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ABSTRACT 

In this paper, a boundary element technique for modeling and analysis of adhesive 
bonded structural joints is presented. The formulation is developed in the framework of 
the anisotropic elasticity and attention is focused on the application to composite 
structural joints built with the splicing concept technique. To model and analyze 
composite bonded joints a multidomain implementation of the boundary element 
method has been used. It has been proven well suited and very effective for the 
characterization of the mechanical behavior of spliced joints, allowing the analysis of 
the high gradient stresses and strains near the splice lines as well as the prediction of the 
overall distribution of the interlaminar tractions. Numerical results show good 
agreement with analytical solution and finite element analyses.  
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1. INTRODUCTION 
Due to the increased transport business, during the last decades, composite materials 
have been subject of growing interest in lightweight structural applications, especially 
in aeronautical and aerospace industries. Their inherent features, such as high specific 
stiffness and strength, as well as the capability of path load management, lead to 
remarkable structural weight savings enabling economical and environmental benefits 
[1, 2]. One of the reasons for this increasing interest is given by the appealing 
opportunity of reducing the overall structural complexity through the manufacturing of 
large size panels without riveted joints. This is attained by means of emerging 
technologies and materials which allow low parts count with the resulting decreased 
number of stress concentration points, flaws, defects and thus, in general, of crack 
propagation sources. The development of such technologies would result in easy 
maintenance and in the overall reduction of manufacturing and inspection times and 
costs. In this framework, Fiber Metal Laminates (FMLs) have recently been subject of 
intensive research [3, 4]. These hybrid materials, consisting of thin metallic sheets 
bonded into one laminate by intermediate fiber/resin layers, are developed with 
different classes like Arall® and Glare® [5, 6]. Much of the attention is actually focused 
on Glare®, which consists of thin aluminum alloy sheets laminated with glass fiber 
reinforced prepreg layers. Different stacking sequences, aluminum properties and layer 
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thicknesses lead to different FMLs grades, suitable to several applications. Moreover, 
the combination of the two different materials improves some of the basic properties of 
aluminum alloys [3, 7-10]. Due to its features Glare® is currently used for cargo floor 
applications of several Boeing 777 airplanes, for the lower wing panels of the Fokker 27 
and it was chosen to built up the skin panels of the upper side of the fuselage of the high 
capacity plane A380 [11-13]. Interesting studies focused on the possibility of 
constructing medium and large size civil aircraft with all-composite pressurized 
fuselages [14]. Extensive use of Glare® in the structures of these aircrafts is estimated to 
lead to a 20% structural weight reduction. However, the full exploitation of the 
structural advantages allowed by the use of these advanced materials largely rely on the 
possibility of manufacturing larger skin panels requiring fewer joints for the assembly 
of the entire fuselage. The construction of such larger elements has been made possible 
by the development of the so-called splicing concept [3, 6]. A spliced laminate is built 
up by putting a metal sheet against another along a line, within the same laminate layer, 
called splice line. To avoid localized lack of strength, splice lines are alternated through 
the thickness, as shown in figure 1. Although the splicing concept represents an 
effective technique to build large panels, splice lines constitute discontinuities, which 
can lead to severe stress concentrations and delamination, if they are not carefully 
designed. Experimental tests and numerical analyses were carried out to investigate the 
composite joint behavior for different splicing geometries and metal layer thicknesses, 
with particular care devoted to the delamination phenomenon [15, 16]. These studies 
suggest that the effective and accurate prediction of the strain and stress field in 
proximity of the splice lines assumes a great relevance for the characterization of the 
mechanical behavior of different configurations. In the present paper, a two-
dimensional formulation for the analysis of spliced laminates with general lay-up is 
proposed. The problem is formulated in terms of the integral equations governing the 
behavior of each anisotropic layer within the laminate joint. The fundamental solutions, 
needed to deduce the boundary integral representation of the problem, are explicitly 
determined in analytical form. The laminate joint configuration as a whole is retrieved 
by enforcing continuity and equilibrium between contiguous layers in a multidomain 
approach. The formulation has been numerically solved by using the boundary element 
method. To ascertain the soundness of the proposed approach different configurations 
have been analyzed. The numerical results obtained show good agreement with 
analytical ones and with those obtained from the analyses carried out by using other 
numerical methods. 

