
Received January 13, 2020, accepted February 3, 2020, date of publication February 7, 2020, date of current version February 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2972364

How Is Open Source Software Development
Different in Popular IoT Projects?
FULVIO CORNO , (Member, IEEE), LUIGI DE RUSSIS , (Member, IEEE),
AND JUAN PABLO SÁENZ , (Student Member, IEEE)
Department of Control and Computer Engineering, Politecnico di Torino, 10129 Torino, Italy

Corresponding author: Luigi De Russis (luigi.derussis@polito.it)

ABSTRACT From the software point of view, the development of IoT applications differs from other kinds of
applications due to the specific features that the former exhibit. In this paper, we investigate how developers
contribute to IoT applications in the Open Source Software (OSS) context, to gain a deeper understanding
of how their work differs from that of non-IoT applications. To that end, we conducted a quantitative
analysis of a broad set of the 60 most popular publicly available IoT and non-IoT projects on GitHub.
By comparing how developers contribute to these projects, our analysis provides insight into the purpose and
characteristics of the code, the behavior of the contributors, and the maturity of the IoT software development
ecosystem. Results reveal significant differences between IoT and non-IoT application development, in terms
of how applications are realized, in the diversity of developers’ specializations, and in how code is reused.
This work provides evidence about some Open Source IoT software development peculiarities to be
considered by future research efforts aimed at better satisfying software engineering needs in the IoT
scenario.

INDEX TERMS Internet of Things, open source software, software mining, developers.

I. INTRODUCTION
Nowadays, the Internet of Things (IoT) is a well-established
paradigm that has gained prominence in several aspects of
our everyday lives [1]. Roughly speaking, it is based on
embedding computing and communication capabilities into
objects of common use [2]. This concept has given rise to
the development of various kinds of solutions in several
domains such as smart buildings, smart cities, environmental
monitoring, healthcare, smart business, smart agriculture, and
security and surveillance [3]–[5].

From a technical point of view, several definitions have
been proposed for the Internet of Things [6] and various
enabling technologies are considered to characterize IoT
applications. According to Atzori et al. [7], these tech-
nologies may be categorized into identification, sensing
and communication technologies; middleware components;
end-user software applications; services composition; service
management; and object abstraction. While identification,
sensing and communication technologies mainly concern
hardware components, the other enabling technologies rely

The associate editor coordinating the review of this manuscript and

approving it for publication was Pietro Savazzi .

on software to address diverse features that IoT applications
expose [2].

From the software point of view, in addition, the imple-
mentation of IoT applications is particularly complex and
differs from the development of mobile and web appli-
cations. According to Taivalsaari et al. [8], for instance,
IoT development differs from mainstream mobile app and
web application development in several ways, summarized
by the authors into a set of dimensions that are unfamil-
iar to most software developers. Multi-device programming,
the reactive nature of the application, the distributed nature
of the software, and the need to write fault-tolerant software,
are among these dimensions, which IoT developers must
consider.

Against this backdrop, the present work relies upon soft-
ware mining to gain understanding, from a practical point
of view, about how developing IoT applications is different
from developing non-IoT applications in the Open Source
Software (OSS) context. To this end, this paper reports the
comparison and quantitative analysis between the behavior of
developers in the most popular IoT and non-IoT OSS projects
hosted on a world leading software development platform as
is GitHub.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 28337

https://orcid.org/0000-0002-9818-0999
https://orcid.org/0000-0001-7647-6652
https://orcid.org/0000-0003-0928-3089
https://orcid.org/0000-0003-0692-8566


F. Corno et al.: How Is OSS Development Different in Popular IoT Projects?

In particular, we conducted an empirical study mining
60 OSS repositories publicly available on GitHub. We mined
30 IoT OSS and 30 non-IoT OSS projects to analyze a) the
way developers contribute to their projects, b) the files that
they tend to modify the most, and c) the specialization and
the evolution of these modifications. Finally, we assessed the
maturity of the IoT software development ecosystem based
on a dependency analysis in the selected projects. Besides
leveraging a characterization of IoT OSS projects currently
available for IoT developers, this work aims at providing
evidence from a practical point of view about the IoT software
development peculiarities that should guide future research
efforts to better understand and satisfy software engineering
needs in the IoT context.

The remainder of the paper is structured as follows.
Section II describes the research goal and questions and
outlines the selection process. Section III characterizes the
selected OSS projects and describes the quantitative analysis
conducted over them as well as the outcome of the analysis.
Section IV discusses the results and presents further impli-
cations, while threats to validity are outlined in Section V.
Section VI presents the related work, while Section VII con-
cludes the article.

II. RESEARCH GOAL AND QUESTIONS
The overall goal of this research is to explore the potential
differences between the development practices for IoT and
non-IoT projects in the OSS context. In particular, we are
interested in identifying (a) the behavior of developers and
the diversity of resources they manage, and (b) the reuse of
features through the adopted dependencies. These two criteria
lead us to the research questions set out below.

A. RESEARCH QUESTIONS
We want to investigate whether and how developers adopt
different programming languages and cover various special-
izations in IoT vs. non-IoT OSS projects. In particular, we are
interested in:
• how different programming languages are used in the
two domains;

• whether IoT developers are more specialized in any
programming languages or certain types of files in their
project;

• how the usage of such programming languages evolve
over time.

Therefore, our first research question is:

RQ1: How developers of IoT vs. non-IoT OSS applications
contribute to their projects regarding the programming lan-
guages that they adopt?

