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We prove some uniqueness results for the solution of two kinds of Dirichlet boundary value problems for second- and fourth-order
linear elliptic differential equations with discontinuous coefficients in polyhedral angles, in weighted Sobolev spaces.

1. Introduction

TheDirichlet problem for polyharmonic equations in bound-
ed domains of R𝑛 has been studied, among the first, by
Sobolev in [1].

The problem was developed in various directions. For
instance, Vekua in [2, 3] considers different boundary value
problems in not necessarily bounded domains for harmonic,
biharmonic, andmetaharmonic functions. Successively, anal-
ogous problems in more general cases, for what concerns
domains and operators, have been studied with different
methods by many authors (see, e.g., [4–7]).

In particular, in [7], the author obtains a uniqueness result
for the Dirichlet problem for polyharmonic operators of
order 2𝑚 in polyhedral angles ofR𝑛.This result has been later
on generalized, in [5], to the case of operators in divergence
form of order 2𝑚 with discontinuous bounded measurable
elliptic coefficients.

In [6] the authors study a boundary value problem
for biharmonic functions in presence of nonregular points
on the boundary of the domain. It is well known that
in the neighborhood of these singular points (corners or
edges) the solution of the problem presents a singularity
that can be characterized by the presence of a suitable
weight.

Uniqueness results for different Dirichlet problems in
weighted Sobolev spaces for different classes of weights can
be found in [8–12]. Studies of Dirichlet problems in the
framework of weighted Sobolev spaces and in the case of
unbounded domains can be found in [13–22].

In this paper, we extend the results of [5, 7] to the case
of weighted Sobolev spaces. More precisely, we prove some
uniqueness results for the solution of two kinds of Dirichlet
boundary value problems for second- and fourth-order linear
elliptic differential equations with discontinuous coefficients
in the polyhedral angle R𝑛𝑙 , 0 ≤ 𝑙 ≤ 𝑛 − 1, 𝑛 ≥ 2, in weighted
Sobolev spaces.

The first problem we consider is the following:
𝑛

∑
𝑖,𝑗=1

(𝑎𝑖𝑗𝑢𝑥𝑖)𝑥j = 𝑓, 𝑓 ∈ 𝐿2−𝑠 (R𝑛𝑙 ) ,

𝑢 ∈ ∘𝑊1,2𝑠 (R𝑛𝑙 ) ,
(1)

where, for 𝑘 ∈ N0 and 𝑠 ∈ R, 𝑊𝑘,2𝑠 (Ω) denotes a weighted
Sobolev space where the weight is a power of the distance
from the origin,

∘𝑊𝑘,2𝑠 (Ω) is the closure of 𝐶∞0 (Ω) in 𝑊𝑘,2𝑠 (Ω),
and 𝑊0,2𝑠 (Ω) = 𝐿2𝑠(Ω); see Section 2 for details.

The second problem we study is
𝑛

∑
𝑖,𝑗=1

(𝑎𝑖𝑗𝑢𝑥𝑖𝑥𝑗)𝑥𝑖𝑥𝑗 = 𝑓, 𝑓 ∈ 𝐿2−𝑠 (R𝑛𝑙 ) ,

𝑢 ∈ ∘𝑊2,2𝑠 (R𝑛𝑙 ) .
(2)

In both cases the coefficients 𝑎𝑖𝑗 belong to some weighted
Sobolev spaces.

The main tool in our analysis is a generalization of the
Hardy’s inequality proved by Kondrat’ev and Olènik in [23].
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2. Preliminary Results

Let Ω be an open subset of R𝑛 with 𝑛 ≥ 2, whose boundary
contains 𝑥 = 0. For 𝑘 ∈ N0 and 𝑠 ∈ R, 𝑊𝑘,2𝑠 (Ω) denotes the
space of all functions 𝑢 : Ω → R such that |𝑥|𝑠𝐷𝛼𝑢 ∈ 𝐿2(Ω)
for |𝛼| ≤ 𝑘, normed by

‖𝑢‖𝑊𝑘,2𝑠 (Ω) = ∑
|𝛼|≤𝑘

󵄩󵄩󵄩󵄩|𝑥|𝑠𝐷𝛼𝑢󵄩󵄩󵄩󵄩𝐿2(Ω) ,

∘𝑊𝑘,2𝑠 (Ω) is the closure of 𝐶∞0 (Ω) in 𝑊𝑘,2𝑠 (Ω) ,
𝑊0,2𝑠 (Ω) = 𝐿2𝑠 (Ω) .

