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 

Abstract— Emotional health plays very vital role to improve 

people's quality of lives, especially for the elderly. Negative 

emotional states can lead to social or mental health problems. To 

cope with emotional health problems caused by negative 

emotions in daily life, we propose efficient facial expression 

recognition system to contribute in emotional healthcare system. 

Thus, facial expressions play a key role in our daily 

communications, and recent years have witnessed a great amount 

of research works for reliable facial expressions recognition 

(FER) systems.  Hence, facial expression analysis from video data 

is considered to be a very challenging task in the research areas 

of computer vision, image processing, and pattern recognition. 

The accuracy of a FER system is pretty much reliant on the 

extraction of robust features. In this work, a novel feature 

extraction method is proposed to extract prominent features 

from the human face. For person independent expression 

recognition, depth video data is used as input to the system where 

in each frame, pixel intensities are distributed based on the 

distances to the camera. A novel robust feature extraction 

process is applied in this work which is named as Local 

Directional Position Pattern (LDPP). In LDPP, after extracting 

local directional strengths for each pixel such as applied in 

typical Local Directional Pattern (LDP), top directional strength 

positions are considered in binary along with their strength sign 

bits. Considering top directional strength positions with strength 

signs in LDPP can differentiate edge pixels with bright as well as 

dark regions on their opposite sides by generating different 

patterns whereas typical LDP only considers directions 

representing the top strengths irrespective of their signs as well 

as position orders (i.e., directions with top strengths represent 1 

and rest of them 0), which can generate the same patterns in this 

regard sometimes. Hence, LDP fails to distinguish edge pixels 

with opposite bright and dark regions in some cases which can be 

overcome by LDPP. Furthermore, the LDPP features are 

extended by Principal Component Analysis (PCA) and 

Generalized Discriminant Analysis (GDA) to make them more 

robust for better face feature representation in expression. The 

 
This work was full financially supported by the King Saud University, 

through Vice Deanship of Research Chairs. 
Md. Zia Uddin is with the department of Computer Education, 

Sungkyunkwan University, Seoul, and Republic of Korea (e-mail: 

ziauddin@skku.edu). 
M. M. Hassan, A. Almogren,  A. Alamri and M. Rubaian are with the 

Research Chair of Pervasive and Mobile Computing, College of Computer 

and Information Sciences, King Saud University, Riyadh, Saudi Arabia (e-
mail: {mmhassan, ahalmogren, atif, malrubai}@ksu.edu.sa). M. M. Hassan is 

the corresponding author. 

G. Fortino is with the Department of Informatics, Modeling, Electronics, 
and Systems, University of Calabria, Italy (e-mail: g.fortino@unical.it). 

proposed features are finally applied with Deep Belief Network 

(DBN) for expression training and recognition.  

 
Index Terms—FER, DBN, Depth Image, GDA, LDP, PCA 

I. INTRODUCTION 

ECENTLY, ubiquitous healthcare systems have attracted 

a lot of researchers due to their prominent application the 

field of human computer interactions (HCI) [1]. In a 

ubiquitous healthcare system, HCI systems could considerably 

be improved if computers could be able to recognize the 

emotions of the people from their facial expressions and react 

in a friendly manner according to the users’ necessities. When 

humans experience any situation in their daily lives, they 

express their mental states through emotions that can effect to 

their behaviors, thoughts and feelings. Positive emotions can 

represent healthy mental states by delivering position 

expression such as happiness and pleasure. On the contrary, 

negative emotions can represent negative emotions such as 

sadness and anger. Thus, both positive and negative emotions 

can affect emotional health in our daily lives quite 

substantially. Emotional health refers to the ability to manage 

feeling to deal with problems. People with nice emotional 

health can positively control themselves as well as address 

negative emotions whereas people with bad emotional health 

usually experience difficulties with controlling their behaviors 

and feelings i.e.,  they often cannot manage themselves to 

cope with negative emotions. In the worst case of bad 

emotional health, they might become psychological patients as 

a result. Therefore, bad emotional health can lead people to 

social and mental health problems. To improve emotional 

health, an efficient facial expression recognition system can 

play a vital role to understand mental states over time can 

generate mental health-log for the analysis of mental behavior 

patterns.  

