International Scholarly Research Network
ISRN Artificial Intelligence

Volume 2012, Article ID 105694, 9 pages
doi:10.5402/2012/105694

Research Article

SOM-Based Approach for the Analysis and Classification of
Synchronous Impulsive Noise of an In-Ship PLC System

G. Acciani, V. Amoruso, G. Fornarelli, and A. Giaquinto

Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari, Via E. Orabona 4, 70125 Bari, Italy

Correspondence should be addressed to A. Giaquinto, a.giaquinto@deemail.poliba.it

Received 24 July 2012; Accepted 10 September 2012

Academic Editors: C. Kotropoulos and W. Lam

Copyright © 2012 G. Acciani et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The interest in wideband data transmission over power line communications has increased rapidly. This technology offers a
convenient and inexpensive medium to transmit data, reducing the number of cables. This advantage is particularly appealing
in many fields, like the railway, naval, and aeronautical ones. Nevertheless, several problems have to be faced to obtain a high data
rate. In particular, the presence of noise makes the transmission difficult, degrading the quality of received signals and prohibiting
the full application of these communication frameworks. In this paper the behaviour of an in-ship powerline communication
system is analyzed in the presence of synchronous periodic impulsive noise. Such noise is modelled at source and its effects on the
transmission of wideband signals are evaluated by means of a simulation circuit model. The obtained results allow to identify the
characteristics of the channel and the critical conditions due to noise. Subsequently, an unsupervised technique based on principal
component analysis and fuzzy c-mean classifier detects the presence and classifies the specific noises. Numerical results show that
the proposed approach enables to achieve this target accurately under different operating conditions, proving to be an effective

tool to enhance the performances of the considered technology.

1. Introduction

In recent years, interest in wideband data transmission
over power line communications (PLCs) has been growing
deeply [1, 2]. PLCs represent a convenient and inexpensive
solution for data transmission, since they are based on the
idea of transmitting data by making use of media that was
originally designed for the electrical energy delivery. This
advantage is particularly welcome in the field of mobile
vehicles, like aircraft and ships, in which the problem of
sizes and weight of cables is felt significantly. Nevertheless,
several problems have to be solved to obtain a high data
rate transmission system. A first problem is due to the
fact that the load impedances, which are distributed on
the network, produce multiple reflections. Therefore, the
structure of the powerline constitutes a time dependent and
reverberating system. Moreover, the network configuration
varies suddenly whenever an electric device is plugged in
or out. Further factors make the data transmission difficult,
in particular the presence of noise causes the decay of
the performances [3]. Noise influences the transmission
quality severely, in fact in PLCs impulsive phenomena occur,

overlapping to a background noise. In addition, impulsive
noises cannot be represented by simple additive models as for
the classic transmission channels. Therefore, the modelling
of noise and the study of its consequences on the bit error
have attracted the attention of many researchers [4-6]. An
effective classification of noises in PLCs is given in [3]
and is the most commonly accepted [7]. According to the
proposed scheme noises can be classified as belonging to the
following classes: (a) coloured background noise; (b) narrow
band noise; (¢) periodic impulsive noise asynchronous to the
main frequency; (d) periodic impulsive noise synchronous
to the main frequency; (e) asynchronous impulsive noise.
The cited classes of noises can be caused by a wide set of
events. In detail, class (a) is caused by the summation of
numerous noise sources of low power, class (b) is generated
by the presence of radio broadcasting stations, and class (c) is
caused by switched-mode power supplies. Lastly, classes (d)
and (e) are due to the switching of rectifier diodes and the
switching transients in the power network.

The classification of noisy events plays a fundamental
role in PLCs applications. In particular, the capability of



automatic recognizing of noises allows to minimize their
effects in transmitting data [5]. To this aim, both super-
vised approaches and unsupervised ones can be taken into
account. The former aim at classifying data as belonging to a
set of classes which are known a priori; on the other hand the
latter ones partition data on the basis of their observations,
that is, their structure. Therefore, an unsupervised approach
proves to be more flexible to detect the occurring of a noisy
event [8]. In fact, the characteristics of impulsive noise at
the receiver depend on the specific kinds of devices which
are connected to the electric network and removed from it
during the transmission.

