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Graphene is a material of particular interest for the implementation of sensors, and the ultimate performance of devices based on
such a material is often determined by its flicker noise properties. Indeed, graphene exhibits, with respect to the vast majority of
ordinary semiconductors, a peculiar behavior of the flicker noise power spectral density as a function of the charge carrier
density. While in most materials flicker noise obeys the empirical Hooge law, with a power spectral density inversely
proportional to the number of free charge carriers, in bilayer, and sometimes monolayer, graphene a counterintuitive behavior,
with a minimum of flicker noise at the charge neutrality point, has been observed. We present an explanation for this stark
difference, exploiting a model in which we enforce both the mass action law and the neutrality condition on the charge
fluctuations deriving from trapping/detrapping phenomena. Here, in particular, we focus on the comparison between graphene
and other semiconducting materials, concluding that a minimum of flicker noise at the charge neutrality point can appear only
in the presence of a symmetric electron-hole behavior, a condition characteristic of graphene, but which is not found in the
other commonly used semiconductors.

1. Introduction

In the actual operation of electronic devices, random fluctu-
ations (the “noise”) are always superimposed to the deter-
ministic electrical quantity (the “signal”) which conveys the
desired information. Such fluctuations derive from underly-
ing microscopic phenomena and in sensors they may limit
the achievable sensitivity or, as in the case of fluctuation-
enhanced sensing [1], contribute to the improvement of
sensor performance, in particular in terms of selectivity. Sev-
eral forms of random electrical fluctuations may exist in
electronic devices: shot noise, thermal noise, generation-
recombination noise, burst noise, and 1/f (flicker) noise, just
to cite the main ones [2–9]. They differ for their physical ori-
gin and for the dependence of their power spectral density
on the physical parameters characterizing the device opera-
tion, such as temperature, frequency, bias current, charge
density, and material resistivity.

In particular, understanding the physical mechanisms
that govern the intrinsic noise of electronic devices, and in
particular of sensors, can significantly help the designer in
the choice of the best material for their fabrication and of
the optimal bias point for their operation.

Here, we focus on 1/f (flicker) noise, so called from the
behavior of its power spectral density, which is inversely
proportional to the frequency. This type of noise mainly
originates from trapping and detrapping of charge carriers,
due to impurities (traps) located inside or near the channel
where the device current flows. In general, its amplitude is
therefore proportional to the trap concentration.

The power spectral density of the 1/f current noise is
often approximated with the empirical Hooge formula [10]:

SI =
αHI

2

Nf
, ð1Þ
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where αH is Hooge’s constant, I is the mean bias current, N is
the number of carriers in the device, and f is the frequency.
According to this formula, 1/f noise should be greater when
the number N of carriers in the device is lower. This is actu-
ally what is generally observed in ordinary semiconductors
[11, 12], such as silicon or gallium arsenide. However, a dif-
ferent behavior has been observed in measurements per-
formed on graphene samples.

Monolayer graphene is a recently isolated material
[13] made up by a planar hexagonal lattice of carbon
atoms. It is a semiconductor with a zero energy gap
[14–19], even though an energy gap can be introduced,
for example, by lateral confinement [20–22], strain [23, 24],
doping [25–27], functionalization [28, 29], or introducing a
lattice of antidots in the material layer [30, 31]. Its disper-
sion relations around the degeneration points between
conduction and valence bands (the so-called Dirac points,
i.e., the charge neutrality points) are linear and thus in
graphene charge carriers present a zero effective mass.
Since its isolation from graphite, it has been the focus of
a large research effort (which has more recently extended
to a wider family of two-dimensional materials [32–34]),
because it possesses very attractive electrical, thermal,
optical, and mechanical properties [35–47]. Moreover,
graphene exhibits very uncommon physical phenomena
[48–50], typical of relativistic mechanics, because its effec-
tive mass transport equation coincides with the Dirac
equation [18, 51, 52] (the wave equation which describes
relativistic spin-1/2 particles). Bilayer graphene is instead
made up of two coupled graphene layers [14, 15, 53–56].
Bilayer graphene with Bernal stacking has nonlinear dis-
persion relations with a zero gap; however, an energy
gap can be easily induced applying an orthogonal electric
field, which introduces a shift between the electrochemical
potentials of the two layers.

