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southern Italy)
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Oceanografia (OCE), Trieste, Italy; dDepartment Of Ecology and Biology, Laboratory of Experimental Oceanology and Marine Ecology,
Tuscia University, Civitavecchia, RM, Italy; eInstitute for Coastal Marine Environment, National Research Council, Taranto, Italy

ABSTRACT
The HR (High-Resolution) EO (Earth Observation) satellite systems Landsat 8 OLI and Sentinel
2 were tested for mapping the frequent phytoplankton blooms and Chl a distributions in the
sea basin of the Mar Piccolo of Taranto (Ionian Sea, southern Italy), using the sea truth
calibration data acquired in 2013. The data were atmospherically corrected for accounting
of the aerosol load on optically complexes waters (case II). Various blue-green and additional
spectral indices ratios, were then satisfyingly tested for mapping the distribution of Chl a and
differently sized phytoplankton populations through PLS (Partial Least Square regression)
models, regressive statistical models and bio-optical algorithms. The PLS models demon-
strated higher robustness for assessing the distribution of all the phytoplankton and Chl
a except for those related to sub-surface micro-phytoplankton. The distributions obtained via
a bio-optical approach (OC3 algorithm and full physically based inversion) showed a general
agreement with the previous ones produced by statistical methods. The reflectance signals,
captured by OLI and Sentinel 2 sensors in the visible and shorter wavelengths once atmo-
spherically corrected, were found to be useful to map the coastal variability at detailed scale
of Chl a and different phytoplankton populations, in the optically complexes waters of the
Mar Piccolo.
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Introduction

The last decades, phytoplankton blooms have been
frequently observed in shallow coastal areas of the
Mediterranean, where high nutrient loads due to
eutrophication stimulate major photoautotrophic
abundances (Kennish, Brush, & Moore, 2014).
Globally, the increase of anthropogenic impacts and
pollution in the marine habitat drives changes in all
the ecosystems both in the variation of ecological
structures of the aquatic communities (Micheli,
Cupido, Lombardi, Belmonte, & Peirano, 2012) and
in growth dynamics of plankton (Karuza et al., 2016).
Moreover, some species responsible for harmful algal
blooms are expanding their distribution on a global
scale with a negative impact on the seawater quality,
human health and economically relevant activities
such as tourism and aquaculture that are concen-
trated in coastal water environments. To effectively
mitigate these trends which are likely to continue
(Rhodes, 2011), the sustainable management of the

affected coastal areas calls for rapid and accurate
methods for assessing and mapping the type and
abundance of phytoplankton and Chl a, in seawaters
(Smayda, 2007). In particular, phytoplankton moni-
toring requires its effective detection and detailed
mapping in the open sea and in coastal and shallow
waters where anthropogenic impacts mostly concen-
trate. For this purpose, both the traditional methods
exploiting sea truth data alone (Micheli et al., 2018,
2015) and the EO (Earth Observation)-based innova-
tive techniques using airborne (Borfecchia et al.,
1997) and satellite (Borfecchia et al., 2016, 2018b)
platforms are necessary to improve the knowledge
on ecosystem functioning, in the perspective to sup-
port the ecosystem-based sustainable management
(Cibic et al., 2016; Micheli et al., 2010). Once suitably
corrected for atmospheric noises and calibrated using
the in-situ measurements, the satellite EO (Earth
Observation) techniques are recognized as effective
multiscale tools for monitoring open seas and shallow
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water quality, including the spatio-temporal changes
of marine communities (Blondeau-Patissier, Gower,
Dekker, Phinn, & Brando, 2014; Dazhao, Chuqun,
Jieqiong, & Dongyang, 2010). In fact, there are well-
established algorithms which currently provide opera-
tional estimates of global distributions of Chl a and
other relevant water parameters concentrations in
oligotrophic oceans from satellite ocean colour data
(El Hourany, Fadel, Gemayel, Abboud-Abi Saab, &
Faour, 2017), at intermediate geometrical resolution
(102–103 m). They typically exploit the radiance/
reflectance shift from the blue (440–510 nm) to the
green (550–565 nm) wavelengths due to Chl
a concentration increases by working in terms of
the ratios in these two spectrum ranges (i.e. the
SeaWiFS/MODIS OC4/OC3 algorithms). The OC2/3
bio-optical algorithms, based on the blue–green
(440–550 nm) spectral band ratio, are within the
most common types of bio-optical empirical
approaches for retrieving the global Chl
a distribution from ocean colour reflectance detected
by satellite orbiting sensors (Hu, Lee, & Franz, 2012).
These blue–green ratios can vary in response to fac-
tors besides chlorophyll concentration, like CDOM
(Coloured Dissolved Organic Matter) and SS (sus-
pended matter) contents, which characterize more
optically complex waters typical of coastal or inland
basins (Blondeau-Patissier et al., 2104). Thus, more
effective approaches are required to deal with both
atmospheric and water turbidity reflectance noise
contributions and more accentuated (compared to
open seas) spatial dynamics of coastal water variables
of interest. Indeed, the topography of the seabed, the
discharge of rivers, artificial coastal infrastructure and
coastal activities make a significant contribution to
the pattern of shallow water coastal circulation. In
this context, due to high spatial dynamics of optically
active substances concentration, their effective distri-
bution assessment requires suitable monitoring cap-
abilities in term of both spatial and radiometric
resolution. Moreover, in coastal waters (typically of
case II), the exploitation of the above-cited algorithms
suffers for the limitation in the consolidated atmo-
spheric pre-processing (De Keukelaere et al., 2018;
Franz, Bailey, Kuring, & Werdella, 2015; Pahlevan,
Lee, Wei, Schaaf, & Schott, 2014). In particular in
the retrieval of the aerosol noise parameters distribu-
tion, effective under the assumption of null water
leaving NIR (Near Infra-Red) radiance (Borfecchia
et al., 2018c; Vanhellemont & Ruddick, 2015), typi-
cally valid only for open sea and oligotrophic waters
(case I). Thus, at present much effort is focused to
provide more spectral bands to the new HR (High
Resolution) satellite sensors for enabling the develop-
ment of more sophisticated atmospheric correction
schemes and algorithms. In particular, this is required
for effective retrieving of water quality variables and

algal bloom proxies in coastal and inland case II
waters, where the anthropogenic activities often con-
centrate (Vanhellemont & Ruddick, 2014), as in our
test site within the Mar Piccolo of Taranto (Caroppo,
Cerino, Auriemma, & Cibic, 2016).

In the summer 2013, the new Landsat 8 NASA polar
satellite was launched with on board the OLI
(Operational Land Imager) sensor, characterized by
improved radiometry (12 bit) and increased spectral
acquisition bands, including the “coastal” one, especially
devoted to support the monitoring of shallow waters.
These innovative spectral/spatial features of the OLI
sensor can provide a new opportunity for effectively
mapping phytoplankton and Chl a/phaeopigments opti-
cally active water column components, at suitable spatial
resolution. In this perspective, one of the goals of this
study was to preliminarily test the OLI multispectral HR
data at 30 m of a.g.r. (above ground resolution) for
detecting and mapping the phytoplankton population
and Chl a, within the Mar Piccolo of Taranto, character-
ized by shallow waters, likely case II (Borfecchia et al.,
2018a). This confined sea is located in the Ionian Sea
(southern Italy) coastal area of Taranto, which is densely
populated and at a high risk of environmental crisis
(Cardellicchio, Covelli, & Cibic, 2016), due to the con-
centration of different impact factors which mainly arise
from local anthropogenic activities. Thus the informa-
tion provided by OLI sensor have been exploited for
phytoplankton and Chl a mapping, using some multi-
spectral images taken in 2013 over the Mar Piccolo of
Taranto and calibrated by means of near synchronous
sea truth data, acquired within the framework of the
project “RITMARE (la Ricerca ITaliana per il MARE –
Italian Research for the sea). In addition to the above-
cited blue–green ratio, other ratios have been introduced
based on the coastal (430–457 nm) and red (645–683
nm) bands, trying to properly deal with the optical com-
plexity of the shallow water in our test site, taking advan-
tage of the improved features of the OLI sensor. The
statistical multivariate and PLS (Partial Least Square)
regressive models were estimated and satisfactorily tested
using the sea truth information and ratios obtained from
remotely sensed data atmospherically corrected through
an innovative method for atmospheric correction on
optically complexes waters (Vanhellemont & Ruddick,
2015). The Chl a distribution was then assessed using the
usual OC3 algorithm and corrected reflectance data.
Finally, a comprehensive approach through a bio-
optical model inversion was preliminarily implemented
using WASI4 model (Gege, 2014).