Our quantitative investigation, furthermore, exploits OSS
repositories by focusing on the maturity of the IoT ecosystem
for a software development point of view. We investigate this
aspect in the repositories we selected by analyzing project
dependencies, how many they are, and which are the most

popular ones. Additionally, focusing on the IoTOSS projects,
we wanted to identify which aspects of IoT application devel-
opment these dependencies address and how often they are
used by IoT developers. This leads to our second research
question:

RQ2: How developers exploit dependencies to reuse features
in IoT vs. non-IoT OSS projects?

B. SELECTION OF THE ANALYZED REPOSITORIES
To select a prominent widely-known and widely-used set
of IoT OSS repositories from GitHub, we first filtered
them by topic, choosing the ones that belong to the iot
or internet-of-things topics on GitHub. Topics are
labels to classify a repository based on its intended purpose,
subject area, community, or language. They appear on the
main page of a repository and repository administrators can
add as many topics as they want to a repository.

Once the repositories belonging to the IoT topic were
filtered, 4,696 repositories were retrieved. Therefore, to pri-
oritize the most popular and well-evaluated ones, we sorted
them according to the decreasing number of stars. Stars
enable GitHub users to keep track of repositories they find
interesting and to discover similar repositories [9], as well
as to show appreciation to the repository maintainers for
their work.1 Lastly, we took the 30 top-starred repositories,
provided they were open source code repositories. In fact,
since a large portion of repositories on GitHub are not for
software development [10], we inspected them manually to
exclude the ones that were not software related (i.e., tutorials,
documentation pages, icon-packs, fonts) or without an open
source license.

The same procedure was followed to select the non-IoT
repositories. The only difference was that the filter was modi-
fied to include repositories belonging to any topic except iot
and internet-of-things.

The data used in the analyses reported in this article was
mined from GitHub in August 2018. Tables 1 and 2 list the
selected IoT and non-IoT repositories along with their salient
characteristics. Most of the information about the repositories
was gathered through the GitHub GraphQL API v4.2

III. OSS PROJECTS ANALYSIS
A. PROJECTS CHARACTERIZATION
Before diving into the research questions, we report a charac-
terization of the selected projects, to provide a brief but com-
plete overview and to set the stage for the subsequent analysis.
Each project was examined individually to understand its pur-
pose and to assign it a genre. The genres aimed at describing
the nature of the projects. Then, through the GitHub API,
several characteristics were gathered, namely: the topics,
their size (kB and lines of code), their primary language, and
their total number of programming languages. Additionally,

1https://help.github.com/articles/about-stars/, last visited on June 6, 2019
2https://developer.github.com/v4/, last visited on June 6, 2019

28338 VOLUME 8, 2020



F. Corno et al.: How Is OSS Development Different in Popular IoT Projects?

TABLE 1. IoT popular Open Source GitHub repositories.

to put into perspective the comparison of the projects’ size,
we illustrate through the heatmap graphs in Figures 1 and 2
the growth of the source code along the projects’ lifetime.

As observed in Table 1, the genre of the IoT OSS projects
is heterogeneous, as they are scattered across operating sys-
tems, programming frameworks, libraries, network proto-
cols, databases, IoT platforms, and IDEs. At first glance,
no clear trend emerged concerning their purpose or appli-
cation domain. On the contrary, when analyzing non-IoT
projects (Table 2), we can notice that most of them are related
to the web development area, with just 12 exceptions, such as
a machine learning framework, a Zsh framework, an operat-
ing system kernel, an IDE, a text editor, and a couple of open
source programming languages.

The fifteen most commonly used topics across the IoT
projects (mqtt, raspberry-pi, arduino, hardware, esp8266,
esp32, embedded, robotics, javascript, java, iot-platform, i2c,
home-automation, gpio, docker) did not reveal a prevail-
ing technology or application domain. Instead, the 15 top-
ics across the non-IoT projects (javascript, nodejs, html,
framework, electron, css, windows, web, ui, react, python,
macos, linux, go, frontend) are mostly about web develop-
ment. This fact leads us to think that neither in our classifi-
cation nor in the labels assigned by the owners to their IoT
projects, there is a strong focus towards a particular domain
or technology, thus further motivating our investigation and
research questions. Furthermore, our initial observations

regarding the genre and the topics of the projects seem to
be in line with various authors [6], [8], [11], who point out
that the development of IoT applications is more complex
and requires programmers with skills and expertise in sev-
eral domains as might be, for instance, mobile and cloud
computing, embedded devices, database design, and web
development.

Concerning the size of the projects (in kB), the aver-
age non-IoT project is almost three times larger (4.56×)
than a typical IoT project. However, if we look at LOC
(Lines Of Code), this difference decreases significantly: on
average, non-IoT projects contains 1.9M LOC, while IoT
projects 1.0M (1.9×). The largest IoT project, for both
kB and LOC, corresponds to rt-thread, a real-time
IoT operating system for embedded devices. Similarly,
the largest non-IoT project is the Linux kernel followed far
behind by kubernetes. The smallest IoT project, in kB,
is BerryNet, a project to turn edge devices such as Rasp-
berry Pi 3 into intelligent gateways with deep learning capa-
bilities running locally, on the edge device itself, without the
need of an Internet connection. For what concerns LOCs,
instead, the smallest IoT project is cylon, a JavaScript
framework for robots, drones, and the IoT, developed for
Arduino and similar boards. As may be observed in these
last two projects, achieving a small size is fundamental given
the fact that in most cases IoT software components are
deployed on constrained devices with low computational

VOLUME 8, 2020 28339



F. Corno et al.: How Is OSS Development Different in Popular IoT Projects?

TABLE 2. Non-IoT popular Open Source GitHub repositories.

