus(-, £) — uosllvw)

forall p € C.(R) such that p(x) = 1 for every x € supp ugs. From the previous inequality, (3.11) and (7.1), we
get

ess limllus(-, €) — uosllvear) < esslim(uos — us(-, 1), PIr

= e§iloign {(uo —u(-, ), pIr - J(ur(x, t) — uor)p(x) dX} =0. (7.8)
R

Then (3.27) follows.
(i) Let {* € C1(Qs), {* =0, and for every 1 <1< N -1 let {; € CX(Qy), § = 0. Let hp > 0 be such that
(x + h, t) € Q (respectively (x + h, t) € Q) if (x, t) € supp {; (respectively if (x, t) € supp {x) and |h| < ho.
Let u be an entropy solution of problem (P), thus v(-, t) = T_,(u(-, t)) is an entropy solution of prob-
lem (P) with ug replaced by vo := T_,(uo) (see Remark 3.16). We shall prove, foralll=1,...,N - 1and {; as
above, that
”{Ivr — uy|0¢§1 + sgn(vy — up) [@(vy) — (ur)]10x 1} dx dt = O (7.9)
Q
and, for all {* as above,

”{Ivr — Up|0el* + sgn(vy — u)[@(vy) — (uy)]0x(*} dx dt > 0. (7.10)
Q:

Relying on (7.9)-(7.10) we can conclude the proof by an argument similar to that used in (i). Let
p € Ci(I}), 0 < p <1, be such that x + h € I; if x € suppp and |h| < ho. By a proper choice of the function
(in(7.9), fora.e. 0 < tg < t1 < T, we get
ty
Jlur(x, t1) = vi(x, t1)lp(x) dx < Jlur(x, to) = vr(x, to)lp(x) dx + jl(p(ur) - opllp' (0| dx dt.

I I to

Let to > O be fixed. Then, for every 1 € (to, T], there exists a sequence T, — T such that 7, € (to, T], and the
above inequality holds true with t; = 7, for every n, that is,

Jlur(x +h, ) = ur(x, To)|p(x) dx < Jlur(x +h, to) - ur(x, to)|p(x) dx
I I

T
10 leo j|go(ur<x +h,0) - pu(x, )| dx dt. (7.11)
0

Since ¢(u,) € L(S) and u,(-, to) € L1(R), inequality (7.11) and the Fréchet—Kolmogorov theorem imply that
the sequence {u,(-, Tp)p} is relatively compact in L'(R), whence, by Proposition 3.5 and a standard argu-
ment,

u (-, To)p = u (-, T)p  in LY(R). (7.12)
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Moreover, by arguing as in (7.6) and (7.7) with uo, replaced by u,(-, 7), for every o > 0, there exists § > 0
such that

x1+6 X1+1
j uy(x, T,) dx + J Ur(x, Tp) dx < 0 + 4|@llLe(0,00)|Tn — TI. (7.13)
X X416

As in the proof of claim (i), combining (7.12) and (7.13) gives

lim Ilur(x, ) —Uy(x,T)|dx=0, I=1,...,N-1
n—.oo
I

(by a similar argument, L lu,(x, Tn) — uy(x, T)| dx — 0 as n — o0o), whence
esslimfu,(-, ) - ur (-, Dl =0

Since Cy = 0, it follows from (3.18) that us(-, t5) < us(-, t1) in M(R) if t, > ¢1, whence, by arguing as in (7.8),
we also obtain

eS;ilTi;nllus( S -us(-, Dlvmw) = efilri}rlllus( ) —us(-, Dlwmw =0,

and claim (ii) follows.

Finally, it remains to prove (7.9) (the proof of (7.10) is analogous). Let 1 <I< N -1 and {; € C:(Q)),
{1 =0, be fixed as above. Since C, =0, it follows from (3.19) and (3.26) that us(-,t) =vs(-,t) =0 on
supp (-, t) fora.e. t € (0, T), and from (3.10) that, for k € [0, c0),

”{Iu, = kl0¢¢r + sgn(uy — K)[@(uy) — @(k)]0x§} dx dt > 0, (7.14)
Q
”{Ivr — k|0¢§ + sgn(vy — K)[@(vy) — @(k)]0x(i} dx dt > 0. (7.15)
Q

We apply Kruzkov’s method of doubling variables. Let Z; = Zj(x, t, y, S) € C}(Ql x Qp), Z; > 0. It follows from
(7.14)—(7.15) that

[[{we 0 - vi 9102100, .39
Q
+sgn(uy(x, t) — v, (y, $) [@ur(x, t)) — (v, (¥, 5))]0xZi(x, t, ¥, S)} dxdt >0

and
[[{m.9) - wix vloszix £ 3.)
S, 9) - il P, 5 - 9, )]0, Zx, 1,3, )} dy ds = 0,
whence
[ {1, 0 - v sii@izi+ sz, .32
e sgn(ur (x, £) = V,(y, [P (%, £) = PV, )](OxZi + 0y Z)(x, t, ¥, 9)} dx dt dy ds = 0.
We choose

