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Abstract

The present work aims at the evaluation of the effectiveness of different machine learning algorithms on a variety of clinical
data, derived from small, medium, and large publicly available databases. To this end, several algorithms were tested, and their
performance, both in terms of accuracy and time required for the training and testing phases, are here reported. Sometimes a data
preprocessing phase was also deemed necessary to improve the performance of the machine learning procedures, in order to reduce
the problem size. In such cases a detailed analysis of the compression strategy and results is also presented.
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1. Introduction

In the recent years machine learning algorithms are becoming of paramount importance in computer science re-
search. Recent advancements in wearable sensors for collecting biological data, such as electrocardiography (ECG),
electroencephalography (EEG), surface electromyography (sEMG), photopletysmography (PPG) and speech signals,
and inertial data such as accelerometer and gyroscopic signals have lead to a complex, large and heterogeneous data
processing [7]. The human activity detection as well as the diagnosis and prognosis of patients based on manual in-
vestigation of data collected from these sensors are difficult and time consuming. Therefore, the implementation of
knowledge-based decision-making systems is becoming more and more important in order to exploit the advantages
of these new sensors. For these systems, the machine learning algorithms play a key role because they are capable of
performing the analysis of such complex data in a very efficient way [17, 11]. In the field of fitness and healthcare data
are often complex, context-dependent, and heterogeneous. As a consequence, obtaining insightful information from
the raw data is a challenging task. Sports trainers, clinicians and researchers often make use of statistical data analysis
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for examining physiological signals. In this context, machine learning algorithms can be used to identify patterns in
data and the advantage of such algorithms is that the recognition systems can learn from the identified data providing
more efficient and accurate decisions [12]. An example of decision within healthcare informatics is the recognition
whether a hospital patient suffers of a particular pathology or not (healthy patient) [10, 4, 5, 15].

Because the electrical signals collectable from patients are different and so heterogeneous, it is very important
to perform experimental investigation to compare the performance of different machine learning algorithms to help
select the best one for a specific set of such signals.

A large number of machine learning algorithms have been developed in order to perform classification, regres-
sion, and in general pattern recognition. Among these the most common algorithms are the support vector machine
(SVM) [13], the neural networks, the k-nearest neighbor (KNN) [14, 16], the logistic regression, the decision tree [9],
the random forests, the linear discriminant analysis (LDA) [26], the case-based reasoning, the naı̈ve Bayes, and the
fuzzy logic. This study compares the performance of some of the above popular machine learning methods applied
to publicly available data set, in order to investigate algorithms that provide the best classification accuracy using
physiological signals such as speech, EEG and gait dynamics signals.

The rest of this paper is organized as follows: Section 2 is divided into two subsections that present the used data
sets and machine learning algorithms, respectively. Section 3 discusses the experimental results and related findings.
Finally, Section 4 gives some conclusions.

2. Material and Methods

2.1. Data sets

In this work the following databases related to physiological signals have been considered in order to test the
classification performances of the chosen machine learning algorithms.

1. The Parkinson data set (DS1). This data set is composed of several voice samples that have been recorded from
23 subjects with Parkinson’s disease (PD) and from 8 healthy subjects. From each of the 31 subjects, an average
of six voice samples have been obtained, for a total of 195 voice recordings. From all these speech signals a total
of 22 features have been calculated using standard and and nonstandard measurement techniques that generated
a single number for each of the 195 voice recordings [25].

2. Parkinson speech dataset with multiple types of sound recordings (DS2). This data set is composed of several
voice samples that have been recorded from 40 subjects (20 subjects with PD and 20 healthy subjects) for the
training set, and from 28 subjects with PD for the testing set. For the training set, 26 voice samples including
sustained vowels, numbers, words, and short sentences in Turkish language have been recorded from each subject
for a total of 1040 recordings. For the testing set three samples of the sustained vowels “a” and “o” have been
recorded from each subject for a total of 168 recordings. Finally a set of 26 linear and time-frequency based
features have been extracted from each voice sample [29].

3. Epileptic seizure recognition data set (DS3). This data set is composed of data that have been recorded from 500
subjects. For each subject 23.6 seconds of brain activity have been recorded. The corresponding time-series have
been sampled into 4097 data points representing the values of the EEG signal as a function of the discrete time.
Every 4097 data points have been divided and shuffled into 23 segments, each segment contains 178 data points
for 1 second. This results in 23 × 500 = 11500 pieces of information (rows), each of which contains 178 data
points for 1 second (columns) [3].