FIGURE 1. Growth speed of the IoT repositories.

28340 VOLUME 8, 2020



F. Corno et al.: How Is OSS Development Different in Popular IoT Projects?

FIGURE 2. Growth speed of the non-IoT repositories.

and/or storage resources. This same restriction holds for most
of the other IoT projects, especially those to be deployed on
the gateway architectural element.

Finally, Figure 1 (for IoT projects) and Figure 2
(for non-IoT projects) aim at visualizing the growth of
the projects’ source code, expressed as the proportion
between the initial size of the programming files and their
size along the lifetime of the projects. We divided the period
between the first commit in the project and the last commit
before August 2018 (the date when the repositories were
mined for this analysis), into 21 equally spaced date intervals
for each project. Then, on each of these dates, we checked
out from GitHub the corresponding version of the project
and calculated the size of the programming files. To this end,
we relied on Linguist; the open-source library that GitHub
uses to determine file languages for syntax highlighting,
and project statistics.3 Specifically, we used the Ruby API
provided by this library that, given a directory, returns a
dictionary with the detected programming languages along
with their size.

The growth of the project was calculated by dividing the
size of each checked out version of the project by the size
of the second checked out version. By taking the second
version instead of the first one (initial commit) we could avoid
empty projects (without source code) that would have made
our calculation impossible or meaningless. In this manner,

3https://github.com/GitHub/linguist, last visited on November 26, 2019

the first measure is always one, and the following values rep-
resent the variation regarding the initial size of the projects’
programming files. Hence, the last measure represents how
many times the source code grew in comparison with respect
to its initial size.

As can be observed in Figure 1a, a subset of four IoT
projects grew up hugely. Namely netdata (350 times,
24.4 MB, and 7.3k commits), home-assistant
(101 times, 85.7 MB, and 14.7k commits), gobot
(108 times, 9.6 MB, and 2.5k commits), and crate
(261 times, 86.5 MB, and 8.7k commits). Indeed, while
the average growth is 35.15 times, the standard deviation
is 78.83 times. To improve the readability of the graph for
project with less dramatic growth, we generated a second
heatmap visualization, restricted to the projects whose final
growth is below the mean, only (Figure 1b).

Concerning non-IoT projects (Figure 2b), five of them
grew up significantly, although not as dramatically as the
subset of IoT projects that grew above the mean. These
repositories were: oh-my-zsh (60 times, 4.7 MB, and 4.7k
commits), create-react-app (39 times, 5.7 MB, and
1.7k commits), moby (30 times, 137.5 MB, and 35.8k com-
mits), three.js (72 times, 662.9MB, and 25.2k commits),
and meteor (47.9 times, 76.0 MB, and 21.6k commits).
The average growth in non-IoT projects is 11.88 times, and
the standard deviation 18.81 times. As with the IoT projects,
Figure 2b reports a second heatmap visualization with the IoT
projects whose final growth is below the mean.

VOLUME 8, 2020 28341



F. Corno et al.: How Is OSS Development Different in Popular IoT Projects?

FIGURE 3. Top primary programming languages in IoT and non-IoT
repositories.

Among the IoT projects, paho.mqtt.android is the
one that has remained more stable over time (1.0 times,
2.0 MB, and 194 commits), it consists of an MQTT
client library written in Java for developing applications on
Android. Nevertheless, the last of its 195 commits was 4ht
October 2017, and it has just two releases. After it, the project
that remained more stable was urh (1.2 times, 43.5 MB, and
2.5k commits), it consists of a tool for analyzing unknown
wireless protocols by taking samples from Software Defined
Radios and transforming them into binary information. For its
part, the non-IoT project whose code growth remained more
stable over time is socket.io (1.0 times, 12.2 MB, and
1.7k commits), a library that enables real-time, bidirectional
and event-based communication between the browser and the
server.

B. RQ1: DEVELOPMENT ACTIVITIES
To answer RQ1, we performed an analysis of the commit
history for all the OSS projects. In particular, each repository
was cloned locally so that its git history could be saved into an
external text file, and processed later by a custom-developed
text mining tool. This tool extracted from each commit the
set of files that were modified, the modification date, and
the author name. Several classifications and cross-checking
analyses over this information allowed us to determine the
most widely-modified file formats, and especially the commit
history over time of such resources. In addition, we gath-
ered complementary information from the GitHub API, when
appropriate.

1) DISTRIBUTION OF PROGRAMMING LANGUAGES
Among the information that Linguist provides there is the
primary language, which is the most used programming
language within a project (Figure 3). The most popular
primary programming language among non-IoT projects
is JavaScript, which is the also the lead language since
18 non-IoT projects use it (60%). It is followed far behind
by C++ and C (3 and 1 project, respectively). IoT projects,
instead, exhibit a more balanced distribution of primary lan-
guages, with themost popular languages being C, C++, Java,

FIGURE 4. Presence of programming languages in IoT and non-IoT
projects.

Python, and JavaScript. All of them are the primary language
on almost the same number of projects (from 4 to 6 projects,
each).