In regard to emotional state representation, video-based 

facial expression recognition (FER) is getting significant 

attentions by many researchers nowadays as it is considered 

to be one of the most attractive research topics in robot 

vision and image processing [2].  Most of the FER works 

adopted Principal Component Analysis (PCA) [3]-[10]. In 

[3], PCA was applied to focus different facial action units 

for FER. In [5], it was used for facial action coding system 

analysis for FER. Independent Component Analysis (ICA), 

a higher level statistical approach than PCA has been 
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adopted later in FER works for it local face image feature 

extraction [11]-[22]. In [14], ICA was adopted to obtain 

local statistically independent features for classification of 

different facial expressions. ICA was also used to identify 

the facial action unites in [15]. Besides ICA, Local Binary 

Patterns (LBP) has also been focused recently for facial 

expression analysis [23]-[25]. LBP features are tolerant 

against illumination changes and computational they are 

very simple. Later on, Local Directional Pattern (LDP) to 

represent local face features was adopted by focusing on 

face pixel’s gradient information [26]. While extracting 

LDP features, after obtaining a pixel’s directional strengths, 

the binary values are assigned based on the top t number of 

strengths where the value of t is determined empirically 

which varies from experiment to experiment.   
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Fig. 1.  Basic architecture of proposed FER system. 

 

In this work, a typical LDP is modified to obtain more 

robust features than LDP. After determining the directional 

strength of a depth pixel, top directional strengths are 

obtained in descending order and corresponding strength 

sign bits are combined with the top directional strength 

positions in binary to represent robust features. This 

approach is named as local directional position pattern 

(LDPP). In typical LDP for a pixel, the directions with top 

edge strength are considered by assigning the bit 1 for them 

and 0 for rest of the directions. It never considers the 

strength signs and the order of the directions with top 

strengths which may result into same pattern for two 

opposite kind of edge pixels having opposite dark and 

bright regions. This problem can be overcome by the 

proposed LDPP. Basically, for an edge pixel, dark region 

mostly represents negative strength whereas bright region 

shows positive strength. As LDP does not consider the 

signs of the directions strengths, two edge pixels with 

opposite dark and bright regions may exchange the strength 

signs keeping their strength order same which should 

generate the same LDP code for these two edge pixels 

where they should be very different patterns. Besides, LDP 

represents flat bit 1 to directions with top strengths and 0 to 

others without considering the orders of the strengths. In 

such cases, LDP becomes a weak approach to generate 

features whereas considering strength sign bits along with 

the top directional strength positions in binary may resolve 

this issue very strongly to represent robust features such as 

LDPP. Thus, top directional strength positions’ are 

considered in binary with sign bits in LDPP and then, 

LDPP histogram is generated to represent robust features 

for whole face. To make the LDPP features more robust, 

General Discriminant Analysis (GDA) is utilized after 

applying PCA for dimension reduction. GDA is considered 

to be an efficient tool to discriminate the features from 

different classes [27]-[30].  

A. Related FER Works 

Regarding utilization of cameras for facial expression 

analysis, RGB cameras have been most popular as face images 

are very easily obtained from those cameras and besides, they 

are cheap and commonly used for daily applications such as 

video chatting through different kind of internet-based 

software.  Though RGB cameras are very famous but images 

captured through them can change the face pixel intensities 

very rapidly due to illuminations changes in the scene. Hence, 

distance-based image can be a better option for facial 

expression recognition but RGB cameras cannot generate such 

distance-based face images to describe person-independent 

facial expressions in the images. However, depth based 

cameras can overcome such limitations by providing the depth 

information of the face parts based on the distance to the 

camera that would allow one to come up with more efficient 

expression recognition systems than RGB-based ones. 

Besides, depth cameras would make it possible to solve some 

privacy issues such as hiding person’s identification in the 

depth images whereas RGB cameras cannot hide person’s 

identification in RGB images and hence, depth cameras can be 

utilized regardless of person’s identity.  As a result, depth 

images have been getting very much attentions by many 

researchers in a wide range of computer vision and image 

processing applications such as body motion recognition[31]-

[52], hand motion recognition[53]-[62], and  face recognition 

[63]-[76]. In [31], the authors analyzed depth videos for 

distinguished human activity recognition. In [33], the authors 

analyzed surface histograms on depth images for human 

activity recognition. In [34], the authors did moving body 

parts analysis from depth data for robust human activity 

recognition. Yang et al. used Depth Motion Maps (DMM) for 

obtaining temporal motion energies in [36].  In [40], Koppula 

et al. applied depth videos for human-object interactions [40].  