(3)

From [24] and Propositions 6.3 and 6.5, we get the following.

Proposition 1. If 𝐺 is a bounded open subset in R𝑛 with 0 ∈
𝜕𝐺, then

𝑊𝑘,2𝑠 (𝐺) 󳨅→ 𝑊𝑘,2 (𝐺) for 𝑠 ≤ 0. (4)

Furthermore, for each 𝑞 ∈ [1, 2[ there exists 𝜖0 = 𝜖0(𝑞) > 0
such that

𝑊𝑘,2𝑠 (𝐺) 󳨅→ 𝑊𝑘,𝑞 (𝐺) for 0 < 𝑠 ≤ 𝜖0. (5)

In the present paper we use the following notation:

(i) 𝑉 ⊂ R𝑛 is a cone with vertex in the origin of coordi-
nates;

(ii) 𝐵𝑅, 𝑅 > 0, is the open ball of center in the origin and
radius 𝑅;

(iii) 𝑉𝑅 = 𝑉 ∩ 𝐵𝑅;
(iv) for every 𝑙 ∈ {0, . . . , 𝑛 − 1},

R
𝑛
𝑙 = {𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ R

𝑛 : 𝑥𝑖 > 0, 𝑖 = 𝑛
− 𝑙, . . . , 𝑛} , (6)

is the “polyhedral angle” with vertex in the origin;

(v) R𝑛+ = R𝑛0 is the half-space;

(vi) 𝑄𝑅 = R𝑛𝑙 ∩ 𝐵𝑅.
To prove our main results, consisting in two uniqueness

theorems, we will use the following inequality. We observe
that this is a slightlymodified version of a generalizedHardy’s
inequality that was proved by Kondrat’ev and Olènik in [23],
adapted to our needs (see also [5]).

Lemma 2 (generalized Hardy’s inequality). Let 𝑝 > 1 and
𝑟 ∈ R be such that 𝑟 + 𝑛 − 𝑝 ̸= 0. Assume that for a sufficiently
smooth function 𝑔 the following condition is fulfilled:

∫
𝑉𝑅2 \𝑉𝑅1

|𝑥|𝑟 󵄨󵄨󵄨󵄨󳶚𝑔 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥 < +∞, (7)

where 󳶚𝑔 = (𝜕𝑔/𝜕𝑥1, . . . , 𝜕𝑔/𝜕𝑥𝑛) is the gradient of the
function 𝑔 and 0 < 𝑅1 < 𝑅2. Then, there exist two constants
𝑀, 𝐾 > 0 such that

∫
𝑉𝑅2 \𝑉𝑅1

|𝑥|𝑟−𝑝 󵄨󵄨󵄨󵄨𝑔 (𝑥) − 𝑀󵄨󵄨󵄨󵄨𝑝 𝑑𝑥

< 𝐾 ∫
𝑉𝑅2 \𝑉𝑅1

|𝑥|𝑟 󵄨󵄨󵄨󵄨󳶚𝑔 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥,
(8)

where 𝐾 does not depend on the function 𝑔, 𝑅1, and 𝑅2. If, in
addition, 𝑔(0) = 0 then 𝑀 = 0.
Remark 3. We remark that there are always important
restrictions on the dimension 𝑛 of the space, the order of
“singularity” 𝑟, and the summability exponent 𝑝 (see, e.g.,
[23, 25–29], where different variants of Hardy or Caffarelli-
Kohn-Nirenberg type inequalities are proved).