Besides the primary language, there are several other lan-
guages on each project: on average, 7.4 different languages
for non-IoT projects vs. 8.3 for IoT projects. To gather
additional insight on this comparison, since the averages’
difference is not statistically significant due to the small size
of the sample, we compared the percentage of files written in
a given programming language with the number of projects
in which that language is present and reported it in Figure 4.
It illustrates, given a programming language, the number of
projects in which it is present, and the average percentage
of files on those projects. Regarding this graph, it can be
observed that no languages were present on a high number of
IoT projects with a significant percentage of files (right-upper
quadrant). In most of the IoT projects, the chart identifies
programming languages that are present in many projects
with a marginal percentage (right-lower quadrant), as well as
programming languages that have a significant percentage of
files but just on a few projects (left-upper quadrant). In the
first category, Java and Erlang have a significant percentage
of files on a few projects. In the second category, C++, C,
and Python are present in around half of the projects, with
percentages of files ranging from 26% to 32%. Furthermore,
several IoT projects have a small portion of Shell scripts
(on average, 0.96% of the files in 23 projects).

For non-IoT projects, JavaScript is still the only program-
ming language with a significant percentage of files on most
projects (66.47% on 23 projects). This results gives an initial
indication that the programming languages IoT developers
deal with are observably different and more varied from those
worked on by non-IoT developers, and supports the idea that
the development of IoT applications requires programmers
with skills and expertise in several domains.

28342 VOLUME 8, 2020



F. Corno et al.: How Is OSS Development Different in Popular IoT Projects?

FIGURE 5. Percentage of contributors by file format.

FIGURE 6. Commit history over time by file format.

2) SPECIALIZATION OF CONTRIBUTORS BY
PROGRAMMING LANGUAGE
Figures 5a and 5b illustrate the average percentage of contrib-
utors that modify the files developed in a given programming
language, among the projects where it is present. Inside the
IoT projects, the files modified by a higher proportion of
the contributors are Java, C, C++, Python, and JavaScript.
As before, this result indicates that programming languages
used by IoT developers are more variegate and diverse than
other contexts, with a lower specialization towards a few
lead languages. On the contrary, shell executable files, batch
files, and command files are manipulated by a percentage that
reaches, on average, 15% of the contributors. This percentage
suggests a higher level of specialization for shell-oriented
languages.

For what concerns non-IoT projects, the files modified by a
higher proportion of the contributors are by far JavaScript and
Go. The rest of the files are modified by a dramatically lower

proportion of contributors. Moreover, shell-oriented files
(e.g., sh files) in non-IoT projects are modified by a signif-
icantly lower proportion of contributors, in comparison with
IoT projects. However, we must clarify that Figure 5 does
not represent an overall ranking of the most used program-
ming languages among IoT and non-IoT projects. Instead,
it corresponds to the programming language whose files are
modified by a higher percentage of contributors, among the
repositories that we analyzed. For instance, although Go is
the second programming language modified by a high per-
centage of contributors, it is present in just three IoT projects
and five non-IoT projects, in both cases with around half of
the files.

3) EVOLUTION OF FILES BY PROGRAMMING LANGUAGES
Figures 6a and 6b aim at visualizing the files modified in the
commits, grouped by their format. To facilitate the interpreta-
tion, the dates of the commits, from all the analyzed projects,

VOLUME 8, 2020 28343



F. Corno et al.: How Is OSS Development Different in Popular IoT Projects?

were normalized and placed on a common timeline since the
first commit to the data extraction date.Moreover, as themod-
ifications to the files from the analyzed projects sum up to
approximately 0.6 million diffs in IoT projects, and 3 million
in non-IoT projects, and larger projects have a significantly
higher number of commits, we decided to randomly sample
500 modifications, at most, per each project. In this manner,
we guaranteed that the graph could be readable and balanced
concerning the represented number of modifications from
each project. Otherwise, there would be so many points that
it would not be possible to identify the trends, and most of
them would belong to the larger projects.

This visualization of the modifications in the commits
by files format allows observable trends concerning the fre-
quency of the changes to be identified. This chart indicates
that compiled and interpreted programming languages are
continually modified along the IoT projects lifetime, while
shell-oriented languages are rarely modified. Thus, the com-
mits over time are consistent with the specialization trends by
language (Figure 5), the presence of the programming lan-
guages and the primary programming languages (Figures 4
and 3). This shows that developers focus more on source code
concerning the business logic of the application rather than
the execution scripts.

Regarding non-IoT projects, JavaScript files are evidently
the most modified over time, no matter in which project they
were used (e.g., user interface frameworks, general purpose
libraries, MVC frameworks, runtime engines, programming
frameworks). Other types of files evolved equally, with no
evident differences, across the various development phases.

RQ1: How developers of IoT vs. non-IoT OSS appli-
cations contribute to their projects regarding the pro-
gramming languages that they adopt? IoT projects present
contributions in diverse programming languages, without a
unique widely used language. In IoT projects, in addition,
the files modified by a higher proportion of contributors are
Java, C, C++, Python, and JavaScript. Additionally, Shell
executable files, Batch files, and Command files are manip-
ulated by a percentage that reaches, on average, 15% of the
contributors. The above indicates a more variegate usage of
programming languages and a higher level of specialization
in shell-oriented languages than in non-IoT projects. Con-
cerning files’ evolution over time, compiled and interpreted
programming languages are continually modified along the
IoT projects lifetime, while shell-oriented languages are
rarely modified. This is less visible for non-IoT projects.