 

Splice lines 

Fiber layers Metal layers

 
Figure 1. Spliced laminate section. 
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2. FORMULATION 
2.1 Basic Equations 

In the two-dimensional formulation presented, the hypotheses of linear elasticity and 
generalized plan strain field are assumed. Let us consider the two-dimensional problems 
for the domain Ω  lying in the 1 2x x  plane and bounded by the contour line .The 
elastic response does not vary along the 

∂Ω
3x  direction and the behavior of the body is 

described in terms of displacements [ ]1 2 3
Tu u u=u , strains 

[ ]11 22 12ε 13 23 33
Tε ε ε ε ε=ε  and stresses [ ]11 22 12 13 23 33

Tσ σ σ σ σ σ=σ . 
The strain field is linked to the mechanical displacements by the strain-displacement 
relations, which can be compactly written as  

 =ε uD  (1) 

where the differential operator D  is defined as 

 
1 2

2 1

1 2

0 0 0
0 0
0 0 0 0

Tx x
x x

x x

∂ ∂ ∂ ∂⎡ ⎤
⎢ ⎥= ∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

D
0

0 0  (2) 

It is worthwhile to note that, in order to maintain a general and efficient matrix notation, 
the independence of the analysis from the 3x  direction is expressed by keeping 

3 0x∂ ∂ = , while also the zero component 33ε  of the strain field is kept in the 
formulation. This allows flexibility in the formulation development and in its 
implementation in computer codes. The equilibrium equations are 

 T + =σ f 0D  (3) 

where [ ]1 2 3
Tf f f=f  is the body force vector. Finally, the constitutive equations can 

be expressed by 

 =σ Eε  (4) 

where E is the elasticity matrix. By combining Eqs. (1), (3) and (4) the governing 
equations of the problem can be expressed in the compact form  

 T + =E u f 0D D  (5) 

The essential and natural boundary conditions associated with Eq. (5) can be expressed 
in the form 

 1                   on = ∂Ωu u  (6.a) 

 2
T

n           on = =t E u tD D ∂Ω  (6.b) 
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where [ ]1 2 3
Tt t t=t  is the vector of the boundary tractions and 1∂Ω  and  

represent the constrained and loaded portions of the boundary, respectively.  is the 
boundary traction operator, obtained by substituting in the operator D the derivatives 
with the corresponding boundary outer normal direction cosines. 

2∂Ω

nD

 

2.2  Boundary integral representation 

Let ju  be a solution of the elastic problem satisfying the equilibrium equations for a 
system of body forces jf  so that 

 T
j+ =E u f 0D D j  (7) 

Let jσ and jε  denote the stress and strain fields associated with ju , and let jt  be the 
corresponding boundary tractions. By using this solution and the actual elastic solution, 
one writes the following reciprocity statement [17, 18]  

 ( ) ( )T T T T
j j j jd

∂Ω Ω
d− ∂Ω = − Ω∫ ∫u t t u f u u f  (8) 

Thus, the boundary integral representation is obtained from Eq. (8) by considering a 
particular displacement field  corresponding to a concentrated force ju jf  acting in an 
infinite domain and applied at the point . It is expressed by 0P

 0(j j P P )δ= −f c  (9) 

where jc  is the load intensity and 0(P P )δ −  is the Dirac’s function. By using three 
independent particular solutions obtained for concentrated loads directed along the 
reference axes (j=1,2,3), known as fundamental solutions, the reciprocity theorem, i.e. 
Eq. (8), leads to the following boundary integral representation of the displacement field 
[17]. 