3. Dirichlet Problem for Second-Order
Elliptic Equations

We consider the following differential operator in divergence
form in the polyhedral angle R𝑛𝑙 , 0 ≤ 𝑙 ≤ 𝑛 − 1:

𝑛

∑
𝑖,𝑗=1

(𝑎𝑖𝑗𝑢𝑥𝑖)𝑥𝑗 , (9)

where the coefficients 𝑎𝑖𝑗 are measurable functions such that
there exist two positive constants 𝜆 and 𝜇 such that

𝜆 |𝑥|2𝑠 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2 ≤
𝑛

∑
𝑖,𝑗=1

𝑎𝑖𝑗 (𝑥) 𝜉𝑖𝜉𝑗 ≤ 𝜇 |𝑥|2𝑠 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2

a.e. in R
𝑛
𝑙 , ∀𝜉 ∈ R

𝑛.
(10)

We study the Dirichlet problem

𝑛

∑
𝑖,𝑗=1

(𝑎𝑖𝑗𝑢𝑥𝑖)𝑥𝑗 = 𝑓, a.e. in R
𝑛
𝑙 ,

𝑢 ∈ ∘𝑊1,2𝑠 (R𝑛𝑙 ) ,
(11)

where 𝑓 ∈ 𝐿2−𝑠(R𝑛𝑙 ).
Definition 4. Wesay that a function𝑢 is a generalized solution
of problem (11) if it satisfies the integral identity

∫
𝑄𝑅

𝑛

∑
𝑖,𝑗=1

𝑎𝑖𝑗𝑢𝑥𝑖V𝑥𝑗𝑑𝑥 = − ∫
𝑄𝑅

𝑓V 𝑑𝑥, (12)

for any 𝑅 > 0 and any function V ∈ ∘𝑊1,2𝑠 (𝑄𝑅).
Now we prove our first uniqueness result.

Theorem 5. Let 𝑢 ∈ ∘𝑊1,2𝑠 (R𝑛𝑙 ) be a generalized solution of
problem (11), with 𝑓 = 0. Then there exists 𝜖0 > 0 such that
if 𝑠 ≤ 𝜖0/2 and 𝑠 ̸= (2 − 𝑛)/2 one has 𝑢 ≡ 0 in R𝑛𝑙 .
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Proof. Let Θ(𝑡) be an auxiliary function in 𝐶∞0 ([0, ∞[)
defined by

Θ (𝑡) ≡
{{{{
{{{{
{

1 0 ≤ 𝑡 ≤ 1,
𝜃 (𝑡) 1 ≤ 𝑡 ≤ 2,
0 𝑡 ≥ 2,

(13)

where 𝜃(𝑡) is such that 0 ≤ 𝜃(𝑡) ≤ 1. Let us also assume that
there exists a positive constant 𝐾0 such that

󵄨󵄨󵄨󵄨󵄨Θ󸀠 (𝑡)
󵄨󵄨󵄨󵄨󵄨
2 ≤ 𝐾0Θ (𝑡) . (14)

Set, for any 𝑅 > 0,

Θ𝑅 (𝑥) = Θ (|𝑥|
𝑅 ) . (15)

Note that the function Θ𝑅 is such that, for any 𝑗 = 1, . . . , 𝑛,
one has

(Θ𝑅)𝑥𝑗 (𝑥) = Θ󸀠 (|𝑥|
𝑅 ) 𝑥𝑗

𝑅 |𝑥| . (16)

Let 𝑢 ∈ ∘𝑊1,2𝑠 (R𝑛𝑙 ) be a generalized solution of problem
(11), with 𝑓 = 0. We put

V𝑅 (𝑥) = 𝑢 (𝑥) Θ𝑅 (𝑥) . (17)

Clearly, by definition of Θ𝑅 and as a consequence of our
boundary condition, one has that V𝑅 ∈ ∘𝑊1,2𝑠 (𝑄2𝑅).