Material and methods

Study area

The Mar Piccolo is a shallow, nearly enclosed marine
basin that consists of two naturally divided inlets, the
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1st and 2nd inlet, with maximum depths of 13 and
10 m and a surface area of 8.28 km2and 12.43 km2,
respectively (Figure 1). The Mar Piccolo is character-
ized by scarce hydrodynamic and low water exchange
since it is connected with the Mar Grande by only
two narrow channels in the 1st inlet: the “Navigabile”
and the “Porta Napoli” channels. The sediments load
of these basins arises mainly from land runoff,
numerous submarine springs, small streams, sewage
outfalls and industrial discharges rather than that
provided by marine currents (Cibic et al., 2016).
The surrounding watershed of 555 km2 hosts horti-
culture (6%) and agriculture activities, mainly cereals
(24.1%), olive trees (24.2%) and vineyards (25.4%).
These cultivations involve the application of fertili-
zers (116,800 tons y-1). Since 1960s, Taranto and its
coastline have been subjected to the industrialization
process that has caused profound environmental
changes. The industrial zone is mainly characterized
by the presence of the largest steelworks in Europe
and navy arsenal in Italy (Military area in Figure 1),
a major oil refinery, shipbuilding and other industrial
activities that are responsible for severe environmen-
tal contamination. The basin is one of the most
important plant of mussel farming in Italy (Caroppo
et al., 2016; Franzo et al., 2016).

In this context, the sustainable management and
safeguard of this vulnerable ecosystem requires effec-
tive monitoring at suitable spatial and temporal scales

for the characterization of different impact factors
and their effects on this particular ecosystem
(Petrocelli et al., 2015).

Sea truth and EO data

The sea truth sampling of phytoplankton was carried
out during the summer 2013 at 6 stations: four
located in the 1st inlet and two in the 2nd inlet,
respectively, as shown in Figure 1. At each station,
the sampling was carried out at two depths: surface,
at 1 m of depth, and 1 m above the bottom, using an
acid-rinsed 5L Niskin bottle, equipped with silicon
elastic and red silicon O-ring. To support the imple-
mentation of calibration/validation procedure (CV),
taking into account also the typical uncertainties in
localization and of the sea truth variables laboratory
estimates, even till 20–25% (Cibic et al., 2018), these
latter were considered representative of an area of
about 50 × 50 m around the central coordinates of
the station, as detailed in the following. The estimates
of abundance and biomass of the three typical size
classes of phytoplankton [pico- (0.2–2 µm), nano-
(2–20 µm), micro-phytoplankton (20–200 µm)] and
the concentration of Chl a and phaeopigments (Chl
a degradation products) were derived from the sam-
ples collected within the sample area of each station
(Figure 1). For Chl a and phaeopigments concentra-
tion, 1 L of seawater was filtered and processed as

Figure 1. Distribution of the sea truth areas including the sampling stations of phytoplankton and pheopigments (violet
squares). The background consists of the “true colour” image of the Mar Piccolo of Taranto acquired by Sentinel 2 sensor on
25.07.2015 in the UTM 33 WGS 84 geographic projection. The adjacent land uses and relevant elements (mussels farms areas
and submerged springs) of the basin are also reported.
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described by Kralj et al. (2016). The measurements of
Chl a and phaeopigments were performed, respec-
tively, before and after acidification with two drops of
HCl 1N using JASCO FP 6500 spectrofluorometer.
The coefficient of variation for three replicate samples
was lower than 5%, and the detection limit, defined as
twice the standard deviation of three blank filters
treated in the same way as samples, was 0.002 and
0.068 μg L−1 for Chl a and phaeopigments, respec-
tively. The procedures were quality controlled and
monitored by participation in the QUASIMEME
intercalibration program (De Boer, 2016). For the
phytoplankton abundance assessment various sub-
samples (30–120 mL) derived from the main samples
were differently pretreated through specific prepro-
cessing, filters and staining then a visual enumeration
was carried out using standards methods based on
different tools (i.e. a Leica DM 2500 epifluorescence
microscope equipped with a 100-W high-pressure
mercury burner (HPO 100 W/2) at × 1000 magnifi-
cation for nanoplankton, an Utermöhl chamber
settled with a variable volume of sample
(50–100 mL) and inverted microscope, Leitz
Labovert FS equipped with phase contrast, at
a magnification of ×400 and ×630, for microphyto-
plankton). While for pico- and nanoplankton, data
are reported as mean of three replicates + SD, for
microplankton only one replicate per station per
depth was counted since the observed volume of
seawater (25–50 mL) is considered representative of
the sampling site. In agreement with standard
approaches for biomass calculation, the cells' biovo-
lume was assessed by visually fitting them through
pre-definite classes of geometrical bodies (with differ-
ent size/shape) that were then exploited for biomass
calculation using specific conversion factors (Cibic
et al., 2018). Subsamples for the estimate of chloro-
phyll a (Chl a) concentration were filtered onto 47-
mm Whatman GF/F filters that were stored at −20°C
until laboratory analysis. Chl a was extracted

overnight (4°C) with 90% acetone from the homo-
genate filter and determined using Jasco FP 6500
spectrofluorometer. For details on sampling and sam-
ples processing, see Karuza et al. (2016) for the dif-
ferent phytoplankton size-classes, and Kralj et al.
(2016) for chl a and phaeopigments assessment. The
point measurements distribution at the six stations is
reported in Figure 1 while the list of the measured
phytoplankton and Chl a variables with the assigned
names and related features is reported in Table 1.

Due to requirements in terms of geometrical resolu-
tion for effectively capturing the spatial dynamics of
these variables in coastal shallow waters, the most
used EO techniques exploit the currently available HR
(High Resolution) and VHR (Very High Resolution)
multispectral aerospatial sensors. In general, they are
operating in the visible and NIR spectral ranges from
satellite remote platforms (Borfecchia et al., 2018c,
2018d; Pasqualini et al., 2005). The provided typical a.
g.r. (above ground resolution) range of HR and VHR
sensors is, respectively, of 5–100 m and 0.5–5 m.

The EO satellite systems equipped with VHR sen-
sors, mostly owned by the private enterprises,
demonstrated suitable capabilities for monitoring
and mapping the coastal shallow waters and
Posidonia oceanica (PO) ecosystems (Borfecchia
et al., 2018a).

Their operational mode is usually based on user
request and commercial distribution, which does not
involve systematic collection of the Earth’s surface
data, but only acquisitions on selected and limited
areas of interest in the scheduled period based on
specific customer requests. On the other hand, due to
their poor radiometry (8 bit – 256 levels radiometric
range) and low Signal to Noise Ratio, SNR, the older
Landsat HR sensors (i.e. TM and ETM+) resulted
often inadequate to be widely and usefully exploited
for the seabed mapping and for monitoring the
Mediterranean shallow waters, frequently character-
ized by turbidity conditions and optical complexity.