 ( )* * * *
0( )P d

∂Ω Ω
d+ − ∂Ω =∫ ∫c u t u u t u f Ω  (10) 

Eq. (10) represents the Somigliana identity for elasticity expressed in matrix notation. It 
allows to express the three displacement components at the point  as function of the 
displacements and tractions on the boundary of the body. The kernels and are 

defined as and 

0P
*u *t

* T

iju= ⎡ ⎤⎣ ⎦u * T

ijt= ⎡ ⎤⎣ ⎦t , where  and  are the i-th component of the 

displacements and tractions of the j-th fundamental solution. The matrix  can be 
calculated according to the following relationship [

iju ijt
*c

19] 

 * *d
∂Ω

= − ∂∫c t Ω  (11) 

It is worth noting that the matrix , calculated by Eq. (11), is related to the *c
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fundamental solution load intensity  (see section 2.3) and its value depends on the 
local geometry near the point  [

jc

0P 17, 18]. If the point  belongs to the boundary ∂Ω , 
Eq. (10) involves boundary quantities only and it becomes the integral equation 
providing the link between the variables on the boundary. This integral equation, 
coupled with the appropriate boundary conditions, allows the determination of the 
unknown variables on the boundary. Once these are determined, the displacement at 
each internal point  can be calculated by means of Eq. (10). The strains are obtained 
in a pointwise fashion by appropriately differentiating Eq. (10) with respect to the 
source point  and the following boundary integral representation for the strain field 
holds [

0P

0P

0P
18] 

 ( )* * *
0( )P d

∂Ω Ω
= − ∂Ω +∫ ∫ε Ξ t Θ u Ξ fdΩ

1 *

1 *

 (12) 

where 

  (13) 
* *−= −Θ c tD

  (14) 
* *−= −Ξ c uD

Finally, the boundary integral representation for the stresses is simply obtained through 
the constitutive equations and one has 

 ( )* * *
0 0( ) ( )P P d

∂Ω Ω
= = − ∂Ω +∫ ∫σ E EΞ t EΘ u ΕΞ fε dΩ  (15) 

2.3 Fundamental solutions 

The boundary integral representation relies on the knowledge of the displacement field 
 corresponding to a concentrated point force acting at a point in the infinite domain. 

It is the fundamental solution governed by the following equation 
ju

 0( )T
j P Pδ+ − =E u c 0D D j  (16) 

Starting from the original work of Eshelby et al. [20] and Stroh [21] solutions of Eq. 
(16) have been proposed by many authors for anisotropy [22-24] and piezoelasticity 
[25, 26]. The fundamental solution employed in this paper is obtained by a modified 
Lekhnitskii’s approach proposed by Davì and Milazzo [27-29]. Eq. (16) suggests for the 
particular solution the following form 

 1ln( )2X Xλ μ= +u a  (17) 

where , μ and λ are complex constants to be determined and a

 0( ) ( ) ( 1,2)i i iX x P x P     i= − =  (18) 

Substitution of Eq. (17) into Eq. (16) leads to the eigenvalue problem 

  (19) 2
1 1 1 2 2 1 2 2[ ( ) ]T T T Tμ μ+ + +I EI I EI I EI I EI a 0=
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where the matrix  is obtained from the operator D  by setting the 
derivatives with respect to 

( 1, 2m    m =I )

mx  equal to one and replacing all the other terms with zeros. 
The solution of Eq. (19) gives six eigenvalues kμ  and the corresponding eigenvectors 

, which form conjugate pairs for stable materials. The fundamental solutions are then 
obtained by superposing the solutions of the form (17) associated with the six 
eigenvalues 

ka

kμ . By choosing the eigenvalues such that Im( ) 0kμ > , the displacements 

ju  of the fundamental solutions can be expressed as 

 
3

1
1

2 Re[ ln( )j kj k k
k

2 ]X Xλ μ
=

= ∑u a +  (20) 

The generalized tractions are obtained from the following relation 

 
3

1 1 2

12 Re[ ]
k

T
j kj n k

k kX Xμλ
μ=

=
+∑t E aD D  (21) 

where the matrix 
kμ

D is obtained from the operator D  by replacing the derivatives with 

respect to 1x  with one and the derivatives with respect to 2x  with kμ . The constants 

kjλ  are determined by enforcing the compatibility and equilibrium conditions on the 

complex Gauss plane [29]. By so doing the vector 1 2 3

T

j j j jλ λ λ⎡ ⎤= ⎣ ⎦λ  is obtained 
from 

 1 1( )j jλ − −= +B BA A c  (22) 

In Eq. (22), the tilde denotes the complex conjugate, A is the eigenvectors matrix and 
the columns of the matrix B are defined as kb

 k k kμ=b ED D ka  (23) 

where 

 
2

1 0 0 0 0 1
1 1

0 1 0 0 0 1
1

0 0 0 1 1 0

k
k

k

μ
π

μ

⎡ ⎤− −
⎢ ⎥+ −

= − −⎢ ⎥
+ ⎢ ⎥

− −⎢ ⎥⎣ ⎦

D  (24) 

It is worth to note that in the calculation of the present fundamental solution a suitable 
matrix notation has been adopted, which proved to be very effective for computer 
implementation purposes. 
 