Thus, using V𝑅 as test function in (12), we get

∫
𝑄2𝑅

𝑛

∑
𝑖,𝑗=1

𝑎𝑖𝑗𝑢𝑥𝑖𝑢𝑥𝑗Θ𝑅 (𝑥) 𝑑𝑥

+ ∫
𝑄2𝑅\𝑄𝑅

𝑛

∑
𝑖,𝑗=1

𝑎𝑖𝑗𝑢𝑥𝑖𝑢 (Θ𝑅)𝑥𝑗 (𝑥) 𝑑𝑥 = 0.
(18)

From (10), (16), and (18) we deduce that there exists a positive
constant 𝐾1 = 𝐾1(𝑛, 𝜇) such that

∫
𝑄2𝑅

𝑛

∑
𝑖,𝑗=1

𝑎𝑖𝑗𝑢𝑥𝑖𝑢𝑥𝑗Θ𝑅 (𝑥) 𝑑𝑥

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑄2𝑅\𝑄𝑅

𝑛

∑
𝑖,𝑗=1

𝑎𝑖𝑗𝑢𝑥𝑖𝑢Θ󸀠 (|𝑥|
𝑅 ) 𝑥𝑗

𝑅 |𝑥|𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐾1 ∫
𝑄2𝑅\𝑄𝑅

|𝑥|2𝑠 𝑢𝑥Θ󸀠 (|𝑥|
𝑅 ) |𝑢|

|𝑥|𝑑𝑥

= 𝐾1 ∫
𝑄2𝑅\𝑄𝑅

|𝑥|𝑠 𝑢𝑥Θ󸀠 (|𝑥|
𝑅 ) |𝑥|𝑠−1 |𝑢| 𝑑𝑥,

(19)

where 𝑢𝑥 denotes the modulus of the gradient of 𝑢.

By applying Young’s inequality one gets that for any 𝜖 > 0
∫
𝑄2𝑅

𝑛

∑
𝑖,𝑗=1

𝑎𝑖𝑗𝑢𝑥𝑖𝑢𝑥𝑗Θ𝑅 (𝑥) 𝑑𝑥

≤ 𝜀
2𝐾1 ∫

𝑄2𝑅\𝑄𝑅

|𝑥|2𝑠 𝑢2𝑥Θ󸀠2 (|𝑥|
𝑅 ) 𝑑𝑥

+ 𝐾1
2𝜀 ∫
𝑄2𝑅\𝑄𝑅

|𝑥|2𝑠−2 𝑢2𝑑𝑥.

(20)

Thus, taking into account (14) and applying the generalized
Hardy’s inequality (8) (with 𝑝 = 2 and 𝑟 = 2𝑠) to the second
term in the right-hand side of (20), we deduce that if 𝑠 ̸= (2 −
𝑛)/2,

∫
𝑄2𝑅

𝑛

∑
𝑖,𝑗=1

𝑎𝑖𝑗𝑢𝑥𝑖𝑢𝑥𝑗Θ𝑅 (𝑥) 𝑑𝑥

≤ 𝜀
2𝐾1𝐾0 ∫

𝑄2𝑅\𝑄𝑅

|𝑥|2𝑠 𝑢2𝑥Θ𝑅𝑑𝑥

+ 𝐾1
2𝜀 ∫
𝑄2𝑅\𝑄𝑅

|𝑥|2𝑠−2 𝑢2𝑑𝑥

≤ 𝜀
2𝐾1𝐾0 ∫

𝑄2𝑅\𝑄𝑅

|𝑥|2𝑠 𝑢2𝑥Θ𝑅𝑑𝑥

+ 𝐾1𝐾
2𝜀 ∫
𝑄2𝑅\𝑄𝑅

|𝑥|2𝑠 𝑢2𝑥𝑑𝑥.

(21)

From the ellipticity condition in (10) and for 𝜖 = 𝜆/𝐾1𝐾0, we
have

∫
𝑄2𝑅

|𝑥|2𝑠 𝑢2𝑥Θ𝑅𝑑𝑥 ≤ 𝐾2 ∫
𝑄2𝑅\𝑄𝑅

|𝑥|2𝑠 𝑢2𝑥𝑑𝑥, (22)

where the constant 𝐾2 = 𝐾2(𝑛, 𝜆, 𝜇, 𝐾0, 𝐾).
Thus for any 𝑃 > 0 and for any 𝑅 > 𝑃 we obtain

∫
𝑄𝑃

|𝑥|2s 𝑢2𝑥𝑑𝑥 ≤ 𝐾2 ∫
𝑄2𝑅\𝑄𝑅

|𝑥|2𝑠 𝑢2𝑥𝑑𝑥. (23)