Table 1. Phytoplankton and phaeopigment sea truth data. In the first column, the variable reference name was indicated while
the related meaning was reported in the description column.
reference Variable Unit Description Sampling Depth Population Size

Phapis Cells L−1 Surface concentration of pico phytoplankton population cells surface pico – 10–12 m
Phanas Cells L−1 Surface concentration of nano phytoplankton population cells surface nano – 10–9 m
Phamis Cells L−1 Surface concentration of micro phytoplankton population cells surface micro – 10–6 m
Phapib Cells L−1 Bottom concentration of pico phytoplankton population cells bottom pico – 10–12 m
Phanab Cells L−1 Bottom concentration of nano phytoplankton population cells bottom nano – 10–9 m
Phamib Cells L−1 Bottom concentration of micro phytoplankton population cells bottom micro – 10–6 m
Phbpis μg C L−1 Surface biomass concentration of pico phytoplankton population surface pico – 10–12 m
Phbnas μg C L−1 Surface biomass concentration of nano phytoplankton population surface nano – 10–9 m
Phbmis μg C L−1 Surface biomass concentration of micro phytoplankton population surface micro – 10–6 m
Phbpib μg C L−1 Bottom biomass concentration of pico phytoplankton population bottom pico – 10–12 m
Phbnab μg C L−1 Bottom biomass concentration of nano phytoplankton population bottom nano – 10–9 m
Phbmib μg C L−1 Bottom biomass concentration of micro phytoplankton population bottom micro – 10–6 m
Chls μg C a L−1 Surface Chl a concentration surface
Chlb μg C a L−1 Bottom Chl a concentration bottom
Phes μg C L−1 Surface Phaeopigments concentration surface
Pheb μg C L−1 Bottom Phaeopigments concentration bottom
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The new generation of Landsat sensors Operational
Land Imagery (OLI) and similar satellite HR sensors
(i.e. Sentinel 2) are conceived for systematic acquisi-
tions of VIS, NIR (Near Infrared), SWIR (Short Wave
Infrared) reflectance data of tiles covering the entire
Earth surface. Their acquisition channels have been
strengthened in terms of bands number, SNR and
radiometry (12 bit), maintaining at the same time the
useful ground resolution and revisiting the capability
of the previous ones of the Landsat family. In such
a way, they might provide effective support to the
operative monitoring of coastal shallow and lagoon
waters (Pahlevan et al., 2014). In this perspective,
various cloud-free Landsat 8 OLI frames acquired in
2013 were preliminarily evaluated; therefore, the mul-
tispectral image of 20 June was selected for processing,
given its best quality and synchronicity with the sea
truth campaign.

Processing methodologies

Atmospheric preprocessing and ratio indices
To preliminarily test the capabilities of Landsat 8 OLI
for mapping the distribution of phytoplankton in the
water column of the Mar Piccolo, a correction pro-
cedure was applied in order to remove atmospheric
effects from the TOA (Top Of Atmosphere) spectral
responses detected by the remote sensor. The essen-
tial pre-processing step of atmospheric correction is
required for EO-based quantitative monitoring of
marine basins, including the coastal ones, to retrieve
the useful signal coming from the water surface as
Water Leaving Radiance (WLR) in the different spec-
tral acquisition bands (bi). In addition to that of
phytoplankton, WLR includes the contribution from
the other optically active components in the water
column, as Total Suspended Matter (TSM) and
Coloured Dissolved Organic Matter (CDOM), and
even that from the sea bottom coverage from sea-
grasses, macroalgae and various bottom substrates.
The radiometric correction for atmospheric effects
was carried out through an “image-based” approach
using the ACOLITE (Vanhellemont & Ruddick,
2015) recently released software, specifically devel-
oped to provide atmospheric correction of the HR
remotely sensed data for marine monitoring applica-
tions. The “image-based” approach takes advantage
of the specific information contained in the same
multi-spectral image to be corrected and does not
require additional in situ measures simultaneous to
satellite overpass (Richter, Schlapfer, & Muller, 2006).
This approach, being readily applicable, has been
considered suitable for our operational use. In such
a way it was possible to take into account the atmo-
spheric noise effects, in particular those more relevant
coming from aerosol concentration distribution,
using the AOD (Aerosol Optical Depth) parameter

that can be estimated from the same EO multispectral
data (image-based approach), even in case of optically
complex waters (case II). ACOLITE provides the
capability to retrieve AOD on a per pixel basis,
more appropriate for marine coastal monitoring,
where the useful reflectance signals to detect are
weak and affected by spatially dependent significant
noises (Borfecchia et al., 2018c).

The spectral responses captured by OLI sensor in
shorter wavelengths have been used in the form of
various ratios, more effective to minimize multiplica-
tive noise contributions arising from different factors
(i.e. residual atmospheric and water noises). The OLI
channels used here with their central wavelength and
bandwidth in nanometer (within parenthesis) are:
coastal = b1(442.96, 15.98), blue = b2(482.04,60.04),
green = b3(561.41, 57.33), red = b4(654.59, 37.47),
NIR = b5(864.67, 28.25). In addition to the previously
cited blue–green ratio (b23) of the responses derived
from the pre-processed images, additional formula-
tion including the new “coastal” and NIR bands have
been introduced trying to capture the specific
responses of different phytoplankton features and
populations in the optically complex waters of the
Mar Piccolo. In particular, we used the various sea
truth data relative to phytoplankton acquired in 2013,
to test the predictive capability of the various chan-
nels of the OLI sensor in the form of the following 5
band ratios: b12 = b1/b2, b13 = b1/b3, b23 = b2/b3, b34 =
b3/b4, b45 = b5/b4. The first two ratios make use of the
new “coastal” channel (b1) coupled, respectively, with
blue (b2) and green (b3) channels; the third consists
of the aforementioned blue–green ratio and the latter
two exploit the red (b4) and NIR (b5) channels, more
appropriate for providing information related to the
water surface and thin layers beneath. The values of
these five reflectance ratios derived from the point
spectral signatures were appropriately extracted from
multispectral pre-processed images in correspon-
dence to the measurement stations and were
exploited as independent variables for statistical mod-
elling used here.

The Landsat OLI frame, acquired on 20 June 2013,
was preliminarily selected considering its synchroni-
city with the sea truth campaign and quality in terms
of cloud absence. Subsequently, it was preprocessed
for atmospheric noise removal based on the estimated
AOD load. The station point spectral signatures were
then derived for all the OLI first five reflectance
bands in output from the ACOLITE code. The avail-
able sea truth data of phytoplankton variables had
been provided, for each station, as representative of
a 50 × 50 m area around the station centre coordi-
nates (station area), while their resulting standard
deviation from laboratory assessment was assumed
as station measurement error. Thus an area of
equivalent dimension, compatible with that seen by
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satellite sensor, approximately equal to 3 × 3 pixels
(window), centred on the single station centre, was
used for the extraction of the point spectral signatures
from the multispectral images, to be used for the
subsequent modelling processes. Considering that
the sea truth measurements were available only as
station area averages, first of all these spectral signa-
tures, as mean on the same area, were exploited for
the first modelling approaches. Subsequently, the
spectral signature of each pixel within the station
area was independently accounted in order to allow
the application of a more realistic calibration/valida-
tion schema to PLS models (see next sections).

Various models have been implemented using PLS
approaches by coupling these extracted data with the
corresponding phytoplankton measurement, pre-
viously recorded at each station. Subsequently, the
OC2/3 bio-optical algorithms were applied using the
above introduced atmospheric correction schema for
Chl a mapping while the water column effects were
accounted through a preliminary attempt based on
a full bio-optical inversion through the WASI4 code.
All the continuous distributions of the sea truth vari-
ables (i.e. phytoplankton densities, Chl a and phaeo-
pigments concentrations/abundance) obtained by the
various modelling approaches for the entire area of
interest, were processed to provide pseudo-colour
maps of six equal-area graduated classes.