2.4  Numerical model and solution 
The boundary integral formulation is solved numerically by the boundary element 
method. The boundary  is discretized into m boundary elements and over each one ∂Ω
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of these elements  the displacements u and the tractions t are expressed by means 
of their respective nodal values  and  

( )k∂Ω

( )kΔ ( )kP

 ( ) ( )k     on  k= ∂Ωu NΔ  (25) 

 ( ) ( )k     on  k= ∂Ωt ΨP  (26) 

where  and Ψ  are matrices of standard shape functions whose order depends on the 
class of boundary elements used in the numerical model. In the absence of body forces, 
the discretized version of Eq. (10) for the point  is therefore given by 

N

iP

 *
( ) ( )

1 1

( ) 0i

m m

i ik k ik k
k k

P
= =

+ +∑ ∑c u H Δ G P =  (27) 

where 

 
( )

* ( , ) ( )
k

ik iP P P d
∂Ω

= ∂Ω∫H t N   (28) 

 
( )

* ( , ) ( )
k

ik iP P P d
∂Ω

= −∫G u Ψ ∂Ω  (29) 

By taking the point  to all boundary nodes using a collocation technique and 
absorbing the  matrix with the corresponding block of 

iP
*
ic iiH , a linear algebraic system 

is obtained. It can be compactly written as [29] 

 − =HΔ GP 0  (30) 

where H and G are the square influence matrices, obtained assembling the ikH  and  
blocks;  is the vector containing the nodal values of the displacements and P is the 
vector of the nodal values of the tractions. Eq. (30), coupled to the boundary conditions 
given in terms of prescribed nodal values, provides the solution of the problem. 

ikG
Δ

 
2.5  Multidomain technique 

When the investigated domain is made up of piece-wise different materials or when 
cracks and/or inclusions are present, the problem can be solved by using a multidomain 
approach [28-32]. This BEM technique is based on the splitting up of the original 
domain into homogeneous subregions. These are discretized by boundary elements with 
common interfaces sharing the same nodes, so that Eq. (30) still holds for each single 
subdomain. The following discretized integral equations can be written, one for each 
subregion 

  (31) ( ) ( ) ( ) ( ) ( 1,2.... )i i i i     i M− = =H Δ G P 0

where M is the number of subregions considered and the superscript (i) denotes 
quantities associated with the i-th subdomain. To obtain the final numerical model, the 
domain integrity need to be restored by enforcing the displacement continuity and 
traction equilibrium conditions along the interfaces between contiguous subdomains. 
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Let us introduce a partition of the linear algebraic system given by Equation (31) in 
such a way that the generic vector ( )iy can be written as 

 
1

( )

( )

( )

i

iM

i

i

i

∂Ω

∂Ω

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

y

y
y

 (32) 

where the vector  collects the components of ( )
ij

i
∂Ωy ( )iy  associated with the nodes 

belonging to the interface  between the i-th and j-th subdomain. The convention 
that  denotes the external boundary of the i-th sub domain is assumed (see Figure 
2). By so doing, in the discretized model the interface compatibility and equilibrium 
conditions, that is the interface continuity conditions, are written as 

ij∂Ω

ii∂Ω

  (33) ( ) ( ) ( 1.... 1; 1... )
ij ij

i j     i M  j i M∂Ω ∂Ω= = − = +Δ Δ

  (34) ( ) ( ) ( 1.... 1; 1... )
ij ij

i j     i M  j i M∂Ω ∂Ω= − = − = +P P

If the i-th and j-th subdomain have no common boundary, ( )
ij

i
∂Ωy  is a zero-order vector 

and Eqs. (33) and (34) are no longer valid. The Eqs. (31), (33) and (34) provides an 
algebraic system that, together with the boundary conditions prescribed on the external 
boundaries (i=1…M), allows the determination of the mechanical response in 
terms of nodal displacements and tractions on the boundary of each subdomain. 

ii∂Ω

iΩ

jΩ
kΩ

ii∂Ω  
ki∂Ω

jk∂Ω ij∂Ω

jj∂Ω

kk∂Ω  

 
Figure 2. Multidomain configuration. 