In [41], Yang et al. obtained Eigen joints obtained using depth 

video to be used with Naive-Bayes-Nearest-Neighbor 

(NBNN) for human action analysis. In [42], Sung et al used 
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Maximum Entropy Markov Model (MEMM) for action 

recognition in depth videos.  Besides human activities, depth 

information-based hand movement researches were also done 

for human computer interaction [44]-[52]. In [45], particle 

swarm optimization was done for analysis of interacting hands 

in depth videos. In [46], the authors applied depth images for 

object dependent hand pose tracking. In [47], the authors 

focused on depth information-based hand movements and 

applied random forests for hand part segmentation. American 

Sign Language (ASL) was also focused in various hand 

gesture researches [49]-[52]. Similar kind of research 

information for depth data analysis for gesture recognition can 

be found in [53]-[62]. Depth information was also used in 

head pose/face position estimation in some works [63]-[72]. 

For instance, in [66], the authors applied neural networks for 

head estimation from depth image. In [68], the authors focused 

on nose position in a depth face. In [71], the authors did face 

recognition from low quality depth images where the depth 

images were obtained from stereo cameras. In [73]-[76], the 

authors focused on depth image-based upper face researches.  

  

(a) 

 

(b) 

Fig. 2. (a) An RGB image and (b) corresponding depth image of a happy 
expression. 
 

 

      
 (a) 

     
(b) 

Fig. 3. (a) Sample gray faces converted from RGB and (b) depth faces from a 

surprised facial expression. 
 

For training and recognition of expression features, Hidden 

Markov Model (HMM) has been considered in some FER 

works such as [77], [78]. Nowadays, Deep Neural Network 

(DNN) gained a lot of attention since DNN can generate some 

features from the raw input, contrary to the other classifiers. 

Also DNN could overcome some limitations of a perceptron 

that is not able to perform in general pattern recognition 

However DNN had required too much training time [79]. In 

2004, Hilton et al. proposed an improved version of DNN, 

called Deep Belief Network (DBN), which utilizes Restricted 

Boltzmann Machine (RBM) for efficient training [80]. There 

are some other works proposed in [81-85]. 

B. Proposed Work 

A novel FER approach is proposed in this work using 

LDPP, PCA, GDA, and DBN based on a depth sensor-based 

video camera images. The LDPP features are extracted first 

from the facial expression depth images which are then PCA 

is applied for dimension reduction. Furthermore, the face 

features are classified by GDA to make them more robust. 

Finally, the features are applied to train a DBN to be applied 

later for recognition on cloud. Fig. 1 depicts the basic 

architecture of the proposed FER system.  

II. FEATURE EXTRACTION 

The depth images are acquired first by a depth camera [2] 

where the depth videos generate RGB and depth information 

simultaneously for the objects captured by the camera. The 

depth sensor video data shows the range of every pixel in the 

scene as a gray level intensity. Figs. 2(a) and (b) represent a 

happy RGB and depth image respectively. The depth images 

indicate the bright pixel values for near and dark ones for far 

distant face parts. Fig. 3 shows a sequence of gray and depth 

faces from surprise and disgust expressions respectively.  
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Fig. 4. Kirsch edge masks in eight directions. 
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(a)                          (b)                        (c) 

Fig. 5. (a) Edge response to eight directions, (b) sign bit of the edge responses 

in corresponding direction, (c) ranking of the edge response. 

A. Local Directional Position Pattern (LDPP) 

The Local Directional Position Pattern (LDPP) assigns an 

eight-bit binary code to each pixel of an input depth face. This 

pattern is calculated by considering top two edge strength 

position with sign from eight different directions. For pixel in 

the image, the eight directional edge response values {Di} 

where i=0,1,..,7 are calculated by Kirsch masks. Fig. 4 shows 

the Kirsch masks. After applying the mask, the directional 

positions are determined as  

 

0,1,..,7 , , , , , , , .D E SE S SW W NW N NE  (1) 

 

Thus, LDPP code for a pixel x is derived as 
8

0

( ) 2 ,i

i

i

LDPP x L


    (2) 

|| ,L A K  (3) 

( ) || ( ( ( ))),A B g binary Arg D g  (4) 