PLS modelling & test
The regression PLS models for estimating analytical
expression for our phytoplankton variables are based
on the Principal Component (PC) preventive decompo-
sition of our spectral ratios independent (X) variables,
and this is their main difference with usual multivariate
approach, which makes it more robust against the fre-
quent collinearity problems of spectral reflectance vari-
ables (Gholizadeh & Robeson Scott, 2016). In case of
multiple dependent (Y) variables, characterized by
mutual correlation (i.e. our phytoplankton variables),
the PC decomposition may be usefully used also for
them (Kimberly & Khalid, 2016), using a full decomposi-
tion (FD) procedure, as properly explained in the
devoted supplementary materials (eq. A.3).

The regression PLS multivariate models have pro-
vided an analytical expression for the measured phy-
toplankton (Phy) and/or pigment Chl a/pigment
variables in the form of:

Phy ¼
X

aibij þ a0 (1)

where the bij are the previously introduced water
reflectance ratios, ai and a0 are the regression coeffi-
cients to be evaluated through calibration best fit for
errors minimization using field measurements. The
best fit allows assessing also the squared correlation
coefficient R2 (determination coefficient) as indicator

of model performance, once adjusted for the specific
contribution of each independent variable. In addi-
tion to R2, the average of square errors between the
measured and modelled point station values as RMSE
(Root Mean Square Error) was considered in model
performance assessment.

In general the statistic models based on field mea-
surements are usually implemented through calibra-
tion and validation (CV) schema in order to provide
a better predictive power. The calibration provide the
model parameters by optimal fitting the responses of
interest (the phytoplankton and Chl a concentrations
in our case) using physically or statistically based
expression of independent variables (the spectral
reflectance data in our case) for a subset of the avail-
able measurements. The validation exploits the
remaining measurements, different from those used
in calibration, for a further tuning by testing the
predictive capability of the estimated model using
independent data. In such a way a more realistic
evaluation of performances and expected errors may
be provided in case of subsequent model running. In
this framework a sufficient measurements number,
likely higher than the six available, is a prerequisite
for applying such schema to suitably calibrate and
validate the assessed models providing reliable
insights about their robustness in term of statistical
significance and predictive power.

First of all, a PLS calibration using the sea truth
data referring to the six measurement stations coupled
with the related point reflectance data extracted from
atmospherically corrected multispectral images and
averaged on station window was accomplished. The
sea truth data were grouped into two set referring to
surface and bottom variables that were then PC
decomposed according to the formulas of full PLS
(eq. A.3) approach (FD), including that of spectral
ratios values derived from the extracted reflectance
data (auxiliary materials). A selection of the first four
latent factors of decomposition allowed us to obtain
a satisfying level of mean performance of the PLS
models assessed for surface and bottom variables.

Subsequently in order to provide a sufficient numer-
ous sample set to apply the CV schema for PLS models,
the spectral reflectance response of each pixel within the
station window was considered as independent measure
to be coupled with the related concentration station
measurements provided by sea truth acquisition (eq.
A.4). Here the dependent variables were modelled sin-
gularly using the previously decomposed independent
spectral variables (CV approach). Although the first FD
step provided us with an optimistic evaluation of mod-
els performance in term of R2, it was useful to provide
the relative importance of various OLI spectral ratios in
modelling bottom and surface dependent variables (i.e.
phytoplankton and Chl/phaeopigment concentrations).
In the second step, the spectral signatures of the 9 pixels
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within the station window have been coupled with the
related station measurements of biophysical variables
for assessing the PLS models through CV schema. In
particular the 60% of randomly selected samples were
used for the model calibration while the remaining 40%
was devoted to models validation/test. In FD, a fixed
decomposition of independent and dependent variables
into four latent factors was adopted. The second CV
PLS procedure instead included only decomposition of
independent variables followed by a backward stepwise
selection of most representative latent factors minimiz-
ing the RMSE. In the implemented methodology, the
first step provided models with too optimistic perfor-
mance which begun more realistic in the second one
with the adoption of the calibration/validation schema.
From the point of view of Variable Importance in
Projection (VIP), the first step provided us a global
performance evaluation in modelling of the different
spectral ratios, for the surface and bottom variables,
while in the second step a close proxy of VIP was
assumed for each sea truth variable as the confidence
level derived from the related p-value(t).

Bio-optical algorithms
Since the OC2/3 bio-optical algorithms are success-
fully used in open ocean case I oligotrophic waters,
where the phytoplankton is the primary optically
active constituent with limited concentrations (Chl
a 0.01–0.5 μg L−1), here they were introduced and
tested considering the comparable sea truth data
(Figure 3). The general formulation of these algo-
rithms consists in the combination until the fourth
power of the above introduced b23 blue-green ratio:

Log10 Chl að Þ ¼ a0 þ
X

ai Log10b23ð Þ (2)

the b23 is the above introduced ratio of the water
leaving radiance/reflectance obtained from
a suitable atmospheric correction preprocessing of
TOA (Top of Atmosphere) Rblue and Rgreen,
responses. The ai coefficients are assessed for the
different satellite sensors using large sea truth data-
sets containing the in situ point measurements and
related atmospherically corrected radiances/reflec-
tances. Given the availability of the OC3 coefficients
for the OLI and Sentinel 2 sensors (https://oceanco
lor.gsfc.nasa.gov), these algorithms were applied
using reflectance responses obtained through
a new atmospheric correction approach based on
SWIR channel to retrieve the noise AOD distribu-
tion. This approach was imbedded in the ACOLITE
freely distributed package (Vanhellemont &
Ruddick, 2015), specifically implemented for
Landsat 8 OLI and Sentinel 2 HR satellite sensors
and case II waters monitoring applications. Using
the ACOLITE atmospheric correction, some Chl
a distribution maps were produced from

multispectral frames acquired by these HR satellite
sensors to be compared with sea truth and mod-
elled data.

Considering the low depth and the optically com-
plex waters of the Mar Piccolo, a further approach
was introduced to account for the spectral reflectance
contribution of the sea bottom and the water column
due to the dissolved components other than phyto-
plankton (Borfecchia et al., 2018c; Mumby, Clark,
Green, & Edwards, 1998). To this end, a complete
bio-optical modelling inversion on physical basis was
attempted using WASI4 package (Albert & Gege,
2006; Gege, 2014). This software has been implemen-
ted to extract information about the optical proper-
ties of the water body and eventually of the seabed
from the hyper/multispectral WLR (Water Leaving
Radiance) signals coming from the aquatic surface.
It requires input as atmospherically corrected multi-
spectral images and auxiliary parameters related to
typologies of seabed and optically active water col-
umn components. The code allows to recover the
distribution of the concentration of the optically
active main “structures” present in the water column
(phytoplankton, CDOM and suspended sediments)
and a series of other parameters that influence the
WLR signal even in shallow waters, in particular the
water depth and the percentage of the various types
of seabed cover such as sand, macrophytes and other
benthic organisms. The data analysis is based on
a semi-analytic inversion of various bio-optical con-
solidated models (Albert & Gege, 2006) on the basis
of typical spectral responses of the considered com-
ponents, in particular up to 6 typologies of phyto-
plankton and various types of spectrally different
material in suspension.