 
3. COMPUTER CODE  

The formulation presented has been implemented in a numerical code, called BEM-
JNT, by using MATLAB® and C++ routines. The code is arranged in a structure 
consisting of three main blocks, shown in Figure 3, which address pre-processing, 
solution and post-processing tasks respectively. The PREPROC block provides the 
elaboration of the input data, implementing geometry and discretization. In this phase 
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Figure 3. Structure of the computer code BEM-JNT. 
 

e fundamental solutions coefficients are also computed by a dedicated subroutine. The 

of the common nodes at the interface between two contiguous sub-domains has been 

th
input data, consisting of geometry, material properties, boundary conditions and 
discretization parameters, are defined in a text file, which allow simple and flexible 
definition of alternative parametric configurations. The developed pre-processing tools 
are well suited to the class of structural problems considered like composite joints. 
Indeed, in the context of the multidomain approach, they make possible rapid modeling 
of laminated structures with general lay-up, with or without splice lines and cracks. 
Computation with constant and linear boundary elements for both displacements and 
tractions interpolation is allowed. It is worth noting that each sub-region is modeled 
independently with the only requirement that the boundaries defining the interfaces of 
contiguous domain have the same discretization. Moreover, the discretization routine 
automatically fits the mesh when corners are approached in order to catch stress and 
tractions concentrations occurring near the boundary layer. In particular, a 
logarithmically spaced refinement is automatically introduced, for a length based upon 
discretization parameters, when a corner is detected by means of a suitable check of the 
normals of contiguous input contours. The block SOLVE accomplishes the computation 
of the influence matrices defined in Eq. (30). The influence coefficients of the matrices 
H and G and the coefficients of the matrix c* are computed by an integration scheme 
based on Gaussian quadrature, which takes the kernel singularities into account through 
the subtraction of singularity method and employs an automatic element subdivision 
approach for the computation of near singular integrals [17]. To enforce the interface 
continuity conditions and restore the structure integrity, an algorithm for the detection 

INPUT TEXT FILE 
− Geometry 
− Material properties 
− Discretization 
− Boundary Conditions 

PREPROC - Pre-processing tools: 
− Automatic mesh refinement at corners 

and discontinuities 
− Interface detection 
− Loads and BC 
− Internal points Computation 
− Elastic properties 
− Fundamental solution coefficients 

Geometry and  
 discretization plotting 

SOLVE -  Solution 
− Computing influence matrices 
− Assembling influence matrices 
− Enforcing BC 
− System solution 

POSTPROC - Post-processing tools
− Diplacements 
− Strains 
− Stresses 
− Interlaminar stresses

1D RESULTS  
− Output files 
− Visualization 

2D RESULTS  
− Output files 
− Visualization 
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implemented. Once the common nodes are detected, the SOLVE routine provides the 
assembling of the influence matrices and the enforcing of the boundary conditions. The 
solution of the algebraic system is then found by means of standard routines. Post-
processing tools, implemented in the block POSTPROC, provide complete information 
about the two-dimensional stress, strain and displacement distribution and interlaminar 
tractions prediction. The inherent features of the boundary formulation developed, the 
use of effective compact matrix notation as well as the code implementation strategy 
provide a powerful tool for analysis of laminated joint structures in the framework of 
the discussed applications. 

 
4. APPLICATIONS AND DISCUSSIONS 

The computer co tations with the 
aim to validate t l configurations 

 approach the analysis of an aluminum sheet bonded to a rigid 
r has been performed. The geometry, the boundary conditions 

de developed has been used to perform some compu
he method and then to analyze the behavior of typica

employed in Glare® joints. 
 
