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Abstract
Post-transplant hypertension is a common occurrence during treatment with calcineurin 
inhibitors (CNIs) in kidney transplant population. The pathogenesis of vasoconstriction 
induced by CNIs involves vascular tone alterations and kidney sodium transport regulation.
Among the factors involved a key role is played by the activation of intrarenal renin-
angiotensin system with enhanced release of Angiotensin II (Ang II) and increase of oxidative 
stress. A common pathway between oxidative stress and hypertension induced by CNIs 
may be identified in the involvement of the activation of RhoA/Rho kinase pathway, key for 
the induction of hypertension and cardiovascular-renal remodeling, of the oxidative stress 
mediated increased nitric oxide (NO) metabolism and increased renal sodium retention via 
increased activity of thiazide-sensitive sodium chloride cotransporter (NCC) in the distal 
tubule.
We examined literature data including those coming from our group regarding the role of 
oxidative stress and sodium retention in CNIs induced hypertension and their involvement in 
cardiovascular-renal remodeling.
Based on the available data, we have provided support to the activation of RhoA/Rho kinase 
pathway as an important effector in the pathophysiology of CNIs induced post-transplant 
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hypertension via activation of oxidative stress and sodium retention. Clarification of how the 
biochemical and molecular mechanisms that regulate the processes involved in CNIs induced 
post transplant hypertension work and interact, would provide further insights not only into 
the comprehension of the pathophysiology of CNIs induced post transplant hypertension 
but could also have a positive impact on the clinical ground through the identification of 
significant targets. Their specific pharmacologic targeting might have multiple beneficial effects 
on the whole cardiovascular-renal function. The demonstration that in kidney transplanted 
patients with CNIs induced post-transplanted hypertension, the treatment of hypertension 
with different antihypertensive drugs inducing a comparable blood pressure reduction but 
different effects for example on oxidative stress and oxidative stress related proteins and/
or Rho kinase and sodium retention, could be helpful for the choice of the antihypertensive 
treatment in these patients which takes advantage from effects of these drugs beyond blood 
pressure reduction.

Introduction

Cardiovascular mortality is the main cause of mortality in kidney transplant population 
[1-3].  Post transplant hypertension is frequently observed in kidney transplant recipients 
and it has a recognized prognostic impact due to the deleterious effects on the kidney 
graft function and for the contribution to the development of cardiovascular diseases, 
which significantly impact on the long term outcomes   [1, 2]. The prevalence of arterial 
hypertension after kidney transplantation has been reported to be as high as 85% [1, 2]. 
The use of calcineurin inhibitors, such as tacrolimus and cyclosporin, has increased the 
prevalence of post transplant hypertension to 60- 85% in transplant patients treated with 
these drugs [4].

The pathogenesis of hypertension after kidney’s transplant is multifactorial, but one of 
the most important factors is the introduction in immunosuppresive therapy of calcineurin 
inhibitors (CNIs), cyclosporine (CsA) and tacrolimus, that are considered the cornerstone of 
the immunosuppressive regimen after transplantation. The pathogenesis of vasoconstriction 
induced by CNIs and cyclosporine in particular involves vascular tone alterations and kidney 
sodium transport regulation [3]. Among the factors involved, a key role is played by the 
activation of intrarenal renin-angiotensin system. The enhanced release of Angiotensin II 
(Ang II) leads not only to increased oxidative stress and free oxygen radicals production by 
the NADPH oxidase [5], but also to consequent increase of nitric oxide (NO) metabolism.  
The demonstration that Ang II increases production of reactive oxygen species (ROS) by 
vascular smooth muscle cells [6-8] and the fact that ROS induced endothelial dysfunction 
and hypertension [6-9], have established a common pathway between oxidative stress and 
hypertension, which may be identified in the involvement of the induction of RhoA/Rho 
kinase pathway, key for the induction of hypertension and cardiovascular-renal remodeling 
[8-10]. As a matter of fact, post transplant hypertension adversely affects cardiovascular 
mortality in kidney transplant population, hence the knowledge and comprehension of the 
pathophysiological associations between kidney transplant and post transplant hypertension 
are fundamental in order to improve both graft and patient survivals.

