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Abstract. In this paper, an information-based artificial stock market is
considered. The market is populated by heterogeneous agents that are seen as
nodes of a sparsely connected graph. Agents trade a risky asset in exchange for
cash. Besides the amount of cash and assets owned, each agent is characterized
by a sentiment. Moreover, agents share their sentiments by means of interactions
that are identified by the graph. Interactions are unidirectional and are supplied
with heterogeneous weights. The agent’s trading decision is based on sentiment
and, consequently, the stock price process depends on the propagation of
information among the interacting agents, on budget constraints and on market
feedback. A central market maker (clearing house mechanism) determines the
price process at the intersection of the demand and supply curves. Both closed-
and open-market conditions are considered. The results point out the validity
of the proposed model of information exchange among agents and are helpful
for understanding the role of information in real markets. Under closed market
conditions, the interaction among agents’ sentiments yields a price process that
reproduces the main stylized facts of real markets, e.g. the fat tails of the returns
distributions and the clustering of volatility. Within open-market conditions, i.e.
with an external cash inflow that results in asset price inflation, also the unitary
root stylized fact is reproduced by the artificial stock market. Finally, the effects
of model parameters on the properties of the artificial stock market are also
addressed.
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1. Introduction

The increasing interest in complex systems characterized by a large number of simple
interacting units has led to cooperation between the fields of economics, physics, mathematics
and engineering. The large availability of financial data has allowed for an improvement in
knowledge of the price process, and many so-called stylized facts have been discovered,
e.g., the fat tails of the returns distribution, the absence of autocorrelation of returns,
the autocorrelation of volatility, the distribution of trading volumes and of intervals of
trading [1]–[5].

Since the early 1990s, artificial financial markets based on interacting agents have been
developed. It is worth noting that besides some early Monte Carlo simulations (e.g. [6, 7]),
microscopic simulations of financial markets initially aimed more at providing mechanisms
for bubbles and crashes than at looking at statistical features of the generated time series. In
fact, awareness of a set of statistical properties (the so-called stylized facts) only gradually
appeared over the 1990s with the more precise description of the formerly relatively vague
characteristics. The first artificial market has been built at the Santa Fe Institute [8]–[10].
It is characterized by heterogeneous agents with limited rationality. While early attempts at
microscopic simulations of financial markets seemed to be unable to account for the ubiquitous
scaling laws of returns (and were, in fact, not devised to explain them), the recent models seem
to be able to explain some of the statistical properties of financial data, but in most cases the
attention is focused only on one stylized fact. Generally speaking, the objective of artificial
markets is to reproduce the statistical features of the price process with minimal hypotheses
about the intelligence of agents [11]. Several artificial markets populated with simple agents
have been developed and have been able to reproduce some stylized facts, e.g. fat tails of
returns and volatility autocorrelation [12]–[17]. For a detailed review of microscopic (agent-
based) models of financial markets, see [18, 19].

Stochastic models, as an alternative to artificial markets, have also been proposed, e.g.
diffusive models, ARCH-GARCH models, stochastic volatility models, models based on
fractional processes and models based on subordinate processes [20]–[26]. In particular, studies
of stock markets vulnerability by the collective behavior of a large group of agents have been
proposed. This led us to consider collective behavior that could reflect herding phenomena
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[20, 27, 28]. More recently, the role of heterogeneity, agents’ interactions and trade frictions
in stylized facts of stock market returns has also been considered [29].

In this paper, an information-based artificial stock market is proposed. The importance
of our model is that for the first time we can reproduce the main univariate stylized facts of
financial markets in a single framework using a simple agent trading mechanism driven by an
information network. Heterogeneous agents trade a risky asset in exchange for cash depending
on the interactions among agents. Indeed, a directed random graph propagates information
through the agents, and trading decision is based on the agent’s sentiment whose time evolution
depends on the interaction among agents and on market feedback. It is worth pointing out a
peculiarity of the model, i.e. all the properties are directly originated by the interacting graph
that is the driving force of the model. Interactions are unidirectional, i.e. the i th agent influences
the kth agent, but not necessarily vice versa. Moreover, a central market maker determines the
price process at the intersection of the demand and supply curves. Both closed and open market
conditions are considered.

2. The market microstructure

We build an agent-based artificial stock market. Three basic elements characterize the market,
i.e. trading agents, a clearing mechanism and information graph. These features will be
addressed in the following.