4. EEG eye state data set (DS4). This data set is composed of data obtained from one continuous EEG signal whose
the duration was 117 seconds. This EEG signal has been measured by using the Emotiv EEG Neuroheadset.
During the EEG measurement, the eye state has been detected via a camera and added manually to the file after
analysing the video frames. Two eye states have been considered: the “eye-closed” state and the “eye-open”
state. The continuous EEG signal over time for 14 electrodes was sampled and 14980 samples were obtained
as observations. Of these, 6722 and 8255 observations are related to the “eye-closed” and “eye-open” states,
respectively [30, 28].
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5. Gait dynamics in neuro-degenerative disease data base (DS5). This data set is composed of data obtained from
gait dynamics measured from 63 subjects: 15 subjects are patients with PD, 20 subjects are patients with Hunt-
ington’s disease (HD), and 13 subjects are patients with amyotrophic lateral sclerosis (ALD). 16 healthy subjects
are also included as a control. The raw data were measured using force-sensitive resistors, with the output roughly
proportional to the force under the foot. The following stride-to-stride measures of footfall contact times were
derived from these signals as features, i.e. left stride interval, right stride interval, left swing interval, right swing
interval, left swing interval (% of stride), right swing interval (% of stride), left stance interval, right stance in-
terval, left stance interval (% of stride), right stance interval (% of stride), double support interval, and double
support interval (% of stride) [24, 22, 23].

6. Gait in Parkinson’s disease - vertical ground reaction force (VGRF) (DS6). This data set is composed of data
obtained from gait measurements of 93 subjects with PD, and 73 healthy subjects as a control. The data set
includes the vertical ground reaction force records of subjects as they walked at their usual, self-selected pace
for approximately 2 minutes on level ground. Underneath each foot were 8 sensors (Ultraflex Computer Dyno
Graphy, Infotronic Inc.) that measure force (in newtons) as a function of time [2, 1]. The output of each of these
16 sensors has been digitized and recorded at 100 samples per second, and the records also include two signals
that reflect the sum of the 8 sensor outputs for each foot [18].

2.2. Algorithms

To objectively identify the diseases from the gait data, we used the following different types of classifiers.

1. Linear, cubic and Gaussian support vector machine (SVM). The support-vector machine or network is a su-
pervised learning technique for two-group classification problems. The machine conceptually implements the
following idea: input vectors are non-linearly mapped to a very high-dimension feature space. In this feature
space a linear decision surface is constructed. Special properties of the decision surface ensures high generaliza-
tion ability of the learning machine [13]. Given a training set, whose elements are marked as belonging to one of
two categories, the SVM builds a model that assigns the elements of the testing set to one category or the other,
making it a non-probabilistic binary linear classifier. The SVM model represents the samples as points in space,
mapped so that the samples of the separate categories are divided by a clear gap that is as wide as possible. New
samples are then mapped into that same space and predicted as belonging to a category based on which side of
the gap they fall in. The SVM algorithm can efficiently perform both a linear and a non-linear classification using
what is called the kernel trick, implicitly mapping their inputs into high-dimensional feature spaces. Using a
cubic or a Gaussian function for the kernel we obtain the so-called cubic SVM and Gaussian SVM, respectively.

2. K-nearest neighbor (KNN). This classifier is one of the most popular neighborhood classifiers in pattern recog-
nition and machine learning because of its simplicity and efficiency. It categorizes each unlabelled test example
using the label of the majority of examples among its k-nearest (most similar) neighbors in the training data set.
The similarity depends on a specific distance metric, therefore, the performance of the classifier strictly depends
on the distance metric used. However, it suffers of memory requirements and time complexity, because it is fully
dependent on every example in the training set [31].

3. Decision tree. This classifier partitions the input space into small segments, and labels these small segments
with one of the various output categories. However, conventional decision tree only does the partitioning to the
coordinate axes. With the growth of the tree, the input space can be partitioned into very small segments so as to
recognize subtle patterns [27]. The main drawback is that overgrown trees could lead to overfitting.

4. Linear discriminant analysis (LDA). This classifier consists in finding the projection hyperplane that minimizes
the interclass variance and maximizes the distance between the projected means of the classes. Similarly to
Karhunen-Loève transform (KLT) [21, 20, 6, 8], these two goals can be achieved by solving an eigenvalue
problem with the corresponding eigenvectors defining the hyperplane of interest to be used for the classification
[19].