The reflectance of the bottom is treated as
a mixture of 6 types of substrate which reflectance
spectra are stored in a database that covers the spec-
tral range from 350 nm to 1000 nm intervals. This
database contains all the reflectance spectra used in
the code that can be upgraded to adequately represent
the real optical properties of the various constituents
of coastal waters, the various types of seabed, sea-
grasses and macroalgae, to characterize the shallow
water area of the Mar Piccolo. In order to account for
water column additional noise effects, a preliminary
exploitation of the WASI4 was attempted. The atmo-
spherically corrected OLI multispectral data of the
Mar Piccolo were properly reformatted before being
supplied to the input to the WASI4 code. Then we
proceeded with the interactive calibration procedure
using the point spectral signatures of sampling sta-
tions, previously exploited for regressive modelling.
To improve convergence in optical inversion various
constraints have been introduced, in particular to the
concentration ranges of optically active components,
based on sea truth measurements and data available
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for the study site. In addition to those of sand and
sediment, the spectra used for the different seabed
coverages, also include those of some typical green
macrophytes of inland waters (Characontraria,
Potamogeton perfoliatus) available in the WASI data-
base. These default values of auxiliary parameters
have been exploited for preliminary evaluation of
multispectral Landsat data 8 OLI with this bio-
optical inversion approach.

Results and discussion

In Figure 2, the results of different measurements
relative to the six stations in the Mar Piccolo
are reported. In particular, in Figure 2(a), the sur-
face and bottom cells abundances of the three
different sizes of phytoplankton are displayed,
while Figure 2(b) shows the related biomass values.
The Chl a and phaeopigments concentrations found
at the six measurement stations are reported in
Figure 3. As stated above, these concentration mea-
surements derived from sea truth samples were
coupled with the related window averaged spectral
indices, derived from preprocessed remotely sensed
data, for the first PLS modelling calibration step.
Here the full PLS approach (FD) allowed us to
obtain models for sea surface and bottom variables
potentially correlated within each group, with the
related global VIP. This data arrangement with the
selection of four latent factors for PLS decomposi-
tion was devoted to optimize the results in term of
global correlation maintaining at the same time
a sufficient model generality.

Tables 2 and 3 show the correlation, in terms of
cumulated explained variance under form of determi-
nation coefficient (R2), provided by the four latent
factors of the PLS models assessed for each target
(dependent) sea truth variable of surface and bottom
groups. These PLS surface and bottom models
achieved respectively more than 97% and 85% of
average global correlation (Total Expl.) referring to
calibration measurements. In agreement with the
higher noise contribution from the water column

optically active components, the global correlation of
bottom models decreases. Although different perfor-
mances in term of R2 characterize each target variable
reported in Tables 2 and 3, most of the cumulative
correlation coefficients (Factor 4 column) show high
values. In particular, the estimated models found effec-
tive for all surface variables with the correlation lowest
value (0.8748) obtained for Chl a. The obtained corre-
lations of the phytoplankton abundance and biomass
bottom variables (0.9–0.95) were similar to those of
the corresponding surface variables except for micro-
phytoplankton that exhibit a cumulated R2 values
dropping to about 0.57. However, the selection of
four latent factors for X and Y decomposition (formu-
las 2 and 3) of the two models allowed to achieve an
acceptable effectiveness, also for particular variables of
phytoplankton population (i.e. abundance and bio-
mass of micro-phytoplankton) in bottom water layers,
more difficult to detect and model.

Tables 4 and 5 contain the coefficients related to global
VIP assessed for each independent variable (spectral
reflectance ratios) in the respective sea surface and bot-
tom PLS FD models. The variables' importance in the
surface model is the highest for b34 and b45 ratios, based

Figure 2. Surface and bottom sea truth data relative to phytoplankton abundance (a) and biomass (b) for the different
population size (pico-, nano-, micro-) at the six sampling stations in the Mar Piccolo of Taranto Figure 2.

Figure 3. Surface and bottom sea truth data relative to Chl
a and pheopigments expressed in μg L-1 for the different
population size (pico-, nano-, micro-) at the six sampling
stations in the Mar Piccolo of Taranto. For the lacking of
error bars see the materials & methods chapter.
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on the green, red and NIR reflectance responses. Based
on the better penetration of coastal-blue shorter wave-
lengths, the importance of the related b12 ratio indepen-
dent variable (Table 5) becomes more significant in the
PLS bottommodels. This first modelling step was mainly
devoted to analyse the capability of theOLI spectral ratios
to capture the different global features of surface and

bottom water column phytoplankton and phaeopigment
variables while the subsequent more reliable CV
approachpreviously describedwas exploited for assessing
the separate models for sea truth variables and their final
distributions. Here each PLSmodel corresponding to the
specific sea truth variable was assessed independently
from the others (eq. 1, supplementary materials), with
decomposition of only the independent variables (spec-
tral ratios) based on the number of latent factors mini-
mizing the test RMSE. Figure 4 shows some examples of
the CV modelling results obtained respectively for phy-
toplankton abundance, biomass and phaeopigments sea
bottom and surface variables. The upper three graphs of
figures show the calibration samples (unfilled circles) and
model lines trend in red, while the results of the model
validation (test) using different samples (filled circles) are
drawn in blue. The sea truth measurements at station
level provide x axis coordinates while the corresponding
values assessed from the spectral reflectance of pixels
within the station area provide the y ones. In the middle
part of figure the bar graphs of RMSE depending on the
number of latent factor decomposition are reported for
calibration (red) and validation (blue) step. As previously
specified, a variable number of latent factor decomposi-
tion minimizing the validation RMSE (indicated as ver-
tical dashed line in the bar graphs) was assessed for each
model. As shown in Figure 4 (lower bar graphs), the
minimum calibration RMSE is reached using all five
latent factor while in any case the validation RMSEmini-
mization requires a decomposition including less latent
factors to increase predicting capability avoiding over-
training. For Phapib and Phbnas models (respectively
Figure 4(a, b)) the RMSE minimization was achieved by
exploiting respectively two and four
factors decomposition (Figure 4(d, e)) while for PheB
(Figure 4(c)) the minimizing decomposition includes
only one factor (Figure 4(f)). In the lower part of
Figure 4 the three bar graphs display the regression
coefficients assessed for each of independent variables
of the three models with the related p-value (t) class as
coloured dot at bar ends. In particular a red dot states for
p-value(t)<10–2, orange dot means 5*10–2 > p-value(t)
>10–2, yellow dot indicates 10–1*>p-value(t)>5*10–2
and void dot specifies 5*10–1*>p-value(t)>10–1, the bar

Table 2. Cumulative explained variance (R2- Factor 4) of surface sea truth variables by the four latent factors of the assessed full
PLS decomposition.

Surface variables

Cumulative R2

Target Factor 1 Factor 2 Factor 3 Factor 4

Phapis 0.3065 0.3207 0.3773 0.9889
Phanas 0.3888 0.4087 0.5957 0.9872
Phamis 0.0029 0.3889 0.9308 0.9998
Phbpis 0.3065 0.3207 0.3773 0.9889
Phbnas 0.6403 0.671 0.727 0.9998
Phbmis 0.5616 0.6898 0.6918 0.9814
Chls 0.1417 0.4443 0.5007 0.8748
Phes 0.848 0.9792 0.9794 0.9923
Total Exp. 0.3995 0.5279 0.6475 0.9767

Table 3. Cumulative explained variance (R2- Factor 4) of
bottom sea truth variables by the four latent factors of the
assessed full PLS decomposition.

Bottom Target(s) variables

Cumulative R2

Target Factor 1 Factor 2 Factor 3 Factor 4

Phapib 0.6583 0.6808 0.8224 0.9395
Phanab 0.2784 0.487 0.735 0.9885
Phamib 0.1252 0.3492 0.5717 0.5798
Phbpib 0.6583 0.6808 0.8224 0.9395
Phbnab 0.1972 0.6878 0.8031 0.9619
Phbmib 0.0228 0.2132 0.3486 0.5733
Chlb 0.2326 0.3046 0.4352 0.9967
Pheb 0.0218 0.2222 0.5898 0.8545
Total Exp. 0.2743 0.4532 0.641 0.8542

Table 4. Global importance coefficients (VIP) assessed for
each independent input variable (ratio) in PLS modelling
process of surface variables (the coefficients of the most
important variables in the full PLS model are reported in
bold characters).
Input Factor 1 Factor 2 Factor 3 Factor 4

b12 0.5501 0.5074 0.9704 0.8326
b13 0.0866 0.6477 0.6732 0.5626
b23 0.1467 0.8414 0.7598 0.6682
b34 1.4103 1.2536 1.1650 1.2978
b45 1.6369 1.4295 1.2925 1.3637

The values >1.0 of Factor 4 are reported in bold digits.