2.1. Trading agents

Let N be the number of traders. Each agent is characterized by some properties. We denote
with Si(h) the sentiment, with Ci(h) being the amount of cash and Ai(h) the amount of assets
owned by the i th trader at time h. We denote by p(h) the price of the stock at time h. At
each simulation step, each trader issues an order with probability equal to 0.05, as discussed
in previous papers [13, 16, 17]. Trade is either a buy or a sell order depending on sentiment
Si(h) ∈ [−1, +1].

2.1.1. Sell orders. If Si(h) is negative, i.e. Si(h) ∈ [−1, 0), the i th trader issues an order to sell
as

i (h + 1) shares of stock at time h + 1. as
i (h + 1) is a fraction |Si(h)| of the quantity of stock

owned at time h by the i th trader, i.e.

as
i (h + 1) = |Si(h)|Ai(h). (1)

The limit price

ps
i (h + 1) = p(h) [1 + Si(h)] N (1, σi) (2)

accompanies the sell order, where N (1, σi) is a random draw from a Gaussian distribution
with average 1 and standard deviation σi . The value of σi is proportional to the historical
volatility σ(Ti) of the asset price [16, 17]. A time window Ti is assigned to the i th trader at
the beginning of the simulation through a random draw from a uniform distribution of integers
in the range from 10 to 100. It is worth noting that, as for sell orders Si(h) ∈ [−1, 0), on average
ps

i (h + 1) < p(h).
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2.1.2. Buy orders. If Si(h) is positive, i.e., Si(h) ∈ (0, +1], the i th agent issues a buy order at
time h + 1, and the amount of cash employed cb

i (h + 1) for a buy order is a fraction Si(h) of the
available cash at time h, i.e.

cb
i (h + 1) = Si(h)Ci(h). (3)

Then, the quantity of stock to buy is calculated as

ab
i (h + 1) =

cb
i (h + 1)

p(h)
. (4)

The limit price associated with the buy order is

pb
i (h + 1) = p(h) [1 + Si(h)] N (1, σi), (5)

where N (1, σi) is a random draw from a Gaussian distribution with average 1 and standard
deviation σi as in the case of sell orders (see section 2.1.1). It is worth noting that, as for buy
orders Si(h) ∈ (0, +1], on average pb

i (h + 1) > p(h).

2.2. Clearing mechanism

The price process is determined by a central mechanism at the intersection of the demand and
supply curves. We compute the two curves at the time step h + 1 as follows. Suppose that, at
time h + 1, traders have issued Uh+1 buy orders and Vh+1 sell orders. Let the pair (ab

i , pb
i ) with

i = 1, . . . , Uh+1 (see equations (4) and (5)) indicate, respectively, the quantity of stock to buy
and the associated limit price at time h + 1. The pair (as

i , ps
i ) with i = 1, . . . , Vh+1 (see equations

(1) and (2)) indicates the quantity of stock to sell and the associated limit price at time h + 1. It
is worth noting that the total number of orders issued at time h + 1, i.e. Uh+1 + Vh+1, is a fraction
of the number of traders N . Indeed, as discussed in section 2.1, at time h + 1, only a random
subset of the traders is active and issues orders.

Let us define the total amount of stocks that would be bought (demand curve) and sold
(supply curve) at price p as

dp(h + 1) =

∑
i |pb

i >p

ab
i , (6)

sp(h + 1) =

∑
i |ps

i <p

as
i . (7)

The demand curve is a decreasing function of p, i.e. the bigger p, the fewer the buy orders that
can be satisfied (see figure 1). If p is lower than the minimum value of pb

i with i = 1, . . . , Uh+1,
then dp(h + 1) is the sum of all stocks to buy. Conversely, the supply curve is an increasing step
function of p. Its proprieties are symmetric to those of dp(h + 1) (see figure 1). The clearing
price is the price p∗ at which the demand and supply curves cross, i.e. dp∗(h + 1) = sp∗(h + 1).
We define the new market price at time step h + 1 as p(h + 1) = p∗. Buy and sell orders with
limit prices compatible with p∗ are executed. Following transactions, traders’ cash and portfolio
are updated. Orders that do not match the clearing price are discarded (see figure 1).
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Figure 1. The increasing function is the supply curve, the decreasing function
is the demand curve. The intersection, dp∗(h + 1) = sp∗(h + 1), represent the new
clearing price p∗.