5. Logistic regression. This algorithm is a variant of the linear regression, specialized for the case when the depen-
dent variable is binary. Instead of directly fitting the dependent variable, its probability of occurrence is used, and
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then a decision threshold is employed to make the final judgement. Since there are no closed-form solutions to
this problem, typically an iterative approach such as maximum likelihood is used to fit the model.

3. Experimental Results

The previously mentioned classification algorithms have been tested on the datasets DS1 through DS6. The first
four datasets were used “as is”, passing all the recorded features and/or signals to the classifiers, while the last two
were also manipulated to try and find better features for the classification task.

3.1. Classification results on original data sets

Results for the unmodified datasets are shown in Tables 1–6.

Table 1. Parkinson data set (DS1) – Binary classification: Healthy, Parkinson disease (matrix dimensions: 195 × 23).

Algorithm Accuracy [%] Train time [s] Test time [s]

KNN 97.44 0.394 0.099
LDA 84.62 0.548 0.047
SVM Linear 79.49 0.572 0.037
SVM Cubic 92.31 0.575 0.037
SVM Gaussian 84.62 0.538 0.040
Decision Tree 84.62 0.435 0.071
Logistic Regression 25.64 < 0.001 < 0.001

Table 2. Parkinson speech data set with multiple types of sound recordings (DS2) – Binary classification: Healthy, Parkinson disease (matrix
dimensions: 1208 × 27).

Algorithm Accuracy [%] Train time [s] Test time [s]

KNN 70.12 0.411 0.105
LDA 65.98 0.533 0.048
SVM Linear 65.98 0.720 0.025
SVM Cubic 73.86 1.265 0.020
SVM Gaussian 67.22 0.607 0.056
Decision Tree 66.39 0.452 0.071
Logistic Regression 66.80 0.940 0.009

Table 3. Epileptic seizure recognition data set (DS3) – Binary classification: Healthy, Epilepsy (matrix dimensions: 11500 × 179).

Algorithm Accuracy [%] Train time [s] Test time [s]

KNN 94.57 0.457 0.727
LDA 82.30 0.645 0.036
SVM Linear 80.91 2.831 0.193
SVM Cubic 96.61 1.621 0.087
SVM Gaussian 80.00 5.496 0.684
Decision Tree 93.70 0.711 0.070
Logistic Regression 82.13 1.502 0.011

3.2. Classification results on compressed data sets

DS5 and DS6 were further investigated to see if a compression of the features helped the recognition.
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Table 4. EEG eye state data set (DS4) – Binary classification: eye-open state, eye-closed state (matrix dimensions: 14980 × 15).

Algorithm Accuracy [%] Train time [s] Test time [s]

KNN 82.38 0.421 0.230
LDA 62.82 0.564 0.047
SVM Linear 62.58 16.538 0.143
SVM Cubic 57.18 128.033 0.020
SVM Gaussian 75.47 3.913 0.538
Decision Tree 78.20 0.482 0.074
Logistic Regression 63.15 0.998 0.009

Table 5. Gait dynamics in neuro-degenerative disease data set (DS5) – Multi-class classification: Healthy, Parkinson disease, ALS disease (matrix
dimensions: 10314 × 12).

Algorithm Accuracy [%] Train time [s] Test time [s]

KNN 72.65 0.415 0.165
LDA 61.83 0.564 0.046
SVM Linear 66.93 29.941 0.057
SVM Cubic 24.64 164.562 0.060
SVM Gaussian 79.63 2.955 0.326
Decision Tree 77.01 0.476 0.073

Table 6. Gait in Parkinson’s disease - vertical ground reaction force (DS6) – Binary classification: Healthy, Parkinson disease (matrix dimensions:
4512 × 2000).

Algorithm Accuracy [%] Train time [s] Test time [s]

KNN 99.64 0.939 380.169
LDA 75.51 1.644 0.078
SVM Linear 75.34 5651.882 313.824
SVM Cubic 54.97 22237.372 129.825
SVM Gaussian 99.25 8625.951 144.639
Decision Tree 80.93 2.831 0.098
Logistic Regression 75.52 5.421 0.025

DS5 features were reduced by discarding data for the right foot and then computing 1) the step-to-step interval
average, 2) the swing interval average, 3) the maximum step-to-step interval, 4) the minimum step-to-step interval, 5)
their standard deviation, 6) and variance, 7) the stance interval duration, 8) the stance percentage of the step-to-step
interval, 9) the average speed. Classification results are shown in Table 7. As can be seen, the SVM-based classifiers
clearly benefitted from the reduction in the feature space dimension.