We summarize here what is known on the pathophysiology and the biochemical and 
molecular mechanisms involved in the CNIs-induced post transplant hypertension from the 
contributions of our and others groups’ studies, giving particular emphasis on those related 
with Ang II and oxidative stress signaling, renal sodium retention and the links between 
them.
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Angiotensin II and Oxidative Stress

The demonstration that angiotensin II (Ang II) increases production of reactive oxygen 
species (ROS) by vascular smooth muscle cells and the fact that ROS induce the development 
of endothelial dysfunction and hypertension [6-9], have established a link between 
oxidative stress and hypertension. Angiotensin II (Ang II) induces NADPH oxidase, with 
increased production of reactive oxygen species (ROS) [6-9]. In rats, CsA led to higher Ang II 
concentrations in plasma and kidney, leading to vasoconstriction and hypertension, which 
represent the short term signaling of Ang II, and production of ROS, which is essentially 
the mediator of the long term signaling of the hormone, leading to cardiovascular-renal 
remodeling [6-9]. These signaling pathways include the activation of a wide spectrum of 
signaling mechanisms mediated via specific intracellular pathways [6, 9, 11, 12], which 
include the Ca++-dependent and RhoA/Rho kinase pathways [6, 9]. The Ca++-dependent 
pathway causes smooth muscle contraction and hypertension through phosphoinositide 
specific PLC-generated second messengers [6], increased PKC activity and phosphorylation 
of the regulatory chain of myosin II [13]. The RhoA-Rho-kinase pathway leads to both 
vasoconstriction and cardiovascular-renal remodeling [8, 10, 14] via modulation of the 
phosphorylation state of the regulatory chain of myosin II, mainly through the inhibition 
of myosin phosphatase target protein-1 (MYPT-1). By this mechanism, RhoA-Rho-kinase 
contributes to agonist induced Ca++ sensitization of smooth muscle  [14, 15], ultimately 
resulting in smooth muscle cell contraction [8, 14]. Of note, the activation of these signaling 
pathways is counterbalanced by the vasodilatory and antiproliferative activity of nitric oxide 
[6, 16, 17]. The activation of Rho kinase pathway in posttransplant hypertension has been 
recently demonstrated in humans [18], confirming the role of Ang II and oxidative stress in 
CNIs induced hypertension as both have been shown to activate Rho kinase [19-21].

Endothelial nitric oxide (NO) is known to be an important vasorelaxing factor 
and inhibitor of vascular proliferation, hypertrophy and remodeling. It is crucial in the 
maintenance of a state of basal vasodilation. One of the most important effects of ROS is the 
reduction of NO bioavailability: superoxide anion radical (O2

-) reacts with NO, destroying it 
via its conversion to peroxynitrites. In addition, given that the activation of Rho kinase has 
been shown to downregulate the endothelial NO synthase [8, 22], the increased Rho kinase 
activity may also contribute to the reduced bioavailability of NO shown in post transplant 
hypertension. 

The involvement of oxidative stress and oxidative stress signaling in post transplant 
endothelial dysfunction and hypertension has been shown in in animals [23] and humans,[24] 
through the demonstration of increased NADPH activity. In humans we showed increased 
mononuclear cell expression of p22phox, a 22-kDa α subunit of cytochrome b558 included in 
the NADPH oxidase, which plays a key role in O2

- production [24]. It functions as an integral 
subunit of the final electron transport from NADPH to haeme and molecular oxygen in 
generating O2

-, and is stimulated by Ang II [5]. Mononuclear cell p22phox gene expression was 
significantly higher in transplanted patients with hypertension compared with normotensive 
patients. In contrast, the RNA production of heme oxygenase (HO)-1, which is induced 
and protective from oxidative stress [25], and total plasma antioxidant power was higher 
in normotensive kidney-transplanted patients compared with the group of hypertensive 
patients suggesting the existence of a correlation between leucocyte intracellular oxidative 
stress and hypertension [24]. 