The employment of unsupervised techniques requires
a proper database to be constructed by means of actual
measurements in order to synthesize the classifiers correctly.
Nevertheless, this approach is not practical, in fact, this pro-
cess could be very expensive, complex, and time consuming.
An alternative way consists of obtaining the required data
by using a simulative analysis. To this purpose, in previous
works an additive model was mainly considered to take
into account the effects of both background and impulsive
events [9, 10]. Since this kind of noise depends on the
specific appliance which produces it, an alternative approach
consists of modelling the disturbances at source as recently
proposed in [2, 4]. This approach allows to separate the
modelling of noise from the modelling of the channel. In
this way, the classification is made more feasible, in fact the
noise signatures are correlated only with the sources. In this
scheme the effects of the channel are taken into account, since
noise at receiver would correspond to the noise model at
source filtered by the powerline channel.

On the basis of these considerations, in this paper, the
performances of a PLC system in the presence of six classes
of impulsive noises are analyzed. Such kind of noises are
generated by the transitions between OFF/ON and vice
versa states of some common appliances. Moreover, they
are synchronous impulsive noise modelled at source as in
[4]. The considered study case corresponds to a channel
used to transmit wideband signals on a ship. This choice
is due to the fact that the presence of a great amount of
both ordinary electrical loads, like security systems, safety
devices, and pumps, and special ones, such as on-board
entertainment, devices for wide band internet connection,
and control systems, characterizes modern ships and yachts.
The set of these electrical loads makes the electrical system
very complex. Therefore, this environment needs to be
carefully investigated in order to evaluate its performances
when working as a PLC system [11, 12]. In detail, a
reduced electrical scheme of a ship, in which the most
representative loads are taken into account, is studied. The
analysis conducted in the first stage enables to understand the
behaviour of the channel and the critical conditions in the
presence of noise and then a proper database is constructed
under these conditions. Such database is exploited to develop
an unsupervised algorithm, allowing to detect the presence of
noise and classify it.

The reported numerical analyses have two main goals.
The first consists of understanding the influence of dif-
ferent noise classes on the transmitted signal, drawing the
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conclusions about the properties of the naval environment
under analysis. The second is the reliable identification and
classification of the occurring noisy events. This aspect makes
the simulation an effective tool to support the application of
PLC technology in a transmission framework.

The paper is organized as follows. In Section 2 the models
of the network and noises which have been analyzed are
given; in Section 3 the unsupervised method for the classi-
fication of impulsive noises occurring in the channel is illus-
trated; in Section 4 numerical results and their discussions
are displayed. Section 5 concludes the paper.

2. Simulation Model

In this section the simulation model for the evaluation of
noise effects on the transmission of signals in a PLC line is
presented. The simulation framework is composed by the
circuit model of the powerline and the mathematical models
of the injected noises. Details are given in the following two
subsections.

2.1. Powerline Model. The powerline under analysis is mod-
elled by a scheme, whose topology takes into account only the
branches of the powerline connected to the most significant
loads of the system. In detail, such scheme is composed by 70
branches, 13 ports, and 18 outlets, as sketched in Figure 1.
This figure shows the position of the switch boards on the
ship, the transmitter and the three receivers, named Tx, Rxj,
Rx;, and Rxs, respectively. The length of all the cables varies
from a minimum of 6 m to a maximum of 60 m. Such model
can be exploited to provide a corresponding lumped circuit
including information of both the characteristic impedance
and the constants of the transmission line. In particular, it is
supposed that each cable constitutes a uniform transmission
line, whose characteristic impedance, propagation constant
and length are denoted by Z, y, and I, respectively. Hence,
cables are modelled by an equivalent 7-connection circuit,
whose derived admittances Y; and Y, and the transversal one
Y; are computed as:

cosh(yl) — 1 1

n= Zsinh(yl) ’ =", Ys= Zcsinh(yl)”
(1)

By applying expressions (1) to each cable of the network the
lumped circuit can be obtained.