Table 7. Gait dynamics in neuro-degenerative disease data set (DS5) – Multi-class classification: Healthy, Parkinson disease, ALS disease (matrix
dimensions: 42 × 9).

Algorithm Accuracy [%] Train time [s] Test time [s]

KNN 62.5 0.413 0.082
LDA 75.0 0.546 0.047
SVM Linear 87.5 0.788 0.054
SVM Cubic 87.5 0.788 0.056
SVM Gaussian 50.0 0.746 0.058
Decision Tree 75.0 0.432 0.072
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Fig. 1. Eigenvalues from the DS6.

For DS6, a principal component analysis (PCA) was employed to reduce the number of features, as follows. First,
only 47 subjects were used, each of which providing a 2-minute recording sampled at 100 Hz. Each signal track was
splitted into 1.25 s long windows, without overlapping. Each time window is thus composed of 125 samples from each
of the 16 force sensors, for a total of 2000 features. Since there are a total of 96 recorded time windows per subject,
the total number of observations was 4512.

The ensuing data matrix, 4512 × 2000, was reduced by means of a PCA to evaluate the effect of the size of the
parameter space on the various classification algorithms.

Figure 1 reports the square root of the eigenvalues of the covariance matrix of the data. This is the standard
deviation of each principal component coefficient. Figure 2 reports the cumulative sum of said eigenvalues, i.e., the
total explained variance of the first principal components. As can be seen, most of the variance is explained by the first
few components, so it is reasonable to try very strong compressions down to the order of half a dozen components.

Table 8 reports the results of the classification experiments on such data set for different numbers of components.
As expected, the best accuracies were obtained with just 5 or 7 components. The dimensionality reduction actually
helps the classification, as shown by contrasting with Table 6, which reports the results obtained without PCA.

4. Conclusion

In this paper we presented the results of several commonly employed machine learning algorithms applied to the
automatic classification of clinical data to help in the diagnosis of different diseases. From the experiments, it is
apparent that no single algorithm can be deemed to be the best in all cases. Among all those tested, KNN was the one
to give more consistent results, though it is known to require lots of storage for the models if the data set is large. The
SVM family also suffers from big data sets, and benefits the most from data compression. Optimal feature selection,
either automated by means such as PCA or manually performed, obviously still plays a fundamental role in improving
machine learning performance.
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Fig. 2. Cumulative sum of the eigenvalues from DS6.

Table 8. Gait in Parkinson’s disease - vertical ground reaction force (DS6) – Binary classification with PCA compression.

PCA
Components KNN [%]

SVM
Linear [%]

SVM
Cubic [%]

SVM
Gaussian
[%]

Decision
Tree [%]

LDA [%]
Logistic
Regression
[%]

2 59.1 61.6 48.9 61.0 58.4 61.6 61.6
3 92.2 61.6 92.9 94.3 91.8 61.6 61.6
4 99.3 61.6 99.6 99.7 98.2 61.6 61.6
5 99.6 61.6 99.8 99.6 98.3 61.6 61.6
6 99.7 61.6 99.8 99.7 97.2 61.6 61.6
7 99.8 77.7 99.7 99.8 97.3 76.8 75.4
8 99.7 85.3 99.7 99.6 96.1 84.0 84.6
9 99.6 84.1 99.8 99.2 97.2 83.7 83.9
10 99.4 84.8 99.7 98.8 97.1 83.7 84.4
11 99.2 84.9 99.4 98.3 97.1 83.9 83.9
12 99.1 87.4 99.3 97.7 96.9 86.1 85.9
13 99.1 87.9 99.6 96.5 97.0 87.4 87.9
14 98.3 88.4 99.6 94.8 96.9 87.9 87.9
15 98.7 88.1 99.6 93.5 96.9 88.2 88.6
16 98.7 88.2 99.4 92.7 96.1 88.1 88.0
17 98.8 88.2 99.3 89.9 96.8 88.5 88.5
18 98.9 88.9 99.6 91.4 96.6 88.5 89.2
19 99.3 89.2 99.7 88.6 96.1 89.2 89.7
20 99.1 89.4 99.3 87.0 96.1 89.4 89.9
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