A NO-mediated counterregulatory mechanism protective from CsA-induced 
vasoconstriction has also been shown. In hypertensive kidney transplant patients under 
chronic CsA treatment, in fact, quantification of mononuclear cell endothelial NO synthase 
mRNA and NO metabolites plasma levels showed, compared to normotensive controls, 
an upregulation of NO system notwithstanding the presence of hypertension, in addition 
to increased hydroperoxides and peroxynitrite plasma levels, which were also present in 
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patients compared to control subjects [26]. This suggests that CsA-induced vasoconstriction 
and hypertension cannot be a consequence of decreased levels of ecNOS as both ecNOS 
mRNA as well as NOS enzymatic activity were increased, as indicated by increased levels of 
plasma NO metabolites [26], making rationale the case of the induction of a NO mediated 
counterregulatory mechanism protective from CsA-induced vasoconstriction. This 
counterregulatory mechanism was also shown in normal human volunteers in whom acute 
infusion of CsA produced vasoconstriction and a simultaneous increase in endothelial NO 
release, and in cultured endothelial cells where the incubation with CsA increased ecNOS 
gene expression [27]. The apparent contradiction between NO system upregulation and CsA-
induced vasoconstriction is explained by the CsA-mediated induction of superoxide anions 
and reactive oxygen species production, which, reacting with NO, produce peroxynitrites, 
reducing the NO bioavailability and, therefore, its vasodilatory action. The demonstration 
that chronic CsA treatment leads to increased plasma levels of NO metabolites therefore, 
indicates that CsA is not a direct inhibitor of ecNOS, but rather that the effects of CsA in 
transplanted patients must occur downstream from the generation of NO. One potential 
mechanism is that CsA increases the turnover of NO, as shown by the increased plasma 
levels of peroxides. CsA induces O2

- production, which reacts with NO, destroying it via 
its conversion to peroxynitrites. This destruction of NO induced by CsA would explain the 
presence of vasoconstriction despite increased NO production: the level of NO present is 
insufficient to maintain the vasodilatation. Another possible mechanism, which could link 
the CsA to the overexpression of ecNOS mRNA could be the result of the effect of CsA on 
the activity of calcineurin [28, 29]. CsA reduces the phosphatase activity of calcineurin, 
therefore removing the inhibitory effect led by the phosphatase activity of calcineurin on 
ecNOS gene expression, thereby stimulating ecNOS transcription. Calcineurin inhibitors 
induced oxidative stress could, therefore, represent an attractive link between NO increased 
metabolism and reduced activity and CsA-induced vasoconstriction and hypertension in 
transplant patients chronically treated with CsA (Fig. 1).

TGFβ Signaling

CNIs-mediated oxidative stress induces hypertension not only modifying NO metabolism, 
but also through other mechanisms. Stimulation of TGFβ signaling system mediated by 
immunosuppressive agents induced ROS production is another of their most important 
side effects that may lead to graft related long-term complications, such as fibrogenesis and 
chronic rejection. We have shown that CsA and tacrolimus in kidney transplant patients 
with post transplant hypertension in addition to increase the expression of p22phox, HO-1 
and endothelial NO synthase, induced an increased expression of TGFβ [30, 31], established 
oxidative stress related effector, which activates oxidative stress related kinases such as 
MAPK/ERK [32], finally leading to cardiovascular-renal remodelling and atherogenesis. 
The increased expression of TGFβ is consistent with an increased oxidative stress-related 
response in post transplant hypertensive kidney transplant patients. TGFβ is, in fact, one 
of the effector signals of oxidative stress [33]. In vitro, oxidative stress enhances TGFβ 
gene expression [33] and, in vivo, rats placed on antioxidant-deficient diets demonstrate 
increased TGFβ expression, renal hypertrophy, proteinuria, tubulointerstitial thickening and 
loss of glomerular filtration rate, associated with increased lipid peroxidation of the renal 
membranes [32]. Therefore, the increase of TGFβ, a major pro-fibrotic cytokine [34], could 
accelerate the progression of renal disease associated with hypertension. Furthermore, 
our study revealed that the treatment with an ACE-inhibitor leads to the decline of p22phox 
and TGFβ expression [30], further underlining the role of renin-angiotensin system in the 
induction of oxidative stress and the role of both oxidative stress and TGFβ in the development 
of kidney post-transplant hypertension and its long term consequences.
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Renal Sodium Retention

CsA-induced hypertension was shown to be sodium-dependent [35], although the renal 
site of the sodium retaining effect of CNIs has still to be clearly identified [36]. However, 
studies have shown that CNIs cause an increased sodium reabsorption via the increased 
activity of the thiazide-sensitive sodium chloride cotransporter (NCC) and Na-K-2Cl 
cotransporter (NKCC2), which is made possible through the prevention of the inhibitory effect 
of calcineurin on ‘with-no-lysine’ kinases (WNK), glucocorticoid-regulated kinase 1, STE20/
SPS1-related proline alanine-rich kinases (SPAK) and oxidative stress-responsive protein 
type 1 kinase (OSR1) that activate NCC [37]. Blankenstein et al [38]., have shown that rats 
treated with CsA had increased phosphorylation of NCC and NKCC2, both deputed to sodium 
reabsorption. NCC and NKCC2 are specifically found in different portions of the nephron. The 
NKCC2 is expressed in the apical membrane of the thick ascending limb of the loop of Henle 
and in the macula densa, while NCC is expressed in the late portion of the distal convoluted 
tubule (DCT). However, in stimulated arginine vasopressin (AVP)-deficient Battleboro rats 
the treatment with CsA induced activation of NCC but not of NKCC2, suggesting that NCC and 
NKCC2 are activated by different signaling and that the direct epithelial action of calcineurin 
inhibition is sufficient for the activation of NCC mediated by WNK-SPAK/OSR1, while NKCC2 
stimulation requires additional stimulation by AVP [38]. Therefore inhibiting calcineurin, 
CNIs prevent its inhibitory effect on these kinases, with consequent increased activation of 
NCC [37, 39]. 