Graphene is of particular interest for the implementation
of sensors because of its quasi-two-dimensional nature,
which leads to a very large surface-to-volume ratio: since
the interaction of a sensor with an analyte mainly occurs as
a result of surface adsorption, while conduction is a bulk
property, a large surface-to-volume ratio will lead to a large
relative variation of resistance when the sensor interacts with
the analyte.

In graphene, measurements of flicker noise power
spectral density as a function of the charge density (usu-
ally tuned adjusting a gate voltage) have shown a variety
of different behaviors [57–70]. While in most monolayer
samples a “Λ”-shaped behavior was observed [60–63],
analogous to that of common semiconductors, in sus-
pended monolayer graphene and in most bilayer samples
an “M”-shaped (or “V”-shaped) behaviorwasmeasured,with
a local minimum of flicker noise near the Dirac point,
where the carrier density is lowest [58, 59, 61–69], in con-
trast with what would be expected from Hooge’s formula.
Several explanations have been proposed to understand
this behavior [61, 62, 64–66, 68].

An interesting theory [71] exploited the electrostatic
screening of the trapped carriers and the peculiar properties
of the graphene band structure to explain the observed fea-

tures. We have developed a different approach [72] that
leads to analogous results, exploiting a model based on the
conservation of charge neutrality and on the mass action law
(which has to be satisfied if the main fluctuations in flicker
noise are slow compared to the generation-recombination
times of carriers).

Here, we extend this model to the case of generic
semiconductors, and we use it to explain the origin of this
discrepancy between the behavior observed in graphene
samples and that typical of common semiconductors. In
particular, we show that a minimum of the 1/f noise at
the charge neutrality point is expected in materials (such
as graphene) where electrons and holes have an identical
mobility, in the presence of a quite low potential disorder.
This is actually the case of suspended graphene or of
bilayer graphene (where the electrostatic effect of ran-
domly located charged impurities is strongly screened).
In common semiconductors, where the electron and hole
behavior is in general different [50, 73], this local mini-
mum in the flicker noise power spectral density is much
less apparent and is totally suppressed by the inevitable
presence of potential disorder.

2. Simulation Model

In order to relate the (microscopic) phenomena, consisting in
the motion of the charge carriers and their capture and
reemission by the traps to the (macroscopic) currents at the
terminals of the device, we can use the Ramo-Shockley theo-
rem [74, 75] (then generalized by Pellegrini with the electro-
kinematics theorem [71, 76, 77]). We assume the scattering
phenomena to take place on timescales much faster than
the considered trapping/detrapping events, in such a way as
to be able to actually define a drift current. The current at
the terminals is given by

i =
ð
A
q −v!nn x, yð Þ + v!pp x, yð Þ
� �

⋅ F
!

x, yð Þdxdy

=
ð
A
q μnn x, yð Þ + μpp x, yð Þ
� �

E
!

x, yð Þ ⋅ F! x, yð Þdxdy,
ð2Þ

where q is the modulus of the elementary charge; v!n and v!p

are the drift velocities of electrons and holes, respectively; F
!