Since 𝑢 is a generalized solution of problem (11), with 𝑓 = 0,
and the constant 𝐾2 does not depend on the radius 𝑅 and on
the solution 𝑢, the right-hand side of (23) tends to zero when
𝑅 → +∞ and then

∫
𝑄𝑃

|𝑥|2𝑠 𝑢2𝑥𝑑𝑥 = 0 ∀𝑃 > 0. (24)

This implies that

|𝑥|2𝑠 𝑢2𝑥 = 0 a.e. in 𝑄𝑃 ∀𝑃 > 0; (25)

therefore

𝑢𝑥 = 0 a.e. in 𝑄𝑃 ∀𝑃 > 0. (26)

By Proposition 1 we deduce that if the solution 𝑢 ∈ 𝑊1,2𝑠 (𝑄𝑃)
with 𝑠 ≤ 0, then 𝑢 ∈ 𝑊1,2(𝑄𝑃), for any 𝑃 > 0. On the other
hand, if 𝑠 > 0 for any 𝑞 ∈ [1, 2[ there exists 𝜖0 = 𝜖0(𝑞) > 0
such that if 0 < 𝑠 ≤ 𝜖0/2, then 𝑢 ∈ 𝑊1,𝑞(𝑄𝑃) for any 𝑃 > 0.
Thus, by (26) the function 𝑢(𝑥) is a constant inR𝑛𝑙 , and since
𝑢 ∈ ∘𝑊1,2𝑠 (R𝑛𝑙 ) one concludes that 𝑢 = 0 in R𝑛𝑙 .
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4. Dirichlet Problem for 4th-Order
Elliptic Equations

Let us now consider the following differential operator of 4th
order in the polyhedral angle R𝑛𝑙 , 0 ≤ 𝑙 ≤ 𝑛 − 1,

𝑛

∑
𝑖,𝑗=1

(𝑎𝑖𝑗𝑢𝑥𝑖𝑥𝑗)𝑥𝑖𝑥𝑗 , (27)

where 𝑎𝑖𝑗 are measurable symmetric coefficients and there
exist two positive constants 𝜆 and 𝜇 such that

𝜆 |𝑥|2𝑠 ≤ 𝑎𝑖𝑗 (𝑥) ≤ 𝜇 |𝑥|2𝑠 a.e. in R
𝑛
𝑙 , 𝑖, 𝑗 = 1, . . . 𝑛. (28)

We want to prove a uniqueness result for the solution of the
Dirichlet problem

𝑛

∑
𝑖,𝑗=1

(𝑎𝑖𝑗𝑢𝑥𝑖𝑥𝑗)𝑥𝑖𝑥𝑗 = 𝑓, a.e. in R
𝑛
𝑙 ,

𝑢 ∈ ∘𝑊2,2𝑠 (R𝑛𝑙 ) ,
(29)

where 𝑓 ∈ 𝐿2−𝑠(R𝑛𝑙 ).
Definition 6. Wesay that a function𝑢 is a generalized solution
of problem (29) if it satisfies the integral identity

∫
𝑄𝑅

𝑛

∑
𝑖,𝑗=1

𝑎𝑖𝑗𝑢𝑥𝑖𝑥𝑗V𝑥𝑖𝑥𝑗𝑑𝑥 = ∫
𝑄𝑅

𝑓V 𝑑𝑥, (30)

for any 𝑅 > 0 and any function V ∈ ∘𝑊2,2𝑠 (𝑄𝑅).
The result is the following.

Theorem 7. Let 𝑢 ∈ ∘𝑊2,2𝑠 (R𝑛𝑙 ) be a generalized solution of
problem (29), with 𝑓 = 0. Then there exists 𝜖0 > 0 such that if
𝑠 ≤ 𝜖0/2 and 𝑠 ̸= (2 − 𝑛)/2, (4 − 𝑛)/2 one has 𝑢 ≡ 0 in R𝑛𝑙 .