This lumped model can be successively exploited to
simulate and test the general behaviour of the whole network.
It allows to analyze the effects due to the presence of noise in
any nodes. In fact, it is possible to simulate both a noise at
source and an additive one by connecting a proper voltage
generator to its injection point and to the receivers of the
network, respectively.

2.2. Noise Model. In the examined case the presence of
synchronous impulsive noises is considered. Such noises are
generated when the most common appliances are discon-
nected or connected to the supply network. Basing on proper
measurements in [13], the bursts associated to this kind of



ISRN Artificial Intelligence 3
Tx C2
——————e Rx;
Cl (33—' Load 1
% C3
Cl - C2
T ———eload2
Crewarea | 'Z
Load 8 R e G5 2] CZ—.
Load 7 —:1 T . Ce CZ—.
o
Na)
.—CZ < Laundry C4 —.C2
2
c2| &
| & C2
o _ C2 Rx
2 =
PR C2
———————— § Fg CZ—. Load 3
o
c3 § C1 £ o
c7 « Owner area ‘§
Load 9 e @ C3—0 Load 4
C1 C3
o o
Cl
PR o2 5
Cc2 Rxs
S C2
-— |
g ————=e Load 5
]
Cl = |
5
Gust area §
@ CZ—. Load 6
C2

FiGure 1: Topology of the in-ship network under analysis.

noise are modelled by two specific waveforms according to
the duration of the event. In particular, a short burst can be
seen as a dumped sinusoid, called elementary pulse, whereas
a long burst is given by the succession of elementary pulses.
The time realization of impulsive noise generated by the
switches of appliances in a network can be modelled as:

n(t) = Ae™™ cos(2mk fot), (2)

with A the amplitude of the pulse, & the damping coefficient,
k normally distributed random variable, f; frequency at
which the load works, and kf; the pseudofrequency of the
noise.

The values of the parameters A and « can be determined
by means of measurements carried out at source as shown in
[2, 4], where six classes of impulsive noises are distinguished
according to the kinds of appliances and events. In particular,
classes 1 and 2 correspond to ON/OFF events of electrical
switches and thermostats. Classes 3 and 4 are associated to
puts and removals of plugs, respectively. Lastly, class 5 is due
to starts of engines and class 6 collects different weak noises.
In the cited papers amplitude and duration statistics about
noises of each class are accurately measured and collected.
Therefore, it is possible to exploit different realizations of
the six classes of impulsive noises with the aim of analyzing
the behaviour of the channel, as the injection point of noise
and the receiver vary. In the considered simulations the noise

realizations are modelled by proper voltage generators. In
detail, the waveforms of such generators are given by the
frequency spectra of the time realizations and are connected
in series to the loads which could cause the occurrence of
noise bursts.

Background noises are characterized by root mean
square amplitudes which vary slowly over observation time.
Although several probability density functions (PDFs) have
been suggested in literature, the Nakagami-m PDF seems to
be the most effective in modelling background noise. Such
function is given by the following expression [5]:

_i m " m—1_,-mr?/Q

r being the random variable, p the probability of the cor-
responding random variable, I' the Gamma function, m the
ratio of the moments, and Q) the mean power of the random
variable. It is shown that this model is suited to represent
different situations as the value of the parameter m varies. In
fact, if m = 1, then a noise Rayleigh distributed is modelled,
whereas if m > 1 the Nakagami PDF fits noises with smaller
variances and larger mean than the Rayleigh distributed one.
If m < 1 a noise with opposite characteristics is obtained.
Due to its features, the reported model is considered the most
general in the following with the aim of representing the
background noise which takes place in naval environment.



Impulsive noises are characterized by the rapid variations
of their amplitudes.