ðx, yÞ is the electric field that would be produced in the point
with coordinates ðx, yÞ by a unit potential applied to the elec-
trode for which we want to compute the current (while the
other electrode is grounded and in the absence of mobile

charges) [74]; E
!ðx, yÞ is the electric field actually present in

the device; μn (μp) and n (p) are the mobilities and surface
densities of electrons (holes); and A is the area of the device,
equal to the product of the width W and the length L. Since

F
!ðx, yÞ is an electric field per unit applied potential, thus
the ratio of an electric field to the applied potential, it has
the dimension of the reciprocal of a length. The actual func-

tional dependence of F
!ðx, yÞ is influenced by the details of

the contacts and by the aspect ratio of the device. The
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component of F
!ðx, yÞ along the drift velocity of each charge

(and thus along E
!ðx, yÞ) represents the weight with which

the carrier motion in each point of the device contributes
to the total current, thus being analogous to the sensitivity
coefficient introduced by Vandamme et al. [78–80]. Since
for the purpose of the present study the relative weight
of the contributions from the different regions of the

device is not essential, we will assume a constant F
!ðx, yÞ

(equal to 1/L and parallel to E
!ðx, yÞ), i.e., a uniform sensi-

tivity coefficient.
In this approximation, the instantaneous current at the

contacts is given by [72]

i = 1
L

ð
A
q µnn + µpp
� �

Edxdy: ð3Þ

In the case of three-dimensional devices, this integral has
to be replaced with an integral over the volume V , and n and
p become volumetric densities (instead of surface densities).
The average current can be written as

I = q µnn + µpp
� �

EW: ð4Þ

If, as it is usually the case [71], the effect of trapping and
detrapping events on carrier densities is by far prevalent with
respect to that on the mobilities and on the electric field, we
can express the current fluctuations due to carriers being
trapped and detrapped as

Δi = 1
L

ð
A
q µnΔn + µpΔp
� �

Edxdy, ð5Þ

where Δn and Δp are the fluctuations of electron and hole
concentrations, respectively. Therefore, the ratio of the cur-
rent fluctuation to the average current is equal to

Δi
I
= 1
A

Ð
A μnΔn + μpΔp
� �

Edxdy

μnn + μpp
� �

E

≃
μn
Ð
AΔndxdy + μp

Ð
AΔpdxdy

A μnn + μpp
� �

=
μnΔN + μpΔP

μnN + μpP
,

ð6Þ

where the total number of electrons and holes in the area
A have been defined as N = Ð Andxdy and P = Ð Apdxdy,
respectively, while their variations as an effect of the
trapping-detrapping phenomena have been indicated with
ΔN and ΔP.

In order to compute ΔN and ΔP, we use the following
approach [72] (which differs from that used in Ref. [71]
but leads to similar results). Let us consider a single trap,
and let us define χ the number (0 or 1) of electrons in the

energy level of the impurity affected by the trapping
events. In the following, we will indicate with Δ the varia-
tions with respect to the values with no trapped electron
(i.e., when no electron is trapped all the variations Δ are
zero). When an electron or a hole is trapped, the number
of the corresponding charge carriers varies instantaneously
by one, but, over time intervals exceeding the thermal
generation-recombination time, the mass action law and
electroneutrality must be satisfied. Therefore, for a generic
variation Δχ of the number χ of electrons in the trap
(Δχ = χ, since Δχ = 0 if no electron is trapped, while Δχ = 1
if one electron is trapped), the variations ΔN and ΔP of car-
riers in the device have to satisfy

NΔP + PΔN = 0,
ΔP − ΔN − Δχ = 0:

(
ð7Þ

The first relation of Equation (7) can be obtained differ-
entiating the relation PN = c (i.e., the mass action law with
both members multiplied by the square of the area A).
(Equivalently, it can be obtained noting that the mass
action law has to be valid both before and after the exam-
ined trapping event. Therefore, both ðΔP + PÞðΔN +NÞ = c
and PN = c have to be satisfied; subtracting the two equa-
tions and neglecting the second-order term ΔPΔN with
respect to the other ones, the first relation of Equation (7)
is obtained.) The quantity c is a constant which generally
depends on the type of semiconductor and on the temper-
ature, and thus, it does not change as a consequence of
trapping events. Even in the case of graphene, in which
c depends also on the position of the Fermi level [81],
we can assume its variation due to a trapping event to
be negligible.