C. RQ2: MATURITY OF THE IoT SOFTWARE ECOSYSTEM
To investigate the maturity of the IoT software ecosystem
for answering RQ2, we explored the dependencies of each
project and identified how many they are and which ones
are present in the various projects. Initially, we relied on the
GitHub API to extract the data about dependencies. However,
in this case, the data provided by the API is not completely

accurate because GitHub is not able to identify the depen-
dencies of a project if they are not defined in one of the
supported manifest file types.4 Moreover, these manifests are
limited to a reduced set of supported languages, namely Java,
JavaScript,.NET, Python, and Ruby. For this reason, we had
to manually explore each project looking for the files where
dependencies are specified along with their versions.

Whenmanually looking for the dependencies, we first tried
to find the equivalent to the manifest file in the project root
directory. If such a manifest did not exist, we proceeded to
examine the content of the files, through the GitHub search
engine, looking for keywords that could help us to identify the
files in which dependencies could have been declared. Con-
cretely, the query keywords were: dependencies, deps,
dev-deps, import, include, require. Furthermore,
to identify the dependency’s corresponding repository on
GitHub, we also used as a query keyword the substring
‘‘github.com/’’. In that case, the search could highlight
the URL within GitHub of the declared dependencies. Unfor-
tunately, this strategy was not always effective, particularly
in the largest projects where the query retrieved thousands
of source code files, most of which contained the keywords
inside documentation blocks. When we were able to find one
or more dependencies, we added them to the data gathered
with the GitHub API; otherwise, we assumed that the project
under analysis did not have any explicit dependency.

Afterwards, the API data and the data gathered manually
were consolidated, and the analysis was performed taking
into account two conditions: (i) dependencies had to cor-
respond to open source software projects so that we could
explore and analyze them, (ii) the dependencies declared
directly in the analyzed project, only, were included: depen-
dencies of the dependencieswere excluded from the analysis.
Consequently, the number reported in the # Dependencies
column in Tables 1 and 2, corresponds to the number of
dependencies that could be correctly identified either via the
API or manually, and that satisfy the just described condi-
tions. For this reason, we must clarify that zero dependencies
reported in the table does not necessarily imply that, in prac-
tice, the concerned project does not have any dependencies
at all.

Regarding the number of dependencies, we observe that
developers of non-IoT projects adopt more dependencies than
those working on IoT projects. Specifically, IoT projects
exhibited 1,084 dependencies, compared to 1,868 dependen-
cies for non-IoT projects (1.7×). In addition, the number
of dependencies shared among different repositories is sig-
nificantly higher in non-IoT projects. Accordingly, Figure 7
shows the percentage of dependencies present in a given
number of projects. In both cases, the majority of the depen-
dencies are not shared, but while in the non-IoT projects the
percentage of dependencies shared by 2 or more projects is
approximately 35%, in IoT projects is around 5%.

4https://help.github.com/articles/listing-the-packages-that-a-repository-
depends-on/, last visited on June 6, 2019

28344 VOLUME 8, 2020



F. Corno et al.: How Is OSS Development Different in Popular IoT Projects?

FIGURE 7. Distribution of dependencies present in one or more projects.

TABLE 3. Most popular dependencies of IoT projects.

TABLE 4. Most popular dependencies of non-IoT projects.

Finally, Tables 3 and 4 present the list of the top-15 most
popular dependencies among IoT and non-IoT projects,
respectively. By analyzing the type of the dependencies,
it can be highlighted that most of the dependencies of
non-IoT projects correspond to utilities aimed at easing code
development, such as parsers, test frameworks, beautifiers,

and algorithm implementations. In the IoT projects, instead,
some of the most popular dependencies concern network
protocols client libraries, HTTP requests libraries, a serial
port access library, and a test framework. A few dependencies
were common across IoT and non-IoT projects, and they
are utilities mainly concerning code source code formatting,
linting, and testing.

RQ2: How developers exploit dependencies to reuse fea-
tures in IoT vs. non-IoT OSS projects? Non-IoT projects
have more dependencies than IoT projects (1.7×). Moreover,
the number of shared dependencies is significantly higher
for non-IoT projects. Although in both of them, IoT and
non-IoT projects, most of the dependencies were not shared
among different projects, in non-IoT projects the percentage
of dependencies shared by 2 or more projects is approxi-
mately 35%, while in IoT projects is around 5%. Finally,
the most popular dependencies in the analyzed IoT projects
were shared at most by 5 projects, and among these popular
dependencies, there were network protocols client libraries,
HTTP requests libraries, a serial port access library, and a
test framework. Among the most popular non-IoT projects,
instead, dependencies mainly concerned utilities aimed at
easing code development.

IV. DISCUSSION AND IMPLICATIONS
After presenting the results of our analysis, in this section we
focus on (i) a discussion of the results and on (ii) an analysis
of the implication that our work has both for researchers and
practitioners.

A. DISCUSSION
Our results showed a number of points to be further high-
lighted and discussed, in particular:

The development of IoT applications is different.While
the knowledge about an inherent complexity in develop-
ing IoT applications was already hinted in the literature
(e.g., [6], [8], [11]), we evaluated this complexity in a more
quantitative way. We observed that developers, involved in
the creation of IoT vs. non-IoT software applications, are
less oriented towards the adoption of a lead programming
language, but they work with different programming lan-
guages, according to the task at hand or to the specific
capability of the infrastructure (e.g., a micro-controller or a
cloud service) where the IoT application should be deployed.
Furthermore, this heterogeneity of languages is also reflected
in the IoT projects’ topics, thus unveiling one of the main
sources of complexity in IoT applications development,
i.e., the co-existence of various kinds of devices, protocols,
and architectures within the same application. The tools and
methodologies to support IoT developers can not, therefore,
be constrained to a given technological stack but they should
be language and platform agnostic.