2.3. Information graph

The N traders of the market are organized according to a directed random graph, where the
agents are the nodes and the branches represent the interactions among agents. The graph is
responsible for the changes in the agent’s sentiment. The graph is directed, that is, interactions
are assumed unidirectional (i.e. the kth agent influences the i th agent but not necessarily vice
versa) and characterized by a strength gki , assumed to be a positive real number. Due to the
presence of a directed graph, both an output node degree kout

i , related to the output branches of
a given node, and an input node degree k in

i , related to the input branches, should be defined.
Let us denote with Ii the set of agents that influence the behavior of the i th trader. At each
time step h, information is propagated through the market, and the sentiment of the i th agent is
updated by

Si(h + 1) = F
(
αi Si(h) + βi Ŝi(h) + δir(h)

)
, (8)

where

Ŝi(h) =

∑
k∈Ii

gki Sk(h)∑
k∈Ii

|gki |
(9)

represents the influence of interacting agents, and log-return

r(h) = log[p(h)] − log[p(h − 1)] (10)

takes into account a market feedback. It is worth noting that the nonlinear function F(. . .) in
equation (8), i.e.

F(x) = max(min(x, +1), −1), (11)

is used to limit sentiment in the range [−1, +1]. Finally, a constraint on graph interaction is
considered

|βi | = (ξ − |αi |), (12)
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Table 1. Parameters for scale-free initialization.

Notation Description Value

min(Ti ), max(Ti ) The agent’s historical time windows range 10, 100
max(αi ) Self-sentiment coefficient 0.2
max(δi ) Market feedback coefficient 6
max(gi,k) Strength of information propagation 5
ξ Self-neighboring sentiment balance coefficient 0.6

i.e. self-interaction is a counterpart of graph interactions. This assumption tries to model a
specific behavior of agents. In fact, equation (12) points out that agents that are strongly
influenced by their previous sentiment (e.g. big traders, bank, mutual funds, etc) are poorly
influenced by the neighboring agents’ sentiment (e.g. small single investors) and ξ represents
the self-neighboring sentiment balance coefficient.

3. Market initialization

At the beginning of the simulation (i.e. h = 0), the price p(0) is set at e10.00. The number of
agents is 1128. In order to determine the emergence of stable long-term aggregate behavior
of the agents in the proposed heterogeneous information-based artificial stock market, two
different initialization procedures, i.e. scale-free and uniform, have been considered. In the
case of scale-free initialization, traders are ranked according to a Zipf law, i.e. the importance
of each agent is approximately inversely proportional to its rank. All the parameters of the
agents are calculated according to such a ranking. In particular, the i th trader is endowed
with an amount of cash Ci(0) and an amount of stocks Ai(0) inversely proportional to his
rank. The overall amounts of cash and stock are

∑
iCi(0) = 470 000 e and

∑
i Ai(0) = 46 519,

respectively. Moreover, the i th agent is randomly connected to a set of other agents whose
number and strength gik are inversely proportional to the rank of the i th agent, i.e. richer agents
influence a larger number of agents with a higher strength. Consequently, the output degree
distribution Pout(kout) over the nodes is set to a power law and the input degree distribution
Pin(kin) results in a power law too. Moreover, the absolute strength of market feedback |δi | is
proportional to his rank, i.e. richer agents take into lesser account the market behavior. Finally,
self- strength αi is positive and randomly assigned with distribution inversely proportional to
the rank of the i th agent, i.e. richer agents aim to conserve their opinion, whereas the signs of
strengths βi and δi are either positive or negative with probability 0.5. Table 1 summarizes the
values of the parameters adopted for the scale-free initialization. It is worth remarking that such
parameters have been heuristically calibrated so as to ensure proper behavior of the artificial
stock market.

In the case of uniform initialization, traders have uniform characteristics. In particular,
each trader is endowed with the same amount of cash Ci(0) = 10 000e and amount of stocks
Ai(0) = 1000. Moreover, the i th agent is randomly connected to a set of other agents whose
number is drawn from a uniform distribution. Consequently, the output degree distribution
Pout(kout) over the nodes is set to a uniform law, whereas the input degree distribution Pin(kin)

results in a Poisson distribution. Furthermore, the self-strength αi is positive and randomly
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Table 2. Parameters for uniform distribution initialization.