The second relation of Equation (7) enforces the elec-
troneutrality of the device: assuming that the overall
device, including the bias electrodes, was neutral before the
examined event, the total change of charge deriving from
the trapping event has to be zero: qΔP − qðΔN + ΔχÞ = 0
(see Figure 1), where we have included the variations in
the number of free holes, of free electrons, and of elec-
trons captured by the trap, which all contribute to the
total charge.

−qΔ𝜒

h+

+qΔP

e−

−qΔN

Figure 1: Variation −qΔχ of the charge in the considered trap
(indicated with a square) and corresponding variations −qΔN
and +qΔP of the charge due to the electrons and the holes in
the surrounding region, which screen its electrostatic effect.

3Journal of Sensors



The system of Equation (7) has the following solutions:

ΔN = −
N

P +N
Δχ,

ΔP = P
P +N

Δχ:

ð8Þ

In these solutions, the quantities N and P appear only
through their ratio; therefore, the exact choice of the area
where N and P are evaluated is irrelevant.

As can be seen from Equations (7) and (8), the necessity
to satisfy both the mass action law and electroneutrality
uniquely determines the values of the variations ΔN and ΔP
deriving from a trapping event: these electron and hole
fluctuations are therefore fully correlated.

Substituting these expressions into Equation (6), we obtain

Δi
I
=
μn ΔN/Δχð Þ + μp ΔP/Δχð Þ

A μnn + μpp
� � Δχ

= 1
A μnn + μpp
� � μpP − μnN

P +N
Δχ:

ð9Þ

Therefore, for a single trap, we have (SI is the flicker noise
power spectral density):

SI
I2
=

μn ΔN/Δχð Þ + μp ΔP/Δχð Þ
A μnn + μpp
� �

0
@

1
A

2

Sχ

= 1
A μnn + μpp
� � μpP − μnN

P +N

0
@

1
A

2

Sχ,

ð10Þ

where, neglecting the contribution of the average value, Sχ has
a Lorentzian dependence on frequency, with a characteristic
relaxation time (since Δχ is a random telegraph signal) [82].

If we suppose the many traps present in the device to be
reciprocally independent, the overall noise spectrum can be
obtained summing up their spectra. The combination of the
effects of traps with properly distributed time constants leads
then to 1/f noise [83, 84]:

SI
I2
= η

A

μn ΔN/Δχð Þ + μp ΔP/Δχð Þ
μnn + μpp

 !2 1
f γ

= η

A
1

μnn + μpp

μpP − μnN

P +N

 !2 1
f γ

,
ð11Þ

with η being a coefficient which depends on the concentra-
tion, distribution, and properties of the traps, while γ is a
number close to 1.

We will report the flicker noise power spectral density as
a function of n − p (i.e., the charge density divided by −q),
which in actual experiments is the quantity that can be
adjusted by tuning the bias voltage of a gate capacitively
coupled to the device.

From Equation (8), we can observe that if the electron
concentration is much larger than that of holes, i.e., when
N ≫ P, we have ΔN≈−Δχ while ΔP ≈ 0, i.e., the variation in
the trap charge is completely screened by electrons. In a sim-
ilar way, when the hole concentration strongly dominates
(i.e., P≫N), ΔP ≈ Δχ and ΔN ≈ 0, which means that the trap
charge variation is completely screened by holes. In interme-
diate conditions, the variation in the trap charge is screened
by variations of both electron and hole concentrations. In
particular, at the neutrality point (when N = P), the trap
charge is screened for a half by a variation of the hole number
and for the other half by an opposite variation of the electron
number: ΔN = −Δχ/2 and ΔP = Δχ/2.