( ) || ( ( ( ))),K B e binary Arg D e  (5) 

0 1 2 7( , , ,..., ),g R R R R

 

(6) 

0 1 2 7( , , ,..., ),e R R R R  (7) 

 

where g represents the highest edge response direction, e 

second highest edge response direction, R rankings of the 

edge responses to the corresponding directions. Fig. 5 

depicts the edge responses, sign bit of the edge responses, 

and edge response ranking to eight directions. The highest 

edge response is set to eighth rank. Then, the second 

highest response is set to seventh, and so on. Fig. 6 shows 

two examples of LDPP codes where typical LDP makes 

same patterns for different edges but LDPP can generate 

separate pattern. In the upper part of figure, the highest 

edge response is 2422 and hence the first bit of LDPP code 

for the pixel is the sign bit of 2422 which is 0 and the 

following three bits are the binary of the direction where 

the highest strength position lies i.e., 001 which is binary of 

1 from D1 . The second highest edge response is -1578 and 

hence the fifth bit of LDPP code for the pixel is the sign bit 

of -1578 which is 1 followed by three bits that are the 

53 66 70

2306058

54 226 209

-1482 -1386 503

1174X-1578

161 97 2422

X1100

0001

    LDPP  Code= 00011100 LDPP  Decimal Code=28
    LDP  Code=01110011 LDP  Decimal Code=115

30

-194 1014

A pixel 60 with 8

surrounding pixels
After applying

Kirsch mask

Directional Strength

Ranking

Sign Bit and Binary of Direction

Number within Top Two Strengths

D
4

7
Second

Highest

D
2

D
0

D
1D

3

D
5

D
6

D
7

4

156

2 3
8

Highest

X

85 165 170

4050200

196 30 46

313 97 503

-1033X537

161 97

X0100

1001

    LDPP  Code= 10010100 LDPP  Decimal Code=148
    LDP  Code=01110011 LDP  Decimal Code=115

180

170

-8110391279

1527

327 -905 -2153

A pixel 170 with 8

surrounding pixels
After applying

Kirsch mask

Directional Strength

Ranking

D
4

7
Second

Highest

D
2

D
0

D
1D

3

D
5

D
6

D
7

4

156

2 3
8

Highest

X

Sign Bit and Binary of Direction

Number within Top Two Strengths

 
 Fig. 6. Two examples for opposite edge pixels where LDP fails to separate them but LDPP does successfully. 
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binary of the direction where the second highest strength 

position lies i.e., 100 which is binary of 4 from D4. Hence, 

the LDPP code for upper pixel is 00011100 and for lower 

pixel 10010100. On the other hand, LDP codes for both of 

them are same, which is 01110011 as their directional 

rankings are same in both the pixels. Hence, LDPP code 

represents better features than LDP.   

 

 

Fig. 7. A depth expression image is divided into small regions and the 

regions’ LDPP histograms are concatenated to represent features for a face. 

 

Thus, an image is transformed in to the LDPP map using 

LDPP code. The image textual feature is presented by the 

histogram of the LDPP map of which the sth bin can be 

defined as  

 

 
,

( , ) ,s 0,1,... 1
x y

sZ I LDPP x y s n    (8) 

where  is the number of the LDPP histogram bins  for an 

image I. Then, the histogram of the LDPP map is presented as  

 

0 1 1( , ,..., ).nH Z Z Z   (9) 

 

To describe the LDPP features, a depth silhouette image is 

divided into non-overlapping rectangle regions and the 

histogram is computed for each region as shown in Fig. 7. 

Furthermore, the whole LDPP feature A is expressed as a 

concatenated sequence of histograms 

 
1 2( , ,..., )gA H H H  (10) 

where g represents the number of non-overlapped regions 

in the image. 

 
Fig. 8. Top 150 eigenvalues after applying PCA on LDPP features. 