4.1 Validation analysis 

To validate the proposed
body by an adhesive laye
and the material properties are shown in Figure 4. This simple analysis has been carried 
out to validate the formulation as well as the numerical code. The present results have 
been compared with those obtained by solving the corresponding one-dimensional 
analytical model [33]. Indeed, one-dimensional modeling based on the classical 
laminates theory is often used to get a general idea of the overall stress distribution 
within the laminate avoiding time-consuming procedures based on more complex 
formulations. Nevertheless, the detail level obtained from such analysis can be 
unsatisfactory for more refined applications. From this point of view, the proposed 
model is capable of completely assessing the distribution of internal stresses as well as 
interlaminar tractions in the analyzed laminate joint. Additionally, the present results 
have been compared with those obtained by the finite element code MSC.NastranTM. 
This allowed to point out the reduction of the analysis time and of the required 
computational resources connected to the boundary integral equation approach. Figure 5 
shows the results obtained for the one–dimensional generalized displacements of the 
aluminum ply, namely 1 1( )u x , 2 1( )u x  and the rotation 1( )xϕ  [33], suitably arranged by 
postprocessing the computed displacement field. These results are compared with those 
 

 
Figure 4.  Geometry and boundary conditions for the aluminum sheet bonded 

to a rigid body by an adhesive layer. 

ADHESIVE

  x2 U =1 mm 1

EAl=72.5 Gpa 
νAl=0.3 
GAd=0.64 Gpa 
νAl=0.3 

0.3 mm 

0.125 mm 

ALUMINUM

10 mm 
  x1 

40

G. Cavallini et al. / Electronic Journal of Boundary Elements, Vol. 4, No. 1, pp. 31-48 (2006)



 

0 2 4 6 8x1 [mm] 10

0.0E+000

4.0E-002

8.0E-002

1.2E-001

u 1
(x

1) 
 [m

m
]

-1.6E-002

-1.2E-002

-8.0E-003

-4.0E-003

0.0E+000

4.0E-003

u 2
(x

1) 
 [m

m
]

-2.0E-002

-1.5E-002

-1.0E-002

-5.0E-003

0.0E+000

5.0E-003

) 
ϕ

(x
1

Present 2D analysis
Analytical 1D analysis

 
Figure 5. 1D generalized displacement distributions for the aluminum sheet 

bonded to a rigid body by an adhesive layer. 
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Figure 6. Stress resultant distributions for the aluminum sheet bonded to a 

rigid body by an adhesive layer. 
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Figure 7. Displacement distributions for the aluminum sheet bonded to a 

rigid body by an adhesive layer: a) present approach; b) finite 

 
obtained from sional analysis and generally, good agreement is achieved. 
Som ncy occurs between one-dimensional and present results close to the free 

pical configuration for a Glare® laminate built 
s shown in Figure 8. The material used is 

elements. 

one-dimen
e discrepa

edge of the adhesive ply where the highest differences between the 1D analysis and the 
2D boundary element analysis are observable. This circumstance is primarily a 
consequence of the effect of the transverse contraction of the adhesive ply that is 
particularly strong close to the free edge and that is not taken into account in 1D model. 
Analogous considerations can be done about the normal stress, shear stress and bending 
moment resultant distributions, which are shown in Figure 6. To validate the analysis 
and point out the features of the proposed approach a comparison of the present results 
with those obtained by using finite elements has been carried out. Figures 7.a show the 
distribution of the joint displacement components computed by the present method by 
using a discretization with 120 constant boundary elements and 300 internal points. 
Figures 7.b show the distribution of the joint displacement components computed by the 
finite element code MSC.NastranTM by a mesh of 1700 CQUAD4 elements with 1818 
nodes. The results of the two analyses in terms of displacements match well to each 
other. This circumstance is also true for the stress distributions, which are not provided 
for brevity. The analysis evidences the soundness of the proposed approach, which 
provides accurate results with reduced computational resources due to the 
dimensionality reduction inherent to the boundary element approach. 
 