This CNIs mediated increased activity of NCC induces sodium reabsorption and 
causes hypertension. The involvement of calcineurin was also demonstrated through the 

Fig. 1. Pathophysiologic mechanism for CNIs induced-Ang II/Rho kinase/Oxidative stress mediated 
vasoconstriction and hypertension.
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dephosphorylation of NCC after acute oral K+ administration. CNIs induce, as major side-
effect, hyperkalemia in addition to hypertension. The acute K+ administration, resembling this 
condition, induces cell depolarization with Cl- entrance determining NCC phosphorylation 
by both Cl- dependent and independent ways that involve ORS1/SPAK activation [40, 41]. 

The mechanisms of sodium reabsorption are under control of Ang II, which occurs 
in multiple ways along the nephron. Beside the stimulation of aldosterone release, which 
in turns induces Na+/K+-ATPase and epithelial sodium channels (ENaCs) upregulation in 
the DCT and collecting duct, Ang II also stimulates the production of AVP. In addition, AVP 
itself modulates NCC function through SPAK activation [42]. Moreover, Ang II was reported 
to be an upstream regulator of WNK-OSR1/SPAK kinases as in mice its infusion showed a 
significantly increased phosphorylation of these kinases [43]. In vitro studies highlighted 
the direct effect of Ang II on NCC activation, which seems to be time dependent and to 
require WNK4. In some experimental models, the co-expression of WNK4 and NCC results 
in reduced activity of NCC, but this effect is reversed in presence of Ang II. Furthermore, 
the activation of NCC by Ang II occurs only in presence of WNK4 and this mechanism is 
SPAK phosphorylation dependent. These findings are supported by knock-out models for 
SPAK phosphorylation site, which induces a Gitelman syndrome-like phenotype, which is 
caracterized by non functional NCC [44]. 

Considering all these studies, the influence of Ang II on the activation of NCC is also 
relevant for understanding the pathophysiology of CNIs-induced hypertension. 

Calcineurin was found to colocalize with NCC in the distal tubule and tacrolimus 
was not able to cause hypertension in NCC knockout mice, while in transgenic mice 
overexpressing NCC it increased the hypertensive response [37, 39]. A higher expression 
of NCC and phosphorylated NCC were found in transplant kidney biopsies of patients with 
CNI-induced hypertension and in kidney homogenates of mice treated with tacrolimus were 
found increased WNK and SPAK kinases and increased phosphorylated form of NCC [37, 
39]. Tutakhel et al. recently confirmed a significantly higher abundance of total NCC and 
phosphorylated NCC in urinary extracellular vesicles of renal transplanted subjects compared 
to healthy volunteers or transplanted recipients treated with CNI-free immunosuppressive 
regimens [45]. Similar results were also shown with CsA in rats [46]. These animals developed 
salt-sensitive hypertension, hyperkalemia, renal tubular acidosis and hypercalciuria [39], 
a clinical picture similar to the Gordon syndrome a rare hereditary form of hypertension 
[47], which is caused by mutations in WNK kinases that activate NCC [48]. Of note, normo/
hypothension, hypokalemia, sodium wasting, metabolic alkalosis and hypocalciuria, clearly 
the opposite clinical picture of CNIs induced hypertension and Gordon syndrome, is presented 
by the Gitelman’s syndrome, rare genetic tubulopathy caused by inactivating mutations 
in the gene coding for NCC, which lead to sodium and potassium wasting [49], further 
indirectly underlining the role of sodium retention via activation of NCC as contributing to 
CNI induced hypertension. Moreover, patients in whom NCC is genetically activated, such 
as Gordon syndrome, or inactivated, such as Gitelman’s syndrome, show opposite changes 
in vascular reactivity with severe hypertension in the former and hypotension and reduced 
oxidative stress in the latter [8, 48]. In addition patients with Gitelman’s syndrome showing 
blunted short and long term Ang II signaling via AT1R, reduced oxidative stress, lack of 
cardiovascular remodeling, upregulation of NO system, increased NO mediated vasodilation 
and downregulation of RhoA/Rho kinase pathway [8, 10], also represent in terms of 
biochemical and molecular mechanisms the opposite of the condition present in CNIs 
induced hypertension, therefore further indirectly supporting the role of Ang II, oxidative 
stress signaling and NCC activation mediated sodium retention as key processes in the 
induction of CNI mediated hypertension. Furthermore, in untreated essential hypertensive 
patients we have shown that Rho kinase activity, in terms of protein level of p63 RhoGEF, a 
specific mediator transducing the Ang II message from activated AT1R to RhoA/Rho kinase 
activation via Gq protein, leading to vascular contraction, proliferation, and cardiovascular 
remodeling [8, 10], and in terms of MYPT-1 phosphorylation state, marker of Rho kinase 
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activation, was increased [50] 
and declined after 6 months 
treatment with the Ang II type 
1 receptor blocker olmesartan 
[51]. Also these data, although 
not directly coming from 
CNIs induced posttransplant 
hypertension, further indirectly 
support the role of Ang II/RhoA/
Rho kinase/oxidative stress/
NCC activation interrelated 
signaling as key processes in 
the induction of CNIs mediated 
hypertension. 