From Equation (11), we observe that the flicker noise
power spectral density SI vanishes when μpP − μnN = 0.
The behavior of SI is symmetrical around this point if μn
and μp coincide; otherwise, such a symmetry is absent. If
μn = μp, the point in which SI vanishes and around which
SI is symmetrical is the charge neutrality point (where N −
P = 0); this condition is obtained for a Fermi energy corre-
sponding to the middle of the gap between the conduction
and valence bands if such bands are symmetric.

The quantities N and P depend, through the energy dis-
persion relations, on EF, i.e., on the relative position of the
Fermi energy with respect to the local value of the potential
energy. However, the nonuniform distribution of charged
dopants and impurities (including the randomly located
charged traps themselves) introduces a potential disorder
(i.e., a random spatial variation of the potential energy)
which can substantially alter this result. In order to introduce
the effect of this random spatial energy variation in our calcu-
lations, for each value EF of the Fermi energy we average our
results over a Gaussian distribution of energies around EF:

SIh i
I2

= η

Af γ

ð+∞
−∞

μn ΔN/Δχð Þ EF + εð Þð Þ + μp ΔP/Δχð Þ EF + εð Þð Þ
μnn EF + εð Þ + μpp EF + εð Þ

 !2

P εð Þ d εð Þ

= η

A f γ

ð+∞
−∞

1
μnn EF + εð Þ + μpp EF + εð Þ

μpP EF + εð Þ − μnN EF + εð Þ
P EF + εð Þ +N EF + εð Þ

 !2

P εð Þdε,
ð12Þ
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where

P εð Þ = 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp −
ε2

2σ2
� �

ð13Þ

represents a normalized Gaussian distribution with null aver-
age and standard deviation σ.

The standard deviation σ of this Gaussian represents
an estimation of the effect on the potential profile, and
thus on the relative position EF of the Fermi energy with
respect to the potential energy, of the random charged
impurities which represent the sources of the potential dis-
order. Therefore, the value of σ does not depend only on
the “strength” of the disorder sources but also on the elec-
trostatic screening efficiency of the material, which can be
estimated through the derivative ∂ðn − pÞ/∂EF (or from the
quantum capacitance, which is proportional to it [45]). If
this derivative is larger, the same charged impurities
induce a smaller variation of EF (and thus a smaller σ),
since this smaller variation of EF is sufficient to screen
the electrostatic effect of impurities through an opposite
variation of the mobile charge density −qðn − pÞ.

When including potential disorder, we will report
the flicker noise power spectral density as a function of
hn − pi, i.e., n − p averaged over the same Gaussian distribu-
tion of energies:

n − ph i =
ð+∞
−∞

n EF + εð Þ − p EF + εð Þð ÞP εð Þdε: ð14Þ

The average over the potential disorder (see Equation
(12)) decreases the dependence of the noise spectrum on
the charge density, with a smoothing effect which increases
with the disorder strength.

3. Graphene

First of all, let us analyze the case of monolayer and bilayer
graphene (with Bernal stacking). In this material, the electron
and hole bands are approximately symmetric and μn = μp.
Therefore, Equation (6) becomes

Δi
I

= ΔN + ΔP
N + P

: ð15Þ

Analogous simplifications can be performed in Equations
(9)–(12); for example, Equation (11) becomes

SI
I2

= η

A
1

n + p
ΔN + ΔP

Δχ

� �2 1
f γ

= η

A
1

n + p
P −N
P +N

� �2 1
f γ

:

ð16Þ

For graphene, we compute the carrier concentrations
n and p by integrating the product of the density of

states and of the occupation function over the whole
energy range:

n =
ð∞
0
DOS Eð Þf E − EFð ÞdE,

p =
ð0
−∞

DOS Eð Þ 1 − f E − EFð Þð ÞdE,
ð17Þ

where DOS is the density of states and f is the Fermi-
Dirac occupation function for electrons (therefore, 1 − f
is the occupation function for holes). The DOS, in
turn, depends on the dispersion relations of monolayer
graphene or bilayer graphene, i.e. [14, 18, 53, 54]:

Em κð Þ = ±γκ,

Eb κð Þ = ± γ21
2 + Δ2

4 + γ2κ2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ41
4 + γ21 + Δ2� �

γ2κ2

r !1/2

,

ð18Þ

where κ is the difference between the wave vector and the
Dirac point, γ = ℏvF (with ℏ the reduced Planck constant
and vF = 8:73 × 105 m/s the Fermi velocity of graphene),
γ1 = 0:39 eV is the graphene interlayer coupling, and Δ
(the term which is responsible of the possible band gap
opening) is the difference between the on-site energies in
the two layers, which is approximately proportional to
the carrier concentration n − p (more in detail, Δ ≈ 1:4 ×
10−18 eVm2 × ðn − pÞ).

In Figures 2–5, we report some results obtained for
graphene at 300K, without potential disorder averaging.
Figures 2 and 3 refer to monolayer graphene, while
Figures 4 and 5 refer to bilayer graphene.

In Figures 2 and 4, we report the quantities ΔP/Δχ and
ΔN/Δχ (evaluated from Equation (8)) as a function of n − p
(for monolayer and bilayer graphene, respectively). As in
the general case, the charge variation in the traps is mainly
screened by holes when the holes are the dominant car-
riers, while it is mainly screened by electrons when the

ΔN/Δ𝜒

ΔP/Δ𝜒

n−p (1012/cm2)

 1

 0.5

 0

−0.5

−1

0−5 −4 −3 −2 −1 54321

Figure 2: Behavior of ΔP/Δχ and ΔN/Δχ as a function of n − p, for
monolayer graphene at 300K.
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electrons are the dominant carriers. It is instead symmetri-
cally screened by electrons and holes in the charge neu-
trality point.

In Figures 3 and 5, we report the quantity ðSI/I2ÞðAf γ/ηÞ
(evaluated from Equation (11)) as a function of n − p (for
monolayer and bilayer graphene, respectively). Since in
graphene μn = μp, the behavior of the flicker noise power
spectral density is exactly symmetrical with respect to the
neutrality point. In particular, in the charge neutrality point
(Dirac point), where ΔN = −Δχ/2 and ΔP = Δχ/2, the fluctu-
ation of the current (and therefore the noise power spectral
density) completely vanishes (see Equation (16)). Comparing
Figures 3 and 5, we notice that the dip around the Dirac point
is wider in bilayer graphene than in monolayer graphene, as a
consequence of their different dispersion relations.

In Figures 6 and 7, we show analogous results obtained
averaging the spectrum of monolayer (Figure 6) and bilayer
(Figure 7) graphene at 300K over potential disorder. In
particular, we report the value of ðhSIi/I2ÞðAf γ/ηÞ (i.e., the
integral appearing in Equation (12)) as a function of hn − pi
(i.e., the charge density divided by the electron charge,

 1

 0.5

 0

−0.5

−1

0−5 −4 −3 −2 54321−1

ΔN/Δ𝜒

ΔP/Δ𝜒

n−p (1012/cm2)

Figure 4: Behavior of ΔP/Δχ and ΔN/Δχ as a function of n − p, for
bilayer graphene at 300K.
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Figure 5: Behavior of ðSI/I2ÞðAf γ/ηÞ as a function of n − p, for
bilayer graphene at 300K, in the absence of potential disorder.
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Figure 6: Behavior of ðhSIi/I2ÞðAf γ/ηÞ as a function of hn − pi, for
monolayer graphene at 300K. The averages have been performed
over four Gaussian distributions of potential disorder with
standard deviations σ = 10, 20, 30, and 40meV, respectively.