Notation Description Value

min(Ti ), max(Ti ) The agent’s historical time windows range 10, 100
max(αi ) Self-sentiment coefficient 0.3
χ Market feedback versus news factor 30
max(gi,k) Strength of information propagation 5
ξ Self-neighboring sentiment balance coefficient 0.6

Figure 2. Time behavior of the artificial stock market under closed market
conditions: (a) price process and (b) returns.

assigned with uniform distribution, the absolute strength of market feedback is |δi | = χ · |βi |,
where χ is a market feedback versus news factor, whereas the graph interaction strength gik is
set either to 1, if the i th agent influences the kth agent, or to 0, otherwise. Finally, the signs of
strengths βi and δi are either positive or negative with probability 0.5. Table 2 summarizes the
values of the parameters adopted for the uniform initialization.
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Figure 3. Properties of returns under closed market conditions. (a) Probability
distribution of returns: dots represent distribution returns, the solid line
represents the corresponding normal distribution. (b) Autocorrelation of returns.
Noise levels are computed as ±3/

√
(M), where M is the length of the time series

(M = 10 000).

Table 3. Statistical analysis of the returns time series in different time horizons
in closed market conditions.

Returns time horizon The KPSS test (95%) The J–B test (95%) The Engle test (95%)

Daily Not rejected Rejected Rejected
Weekly Not rejected Rejected Rejected
Monthly Not rejected Rejected Rejected
Trimestral Rejected Rejected Rejected

4. Result and discussion

Two different market conditions have been considered: the absence of external inflow of cash
and the presence of an external geometric inflow of cash. In both conditions, simulations of
10 000 time steps have been performed in the case of both scale-free and uniform initialization.
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Table 4. Statistical analysis of returns time series in different time windows in
closed market conditions.

Time window (days) The KPSS test (95%) The J–B test (95%) The Engle test (95%)

10 000 Not rejected Rejected Rejected
7 500 Not rejected Rejected Rejected
5 000 Not rejected Rejected Rejected
2 500 Not rejected Rejected Rejected
1 000 Not rejected Rejected Not rejected

Figure 4. The wealth distribution of the agents under closed market conditions.
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Figure 5. The cross-correlations function between absolute value of returns
|r | and absolute value of trading-volume changes |rv| (solid line), and the
cross-correlation function between raw returns r and trading-volume changes
rv (dashed line).
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Figure 6. Time behavior of the artificial stock market under inflation market
conditions. (a) price process and (b) returns.

Figure 2 shows the price process and the returns in closed market conditions. As clearly
stated, large returns and cluster volatility are pointed out that suggest the presence of two
stylized facts, i.e. fat tails and heteroscedasticity. These properties are further confirmed by
figure 3 that point out the distribution of returns and correlation. Leptokurtosis is demonstrated
by an asymptotic power-law decay P>(|r |) ∼= |r |

−(1+µ), with µ = −2.93, see figure 3(a). The
presence of a correlation in absolute returns together with its absence in raw returns confirms the
heteroscedasticity stylized fact. Note that the memory in the absolute returns can be controlled
by parameter δi of the model, the strength of market feedback. In particular, decreasing
the value of max(|δi |) leads to a larger memory effect in absolute returns (see figure 3(b)).
Furthermore, we have also considered the stability of the above discussed properties with
respect to time intervals and return horizons. Tables 3 and 4 summarize the results of the
Kwiatkowski–Phillips–Schmidt–Shin test (KPSS) (H0: stationarity), the Jarque–Bera (J–B) test
(H0: Gaussianity) and the Engle test (H0: absence of ARCH effect) for returns calculated
over different periods (i.e. from daily to trimestral returns) and for different time intervals
(backward selected from the last simulated trading day), respectively. As clearly stated, with
a 95% significance level, the returns time series do not reject the hypothesis of stationarity and
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Figure 7. Properties of returns under inflation market conditions. (a) Probability
distribution of returns: dots represent distribution returns, the solid line
represents the corresponding normal distribution. (b) Autocorrelation of returns.

Table 5. Statistical analysis of returns time series in different time horizons in
open market conditions.