Proof. We shall rely on the methods developed in [5, 7]. We
consider the function Θ𝑅(𝑥) defined in (13) and satisfying
(14). Furthermore, we assume that there exists a positive
constant 𝐾1 such that

󵄨󵄨󵄨󵄨󵄨Θ󸀠󸀠 (𝑡)
󵄨󵄨󵄨󵄨󵄨
2 ≤ 𝐾1Θ (𝑡) . (31)

Note that the function Θ𝑅 is such that, for any 𝑖, 𝑗 =
1, . . . , 𝑛, one has (16) and

(Θ𝑅)𝑥𝑖𝑥𝑗 (𝑥) = Θ󸀠󸀠 (|𝑥|
𝑅 ) 𝑥𝑖𝑥𝑗

𝑅2 |𝑥|2

+ Θ󸀠 (|𝑥|
𝑅 ) |𝑥|2 𝛿𝑖𝑗 − 𝑥𝑖𝑥𝑗

𝑅 |𝑥|3 ,
(32)

where 𝛿𝑖𝑗 denotes the Kronecker delta.
Again we put

V𝑅 (𝑥) = 𝑢 (𝑥) Θ𝑅 (𝑥) , (33)

where 𝑢 ∈ ∘𝑊2,2𝑠 (R𝑛𝑙 ) is a generalized solution of problem (29),
with 𝑓 = 0.

Observe that the definition of Θ𝑅 together with the
boundary condition satisfied by 𝑢 gives that V𝑅 ∈ ∘𝑊2,2𝑠 (𝑄2𝑅).
Hence, by the symmetry of 𝑎𝑖𝑗, if we take V𝑅 as test function
in (30) we get

∫
𝑄2𝑅

𝑛

∑
𝑖,𝑗=1

𝑎𝑖𝑗𝑢2𝑥𝑖𝑥𝑗Θ𝑅 (𝑥) 𝑑𝑥

+ 2 ∫
𝑄2𝑅\𝑄𝑅

𝑛

∑
𝑖,𝑗=1

𝑎𝑖𝑗𝑢𝑥𝑖𝑥𝑗𝑢𝑥𝑖 (Θ𝑅)𝑥𝑗 (𝑥) 𝑑𝑥

+ ∫
𝑄2𝑅\𝑄𝑅

𝑛

∑
𝑖,𝑗=1

𝑎𝑖𝑗𝑢𝑥𝑖𝑥𝑗𝑢 (Θ𝑅)𝑥𝑖𝑥𝑗 (𝑥) 𝑑𝑥 = 0.

(34)

From (28) and (34) we deduce that

𝜆 ∫
𝑄2𝑅

|𝑥|2𝑠
𝑛

∑
𝑖,𝑗=1

𝑢2𝑥𝑖𝑥𝑗Θ𝑅 (𝑥) 𝑑𝑥

≤ 2𝜇 ∫
𝑄2𝑅\𝑄𝑅

|𝑥|2𝑠
𝑛

∑
𝑖,𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨𝑢𝑥𝑖𝑥𝑗𝑢𝑥𝑖 (Θ𝑅)𝑥𝑗 (𝑥)󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑥

+ 𝜇 ∫
𝑄2𝑅\𝑄𝑅

|𝑥|2𝑠
𝑛

∑
𝑖,𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨𝑢𝑥𝑖𝑥𝑗𝑢 (Θ𝑅)𝑥𝑖𝑥𝑗 (𝑥)󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑥.

(35)

By applying (16), (32), and Young’s inequality one gets that
there exist two positive constants 𝐾2 = 𝐾2(𝑛, 𝜆, 𝜇, 𝐾0) and𝐾3 = 𝐾3(𝑛, 𝜆, 𝜇, 𝐾0, 𝐾1) such that for any 𝜀, 𝜀1 > 0