Specialization of a few contributors towards command-
line scripting. The percentage of contributors that modified

VOLUME 8, 2020 28345



F. Corno et al.: How Is OSS Development Different in Popular IoT Projects?

specific files and the tracking of the commits over the lifetime
of IoT projects showed that a strong majority of the devel-
opers are frequently modifying the files written in compiled
and interpreted programming languages, where the business
logic of the application reside, while a few contributors
specialize in shell-oriented languages (e.g., bash), generally
related to the configuration and deployment of the software
components in a particular execution environment. Indeed,
differently from non-IoT projects, shell-oriented languages
are present in most of the IoT projects. This result reveals
that, in IoT projects, the execution environment is particularly
relevant yet problematic for what concerns the different (and
often incompatible) target devices.

The way files evolve is different. We observed the files
evolution during the history of software projects. IoT devel-
opers focus more on compiled and interpreted programming
languages (i.e., Java, C, C++, Python, and JavaScript) able to
fulfill the core business logic of the IoT application. All these
files evolved equally across the various development phases,
while shell-oriented files are scarcely modified. IoT devel-
opers seems not to focus on configuration and deployment
scripts, probably immutable once the target platform(s) is
chosen. Conversely, non-IoT developers constantly and sig-
nificantly evolve the JavaScript files of their applications,
only, being they user interface frameworks, general purpose
libraries, MVC frameworks, runtime engines, or program-
ming frameworks. Other types of files evolved equally, with
no evident stops, across the various development phases.

Dependencies are considered differently. Non-IoT
projects have more dependencies than IoT projects, and 35%
of those dependencies are shared among 2 or more non-IoT
projects. IoT developers do not only use less dependencies,
but such dependencies are also shared among fewer projects,
with only 5% of them shared by two or more repositories.
However, dependencies in non-IoT projects mainly represent
utilities, while dependencies in IoT projects are more varied
and oriented towards software integration tasks. The rela-
tively high number of dependencies used by IoT projects may
entail a relatively good maturity of the IoT ecosystem, but the
analysis also highlight some issues in sharing the knowledge
about the existence of a given dependency.

B. IMPLICATIONS
The aforementioned findings have a number of implica-
tions for researchers and practitioners. Researchers should
acknowledge the specificity of this domain, and explicitly
consider IoT-oriented software engineering as a study branch.
More specifically:

1) IoT-oriented tools and methodologies. Given the
wide heterogeneity of IoT applications and adopted
programming languages, stemming from both the
results and the literature, tools like Integrated Devel-
opment Environments (IDEs) and software methodolo-
gies to support IoT developers should be language and
platform agnostic, and not constrained to any given

technological stack. In addition, research could focus
onways to abstract this heterogeneity, to allow develop-
ers to more easily share their IoT-related efforts, code,
and documentation.

2) Supporting automation for multiple and diverse
deployment targets. The specialization towards shell-
oriented languages and their relative immutability, gen-
erally related to the configuration and deployment
of the software components in a particular execution
environment or embedded device, may indicate that
execution environments are particularly relevant for
IoT development. Research efforts should consider
approaches to deal with this devices heterogeneity and
to automate the generation and execution of deploy-
ment commands across several, often incompatible,
devices.

3) IoT-specific dependencies sharing mechanisms. Our
results report that developers exploit some existing
dependencies in their projects, but the same projects
do not present common dependencies. Likely, this is
due both to the heterogeneity of the IoT projects and
to the relatively new and not yet consolidated software
community behind those projects. This represents an
opportunity for researchers for the definition of novel
mechanisms that IoT developers can adopt to make
their code more extensible, modular, and reusable,
given the peculiarities of the deployment platforms.

Practitioners need to find appropriate ways to handle and
share dependencies, as well as to create a more focused
software community around these topics. Finally, confirming
previous insights in the literature, our results suggest that IoT
software development requires skills and expertise in several
and disparate domains, differently from those required by the
development of traditional software. Developers are indeed
called to be more creative and able to adapt to different
contexts and programming environments. Thus, it would be
beneficial for students to have dedicated courses (e.g., similar
to the courses reported in [12]) where they could gather these
skills to approach the development of IoT applications.

V. THREATS TO VALIDITY
A. SAMPLE VALIDITY
The selection criteria of the analyzed projects aimed to be as
neutral as possible from our appreciations. For this reason,
we only relied on their number of stars, prioritized them
accordingly, and took the 60 top starred ones. Additionally,
their IoT and non-IoT nature were determined by the topics
that the project owners assigned them. Since tags are freely
added by project owners, this might have excluded some
potentially interesting IoT projects from our analysis. The
only two interventions of our criteria consisted of excluding
projects that were not software related or without an open
source license. Nevertheless this selection procedure, unin-
tentionally, resulted in a strong shift in the non-IoT projects
towards web-related frameworks. However, we opted to keep

28346 VOLUME 8, 2020



F. Corno et al.: How Is OSS Development Different in Popular IoT Projects?

this selection criteria because, on the one hand, it was replica-
ble and transparent, and on the other hand, it reveals GitHub
users trends about their interests.

On the other hand, the inclusion of themost starred projects
spontaneously resulted in a significant number of files, com-
mits, and an active contributors community. According to
Kalliamvakou et al. [10], these variables help to avoid perils
while performing software engineering research on GitHub.
Moreover, we took inspiration from themethodology adopted
by Pascarella et al. [13]. Authors included the same number
of projects in their comparative analysis of video games and
non-video games OSS projects.