Returns time horizon KPSS test (95%) J–B test (95%) Engle test (95%)

Daily Not rejected Rejected Rejected
Weekly Not rejected Rejected Rejected
Monthly Not rejected Rejected Rejected
Trimestral Rejected Rejected Rejected

reject the hypothesis of Gaussianity in the absence of ARCH effects pointing out the stability of
the above discussed proprieties.

Moreover, figure 4 shows the wealth distribution of the agents in three different moments,
i.e. at the beginning, after 5000 time steps and at the end. It is worth noting that the Zipf
distribution appears quite stable. Finally, the artificial market exhibits a cross correlation
between the absolute value of returns and the absolute changes in trading volume, whereas
they appear almost uncorrelated in terms of raw data (see figure 5). Both price returns r and
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Table 6. Statistical analysis of returns time series in different time windows in
open market conditions.

Time window (days) The KPSS test (95%) The J–B test (95%) The Engle test (95%)

10 000 Not rejected Rejected Rejected
7 500 Not rejected Rejected Rejected
5 000 Not rejected Rejected Rejected
2 500 Not rejected Rejected Rejected
1 000 Not rejected Not rejected Not rejected

Figure 8. The wealth distribution of the agents under inflation market conditions.

changes in trading volume rv have been calculated as log-returns (see equation (10)) and these
results are in close agreement with recently demonstrated stylized facts [30].

Besides the condition of the closed market, simulations in the case of an external geometric
inflow of cash have been considered. In particular, an equivalent inflow of 3% per year has been
assigned to each agent every 20 step (i.e. about 1 financial month) proportionally to his current
cash. This directly results in an inflation mechanism. Figure 6 shows the price process and the
returns in open market conditions. As clearly stated, time evolution suggests the presence of
three stylized facts, i.e. with respect to closed market conditions it includes also the possibility
of an I(1) price process. This property has been verified through the ADF test with a 10%
critical value. Furthermore, figure 7 points out leptokurtosis (i.e. an asymptotic power law with
µ = −3.57) and heteroscedasticity in the distribution of returns. Moreover, we have also studied
the stability of the properties in open market conditions with respect to time intervals and return
horizons. Tables 5 and 6 summarize the results for the KPSS, J–B and Engle tests at 95% of
significance level and lead to the same conclusion discussed for the closed market condition.

Furthermore, figure 8 shows the wealth distribution of the agents in three different
moments, i.e. at the beginning, after 5000 time steps and at the end. It is worth noting that,
stated the inflation in the marker, the Zipf distribution appears quite stable also in the case of
the inflation market.

Computational experiments pointed out price processes that reproduce the stylized facts
as described for the case of scale-free initialization, i.e. fat tails, heteroscedasticity and large
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Figure 9. The wealth distribution of the agents under uniform initialization:
(a) closed market condition and (b) inflation market condition.

price fluctuations in the presence of small order flows. Furthermore, the presence of an
external geometric inflow of cash allows the possibility of an I(1) price process. Corresponding
figures are not included for the sake of compactness. Conversely, the distribution of wealth is
particularly interesting. Figure 9(a) and (b) show the wealth distribution of the agents in three
different moments, i.e. at the beginning, after 5000 time steps and at the end of the simulation,
for the case of closed and open-market conditions, respectively. Irrespective of the market
conditions, starting from an externally ab initio fixed uniform distribution, the distribution of
wealth converges to a scale-free law. Consequently, this allows one to conclude that a scale-free
(e.g. Zipf) distribution appears quite stable and attractive.

5. Conclusions

In this paper, an information-based artificial stock market has been presented where
heterogeneous agents trade a risky asset in exchange for cash. Besides the amount of cash and
the amount of assets owned by each agent, they are characterized by a sentiment. The agents,
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seen as the nodes of a sparsely connected graph, share their sentiment with other interacting
agents. The trading decisions are based on the value of the sentiment, whereas the price of the
asset at each trading day is fixed by a clearing house mechanism. The interaction between the
agent sentiments, during the simulation, yields a price process that reproduces many stylized
facts of real markets, such as unitary root of the price process in open market conditions,
clustering of volatility, and fat tails of returns distributions. The results pointed out the validity
of the proposed model of information exchange among agents, which is able to reproduce the
main univariate stylized facts of financial markets in a single framework. Moreover, the presence
of a directed random graph was helpful in understanding the role of information in real markets
and the effects on wealth distribution of agents characterized by stable and attractive scale-free
properties.
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