Table 5. Global importance coefficients (VIP) assessed for
each independent input variable (ratio) in PLS modelling
process of bottom variables (the coefficients of the most
important variables in the full PLS model are reported in
bold characters).
Input Factor 1 Factor 2 Factor 3 Factor 4

b12 0.7779 0.6241 1.1932 1.0339
b13 0.4878 0.9062 0.8097 0.7273
b23 0.2179 1.0493 0.8999 0.8088
b34 1.4930 1.1635 1.0311 1.1816
b45 1.3713 1.1552 1.0235 1.1627

The values >1.0 of Factor 4 are reported in bold digits.
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without terminal dot states for p-value(t)>5*10–1. The
p-value (t) indicates the confidence level percentage as
100*(1-p-value(t) of coefficient estimate, and can be
assumed as proxy of the importance (relative contribu-
tion weight) variable in the assessed model of the related
independent. The first graph (Figure 4(g)) includes the
coefficients of the Phamib model, those referring to b13
and b34 ratios are positive while the others exhibit nega-
tive values. According to their confidence level the most
important inmodel resulted those referring to b34 and b54
spectral ratios, followed by b13 and b23 with b12 at mini-
mum. The other graphs (Figure 4(h, i)) show the coeffi-
cients distribution for Phbnas and PheB variables where
the 4th and 5th last ratios, b34 and b54 maintain highest
importance levels in assessed models in agreement with
the result of the previous PLS FD modelling.

Table 6 shows the results in terms of explained
variance under form of R2 of the various models
assessed through CV procedure, based on all spectral
ratios measurements extracted from the six station
windows (69) for each of sea truth variable. In the
first two columns the determination coefficient R2 and
related RMSE obtained from calibration based on the
randomly selected 60% of available samples are
reported. The same parameters derived from the test
phase of the calibrated models (with reduced latent
factors for RMSE minimizing) with the remaining

samples, are then included in the table in test columns
(3th and 4th column). The fifth column of this table
(DRMSE) contains the ratios between the test RMSE
of the PLS model and related averages for each sea
truth variable in order to provide a dimensionless and
variable-independent parameter able to support the

Figure 4. Results of CV (Calibration/Validation) PLS modelling procedure for distributions of sea bottom picoplankton
abundance (graphs a, d, g), of nanoplankton surface biomass (graphs b, e, h) and of bottom pheopigments (graphs c, f, i).
The upper three graphs show the measured versus modelled sea truth variables for calibration and validation samples, including
the related regression lines. The middle graphs display the latent factors selection for test models optimization by RMSE
minimizing. The lowest graph report the assessed models coefficients and the related confidence level as p-value(t).

Table 6. Table 3 Explained variance (R2) and RMSE for the sea
truth variables obtained by the models assessed using the
calibration-validation (test) CV approach and variable PLS
decomposition in term of number of latent factors (Nlat).
The R2 of models test superior than 0.3 are reported in
bold characters.

Calibration Test

Phyto R2 RMSE R2 RMSE DRMSE Nlat

Phapis 0.376 1.415E + 07 0.289 1.510E + 07 0.206 2
Phanas 0.424 1.659E + 06 0.304 1.824E + 06 0.201 4
Phamis 0.036 3.193E + 04 −0.232 3.609E + 04 0.791 1
Phbpis 0.376 2.829 0.329 2.933 0.200 2
Phbnas 0.528 6.209 0.410 6.942 0.303 4
Phbmis 0.498 2.880 0.370 3.225 0.221 4
ChlS 0.229 0.306 0.115 0.328 0.230 2
PheS 0.646 0.884 0.562 0.984 0.758 4
Phapib 0.506 2.809E + 07 0.363 3.191E + 07 0.353 2
Phanab 0.483 2.455E + 06 0.358 2.737E + 06 0.360 4
Phamib 0.296 9.786E + 03 0.206 1.039E + 04 0.384 4
Phbpib 0.506 5.619 0.452 5.919 0.328 2
Phbnab 0.316 7.546 0.121 8.551 0.461 2
Phbmib 0.070 6.704 0.0 7.121 0.501 1
ChlB 0.339 0.283 0.198 0.312 0.260 1
PheB 0.363 0.138 0.317 0.142 0.282 1

The values of R2 >0.3 or of DRMSE <0.3 are reported in bold digits.
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evaluation of different models. The last column (Nlat)
shows the number of latent factors minimizing the
RMSE of the model test. As expected, the R2 values
for models test are lower than those obtained in cali-
bration and accordingly the related RMSE’s are higher
for all models. In Table 6, both the R2 test values
superior than 0.3 and the DRMSE values lower than
3.0 are reported in bold. Due to the spectral variability
within the station window, the final coefficient of
determination R2 obtained for PLS models via CV
approach are generally lower than those provided by
the previous FD PLS calibration step, but in general
confirmed reduced values for micro sized phytoplank-
ton populations, except for Phbmis variable. In parti-
cular for sea surface abundance (Phamis) and bottom
biomass (Phbmib) the values are low and negative
with high DRMSEs. In agreement with the achieve-
ments of the FD procedure, the surface models of
phytoplankton abundance assessed through CV
method, on average demonstrated better than those
related to sea bottom in term of both R2 and
DRMSE test estimates. Analogously superior perfor-
mances were obtained for all surface variables of
plankton biomass respect to bottom ones. Although
the model of PheS phaeopigment surface variable
shows a good performance in term of test R2, its
DRMSE is the highest, while that of the ChlB variable
happens a bit more performing than ChlS surface
counterpart, and both show a low DRMSE (bold digit).

The regression coefficients (eq. 1) assessed for the
models of all sea truth variables through CV method,
are reported in Table 7, where the target (dependent)
and input spectral ratios (independent) variables cor-
respond to related items respectively in columns and
rows. According to the colour code exploited in coef-
ficients graphs of Figure 4, here the different cell
colour indicates the confidence level of the coefficient
assessment under form of p-value(t). In particular,
five levels classes are reported starting from the

highest confidence level (>99%) that correspond to
p-value(t)<10–2 in underlined digits (HC class), level
between 99% and 95% (0.01 < p-value(t)<0.05) in
italic-bold digits (MH class), level between 95% and
90% (0.05 < p-value(t)<0.1) in bold digits (M class),
level between 90% and 50% (0.1 < p-value(t)<0.5) in
italic digits (ML class), level lower than 50% and
p-value(t)<0.5 using normal characters (L class).
The models coefficients assessed for the surface pico-
plankton populations with the highest confidence
level (HC class), quantify an inverse linear depen-
dence (negative sign) captured by the shorter wave-
length (b23, b13) and b54 ratios from the abundance
and biomass surface concentrations distributions,
which instead were found directly proportional (posi-
tive sign) to that related to b34 HC ratio. The config-
uration of coefficients sign is maintained also for the
bottom distributions of the same picoplankton vari-
ables (abundance and biomass) with decreased
importance of b23 and b13 ratios (MH class), and
raising of that related to b12 for the abundance
model. The most important spectral ratios for models
of the abundance and biomass distributions related to
sea surface and bottom nanoplankton population
remain b13, b34 and b45 (HC and MH classes) while
the shorter wavelength ratio b13 diminishes its class
importance. Respect to that previously estimated for
picoplankton population, the assessed HC class
regressive coefficient of the b34 ratio shows inverted
sign for the nano-plankton populations, for both
abundance and biomass models of surface and bot-
tom distributions.