B. Principal Component Analysis (PCA) 

Once locally salient LDPP features are obtained for all the 

trained facial expression depth images, the feature dimension 

becomes high and hence, PCA is adopted in this work for 

dimension reduction. PCA is used to look for the directions of 

maximum variation in data. Considering J  as a covariance 

matrix of LDPP feature vectors, PCA on J  should find out 

the principal components with high variances. Thus, PCA on J 

can be described as  

 
TY E JE  (11) 

 

where E  indicates the eigenvector matrix representing 

principal components (PCs). In this work, we considered 150 

PCs after PCA over J. Fig. 8 depicts the top 150 eigenvalues 

corresponding to the first 150 PCs once PCA is applied on 

LDPP features.  The eigenvalues basically indicates the 

importance of the corresponding PCs. It can be noticed in the 

figure that after first few positions, the eigenvalues are 

descending to zero, indicating the considered number of 

dimensions should reduce the LDPP feature dimension well 

with negligible loss of original features. Thus, the reduced 

dimensional LDPP features after PCA can be shown as  

 

C AE  (12) 

 

C. Generalized Discriminant Analysis (GDA) 

The final step of the feature extraction from a depth 

image of facial expression is to apply generalized 

discriminant analysis (GDA) to make the features more 

robust.  GDA, a generalized method of linear discriminant 

analysis (LDA) which is basically based on an eigenvalue 

resolution problem to make between inner-class scatterings 

minimum and inter-class scatterings maximum. GDA first 

represents the inputs into a high dimensional feature space 

where it tries to solve the problem by applying LDA 

method on the feature space.  Thus, the fundamental idea of 

GDA is to map the training data into a high dimensional 

feature space M by a nonlinear Gaussian kernel function to 

apply LDA on M.  Hence, the main goal of GDA is to 

maximize the following equations.  
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where  and  are the between-class and total scatter 

matrices of the features. Finally, the PCA features C is 

projected on GDA feature space GDA  as  
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Fig. 9 shows a 3-D plot of the GDA features of training 

expression images which shows good separation among the 

samples of different classes which indicates the robustness of 

GDA in this regard. The LDPP-PCA-GDA features for each 
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image in a video of length r are augmented further to feed 

into DBN as 

 
1 2 3[ || || || ... || ].rT O O O O  (15) 

Fig. 9. 3-D plot of GDA features of depth faces from six expressions. 

III. DBN FOR EXPRESSION MODELING 

Training a DBN consists of two main parts that are pre-

training and fine-tuning. The pre-training phase consists of 

Bolt Restricted Boltzmann Machine (RBM). When the 

network is pre-trained then the weights of the networks are 

adjusted later on by fine-tuning algorithm.  RBM is basically 

very useful for unsupervised learning that contributes for local 

optimum error avoidance.  One of the key benefits of using 

DBN is the ability of DBN to extract and select prominent 

features from the input data. Each layer of RBM is updated 

depending on the previous layer. Once the first layer is done 

with computing the weight matrix, the weights are then 

considered as an input for the second layer and so on. This 

process continues to train RBMs one after another. Besides, 

the input during this process is reduced layer by layer and 

hence, the selected features at the hidden nodes of the last 

layer can be considered as a vector of features for current 

layer. The algorithm of Contrastive Divergence-1 (CD-1) can 

be utilized to update the matrix of weights layer by layer [86]. 

 

 
Fig. 10. Structure of a DBN used in this work with 100 input neurons, 80 

neurons in hidden layer1, 60 neurons in hidden layer2, 20 neurons in hidden 

layer3, and 6 output neurons. 

 

 
Fig. 11. The pre-training and fine-tuning processes of DBN used in this work. 

 

Fig. 10 shows a sample DBN where three hidden layers 

consisting of different number of neurons in different layers 

such as 100 for input layer, 80 for hidden layer1, 60 for 

hidden layer2, 20 for hidden layer3, and 6 for output layers 

indicating to train and recognize 6 classes i.e., expressions 

in this regard. For initialization of the network, a greedy 

layer-wise training methodology is applied. Once the 

weights of the first RBM are trained, h1 becomes fixed. 

Then, the weights of the second RBM are adjusted for 

training using the fixed h1. Then, the third RBM is trained 

with the help of previous RBM. The process of training a 

typical RBM involves some crucial steps. First of all, 

initialization is done where a bias vector for the visible 

layer P, a bias vector for the hidden layer H, a weight 

matrix T are set to zero. 