(S
I/I

2 ) (
A
f
𝛾
/𝜂

) (
ar

bi
tr

ar
y 

un
its

)

 0

 3

 2.5

 2

 1.5

 1

 0.5

0−5 −4 −3 −2 −1 1 52 3 4

n−p (1012/cm2)

Figure 3: Behavior of ðSI/I2ÞðAf γ/ηÞ as a function of n − p, for
monolayer graphene at 300K, in the absence of potential disorder.
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Figure 7: Behavior of ðhSIi/I2ÞðAf γ/ηÞ as a function of hn − pi, for
bilayer graphene at 300K. The averages have been performed over
four Gaussian distributions of potential disorder with standard
deviations σ = 10, 20, 30, and 40meV, respectively.
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averaged according to Equation (14)). Both for monolayer
and bilayer graphene, we show the results for the following
four different values of σ: 10, 20, 30, and 40meV. In both
cases, we observe that the minimum of the spectrum at the
charge neutrality point tends to disappear increasing the
strength of the disorder: therefore, the behavior of the flicker
noise power spectral density evolves from an “M”-shaped
one to a “Λ”-shaped one. However, as we can deduce from
the corresponding values of ∂ðn − pÞ/∂EF (which in the
charge neutrality point is equal to about 7 × 1012 cm−2 eV−1

in monolayer graphene and to about 44 × 1012 cm−2 eV−1 in
bilayer graphene), the screening of potential fluctuations is
about six times larger in bilayer graphene than in monolayer
graphene. This is a consequence of the different dispersion
relations of the two materials, with bilayer graphene charac-
terized by flatter bands near the Dirac points [50]. Therefore,
for similar impurity distributions, values of σ should be con-
sidered for monolayer graphene that are approximately six
times larger than those considered for bilayer graphene. As
a consequence, for realistic values of disorder, monolayer
graphene does not usually exhibit a minimum of the flicker
noise power spectral density at the charge neutrality point.
On the contrary, in sufficiently clean samples of bilayer gra-
phene, an “M”-shaped behavior is often observed, with a
minimum at the Dirac point. A similar “M”-shaped behavior
has been observed also in the case of suspended monolayer
graphene, for which potential disorder is much weaker than
for monolayer graphene on a substrate.

4. Ordinary Semiconductors

Let us now move on to the case of ordinary semiconductors,
such as silicon and gallium arsenide, for which a minimum of
the flicker noise power spectral density at the charge neutral-
ity point has never been experimentally observed.

Also in this case, we can adopt the numerical procedure
described in Section 2, substituting (in the case of 3-
dimensional channels) areas with volumes. In order to sim-
plify the calculations and to reach general results, we neglect
the details of the band structure of the materials and, assum-
ing a constant effective mass, we use the semiclassical expres-
sions for the carrier concentrations [85, 86]:

n =NC exp −
EC − EF
kBT

� �
,

p =NV exp −
EF − EV
kBT

� �
,

ð19Þ

where EC is the conductance band minimum, EV is the
valence band maximum, kB is the Boltzmann constant, and
T is the absolute temperature.

In particular, we perform our calculations using the
material parameters for silicon and for gallium arsenide.

For silicon, we consider the following parameters: NC =
2:82 × 1019 cm−3, NV = 1:04 × 1019 cm−3, EG = 1:12 eV, μp =
450 cm2/ðV sÞ, and μn = 1400cm2/ðV sÞ.

Instead, for gallium arsenide, we assume the following:
NC = 4:7 × 1017 cm−3, NV = 7:0 × 1018 cm−3, EG = 1:42 eV,
μp = 400 cm2/ðV sÞ, and μn = 8500 cm2/ðV sÞ.

In Figures 8 and 9, we report the results obtained for sil-
icon at 300K without potential disorder averaging. More in
detail, in Figure 8, we show the ratios ΔP/Δχ and ΔN/Δχ
(evaluated according to Equation (8)) as a function of n − p,
while in Figure 9, we report the behavior of the quantity ðSI
/I2ÞðAf γ/ηÞ (evaluated according to Equation (11)) as a func-
tion of n − p.

In Figures 10 and 11, we report the analogous results
for gallium arsenide at 300K without potential disorder
averaging.