B. FILE CLASSIFICATION VALIDITY
We relied on the statistics provided by the GitHub API con-
cerning the percentage of programming language on each
project. As already mentioned, this measure is calculated
by GitHub using the open source Linguist library, which
we assume, provides accurate statistics. However, we could
asses the accuracy of such statistics later when computing the
percentage of contributors working on a given programming
language. We locally cloned each project and, with a text
mining tool developed by us, we processed the commits to
extract the files modified by each contributor and observed
that the results delivered by our tool were consistent with the
percentages retrieved through the API.

C. DEPENDENCIES IDENTIFICATION
The GitHub API retrieves the number and list of depen-
dencies if they are defined in one of the supported man-
ifest file types, only. These types are only attached to
Java, JavaScript,.NET, Python, and Ruby projects. Therefore,
to avoid inconsistencies in the analysis of ecosystem matu-
rity, we had to manually explore each project looking for
the files where software dependencies and their versions are
specified. This manual process, given its complexity, could
have lead to omissions or mistakes in the identification of the
dependencies.

Finally, the higher number of dependencies in the non-IoT
projects could depend from the nature of these projects: they
are homogeneous in web development and a large number of
them have the same primary language (i.e., JavaScript). Given
these conditions, it is logical that non-IoT projects share more
dependencies among them than IoT projects, which are more
heterogeneous.

VI. RELATED WORK
This work lies in the software engineering domain and is
intended to provide insights into the peculiarities of IoT
development in the OSS context. To the best of our knowl-
edge, no other research aimed at exploring and analyzing how
developers work within several OSS IoT projects. Indeed,
various authors have pointed out the need for research on
software engineering for IoT systems in view of the several
challenges that the development of such systems poses. In the
following we approached the related work from two areas:

the needs and challenges of software engineering in the IoT
context, and Software Mining research in other fields differ-
ent from IoT.

According to Morin et al. [14], IoT applications have two
main characteristics from a software engineering viewpoint.
The first is their distribution over a large range of processing
nodes. The second is high heterogeneity of the processing
nodes and the protocols used between them. To deal with
these characteristics, authors introduce a modeling language
aligned with UML, an advanced multiplatform code genera-
tion framework, and a methodology specifying the develop-
ment processes and tools used by both IoT service developers
and platform experts.

Similarly, Čolaković and Hadžialić [15] hold that IoT soft-
ware architectures and frameworks are necessary to overcome
the inherent complexity of IoT systems and to provide an
environment for services composition. In their opinion, IoT
software platforms should be created as an Open Application
Platform to enable modular design as well as providing an
open API (Application Programming Interface) that would
easily integrate sensors and other devices.

On the basis that IoT applications have been based on
fragmented software implementations for specific systems
and use cases, Weyrich and Ebert [16] propose the use of
reference architectures as a mean to facilitate interoperability,
simplify development, and ease implementation.

According to Larrucea et al. [11], no consolidated set of
software engineering best practices for the IoT has emerged
yet. On the author’s words, ‘‘IoT landscape resembles the
wild west, with programmers putting together IoT systems in
ad hoc fashion’’. They consider that industry needs guidance
to engineer the new generation of scalable, highly reactive,
often resource-constrained software systems characteristic of
the IoT. Among such guidance, authors remark the need for a
new generation of development environments and the training
of the new generation of IoT software developers.

Patel and Cassou [17] draws attention to the lack of a
software engineering methodology to support the entire IoT
application development life-cycle, which results in highly
difficult to maintain, reuse, and platform-dependent design.
To deal with such difficulty, authors introduce a develop-
ment methodology for IoT application development, based
on model-driven development and involving sensor network
macroprogramming techniques.

Regarding IoT projects in OSS, Taivalsaari and Mikkonen
[18] hold that nowadays nearly all the component areas of a
typical IoT cloud back-end architecture can be constructed
from open source technologies. On their opinion, given the
availability and maturity of open source components, the role
of back-end developers today could be characterized more as
software composition or orchestration instead of traditional
software development.

Concerning sotfware mining, as mentioned before,
the methodology followed in this work took inspiration
from the work of Pascarella et al. [13], in the video games
OSS context. The authors conducted a study on 60 projects,

VOLUME 8, 2020 28347



F. Corno et al.: How Is OSS Development Different in Popular IoT Projects?

and their results confirmed the existence of significant dif-
ferences between game and non-game development, in terms
of how project resources are organized and in the diversity of
developers specializations. Another source of inspiration was
the work of Ray et al. [19]: they performed a large scale study
on GitHub about the of programming languages type and
use on software quality. They examined the interactions of
language, domain, and defect type through a combination of
regression modeling, text analytics, and visualization. Their
results suggested that strong typing is modestly better than
weak typing, and among functional languages, static typing
is also somewhat better than dynamic typing. However,
authors point out that effects arising from language design
are overwhelmingly dominated by the process factors such
as project size, team size, and commit size. Additionally, they
determined that the defect proneness of languages, in general,
is not associated with software domains.

VII. CONCLUSION
IoT software development is known to differ from the devel-
opment of other kinds of applications. It poses several chal-
lenges and requires expertise in various areas due to the
diverse features that IoT applications expose. In this article,
we provide empirical insights into the peculiarities of IoT
software development through the analysis of OSS projects.
This analysis was structured around two criteria: the behav-
ior of the contributors, and the maturity of the IoT soft-
ware development ecosystem. Specifically, we conducted an
exploratory study mining 30 popular IoT OSS and 30 popular
non-IoT OSS projects available on GitHub. Our results are
intended to provide evidence about IoT development charac-
teristics (such as the distribution of programming languages,
the specialization of contributors, the evolution of the files,
and the adopted dependencies), that should be considered
by future research efforts aimed at better satisfying software
engineering needs in the IoT scenario.