 

ℎ1 = {
1,    𝑓(𝐻 + 𝑝1𝑇𝑇) > 𝑟
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

 

 

(16) 

𝑝𝑟𝑒𝑐𝑜𝑛 = {
1,    𝑓(𝑃 + ℎ1𝑇) > 𝑟

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           
 

 

(17) 

ℎ𝑟𝑒𝑐𝑜𝑛 = 𝑓(𝐻 + 𝑝𝑟𝑒𝑐𝑜𝑛𝑇𝑇) (18) 

 

Then, the binary state of the hidden layer ℎ1 is computed 

using (16).  Later on, the binary state of the visible layer 

𝑝𝑟𝑒𝑐𝑜𝑛  is reconstructed from the binary state of the hidden 

layer using (17). Then, the hidden layer ℎ𝑟𝑒𝑐𝑜𝑛  is re-

computed given 𝑝𝑟𝑒𝑐𝑜𝑛  where  

 

𝑓(𝑡) = 1/(1 + 𝑒𝑥𝑝(−𝑡)) (19) 

 

The threshold value 𝑟 is learnt with the weights to determine 

the output of the sigmoid function in the network and the 

weight difference is computed as  

 

∆T = (
ℎ1𝑝1

𝐿
) − (ℎ𝑟𝑒𝑐𝑜𝑛 . 𝑝𝑟𝑒𝑐𝑜𝑛)/𝐿 (20) 

 

where L is considered as batch size.  Finally, the current 

weight becomes a summation of the previous weights.  These 

steps are repeated for all the batches. When RBM process is 

done, a typical back propagation algorithm is applied for 
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adjustments of all parameters for fine-tuning. The pre-training 

and fine-tuning steps are shown in Fig. 11. 

IV. EXPERIMENTS AND RESULTS 

A depth database was built for this work containing six 

facial expressions: namely Anger, Happy, Sad, Surprise, 

Disgust, and Neutral. There were 40 videos for each 

expression where each video consisted of 10 sequential 

frames. For the experiments, four-fold cross validation was 

applied to generate four groups of datasets where for each 

fold, 30 videos were used for training and other 10 for 

testing without overlapping the videos in training and 

testing. Hence, a total of 120 videos were applied for 

training and 40 for testing respectively.  

A. RGB Camera-based Experiments 

The FER experiments were started based on the videos 

obtained from RGB camera. The RGB video-based FER 

experimental results are shown in confusion matrix from 

Table I-Table VII. The mean recognition rate using PCA 

with HMM on depth faces is 58%. Then, PCA-LDA was 

tried for FER which achieved mean recognition rate of 

61.50%. We proceed to apply ICA and HMM on the RGB 

facial expression images, obtained 80.50% mean 

recognition rate. Furthermore, LBP was applied with HMM 

for FER that achieved the mean recognition rate of 81.25%.  

Then, LDP was then tried which achieved 82.91%, better 

than others so far. Later on, LDPP features were combined 

with PCA and GDA features to be tried with HMMs that 

achieved 89.58% mean recognition rate. Then, LDPP-PCA-

GDA features were tried with DBN for better FER on the 

RGB faces which achieved the recognition rate of 92.50%, 

the highest in RGB camera-based experiments. 

 
TABLE I 

 EXPRESSION RECOGNITION USING RGB FACES USING PCA WITH HMM. 

 Anger Happy Sadness Surprise Neutral Disgust 

Anger 37.50 0 0 12.50 10 40 

Happy 7.50 47.50 10 10 20 10 

Sadness 0 17.50 70 12.50 0 0 

Surprise 0 0 0 75 15 10 

Neutral 0 5 25 10 60 0 

Disgust 0 7.50 27.50 0 0 65 

Mean 58 

 

TABLE II. 
 EXPRESSION RECOGNITION USING RGB FACES USING PCA-LDA WITH HMM.  

 Anger Happy Sadness Surprise Neutral Disgust 

Anger 50 0 20 0 0 30 

Happy 5 55 10 10 15 0 

Sadness 0 15 75 15 0 0 

Surprise 0 0 0 72.50 7.50 20 

Neutral 0 7.50 30 7.50 55 0 

Disgust 0 10 20 0 0 70 

Mean 61.50 

 
 
 

TABLE III 

 EXPRESSION RECOGNITION USING RGB FACES USING ICA WITH HMM. 

 Anger Happy Sadness Surprise Neutral Disgust 

Anger 75 0 10 0 5 10 

Happy 7.50 82.50 10 5 5  

Sadness 0 7.5 82.50 10 0 0 

Surprise 0 0 0 80 12.50 7.50 

Neutral 0 0 7.50 10 82.50 0 

Disgust 0 0 17.50 0 0 82.50 

Mean 80.50 

 
TABLE IV 

 EXPRESSION RECOGNITION USING RGB FACES USING LBP WITH HMM. 