For a sake of completeness of a realistic model of the ana-
lyzed network, asynchronous impulsive noise is considered.
In fact, this kind of noise always occurs in PLC transmissions.
Its most accepted model is given by Middleton’s Class A one,
according to which the amplitude z, is characterized by the
following PDF [14]:

e AAm ]
pa) =S¢

m=0

(—z%/202)
e m) 4
m!  /2no, (4)

with 02, = o%?((m/A +T)/(1 + T)), being p the probability
of the corresponding random variable, A a measure of the
average number of impulses over a period of the signal, T
the ratio between the background noise power variance oy,
and the impulsive noise power one o7, with ¢ = 05 +
o?. Middleton’s Class A model is based on the assumption
that the total received noisy waveform consists of several
sources each Poisson-distributed in time and space. This
hypothesis is reasonable and in accordance with the model of
the interarrival time between the occurring of two events [3].

3. Proposed Classification Method

In this section a method to detect and classify noises over-
lapped to the transmission of a signal in PLC systems is
presented. To this aim, the signal, which is supposed to be
collected at the receiver, can be modelled by the following
expression:

si(£) = x(t) + b(1) + ni(1), (5)

with k = 1,2,...,n, and n, being the number of considered
noise realizations, x(t) the transmitted numerical signal, b(¢)
the time realization of background noise, and 7 (t) the time
realization of a noise.

Let S be a set consisting of n, time signals s(t), k =
1,2,...,n,, given by the expression (4). The target of the
proposed method is to partition the dataset S in a number ¢
of different classes, each of which collects signals containing
noisy contributions of the same kind. To this purpose,
an unsupervised method requiring proper input data is
considered. Data can be generally constituted either by the
available signals or by features properly extracted from them.
The former procedure implies the advantage of processing
data without requiring any further elaborations; nevertheless
the latter one enables to reduce data dimensionality and
the redundancy of information that they contain, improving
the performances of the classifier. As a consequence, the
identification of proper features plays a fundamental role to
classify the considered noises [15]. In the proposed method
the features are, firstly, derived from the power density
spectrum of signals at the receivers. Then, they are reduced in
order to construct a dataset which is partitioned by making
use of a self-organized map (SOM) as classifier.
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In detail, let Sk (f) be the frequency spectrum computed
for each time realization si(t), then the power density spec-
trum is denoted by ISk(f)Iz. The vector wi(f) is computed
as

wi(f) = 20 Log([Sk () |?) = Sk, (6)

§k being the mean of the quantity 20 Log(|Sk(f) |2).

The resulting vectors wi(f), k = 1,2,...,n, are arranged
as the columns of a (p X n,) matrix X which is decomposed
by the technique of the principle component analysis (PCA).
Such technique exploits the singular value decomposition to
represent X as the matrix product:

X =UzvT, (7)

where U and V are two unitary matrixes, whose dimensions
are p-by-p and p-by-n,, respectively, and X is a p-by-n, diag-
onal matrix containing the generalized eigenvectors of X.

The data space is reduced by taking into account the
matrix Y which is obtained by projecting X into the space
identified by its first g singular vectors:

Y =U/X, (8)

U, being the g-by-q principal minor of U.

The number of g is determined as the minimum number
of components assuring the maximum significant data
variance. The columns of the resulting g X n,-matrix Y
constitute the input dataset for a SOM.

This classifier is a particular kind of artificial neural
network based on competitive learning, that is, its output
neurons compete among themselves to be activated. In this
way, only one output neuron or one group of neurons is
updated when a datum is submitted to the net. In a SOM, the
neurons are placed at the nodes of a grid. Neurons are selec-
tively tuned to various input patterns or classes of them in the
course of a competitive learning process. In particular, neu-
rons characterized by the minimum distance from the input
pattern are modified by the learning process. Therefore, the
locations of the neurons become ordered with respect to each
other in such a way that a meaningful coordinate system for
different input features is created over the grid.