Zix, t,y,8) = Z{(x, t, ¥, 8) := Qi(x, t)¢e(x —y, t =5) (> 0),
where (; is a smooth approximation of the Dirac mass §(o,0),

X

1 t .
L(x,y) = 8—26(E> U(E) >0, withsuppfc(-1,1),suppn c(-1,1).
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Then 0+Z; + 0sZ; = 0¢{1{s and 0xZ; + 0yZ; = 0x{1{¢, whence, for sufficiently small &,

Jm{'”’("' t) = vr(y, $)l0eGi(x, 1)

QxQ;
+sgn(ur(x, t) = v, (y, S)[pur)(x, t) — @(v)(¥, 5)]0x (1 (x, t)}(s(x -y, t-s)dxdtdyds = 0.

Now (7.9) follows by letting € — 0%, and we claim that

lim Jﬂjluﬂx, t)—vr(y, $)10: (X, ), (x -y, t—s)dx dtdyds = ”Iur(x, t) = ve(x, )[0¢C1(x, t) dx dt. (7.16)
€_>0+QI><QI Q

Analogously, it can be proven that, as €, — 0%,

ﬂﬂ sgn iy (x, ) — v, (5, )@ (X, £) — vy (¥s $)10x (X, e, (x — y, t — s)dx dt dy ds
0
- ” sgn(ur (X, £) - vy, SN[ (X, ) — @) (x, H]x(x, £) dx dt.
Q

In order to prove (7.16), for every sequence {¢,}, with £, — 0, we set

Fu, t) := ﬂmr(x, B~ vy, e, (x—y, t—s)dyds for (x, t) € Ky = supp {,
Q

and observe that F,;, — |u, — v, a.e.in (x, t) € K; and

Fu(x, 0] < uy(x, )] + ”wr(y, G, (X~ y, - ) dy ds
Q
= ur (6, O + (&, * [VeDOG ) = lur(x, O] + [ve(x, )] in LY(K)).

Thus, by a variant of the dominated convergence theorem (e.g., see [15, Theorem 4, Section 1.3]), we have
Fn = |uy — v;| in L1(K;), and we obtain (7.16). This completes the proof of (7.9), thus the result follows. [

Proof of Theorem 3.21. Without loss of generality, we may assume that ¢ is nondecreasing, see Remark 3.15.
By Theorem 3.11 (i),

T:=sup{t € [0, T) | ujs(-, t)({x;}) > Oforalll=1,...,N, i=1,2} > 0.

Let us first prove that
Uiy = Uy, a.e.inRx (0, 1). (7.17)

To this end, let x1, ..., xy be the points in (3.26). Set I; := (x;, x;+1), Q :=;x(0,7) (I=1,...,N-1),
I :=(-00, x1), I, := (xy,00), and Q. := I, x (0, 7). By arguing as in the last part of the proof of Propo-
sition 3.20 (ii) (in particular, see the proof of (7.9)-(7.10)), it follows that, for all I=1,...,N-1 and
§eCHQ), 1>0,

[[ s = wartongi + 10u10) - puan)x, D10 dxde > 0 (7.18)

Q
and, for all {* € C1(Q.), {* >0,

”ﬂuu U0t + 19 (uny) - (a0 LE(x, B} dxdt = 0 (7.19)
Q.

(recall that ¢, by assumption, is increasing). We must show that (7.18) and (7.19) imply (7.17). For this
purpose, let h € CL(0, 71), h > 0, and

1
PLp(X) = P(X - X1 - E)X Da+1/pxa+2/p) + X0a+2/p,xi-2/p) ()
1
—p(x ~ X1+ E)X[x1+1—2/p,x1+1—1/p)(x) (I=1,...,N-1),
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with p € N sufficiently large. By standard approximation arguments, we may choose {; = {; , := p,p(x)h(t) in
(7.18) to get
0 < [[{lusr - warlprpCOR'©) + 191 - @Gw20lp} , CORD} dx . (7.20)
Q
By the dominated convergence theorem, as p — oo,
T X141

[t = warlprpCoR @ dxde = [ den'(©) [ sy -l .