REFERENCES
[1] J. A. Stankovic, ‘‘Research directions for the Internet of Things,’’ IEEE

Internet Things J., vol. 1, no. 1, pp. 3–9, Feb. 2014.
[2] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, ‘‘Internet of

Things: Vision, applications and research challenges,’’ Ad Hoc Netw.,
vol. 10, no. 7, pp. 1497–1516, Sep. 2012.

[3] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
‘‘Internet of Things: A survey on enabling technologies, protocols, and
applications,’’ IEEECommun. Surveys Tuts., vol. 17, no. 4, pp. 2347–2376,
4th Quart., 2015.

[4] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, ‘‘Internet of
Things for smart cities,’’ IEEE Internet Things J., vol. 1, no. 1, pp. 22–32,
Feb. 2014.

[5] S. M. Riazul Islam, D. Kwak, M. Humaun Kabir, M. Hossain, and
K.-S. Kwak, ‘‘The Internet of Things for health care: A comprehensive
survey,’’ IEEE Access, vol. 3, pp. 678–708, 2015.

[6] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, ‘‘Internet of Things
(IoT): A vision, architectural elements, and future directions,’’ Future
Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, Sep. 2013.

[7] L. Atzori, A. Iera, and G. Morabito, ‘‘The Internet of Things: A survey,’’
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[8] A. Taivalsaari and T. Mikkonen, ‘‘A roadmap to the programmable world:
Software challenges in the IoT era,’’ IEEE Softw., vol. 34, no. 1, pp. 72–80,
Jan. 2017.

[9] H. Borges and M. T. Valente, ‘‘What’s in a GitHub Star? Understanding
repository starring practices in a social coding platform,’’ J. Syst. Softw.,
vol. 146, pp. 112–129, Dec. 2018.

[10] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, ‘‘The promises and perils of mining Github,’’ in Proc. 11th
Work. Conf. Mining Softw. Repositories (MSR). New York, NY, USA:
ACM, 2014, pp. 92–101.

[11] X. Larrucea, A. Combelles, J. Favaro, and K. Taneja, ‘‘Software engineer-
ing for the Internet of Things,’’ IEEE Softw., vol. 34, no. 1, pp. 24–28,
Jan. 2017.

[12] F. Corno and L. De Russis, ‘‘Training engineers for the ambient intelli-
gence challenge,’’ IEEE Trans. Educ., vol. 60, no. 1, pp. 40–49, Feb. 2017.

[13] L. Pascarella, F. Palomba, M. Di Penta, and A. Bacchelli, ‘‘How is video
game development different from software development in open source?’’
in Proc. 15th Int. Conf. Mining Softw. Repositories (MSR). New York, NY,
USA: ACM, 2018, pp. 392–402.

[14] B. Morin, N. Harrand, and F. Fleurey, ‘‘Model-based software engineering
to tame the IoT jungle,’’ IEEE Softw., vol. 34, no. 1, pp. 30–36, Jan. 2017.

[15] A. Čolaković and M. Hadžialić, ‘‘Internet of Things (IoT): A review of
enabling technologies, challenges, and open research issues,’’ Comput.
Netw., vol. 144, pp. 17–39, Oct. 2018.

[16] M. Weyrich and C. Ebert, ‘‘Reference architectures for the Internet of
Things,’’ IEEE Softw., vol. 33, no. 1, pp. 112–116, Jan. 2016.

[17] P. Patel and D. Cassou, ‘‘Enabling high-level application development for
the Internet of Things,’’ J. Syst. Softw., vol. 103, pp. 62–84, May 2015.

[18] A. Taivalsaari and T. Mikkonen, ‘‘On the development of IoT systems,’’
in Proc. 3rd Int. Conf. Fog Mobile Edge Comput. (FMEC), Apr. 2018,
pp. 13–19.

[19] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, ‘‘A large scale study of
programming languages and code quality in GitHub,’’ in Proc. 22nd ACM
SIGSOFT Int. Symp. Found. Softw. Eng. (FSE). New York, NY, USA:
ACM, 2014, pp. 155–165, doi: 10.1145/2635868.2635922.

FULVIO CORNO (Member, IEEE) has been the
Leader of the e-Lite Research Group, since 2002,
where he focuses on ambient intelligence systems
by integrating novel interactionmodalities with the
IoT architectures. He is currently a Full Professor
with the Department of Control and Computer
Engineering, Politecnico di Torino. He is a mem-
ber of IEEE Computer Society and ACM.

LUIGI DE RUSSIS (Member, IEEE) has been
an Assistant Professor with the Department of
Computer and Control Engineering, Politecnico di
Torino, since 2018. His current research focuses
on human–computer interaction, with an interest
on how to overcome interaction challenges in com-
plex settings, such as within the IoT systems. He is
a member of IEEE-HKN, IEEE Computer Society,
and ACM.

JUAN PABLO SÁENZ (Student Member, IEEE)
is currently pursuing the Ph.D. degree with the
Department of Computer and Control Engineer-
ing, Politecnico di Torino. His current research
focuses on software engineering, with an interest
on development tools and methodologies for the
IoT systems. He is a Student Member of ACM.

28348 VOLUME 8, 2020

http://dx.doi.org/10.1145/2635868.2635922