∫
𝑄2𝑅

|𝑥|2𝑠
𝑛

∑
𝑖,𝑗=1

𝑢2𝑥𝑖𝑥𝑗Θ𝑅 (𝑥) 𝑑𝑥

≤ 𝜀 ∫
𝑄2𝑅\𝑄𝑅

|𝑥|2𝑠
𝑛

∑
𝑖,𝑗=1

𝑢2𝑥𝑖𝑥𝑗Θ𝑅 (𝑥) 𝑑𝑥

+ 𝜀1
2 ∫
𝑄2𝑅\𝑄𝑅

|𝑥|2𝑠
𝑛

∑
𝑖,𝑗=1

𝑢2𝑥𝑖𝑥𝑗Θ𝑅 (𝑥) 𝑑𝑥

+ 𝐾2
𝜀 ∫
𝑄2𝑅\𝑄𝑅

|𝑥|2𝑠−2
𝑛

∑
𝑖=1

𝑢2𝑥𝑖𝑑𝑥

+ 𝐾3
2𝜀1 ∫
𝑄2𝑅\𝑄𝑅

|𝑥|2𝑠−4 𝑢2𝑑𝑥.

(36)

Thus, applying repeatedly the generalized Hardy’s inequality
(8) (with 𝑝 = 2 and 𝑟 = 2𝑠 to the third integral on the right-
hand side and with 𝑝 = 2 and 𝑟 = 2𝑠 − 2 to the last integral
on the right-hand side and then again with 𝑝 = 2 and 𝑟 = 2𝑠),
we deduce that if 𝑠 ̸= (2 − 𝑛)/2, (4 − 𝑛)/2,

∫
𝑄2𝑅

|𝑥|2𝑠
𝑛

∑
𝑖,𝑗=1

𝑢2𝑥𝑖𝑥𝑗Θ𝑅 (𝑥) 𝑑𝑥

≤ 𝐾4 ∫
𝑄2𝑅\𝑄𝑅

|𝑥|2𝑠
𝑛

∑
𝑖,𝑗=1

𝑢2𝑥𝑖𝑥𝑗𝑑𝑥,
(37)

where the constant 𝐾4 = 𝐾4(𝑛, 𝜆, 𝜇, 𝐾0, 𝐾1, 𝐾).
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Thus for any 𝑃 > 0 and for any 𝑅 > 𝑃 we obtain

∫
𝑄𝑃

|𝑥|2𝑠
𝑛

∑
𝑖,𝑗=1

𝑢2𝑥𝑖𝑥𝑗𝑑𝑥 ≤ 𝐾4 ∫
𝑄2𝑅\𝑄𝑅

|𝑥|2𝑠
𝑛

∑
𝑖,𝑗=1

𝑢2𝑥𝑖𝑥𝑗𝑑𝑥. (38)

Now, arguing as in the proof of Theorem 5, since 𝑢 is a
generalized solution of problem (29), with 𝑓 = 0, the right-
hand side of (38) tends to zero when 𝑅 → +∞ and then

∫
𝑄𝑃

|𝑥|2𝑠
𝑛

∑
𝑖,𝑗=1

𝑢2𝑥𝑖𝑥𝑗𝑑𝑥 = 0 ∀𝑃 > 0. (39)

This implies that

|𝑥|2𝑠
𝑛

∑
𝑖,𝑗=1

𝑢2𝑥𝑖𝑥𝑗 = 0 a.e. in 𝑄𝑃 ∀𝑃 > 0; (40)

therefore

𝑢𝑥𝑥 = 0 a.e. in 𝑄𝑃 ∀𝑃 > 0. (41)

In view of Proposition 1 we obtain that if the solution 𝑢 ∈
𝑊2,2𝑠 (𝑄𝑃) with 𝑠 ≤ 0, then 𝑢 ∈ 𝑊2,2(𝑄𝑃), for any 𝑃 > 0, while
if 𝑠 > 0 for any 𝑞 ∈ [1, 2[ there exists 𝜖0 = 𝜖0(𝑞) > 0 such that
if 0 < 𝑠 ≤ 𝜖0/2, then 𝑢 ∈ 𝑊2,𝑞(𝑄𝑃) for any𝑃 > 0.Thus, by (41)
the function 𝑢𝑥 is constant a.e. in 𝑄𝑃, and since 𝑢 ∈ ∘𝑊2,2𝑠 (R𝑛𝑙 )
one concludes that 𝑢𝑥 = 0 a.e. in 𝑄𝑃, for any 𝑃 > 0.The thesis
follows then as the one of Theorem 5.
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