 Anger Happy Sadness Surprise Neutral Disgust 

Anger 82.50 0 7.50 0 0 10 

Happy 5 80 10 10 0  

Sadness 0 10 80 10 0 0 

Surprise 0 0 0 80 12.50 7.50 

Neutral 0 5 7.50 5 82.50 0 

Disgust 0 2.50 10 10 0 77.50 

Mean 81.25 

 

TABLE V 
EXPRESSION RECOGNITION USING RGB FACES USING LDP WITH HMM. 

 Anger Happy Sadness Surprise Neutral Disgust 

Anger 85 0 5 0 0 10 

Happy 0 82.50 7.50 10 0  

Sadness 0 7.5 82.50 10 0 0 

Surprise 0 0 0 82.50 10 7.50 

Neutral 0 5 7.50 0 85 0 

Disgust 0 0 10 10 0 80 

Mean 82.91 

 

TABLE VI 
 EXPRESSION RECOGNITION USING RGB FACES USING LDPP-PCA-GDA WITH 

HMM. 

 Anger Happy Sadness Surprise Neutral Disgust 

Anger 90 0 5 0 0 5 

Happy 2.50 90 0 5 5  

Sadness 0 2.50 87.50 10 0 0 

Surprise 0 0 0 92.50 7.50 0 

Neutral 0 5 10 5 90 0 

Disgust 0 2.50 12.20 0 0 87.50 

Mean 89.58 

 

TABLE VII 

 EXPRESSION RECOGNITION USING RGB FACES WITH LDPP-PCA-GDA WITH 

DBN. 

 Anger Happy Sadness Surprise Neutral Disgust 

Anger 90 0 0 0 0 10 

Happy 2.50 92.50 0 0 5  

Sadness 0 2.50 92.50 7.50 0 0 

Surprise 0 0 0 95 5 0 

Neutral 0 5 7.50 0 95 0 

Disgust 0 0 10 0 0 90 

Mean 92.50 
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B. Depth Camera-based Experiments 

After the RGB video-based FER experiments, the 

experiments were continued to the depth camera-based 

ones. The depth video-based experimental results are 

shown in confusion matrix from Table VIII-Table XIV. The 

mean recognition rate using PCA with HMM on depth 

faces is 62%. The mean recognition rate utilizing ICA 

representation with HMM on the depth facial expression 

images is 83.50%, indicating better performance than 

applying PCA as well as PCA-LDA (i.e., 65%) on depth 

faces. Then, LBP was tried with HMM on the same 

database that achieved the mean recognition rate of 

87.91%. LDP with HMM was then employed and achieved 

the better recognition rate than LBP i.e., 89.16%. Then, 

proposed LDPP-PCA-GDA features were applied with 

HMMs on depth faces that achieved 91.67% mean 

recognition rate which is best recognition rate in HMM-

based experiments. Finally, the proposed LDPP-PCA-GDA 

features were applied with DBN which showed its 

superiority over the other methods by achieving the highest 

mean recognition rate (i.e., 96.67%). 
 

 
TABLE VIII 

 EXPRESSION RECOGNITION USING DEPTH FACES WITH PCA WITH HMM. 

 Anger Happy Sadness Surprise Neutral Disgust 

Anger 50 0 20 0 15 15 

Happy 7.50 52.50 10 10 20 10 

Sadness 0 17.5 70 12.50 0 0 

Surprise 0 0 0 80 15 5 

Neutral 0 5 25 10 60 0 

Disgust 0 5 27.50 0 0 62.50 

Mean 62 

 

 
TABLE IX 

 EXPRESSION RECOGNITION USING DEPTH FACES WITH PCA-LDA WITH HMM. 

 Anger Happy Sadness Surprise Neutral Disgust 

Anger 55 0 25 0 10 10 

Happy 10 60 10 5 15 0 

Sadness 0 17.5 75 7.50 0 0 

Surprise 0 0 0 75 10 15 

Neutral 0 10 27.50 0 62.50 0 

Disgust 0 0 20 12.50 0 67.50 

Mean 65 

 

TABLE X 

 EXPRESSION RECOGNITION USING DEPTH FACES USING ICA WITH HMM. 