With the aim of identifying the unknown partition of
dataset a SOM classifier searches ¢ centres, whose number
is considerably greater than the expected one, in order to
guarantee that every noisy event is recognized. This initial
number can be established on the basis of an a priori
knowledge or, if unavailable, by using the rule of thumb
reported in [16]. This rule sets the initial number of centres
to the square root of the data cardinality.

The number of the computed centres is, then, reduced
in order to obtain the optimal landscape of centres. Such
reduction is performed by eliminating those centres which
are characterized by null clusters, since they are not represen-
tative of any datum. The final position of the neurons corre-
sponding to the resulting elements is, subsequently, exploited
to partition data into specific classes. In particular, a noisy
event N, is considered overlapped to a signal s(t) when
among the neurons of the trained SOM one representing N,
has the minimum distance from s(¢) in the space Y.
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TABLE 1: Electric parameters modeling the channel under test.
Cable f 1 MHz 5MHz 10 MHz 15MHz 20 MHz
R(Q) 0.064 0.18 0.19833 0.21 0.22
C1 L (H) 3.34e -7 3.29e -7 3.23e -7 3.29e -7 3.29e -7
C (F) 9.91e — 11
R(Q)) 0.14 0.37 0.49 0.55 0.61
C2 L (H) 6.73e — 7 6.62e — 7 6.59¢ — 7 6.58¢ — 7 6.58¢ — 7
C (F) 5.04e — 11
R(Q) 0.12 0.33 0.44 0.47 0.50
C3 L (H) 6.12¢ — 7 6.03¢ — 7 6.02¢e — 7 6.0le — 7 6.0le — 7
C (F) 5.48e — 11
R(Q) 0.06 0.12 0.20 0.22 0.22
C4 L (H) 3.65e — 7 3.63e —7 3.64e — 7 3.64e -7 3.64e — 7
C (F) 8.93¢ — 11
R(Q) 0.03 0.04 0.08 0.12 0.14
G5 L (H) 3.23e -7 3.22e -7 3.23e -7 3.25e —7 3.23e —7
C (F) 1.00e — 10
R(Q) 0.03 0.05 0.09 0.14 0.15
C6 L (H) 3.06e — 7 3.05e -7 3.06e — 7 3.06e — 7 3.05e -7
C (F) 1.06e — 10
R(Q) 0.034 0.0641 0.11 0.16 0.17
C7 L (H) 3.07e -7 3.07e -7 3.07e -7 3.07e -7 3.07e -7
C (F) 1.06e — 10

TasBLE 2: Load impedances in the channel under test ().

Load 1 2 3 4 5 6 7 8 9
R 75 2289 2656 75 1434 75 32.04 952 0.64
XL /I 0.26 /! /016 // 0.07 0.03 0.02

4. Simulation Tests and Results

In the following two subsections, numerical results referring
to the analysis of the channel are, firstly, provided and, then,
the performances of the proposed classification method are
given.

4.1. Frequency Domain Analysis of the Channel. The whole
system has been simulated by using the circuit model
reported in Section 2, whose electric parameters are sum-
marized in Table 1, whereas the load impedances are given
in Table 2. The simulations of the study case have been
carried out by considering an impulsive input signal which
is characterized by a spectrum having unitary amplitude in
the frequency range of observation (1 MHz, 20 MHz). Such
kind of signal is chosen to perform an analysis which is
focused on the effects of noise on the response of the channel
without taking into account the specific employed coding
transmission.