Q 0 Xq
Since pf’p(x) = PX(a+1/p,xa+2/p)(X) = PX(xis1-2/p,xaa—1/p)(X) @and ¢ is bounded, it follows from (3.20) and the
dominated convergence theorem that

2

T X1+E
timsup {[Ip(usr) - pluznlp}, (Rt dx e < | h(t)( Jimp [ lpi) - @Gl dx) dt=o.
Q 0 X+l

Hence, by (7.20),

T Xi+1
j dth'(t) j U1 (6, ) — uzr(x, B)] dx = 0
0 Xq

and, by a proper choice of h,
lurr(-, 6) —uz (-, Ol < luar(-, t1) —u (-, t)llrg,) foreveryO<t; <t<rt (7.21)

(recall that u; € C((0, T]; M(RR)), i = 1, 2, by Proposition 3.20 (ii)). Letting t; — 0", it follows from (3.28)
that llui (-, t) —uz (-, gy =0 for ae. t € (0,7) and all [=1,...,N - 1. Similarly, we can prove that
luir(-, ) = uze(+, Ollzrgur,) = 0 fora.e. t € (0, 1), so we have proven (7.17).

Next let us prove that

Uy = uy in M(Rx (0, 7)). (7.22)
By (3.8) and (7.17), for every { € C([0, 7]; C:(R)), with {(-, ) = 0 in R, we have
T
j<u15< B = a1 0), 04+, D) g dt = ”{(ulr — w500 + (@) — (u1n)]0x¢} dx dt = .
0 S

Arguing as in the proof of Lemma 6.1, there exists anull set Fy ¢ (0, 7) such that (uys(-, t) — uzs(-, t),p)r =0
forallt € (0,7)\ Fpand p € CL(R). Hence, u; = u in L*°(0, 7; M(R)) and, by (7.17), equality (7.22) follows.

If T = T, the proof is complete. Otherwise, there exist N; < N different points x;, € {x1, ..., xy}such that
uis(-, T)({xy,}) >0 foreach k=1,...,N; and i = 1, 2; moreover, for every point x; € {X1, ..., XN}, X1 # X1,
it follows from (6.20), with xo = x1 = x7, that uys(-, T)({x1}) = uas(-, T)({x1}) = 0, since @(u1,) = p(uzy) in
R x (0, ) by (7.17). Then we set

Ty :=supf{t e 7, T) | uis(-, )({xg,}) >0forallk=1,...,Ny, i=1,2}.

We can argue as in the proof of (7.17) to obtain that inequality (7.21) holds for every T < t; < t < 74. Since
ujy € C((0, T]; M(IR)), i = 1, 2 (see Proposition 3.20 (ii)), and uy,(-, ) = uy (-, 1), letting t; — 7*, we get
Uyy = Uyy a.e. in R x (1, 71) (Whence, also, u; = u> in M(R x (7, 71)) and the proof is completed in a finite
number of steps. O

Let us finally prove Proposition 1.1.

Proof of Proposition 1.1. A calculation proves that the solution defined by (1.3) if p < 0, respectively, by
(1.4) if 0 < p < 1 is an entropy solution of problem (1.1)-(1.2). If p < 0, the solution also satisfies (3.20) for
0 < t < 1and (3.28), so claim (i) follows from the uniqueness result in Theorem 3.22.If 0 < p < 1, uniqueness
of entropy solutions such that us(t) = 0 for t > 0O and u, € L°(R x (7, T)) for T € (0, T) can be used (the proof
of this uniqueness result is very similar to that given in [19], thus we omit the details; see also Remark 3.24).
Hence, claim (ii) follows. O
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Remark 7.1. It is instructive to describe the approximation procedure which gives the solutions mentioned
in Proposition 1.1. Consider the family of approximating problems
Otlin + Ox[@(un)] =0 ins§,
. (7.23)
= —)((_; 1 in R x {0},

with ¢ given by (1.2). It is easily seen that the entropy solution of (R,) is

1
if x > |plt + o
nplt \v5 . 1 2 \l-»p 1
" nx—l) -1 1f|p|t+;>x2(n+2) |p|t+5,
UnlX, 1) := 1 n . 2 \1-p 1 2(sgnp)/n+2\p 1
" i(=2) Plples Lo xs 28D (M2 g L
. 2(sgnp)r/n+2\p 1
o 208D a2y 1o
for0<t<ty:= —m——mm. At t = t, a shock x = &(t) stems from x = x, := * (p(%)jq’:(%), which solves the
p(3)-39'(5) n o(3)-5¢'(3)
problem
WP (&n(D), 1) (ptyss g
{,ﬁ(t)=¢ sgn pn"(_—1 ift > ty,
n (in(t),t) ("'plt)lf -1
&nltn) =x
Hence, for t > t,,, the entropy solution of (7.23) is
1
0 if x> |plt+ =,
if x> |p| +n

= 1
Un(x, t) = (n’;(“’i'a)”—l if [plt + — > x 2 &alh),

0 if £,(6) > x.

Letting n — co, we obtain the entropy solution defined in parts (i) (if p < 0) and (ii) (if 0 < p < 1) of Proposi-
tion 1.1.
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