4.2 Glare® laminate with splice lines  

The second application deals with the ty
with the splice line joint technique, which i
Glare® 3/2 0.3 with Al 2024-T3 metallic plies and 0.125 mm thick [0/90] S2 
Glass/Epoxy plies. The laminate is clamped on the left side and a constant displacement  
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Figure 8. Glare® laminate with splice lines: geometry and boundary conditions. 

 
distribution is imposed on the opposite side along the 1x  axis as shown in Figure 8. The 

nsplice lines are modeled by imposing traction free co ditions between the contiguous 
domains belonging to the considered spliced layer. Nevertheless, adhesive filled splice 
lines can be modeled by virtue of the multidomain implementation by simply adding a 
subregion with the adhesive properties. The analysis was performed with 2400 constant 
boundary elements and the results were compared with those obtained by finite 
elements. For both displacements and stresses good agreement was obtained between 
present and finite element results, which are not presented for the sake of brevity. 
Figure 9 and 10 show the distributions of 11σ  and the interlaminar stresses along the 
aluminum-composite interfaces, respectively, which are representative of the laminate 
behavior. Stress concentrations can be observed at the tips of the splice lines and it is 
worth noting that the effects of the discontinuities introduced by the splice lines even 
affect the unspliced plies. This realistic application point out the potentiality of the 
proposed formulation, which is able to capture stress concentrations and singular 
behavior without requiring very fine meshes.  
 
4.3 Glare® laminate with an external doubler. 

th an external doubler under  uniform This application deals with a Glare® laminate wi
extension. This analysis has been carried out with the aim to show the ply drop-off 
effect [33] induced by the presence of the doubler. The geometry and the boundary 
conditions are shown in Figure 11 while the material used as well as the stacking 
sequence and the thicknesses of the laminae are the same as the previous example. The 
doubler is modeled by an aluminum ply having thickness 0.3 mm. Due to the symmetry 
of the joint, only one-half of the structure has been modeled with eight different plies. 
To model the splice line, free edge boundary conditions are imposed. The distribution of 
the stress 11σ  in the proximity of the free edge of the doubler is shown in Figure 12, 
whereas Figure 13 depicts the interlaminar stresses along the aluminum-composite 
interfaces. Again, the present approach is able to catch efficiently the stress 
concentration due to the thickness discontinuity induced by the presence of the doubler. 
Considering that the present results have been obtained with a discretization of 1266 
constant boundary elements, the considerations on the approach effectiveness quoted for 
the previous example are confirmed. 
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Figure 9. 11σ  distribution for the lare® laminate with splice lines. G
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Figure 10.  Interlaminar stress distribution r the Glare® laminate with splice lines.   fo
21σ ;  22σ   
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Figure 11. Glare® laminate with external doubler: geometry and boundary conditions. 
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Figure 12. 11σ  distribution for the Glare® laminate with external doubler. 

The paper concerns boundary nalysis of adhesive bonded 

 
5.  CONCLUSIONS 
 element modeling and a

laminate joints. A multidomain boundary element formulation has been presented for 
the analysis in the framework of two-dimensional anisotropic elasticity and attention 
has been focused on the application to Glare® laminate and joints built with the spliced 
concept technique. The formulation allows the analysis of general lay-up laminates and 
it can be effectively used to study the effects of the splice lines on the overall stress 
distribution as well as on the interlaminar stresses. Numerical results have shown good 
agreement with the results obtained by other numerical methods. The capability of 
pointing out stress concentrations, as well as the interlaminar tractions in the proximity 
of the splice tips, make the approach presented a powerful tool to characterize the 
structural suitability of the configurations analyzed. Moreover, the computational efforts 
reduction, attained by the boundary element method, associated with the use of simple 
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parametrical input to define geometry and mesh, lead to an overall time reduction 
needed for the analysis. From this point of view the present approach, which considers 
the perfectly bonded interface, could be extended to imperfect bonding conditions e.g. 
linear models for imperfect bonding between two adjacent layers. This requires the 
employment of suitable interface relationships between displacements and tractions, e.g. 
those involved in linear models for imperfect bonding between two adjacent layers. This 
development of the method is in progress and it will be subject of future papers. 
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Figure 13. Interlaminar stresses for the Glare® laminate with external doubler. 
21σ ;  22σ   
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