In the conducted simulations the frequency spectrum of
the voltages at receivers Rxj, Rx,, and Rxz are computed
injecting noise into each node to which the nine loads
are connected. In detail, a time realization of each class of
noise is produced and constitutes the waveform of a voltage

generator which is connected in series to one of the loads.
This analysis is carried out by considering the six classes of
noise reported in Section 2. In Figure 2(a) the voltage at the
receiver Rx; is displayed when a noise belonging to class
1 is injected at nodes to which loads are connected. For
a sake of clarity, in Figure 2(b) the same voltage spectrum
curves are reported for the cases in which noise is injected
into each node connected to an ohmic-inductive load. From
an analysis of these figures, it can be noted that the noise
having the greatest influence is injected at nodes to which
resistive loads are connected. On the contrary, if the noise is
injected into nodes with ohmic-inductive loads, five almost
overlapped spectra are obtained. In other words, examining
the obtained results, it can be deducted that ohmic-inductive
loads attenuate the effects of noises. This is due to the fact
that the modules of these impedances assume high values
and, therefore, the most relevant part of the voltage which
is supplied by the noisy generator localizes at the load.
Moreover, it should be considered that the curve with the
highest values of voltage Vrx; in Figure 2(a) corresponds to
a noise generated at the node with Load 1. It presents the
maximum effects at the receiver. This behaviour is expected
since this signal has to pass through the minimum path.
This phenomenon can be understood by referring to the
circuit model of the system in Figure 1. The topology has
a star configuration, where the Service Panel is the star
centre and connects all the other switchboards through paths
formed by m-connections constituted of impedances with
similar values. Consequently, the voltage at a receiver placed
at a switch board does not see any loads placed at other
switch boards or at the service panel. In an analogous way,
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FIGURE 2: Spectrum of voltage at Rx; when noise of class 1 is injected at (a) nodes with resistive loads and (b) with ohmic-inductive loads.
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FIGURE 3: Spectrum of voltage at Rx; when the six considered classes of noise are injected into node with (a) Load 1 and (b) Load 5.

the overall admittance at the star centre does not depend
on load admittances placed at any node of the network.
Therefore, the shape of the frequency responses exhibits
little variations with respect to the variation of the loads.
This behaviour can be considered general, in fact it has
been observed at all receivers for each examined noise class,
including the ones whose influence on the channel response
is minimum [17]. It constitutes a novelty in PLC field and
characterizes the naval applications [18].

In order to show this aspect, the effects of the different
classes of noise at Rx; have been considered. In Figures
3(a) and 3(b) results are displayed by considering nodes
with Loads 1 (resistive) and 5 (ohmic-inductive) as injection
points for the six noises considered classes.

It can be evicted that previous behaviours are confirmed,
in fact the maximum influence of noise is observed if loads
are resistive and at the minimum distance from the receivers.
In particular, the curves in Figure 3(a) reveal the maximum
variability, whereas the spectra in Figure 3(b) prove to be
smoother than the ones given in Figure 3(a).

Finally, a proper simulation has been conducted. In such
simulation, the signals at receivers are computed when noise
is injected into nodes with resistive loads, whose impedances
assume different values.

The case corresponding to the signal at receiver Rx; when
noise of class 1 is injected at Load 1 is reported in Figure 4.
In this case values of the load resistance equal to 75 Q, 1kQ,
and 100 kQ have been considered yielding the three shown
curves. It can be pointed out that curves become smoother at
the increasing of the resistance, therefore the effect of noises
reduces at the growing of this electric parameter.

4.2. Classification Performances. The information deriving
from the previous tests have been exploited to implement
the approach for the classification of impulsive events in
Section 3. The simulations of the study case have been
carried out by considering the generic waveform si(f)
given by the expression (3). In detail, the numerical input
signal x(t) is characterized by the parameters reported in



ISRN Artificial Intelligence

60

40 1

20 R=750

¥ il

—60

Vi, (dbV)
(=)

0 0.2 0.4 0.6 08 l 12 1,4 1.6 1.8 2
Frequency (Hz) %107

FIGURE 4: Spectrum of voltage at Rx; in the presence of noise of class

1 when at Load 1 a resistor R = 75, R = 1k, and R = 100kQ) is
connected.

TABLE 3: Features of a typical transmitted signal x(¢).

Frequency spectrum range [1 MHz, 7 MHz]
Subcarrying band B, 6 kHz/subchannel
Sampling rate f; 6 MHz
Resampling rate f 24 MHz
Modulation 16-QAM
Generated symbols 16

Guard Interval 1/4

Symbol duration (1/B&) X (1 + Guard_Interval)

Table 3. Such parameters are chosen to simulate a generic
transmission of a signal in a wide band, like TV or similar
ones.