 Anger Happy Sadness Surprise Neutral Disgust 

Anger 80 0 10 0 0 10 

Happy 0 85 10 5 0 0 

Sadness 0 0 85 15 0 0 

Surprise 0 0 0 82.50 17.50 0 

Neutral 0 5 15 0 85 0 

Disgust 0 0 15 2.50 0 82.50 

Mean 83.50 

 

TABLE XI 

 EXPRESSION RECOGNITION USING DEPTH FACES USING LBP WITH HMM. 

 Anger Happy Sadness Surprise Neutral Disgust 

Anger 87.50 0 12.50 0 0 0 

Happy 10 87.50 0 0 2.50 0 

Sadness 0 0 85 0 15 0 

Surprise 7.50 0 0 92.50 0 0 

Neutral 0 2.50 10 0 87.50 0 

Disgust 0 0 12.50 0 0 87.50 

Mean 87.91 

 

TABLE XII 
 EXPRESSION RECOGNITION USING DEPTH FACES USING LDP WITH HMM. 

 Anger Happy Sadness Surprise Neutral Disgust 

Anger 87.50 0 10 0 0 2.50 

Happy 10 90 0 0 0 0 

Sadness 0 0 87.50 0 12.50 0 

Surprise 7.50 0 0 92.50 0 0 

Neutral 0 2.5 7.50 0 90 0 

Disgust 0 0 12.5 0 0 87.50 

Mean 89.16 

 

TABLE XIII 
 EXPRESSION RECOGNITION USING DEPTH FACES USING LDPP-PCA-GDA 

WITH HMM. 

 Anger Happy Sadness Surprise Neutral Disgust 

Anger 90 0 10 0 0 0 

Happy 7.50 92.50 0 0 0 0 

Sadness 0 0 90 10 0 0 

Surprise 0 0 0 95 0 5 

Neutral 0 0 10 0 90 0 

Disgust 0 0 10 0 0 90 

Mean 91.25 

 

 

TABLE XIV 
 EXPRESSION RECOGNITION USING DEPTH FACES USING LDPP-PCA-GDA 

WITH DBN. 

 Anger Happy Sadness Surprise Neutral Disgust 

Anger 95 0 0 0 0 5 

Happy 0 97.50 0 2.50 0 0 

Sadness 0 0 97.50 0 2.50 0 

Surprise 0 2.50 0 97.50 0 0 

Neutral 0 0 2.50 0 97.50 0 

Disgust 5 0 0 0 0 95 

Mean 96.67 

V. CONCLUSION 

Facial expression recognition (FER) is the most natural way 

of human emotion expression. For last couple of decades, it 

has been a very prominent research area for enormous 

computer vision and image processing applications. An FER 

system basically consists of three fundamental parts: face 

image preprocessing that captures the image and improves the 

quality of the image by eliminating unnecessary details from 

the background, feature extraction that obtains distinguishable 

robust features for each expression, and a recognition part that 
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recognizes facial expression in video by applying features on a 

robust model. Facial image features are very sensitive to noise 

and illumination and often generates complexity by merging 

to with each other in the feature space. Hence, performance of 

an FER system is very much dependent on the extraction of 

good features. In this study, we have proposed a new approach 

for emotion recognition from facial expression depth videos, 

where a novel feature extraction method consisting of LDPP, 

PCA, and GDA has been investigated. The proposed method 

consists of tolerance against illumination variation and 

extracts salient features by utilizing prominent directional 

strengths of the pixels by considering the highest strength 

directional position and the signs of the strengths.  Besides, 

the proposed features can overcome critical problems which 

could not be resolved by conventional LDP feature extraction 

sometimes such as generating different patterns for edge 

pixels of reverse directions of bright and dark parts. Regarding 

depth faces, one major advantage of depth face over RGB is 

that FER with depth map can be implemented without 

revealing the identity of the subject since depth faces are 

represented with respect to the distance to the camera. Hence, 

the original identity of a person is hidden, which seems to 

resolve privacy issues regarding permission of the subjects in 

database. The robust LDPP-PCA-GDA features have been 

further combined with a state-of-the-art machine learning 

technique, Deep Belief Network (DBN) for modeling the 

expressions as well as recognition. Furthermore, the proposed 

FER method was compared with traditional approaches and its 

recognition performance was superior over them.  
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