As we see from the reported parameters, contrary to gra-
phene, these semiconductors have quite different mobilities
for electrons and holes. This is the reason of the clear asym-
metry observed in the results, with a larger noise spectrum in
the region where transport is dominated by electrons, i.e., the
carriers with higher mobility. We can also observe that the
asymmetry is stronger in gallium arsenide, for which the dif-
ference between electron and hole mobility is larger. Due to
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Figure 8: Behavior of ΔP/Δχ and ΔN/Δχ as a function of n − p, for
silicon at 300K.
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Figure 9: Behavior of ðSI/I2ÞðAf γ/ηÞ as a function of n − p, for
silicon at 300K, in the absence of potential disorder.
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the difference in mobility, the spectrum does not vanish any
more at the charge neutrality point (where n − p = 0) but
where μpP − μnN = 0. Moreover, with respect to graphene
(for which, in the absence of disorder, this vanishing point
presented a sharp reduction of the spectrum with respect to
both the hole-dominated and the electron-dominated con-
duction regions), here, due to the spectrum asymmetry,
the minimum point is much less prominent. Indeed, espe-
cially in the case of gallium arsenide, it is nearly indistin-
guishable from the hole-dominated region, where the
spectrum is already very low.

Therefore, when the effect of potential disorder is intro-
duced, by averaging over a Gaussian energy distribution with
standard deviation σ according to Equation (12), the local
minimum of the spectrum completely disappears and the
spectrum exhibits a “Λ” shape, with a maximum centered
in the electron-dominated region, where the mobility is
larger. The behavior of ðhSIi/I2ÞðAf γ/ηÞ (i.e., the integral
appearing in Equation (12)) as a function of hn − pi (given
by Equation (14)) is reported in Figures 12 and 13, at
300K, for silicon and for gallium arsenide, respectively, for
four different values of σ: 10, 20, 30, and 40meV. The
described behavior is observed for both semiconductors but

is even more apparent in the case of gallium arsenide, for
which aminimum in the spectrum was already hard to recog-
nize in the absence of disorder.

The fact that in a real three-dimensional material it is
difficult, if not impossible, to modulate the position of the
Fermi level uniformly in the whole volume, further pre-
vents a perfect balance of electron and hole current fluctu-
ations in the overall device and thus makes it impossible
to experimentally observe a flicker noise cancellation anal-
ogous to that described for graphene.

5. Conclusions

Exploiting a model based on charge neutrality and on the
mass action law, we have compared the flicker noise behavior
of graphene and of more common semiconductors, such as
silicon and gallium arsenide. We have concluded that a min-
imum of the flicker noise power spectral density can be

 1

 0.5

 0

−0.5

−1

0−2 −1.5 −1 −0.5 0.5 1 1.5 2
n−p (108/cm3)

ΔN/Δ𝜒

ΔP/Δ𝜒

Figure 10: Behavior of ΔP/Δχ and ΔN/Δχ as a function of n − p, for
gallium arsenide at 300K.
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Figure 11: Behavior of ðSI/I2ÞðAf γ/ηÞ as a function of n − p, for
gallium arsenide at 300K, in the absence of potential disorder.
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observed at the charge neutrality point only in materials
where electrons and holes have a highly symmetric trans-
port behavior, in particular have approximately the same
mobility (the case of graphene), and only if the potential
disorder is low. When these conditions are satisfied, the
opposite variations of electron and hole concentrations
induced by trapping phenomena reciprocally cancel, lead-
ing to no current fluctuations. Instead, in the presence of
electron/hole asymmetry (the case of ordinary semicon-
ductors) or of a significant degree of potential disorder,
such a minimum disappears.

We believe that this analysis, clarifying the mechanisms
that cause or prevent a reduction, at proper bias conditions,
of the intrinsic device flicker noise, can be useful for the
design of low-noise devices and in particular of high-
sensitivity sensors.
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