The PDF of the background noise b(t) is given by the
Nakagami-m function. For a sake of brevity such kind of
noise is indicated as NBN in the following. The contribution
ni(t) corresponds to a periodic synchronous impulsive
distributed noise (PSIN) or to an asynchronous impulsive
distributed noise (AIN) overlapped to the background.

The received signals are assured to be characterized by
a signal to noise ratio of 30dB, as required by standard
transmissions. In the reported study case Rx; and node with
Load 1 have been considered as receiver and injection point
of synchronous impulsive noise, respectively. As shown in
Section 4.1, this configuration has been chosen since it corre-
sponds to a situation in which noise affects the transmission
critically. The method has been tested by using a database
formed by 240 time realizations for each kind of considered
signal. In detail, the first 240 are obtained by overlapping
as many as realizations of b(t) to x(f), 240 realizations
are obtained adding the realizations of the PSIN noise to
the previous two signals, and 240 are obtained adding the
realizations of the AIN noise to b(¢) and x(¢) signals. Finally,
it should be remarked that each class of the periodic syn-
chronous impulsive noise is represented by 40 realizations.
This dataset has been subsequently split in two subsets

100
90
80
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50
40
30
20
10

0 100 200 300 400 500 600 700

FIGURE 5: Pareto diagram of the PCA components of a signal
belonging to the set of the considered ones.

consisting in the 80% and 20% of the initial data. They are
used for training and testing the SOM. The classification has
been performed using a 4-by-4 SOM, since it allows to reach
the best performances during the training phase in all the
considered cases. A number g = 19 PCA components of the
obtained signals has been considered. As it can be observed
in Figure 5, this number of components corresponds to
the 50% of Pareto diagram, which reports the variances of
principal components versus their number. The choice of
50% in this diagram guarantees a good trade-off between the
computational time and the correct identification.

The performances of the proposed detection method
have been evaluated by defining the correct classification
index CC as:

Number of events correctly detected

CC = % 100. (9)

Total number of events
A given noisy event is considered as correctly classified if a
waveform is assigned to the set associated to the class of noise
overlapped to the transmitted signal.

Different tests have been conducted with the aim of
understanding the capabilities of the proposed method to
classify different noisy conditions.

The first experiment consists of distinguishing two
classes: the former is given by a Nakagami distributed back-
ground, whereas the latter corresponds to a PSIN distributed
noise overlapped to the background. In other words, this
experiment aims at detecting the presence of an impulsive
event during the data transmission. In this case a value of
the CC index equal to 100% has been obtained if considering
each of the six PSIN classes overlapped to x(t). The same
result is obtained for all the experimented values of m.

The second experiment has been performed in order to
show the sensitivity of the method to the different classes
of noise in a more realistic situation. In particular, it has
been considered the presence of the asynchronous impulsive
noise (AIN) which commonly affects PLC transmissions. To
this aim, the realizations of this kind of impulsive noise have
been generated by Middleton’s PDE. The database described
for the first experiment has been enlarged by considering
further 240 signals. As a consequence, three situations can
be identified: the absence of impulsive noises, the presence
of the PSIN noise, and the presence of the asynchronous
impulsive one. The values of the CC index are obtained when
the presence of only one class of PSIN is considered. Table 4



TaBLE 4: CC index obtained in the detection of Nakagami, Middle-
ton, and one class of PSIN noises (m = 1).
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TaBLE 6: CC index obtained in the detection of Nakagami, Middle-
ton, and PSIN noises with different training sets.

PSIN class NBN NBN + AIN [%] NBN + PSIN [%]
1 100% 100% 100%
2 100% 100% 100%
3 97.91% 100% 100%
4 100% 100% 100%
5 100% 97.91% 100%
6 100% 100% 100%

TaBLE 5: CC index obtained in the detection of Nakagami, Middle-
ton, and PSIN noises as the value of m varies.