Given the previously highlighted general minor
reliability of models estimated for micro-plankton
populations distributions the better performance
was registered for those related to surface abundance
and bottom biomass, with higher importance (HC
class) of b45 and b23 ratios and opposite coefficient
signs.

Table 7. PLS regression equations coefficients (eq. 1) and confidence levels classes of the related estimates assessed for the sea
surface/bottom concentrations of different phytoplankton populations and phaeopigments.

b12 b13 b23 b34 b54 Interc.

Phapis 8.83E + 07 −5.10E± 07 −9.55E± 07 4.10E± 07 −7.79E± 07 1.57E + 08
Phanas 3.08E + 06 −3.38E + 06 −1.60E + 06 −1.24E± 07 −3.59E± 07 6.12E + 07
Phamis 1.85E + 03 −2.49E + 04 −3.94E + 04 1.44E + 04 5.78E + 04 3.20E + 04
Phbpis 17.651,806 −10.20,684 −19.099419 8.208,494 −15.577,645 31.3880
Phbnas 30.294,509 −25.29,179 −27.142,068 −43.294,663 −149.84,891 243.9279
Phbmis −13.04353 12.383,199 15.817,397 18.880,735 62.384,964 −84.3384
ChlS 0.709,906 −1.004835 −1.686,013 −0.225,096 −1.338,495 4.9326
PheS 10.719,051 −5.908,614 −8.529,972 −3.988,289 −21.571,232 30.9746
Phapib 2.35E + 08 −1.49E + 08 −2.69E + 08 8.40E± 07 −2.32E± 08 3.92E + 08
Phanab −5.97E + 06 −5.05E + 06 −2.96E + 06 −2.05E± 07 −6.10E± 07 1.06E + 08
Phamib −4.96E + 04 −1.68E + 04 −2.02E + 04 −3.36E + 04 −1.48E± 05 2.96E + 05
Phbpib 47.027888 −29.71,806 −53.72,498 16.791,095 −46.401,481 78.3782
Phbnab 17.518,799 −26.9082 −44.775,911 −0.447,779 −70.07328 139.8884
Phbmib −21.39,124 −5.436,294 −5.507,671 −3.484,277 2.227,989 47.0050
ChlB −1.814,057 −0.491,344 −0.505,258 −0.357,771 0.702,329 3.6438
PheB −0.895,285 −0.337,856 −0.403,373 −0.137,735 0.243,884 2.0056

The digits format states for five confidence level (C) classes of coefficient estimates: C > 99% (p-value(t)<10–2) in underlined digits (HC class), 99% <C <
95% (0.01 < p-value(t)<0.05) in bold-italic digits (MH class), 95% <C < 90% (0.05 < p-value(t)<0.1) in bold digits (M class), 90% <C < 50% (0.1 <
p-value(t)<0.5) in italic digits (ML class), C < 50% (p-value(t)<0.5) in normal characters (L class)
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Both the assessed models of Chl a and phaeopig-
ments surface concentrations show a most relevant
dependence by b13, b23 and b45 ratios (HC and MH
classes), with the concordance of negative sign of the
related coefficients. The number of the HC and MH
classes coefficients related to bottom concentrations
of the same dependent variables increases maintain-
ing the negative signs except for that of the b45 ratio
in Chl a model.

The spectral ratios reflectance of phytoplankton
populations dispersed in water mainly depend on
their capacity to absorb and reflect the solar radi-
ance in involved wavelengths through water column,
dependent on the vegetal photosynthesis and tissues
properties in term of cell dimension and pigments
contents. Thus, the different behaviour in terms of
sign and importance level of the obtained regression
coefficients of models is mainly linked to the specific
phytoplankton population considered. Even if with
varying values, the sign configuration of the coeffi-
cients related to the principal ratios (HC and MH
classes) of models for the same population is gen-
erally maintained not only for abundance and bio-
mass variables, but also for surface and bottom
distribution (Table 7). In addition, the models
assessed for sea bottom distributions of microplank-
ton present an increase of the importance of the
ratios in shorter wavelengths. The opposite sign of
b34 ratio coefficients related to pico- and nano-
plankton populations might denote diverse spectral
responses due to their specific structural constitu-
ents interacting with the OLI sensor wavelength.
Although the sign and importance (HC and MH
confidence classes coefficients) of b13 and b34 ratios
contributions in the Chl a surface PLS CV model,
have been maintained in the corresponding counter-
parts of bottom model, in this former the influence
of the b45 ratio is changed (positive coefficient) with
all others showing importance increase, including
the b12 ratio, in agreement with the general trend.
The phaeopigment models show a similar behaviour
with more reliable estimates of contribution from
the different ratios for the sea bottom distributions
(on the contrary respect to abundance and biomass
models). Globally from the above results, the most
important contributions in PLS modelling of all the
phytoplankton and phaeopigment/Chl a variables at
sea surface and bottom, were found those of the b45
and b13 ratios, confirming the importance of the OLI
coastal band (b1) that in this context performed
better than the blue one.

In general, according with the sea truth measure-
ments, the pseudo-colour maps of distribution
obtained from the surface and bottom CV models
indicate the larger blooms concentration in
the second inlet with diverse patterns for different
phytoplankton populations and pigments (Figures 5

and 6). In particular, the surface and bottom distri-
butions of pico and nano-plankton abundance
(Figure 5(a, b)) and biomass (Figure 6(a)), derived
from the most reliable models (high R2 and low
DRMSE) look quite similar, with maxima located
along the lower right and left corners of the second
inlet. Specular trends were found for the micro-
plankton abundance (less consistent) and biomass
surface distributions (Figure 6(b)), with respective
concentration minima to the lower right borders of
the second inlet where there are maxima of the other
populations (Figures 5(a) and 6(a)). Instead, the bot-
tom distributions assessed for microplankton abun-
dance and biomass (less reliable) are in agreement
with those estimated for pico and nanoplankton
populations, with maxima distributed at lower right
borders of the second inlet.

Most of the surface concentrations patterns found
for Chl a (Figure 5(c)) and phaeopigments maintain
a similar configuration of those estimated for the pico
and nano plankton population, with maxima located
in the same borders portion of the second inlet except
of that in the lower left which is a local minimum for
Chl a (Figure 5(c)).

Their bottom distributions instead look enough
specular of their surface counterparts with
a location of minima in correspondence to the max-
ima of surface concentration (Figure 6(c)).

Figure 7 includes Chl a maps generated by means
of OC3 bio-optical algorithms using atmospherically
corrected data remotely sensed by Landsat 8 OLI and
Sentinel 2 sensors in different dates. Figure 7(a, b)
refers to Chl a maps derived from Landsat 8 OLI
acquired respectively on 2 July 2014 and on
20 June 2013 while the map of Figure 7(c) was
obtained from Sentinel 2 data acquired on
25 July 2015. The multispectral data obtained in
2013, synchronous with the sea truth acquisition
have also been used for PLS modelling, whereas the
other two in any case refer to the same summer period
of contiguous years, so they have been considered for
comparing purposes. In agreement with previous
results obtained through PLS modelling, the Chl
a maximum concentrations (red shades), evidenced
in the three maps, are located close to the coast of
the second inlet. The OC3 map dated in 2013
(Figure 7(b)) exhibits a local minimum (blue shades)
in the lower left corner of the second inlet in agree-
ment with the corresponding CV PLS modelled dis-
tribution (Figure 5(c)). In Figure 8, the mean surface
Chl a values obtained from the sea truth measure-
ments and assessed with the different approaches
from the remotely sensed data were reported for each
of the six stations. Here, considering the synchronous
estimates using the Landsat OLI data remotely sensed
in June 2013, the results of OC3/2 bio-optical algo-
rithms globally tend to overestimate the sea truth
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measurements more than those obtained via PLS mod-
elling, which in any case benefited from the point
calibration. The differences are maintained within 0.5
μg L–1 at the stations with more accentuated bathyme-
try while are particularly increased at the Stations 3
and 5 where the sea bottom contribution might have
increased the reflectance noise. Although the OC3
estimations using OLI data acquired in
September 2013 and in July 2014 seem to be globally

comparable with sea truth data, due to the more
homogeneous seasonal period, the agreement of the
latter is higher. The Sentinel 2 OC3 assessments also
demonstrated a suitable capacity to capture the Chl
a summer distribution patterns with plausible uncer-
tainties at the measurement stations.