The role of sodium 
retention by the kidney in the 
pathophysiology of CNI induced 
hypertension may also be linked 
to the activation of sympathetic 
nervous system and oxidative 
stress signaling by CNI.

CsA-induced renal sodium retention was shown in rats to be caused by the activation 
of sympathetic nervous system, because denervation abrogated the sodium-retaining 
effect [52]. Furthermore, norepinephrine has been reported to increase the abundance of 
phosphorylated NCC due, at least in part, via oxidative stress-response kinases, demonstrating 
the role of sympathetic stimulation of NCC in the generation of salt sensitive hypertension 
[53] and confirming the interactions between renal sodium handling and vascular tone. The 
association of all these evidence, therefore, supports in humans the presence of a link between 
increased renal sodium reabsorption, Ang II, RhoA/Rho kinase pathway, oxidative stress, 
their signaling systems and increased vascular tone in the generation of hypertension and 
provides a unifying mechanism linking renal sodium retention via increased activity of NCC, 
sympathetic stimulation, Ang II, RhoA/Rho kinase pathway, oxidative stress and vascular 
reactivity to be considered of pathophysiologic relevance in CNIs induced hypertension [3] 
(Fig. 2).

Conclusion

The knowledge and comprehension of the pathophysiological associations between 
kidney transplant and post transplant hypertension induced by CNIs are fundamental 
in order to improve both graft and patient survivals due to the weight of post transplant 
hypertension on cardiovascular mortality in kidney transplant population.

Ang II and oxidative stress signaling, renal sodium retention and sympathetic stimulation 
are deeply involved in CNIs-induced post transplant hypertension. Their biochemical and 
molecular mechanisms and the links between these mechanisms, as provided by studies 
in transplanted patients chronically treated with CNIs and by those derived from studies 
in rare genetic diseases such as Gordon syndrome and Gitelman’s syndrome, both directly 
and indirectly confirm the importance of their pathophysiologic role in CNIs induced 
post transplant hypertension in kidney transplant patients. Clarification of how these 
biochemical/molecular mechanisms work/interact would provide further insights into the 
pathophysiology of CNIs induced hypertension but could also have a secure positive impact 
on a clinical ground identifying significant targets whose pharmacologic targeting might 
have multiple beneficial effects on the whole cardiovascular-renal function of transplanted 

Fig. 2. Pathophysiologic mechanism for CNIs induced-Ang II/
Rho kinase/Oxidative stress mediated sodium retention and 
hypertension.
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patients.
The demonstration that in kidney transplanted patients with CNIs induced post-

transplant hypertension, the treatment of hypertension with different antihypertensive 
drugs inducing a comparable blood pressure reduction but different effects for example on 
oxidative stress and oxidative stress related proteins and/or sodium retention [30, 31, 37], 
could be helpful for the choice of the antihypertensive treatment in these patients, which 
takes advantage from effects of these drugs beyond blood pressure reduction.
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