NBN NBN + AIN NBN + PSIN
m=1 99.47% 96.87% 100%
m=2 100% 100% 100%
m= 100% 99.47% 100%

reports the results for the test set corresponding to m = 1, of
the Nakagami PDFE.

From an analysis of this table, it can be observed that
the synchronous impulsive noise is detected without errors,
whereas misclassifications occur for the asynchronous and
background noises. Therefore it is possible to assert that the
performances do not decay if a specific class of noise affect
the electric system. Results are consistent, in fact the method
does not change its classification capabilities as the kinds of
noise vary.

The third experiment is devoted to evaluate the robust-
ness of the classification method as the background noise
level changes. In this case, the different kinds of PSINs
realizations are grouped in only one class. Therefore, the
presence of AINs, PSINs, or the absence of impulsive noises
is detected as the values of parameter m change. In Table 5
the results corresponding to m = 1, 2, and 3 of the Nakagami
PDF are reported.

It should be noted that the method exhibits good perfor-
mances in terms of correct classification in almost all the con-
sidered cases as the power of the background noise increases.

With the aim of evaluating the capabilities of the
approach to classify correctly noisy events under different
operating conditions, the values of CC have been computed
by assuming that the classes of noises used in the train
phase and the ones classified at the receiver are different. As
supposed in previous cases noise realizations belonging to
all the classes of PSIN compose a unique set. The results of
this last experiment are reported in Table 6. The first column
contains the classes used to train the SOM. This set changes
for each considered case. On the contrary, the number of the
classes to be recognized is constant and equal to 3, as reported
in the first row. The results shown in Table 6 prove that the
method enables to detect and classify impulsive noises with
good accuracy under different operating conditions. In fact,
a class is not identified in the classification stage if it is not
employed in the training set. Finally, it should be observed

- Recognized classes
Training classes

NBN NBN + AIN NBN + PSIN

NBN;
NBN + AIN 100% 97.91% 100%
NBN + PSIN
NBN;

> 0 0
NBN + AIN 100% 100% 0
NBN;

> 0, 0,
NBN 4+ PSIN 100% 0 95.80%

that two values of CC are not 100%. This is due to the fact
that some impulsive events can be misclassified with the
background noise class, if high values do not characterize
them. Nevertheless, this behaviour can be expected. In fact,
the first row of Table 6 is coherent with the results in Table 4,
whereas the last row is caused by the fact that the classifier is
forced to recognize a number of classes which varies from the
train to the test.

5. Conclusions

In this paper, a numerical analysis of the effects of syn-
chronous periodic impulsive noise on the transmission of
wideband signals in a naval PLC has been conducted. Six
classes of this impulsive noise modelled at source have
been considered to affect the system. These kinds of noises
simulate the presence of different common appliances that
change their status from OFF to ON and vice versa. The
conducted simulations show that the kind of loads and the
position of the injection point in the topology of the network
are the parameters that mainly influence the properties
of the PLC transmission. In particular, such systems are
characterized by electric plants, whose topology minimizes
the effects of the transfer function variations caused by
switching loads. Therefore, the classification of noisy events
plays a fundamental role in this field, since the presence of
noise is the main factor which prohibits the full application
of PLC. To this aim, an unsupervised technique based on the
use of PCA and a SOM classifier has been developed.

Three contributions of noise which commonly verify
in PLC naval systems have been considered: the first is
given by the background, whereas the second and the third
correspond to a periodic asynchronous and synchronous
impulsive noise overlapped to the background. Numerical
results show that the proposed approach enables to classify
the typologies of noise accurately under different operating
conditions. Therefore, the developed method represents a
useful tool for the detection and classification of noisy events
in this kind of transmission.

Future analyses will be devoted to investigate the effects
of further kinds of noises which could affect the channel
under test and the effectiveness of the proposed solution in
their detection.
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