The map synthetizing the preliminary results
obtained from the WASI4 full bio-optical inversion
based on default parameters and spectra of the

Figure 5. Maps of bottom picoplankton (a), surface nanoplankton abundance (b) and surface Chl a (c), assessed using,
respectively, Phapis, Phanas and ChlS models derived through CV PLS approach.
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original database included in the code release, is
shown in Figure 9. In agreement with the results of
the previous modelling approaches, the maxima of
phytoplankton distribution in the Mar Piccolo of
Taranto obtained by WASI4 code were

approximately localized in the same portion of
the second inlet, i.e. in proximity of the coast. Even
if the WASI bio-optical model does not allow distin-
guishing the different phytoplankton population size
and despite a salt and pepper diffuse noise in the

Figure 6. Maps of bottom picoplankton (a), surface microplankton biomass (b) and bottom pheopigments (c), assessed using,
respectively, Phbpis, Phbmis and PheB models derived through CV PLS approach.
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Figure 7. Maps of Chl a distributions assessed trough OC3 bio-optical algorithm using atmospherically corrected data of Landsat
8 OLI (a, b) and Sentinel 2 (c), acquired, respectively, on 2 July 2014 (a), on 20 June 2013 (b) and on 25 July 2015 (c).
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resulting map, there is a general agreement between
the WASI maps and the other ones; this issue is
encouraging since there is room for improvement
through a more refined exploitation of the code cap-
abilities. In this perspective, our goal is to advance the
exploitation of the full optical inversion provided by
WASI4 code on the basis of a suitable customization
of input parameters provided by available measure-
ments acquired on the area of interest and/or pro-
vided by a specific sea truth campaign.

The CV PLS modelling of surface and bottom
phytoplankton populations, phaeopigment and Chl
a distributions through Landsat 8 OLI atmospheri-
cally corrected reflectance responses reached
a satisfying level with high level of agreement with
the sea truth point measurement stations. In this
context, given the unavailability of MODIS Ocean

Colour products for coastal shallow water and
lagoons, the comparison with MODIS Chl a maps
(1 km of geometric resolution) derived from for the
open sea portion of Mar Grande (Figure 1, lower left
corner), evidence a compatibility of estimates within
0.05 μg L–1 (Dazhao et al., 2010; Dierssen, 2009).

These results demonstrate the capabilities of the
Landsat 8 OLI orbiting sensor to usefully capture
the different spectral responses from coastal dis-
tribution of phytoplankton, Chl a and phaeopig-
ment surface and bottom concentrations. In
particular, its atmospherically corrected green-red-
NIR spectral ratios, through these PLS implemen-
ted methods was more suitable for modelling the
surface distribution of abundance and biomass of
the phytoplankton populations. Furthermore, the
contribution of coastal-blue ratio demonstrated
more useful to capture the subsurface concentra-
tion of the same phytoplankton population. The
implemented PLS approach seemed less effective
for modelling the large-sized bottom population of
micro-phytoplankton. Although the PLS approach
demonstrated the minor importance of the usual
blue–green ratio (b23) for Chl a and phaeopig-
ments distribution modelling, a general agreement
was found with the Chl a distributions assessed
through OCX bio-optical algorithms and the
WASI4 full bio-optical inversion. In any case, dif-
ferences between the Landsat 8 OLI detection cap-
ability of different surface and bottom features of
phytoplankton population require additional stu-
dies and sea truth information to be better
explained in terms of spectral and/or dimensional
characteristics of phytoplankton cells. Further, in
these future studies attention should be paid to
exclude noise effects from other optically active

Figure 8. Chl a concentration in correspondence of the six
sea truth measurement stations estimated using the OC3/
OC2 bio-optical algorithm and PLS models using Landsat 8
OLI and Sentinel 2 data.

Figure 9. Phytoplankton concentration distribution on the whole column in the Mar Piccolo di Taranto obtained by atmo-
spherically corrected Landsat 8 OLI data of June 2013, using WASI4 model.
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components, dissolved in the water column
crossed by detected signals, and from the sea bed
cover reflectance contribution.

The results of this study demonstrate that the
spectral/radiometric improvements of the OLI sensor
increase the overall efficiency in its marine applica-
tions, in particular for the effective characterization of
phytoplankton populations of shallow waters, includ-
ing coastal lagoons. These achievements also indicate
a good opportunity to apply in this type of marine
areas, like the Mar Piccolo, the new generation HR
multispectral satellite sensors (i.e. Sentinel 2) which
have recently had a remarkable development. In par-
ticular, the introduction of the new “coastal” band,
was advantageous for monitoring phytoplankton that
in turn, plays a significant role in the primary pro-
ductivity and in the carbon storage of coastal produc-
tive ecosystems. It is expected to improve the results
obtained in this study with a customization of the
WASI4 system database based on the typical spectra
of the sea bed covers and dissolved optically active
components present in the area of interest and
involved in the bio-optical modelling.

Conclusion

The main objective of this study was to preliminary
evaluate the new features of Landsat 8 OLI sensor for
extensive and systematic monitoring of phytoplankton
and its blooms in the Mar Piccolo of Taranto. Here, as
in other Italian coastal water environments, several
anthropogenic activities give rise to major load of pol-
lutants, nutrients and suspended sediments, with reduc-
tion in water transparency and considerable
development of macroalgal and potentially harmful
phytoplankton species for aquaculture activities. The
spatial and temporal dynamics of phytoplankton and
Chl a concentrations need suitable synchronization and
distribution of sea truth samples collection to capture
an effective snapshot of their status, useful also to pro-
vide a basic input for calibration of remotely sensed
data acquired during the reference overpasses of satel-
lite. Given these constraints, collecting a significant
number of useful samples with these characteristics is
very hard and usually requires human and instrumental
resources frequently unavailable. In this context, the
implemented CV procedure allowed to usefully exploit
the limited number of our measurement stations as best
trade off compatible with more robust statistic
approach and also with the limits in the accessibility
of various subareas of the basins occupied by military
infrastructures and mussels farms. The OLI multispec-
tral data, in form of selected ratio indices corrected for
atmospheric noises, allowed us to assess the distribu-
tions of phytoplankton and Chl a concentration at
different depths of entire basin, in acceptable agreement
with sea truth data. This CV PLS original approach,

mainly based on the exploitation of spectral responses
variability within the station sea truth sampling area,
provided also the different importance for the spectral
ratios in assessing the phytoplankton distributions. In
addition to red/NIR (b45) for surface variables, the OLI
coastal/green (b13) ratio demonstrated more perfor-
mant than usual blue/green (b23) for retrieving the
phytoplankton and Chl distributions (surface/bottom)
in these coastal optically complexes waters. The imple-
mented EO-based methodology can support the pre-
diction of the available biomass growth at suitable
temporal and spatial scale according to the seasonal
cycles. Since many coastal shallow waters are highly
productive but sensitive and vulnerable to planktonic
blooms, they require effective multiscale tools based on
integration of HR remote sensing and in situ techni-
ques. In this context, the valence of this remote sensing
based monitoring approach characterized by early
detection and repeating HR mapping capabilities is
twofold: an effective tool both for early warning in
case of harmful phytoplankton blooms and for map-
ping their biomass distribution, a prerequisite for sus-
tainable management interventions.
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